TAŞIT KULLANIM KARAKTERİSTİKLERİ AÇISINDAN AZ DÖNERLİK (UNDERSTEER) VE AŞIRI DÖNERLİĞİN (OVERSTEER) İNCELENMESİ

Ebat: px
Şu sayfadan göstermeyi başlat:

Download "TAŞIT KULLANIM KARAKTERİSTİKLERİ AÇISINDAN AZ DÖNERLİK (UNDERSTEER) VE AŞIRI DÖNERLİĞİN (OVERSTEER) İNCELENMESİ"

Transkript

1 TAŞIT KULLANIM KARAKTERİSTİKLERİ AÇISINDAN AZ DÖNERLİK (UNDERSTEER) VE AŞIRI DÖNERLİĞİN (OVERSTEER) İNCELENMESİ Abdullah DEMİR* Ali ÇAVDAR** * Kocaeli Üniversitesi Teknik Eğitim Fakültesi Makine Eğitimi Bölümü, Kocaeli ** Kocaeli Üniversitesi Teknik Eğitim Fakültesi Makine Eğitimi Bölümü, Kocaeli Özet Taşıtın yük/ağırlık eğilimi, temel aşırı dönerlik/az dönerlik (oversteer/understeer) karakteristiklerini belirler. Taşıtın ön tarafı arka tarafından daha ağır olduğunda taşıtlar az dönerlik eğilimine arka tarafı ön tarafından daha ağır olduğunda aşırı dönerliğe doğru eğilimlidirler. Taşıtın ağırlığı ön ve ark akslara eşit dağıtılabilirse taşıt tarafsız (neutral steer) yönlendirmelidir. Taşıtın ağırlık dağılımı, süspansiyon dizaynı ve taşıt dizaynı açısından seçilen lastik ve teker boyutları bu sürüş karakteristiklerini belirleyen en önemli parametreleri oluşturur[1]. Bu çalışmada; ön düzen açılarının, yük transferlerinin, yuvarlanma direncinin, tahrik kuvvetlerinin vs.nin aşırı dönerlik, az dönerlik ve tarafsız yönlendirme karakteri gösteren taşıtları nasıl etkilediği inceleme konusu yapılacaktır. Anahtar Kelimeler: Taşıt, Aşırı Dönerlik, Az Dönerlik, Yük Transferi INVESTIGATING UNDERSTEER AND OVERSTEER IN TERMS OF VEHICLE HANDLING CHARACTERISTICS Abstract The weight bias of the vehicle determines its inherent oversteer/understeer characteristics. A vehicle that is heavier at the front will tend to understeer and one that is heavier at the rear will oversteer. A vehicle in which the weight is equally distributed between the front and rear axles tends to exhibit neutral steer characteristics. Although the inherent understeer/oversteer characteristics of a vehicle are determined by its weight distribution, the design of the suspension and the selection of wheel and tire size can enhance or moderate those characteristics[1]. In this study; it is investigated on oversteer, understeer and neutral steer characteristics what wheel alignment, load transfer, rolling resistance and driving forces etc. affect Keywords: Vehicle, Oversteering, Understering, Load Transfer

2 1. Giriş Durağan dairesel bir harekette bir otomobilin yolu; hızı, yönlendirme açısı, dingiller arası açıklık ve direksiyon sisteminin, süspansiyon siteminin ve lastiklerin özelliklerine bağlıdır[2]. Durağan dairesel hareketten kastedilen şey sabit yarıçaplı bir dönemeçte sabit hızda dönmedir. Verilmiş yarıçaplı bir çember üzerinde bir taşıtın dengede kalması için gerekli ön tekerlek sapmasının Ackerman tekerlek sapmasına oranını hızın fonksiyonu olarak vermektedir. Hız sıfır olduğu zaman sapma Ackermann sapmasına eşit olur. Azdönerlik durumunda; hız arttıkça direksiyon tekerleğinin sapmasını arttırmak gerekir. Tarafsız/Nötr yönlendirme durumunda; taşıtın yönlendirilen tekerleğinin sapması bütün hız aralığında sabit kalır. Aşırı dönerlik durumunda ise; taşıtın yönlendirilen tekerleğinin sapmasını hız arttıkça geri almak gerekir. Taşıtın, çapraz hareket katsayıları önde ve arkada aynı ise az döner taşıtlarda ağırlık merkezinin önde olması gerekir. Ağırlık merkezi taşıtın orta noktasında ise az dönerlik için arkadaki çapraz hareket katsayısının öndekine göre daha büyük olması gerekir [3]. Taşıtın kararlı kullanım karakteristiklerini etkileyen faktörler; ağırlık dağılımı ve lastik dönüş katılıklarıdır. 2. Literatür Araştırması General Motor firmasında yapılan çalışmalarda bazı yönlendirme geometrilerinin taşıtın aşırı dönerliğine neden olduğu tespit edildi. Sonra az şişirilmiş arka lastiklerin ya da taşıtın arka tarafındaki ağırlığın artmasının taşıtı aşırı dönerliğe doğru kaydırdığını tespit edildi. Bu tespit edilen durumlar; lastik dinamiği ve taşıt kullanım karakteristikleri üzerine bir dizi çalışmayı da beraberinde getirdi[4]. Stonex [1941] tarafından; kararlı (durağan) taşıt, taşıt stabilitesi, azdönerlik ve aşırı dönerlik durumları araştırıldı[5]. Sonra Segel [1956] dinamik taşıt modellerinin geliştirilmesi ve analizi üzerine bir dizi çalışma gerçekleştirdi ve az dönerlik ile aşırı dönerlik durumları matematiksel olarak incelendi[6]. Neticede az döner taşıtların daima kararlı olduğu fakat artan hızlarda taşıtın süspansiyon karakterinin zayıfladığı görüldü. Aşırı döner taşıtların ise kritik hıza kadar karalı olduğu kritik hızdan sonra karasız olduğu saptandı[7,8]. 3. Yönlendirme Sistemine Genel Bakış Taşıtın kullanım performansı; sürücünün girdilerine taşıtın verdiği tepkiyi gösterir. Taşıtın kullanılması (kontrol/kumanda yeteneği), taşıt-sürücü kombinasyonunun kapsamlı bir ölçüsüdür. Sürücü ve taşıt, kapalı döngülü bir sistemdir[şekil 3.1]. Bunun anlamı; sürücü taşıtın yönünü ya da pozisyonunu/konumunu izler ve arzulanan hareket için gerekli müdahaleyi yapar. 2

3 Şekil 3.1 Sürücü Taşıt ve Çevre Etkileşimi [9] Şekil 3.1. de koyu çizgiler, katı hatlar açık devre sistemini; tüm diyagram, kapalı devre sistemini ifade eder. Kapalı devre araştırmaları; sürücünün, sistemdeki geribildirimlere cevabını/tepkisini içerir. 4. Lastik Viraj Kuvveti Özellikleri Lastiklerin yanal/viraj sertliği, çapraz hareket katsayılarıyla genelleştirilir. Viraj sertliğinin [Cα], [N/rad], en basit tanımı, kayma açısının lineer bir fonksiyonu olarak yanal/çapraz hareket kuvvetidir. Daha küçük kayma açıları [s=(v-r*ω)/(v)] ve düz yüzeyler için şekil 4.1 de gösterilen makul bir kabuldür. Şekil 4.1 Lastik Viraj Kuvveti Özellikleri [9] 3

4 5. Taşıtın Viraj Dinamiğinin İncelenmesi 5.1 Düşük Hizlarda Viraj Dinamiği İdeal dönüş geometrisi, lastik ovma hareketini minimize eder ve bu geometri Ackermann yönlendirme geometrisi olarak tanımlanır. Ackermann geometrisinden kaynaklanan sapmalar; lastik aşıntısını ve yönlendirme sistemi kuvvetlerini kayda değer biçimde etkiler fakat taşıtın yönlendirme cevabı üzerinde çok az bir etki gösterir[şekil 5.1]. Bir tekerleğin yan kuvvet nakletmesi durumunda çevresel kuvvetlerin nakledilmesinde olduğu gibi bir elastik kayma olur. Yalnız bu kayma çevresel yönde değil tekerlek eksenine dik yönde olur. Yanal kayma, kaymaya bağlı olarak kat edilen yanal mesafenin, gerçekten kat edilen uzunlamasına mesafeye oranıdır. Lastiklerin yanal kuvvet geliştirmesi ve bu kuvvetleri iletmesi şu faktörlere bağlıdır: Lastik yapısı (yan duvarlardaki dahili güçlendirmeler/destekler), Lastiğin geometrisi (profil oranı, kesit oranı), Lastiğin kauçuk kısmının bileşenleri, Yol yüzeyinin özelliklerine bağlıdır [9]. Şekil 5.1 Ackermann Direksiyon Geometrisi (Viraj Alan bir Taşıtın Geometrisi) [8] Düşük hızlarda ve makul seviyedeki çekiş durumlarında, kayma olmaz. Bu durumda Rf=Rr=R ve δ= L/R (küçük açılar için) dir. Şekil 5.2 de de bisiklet modeli görülmeltedir. Şekil 5.2 Bisiklet Modeli [Tek İzli Taşıt Modeli]. 4

5 5.2. Yüksek Hızlarda Kararlı Viraj Alma Yüksek hızlarda, viraj denklemleri yanal ivmeden dolayı değişir. Yanal ivmeyi önlemek için lastikler yanal kuvvetler geliştirir ve her bir tekerlekte kayma açıları oluşur [Şekil 5.3]. Şekil 5.3 Bisiklet Modeli (Tek İzli Taşıt Modeli). V hızıyla hareket eden bir taşıt için; dönemeç denklemleri; Kararlı durumdan dolayı; Vx, Vy ve ω sabittir. Merkezkaç kuvveti = Fc=m*R* ω 2 = m*v 2 x /R. Merkezkaç kuvveti, teker/yol yanal/çapraz temas kuvvetleriyle dengelenmek zorundadır. Eşitlik: Fyf+Fyr = F c = m*v 2 x /R ve Fyf*b - Fyr*c=0 Yapısal denklemler: Fyf=C αf *α f ve Fyr=C αr *α r Bağdaşma: Vx tan(δ-af)=(b*ω+vy ve Vx tan(αr)=(c*ω-vy) Küçük açılar için Vy yi ihmal ederek; Vx=R*ω ve δ - αf + αr = L/R Kayma açılarını ihmal edersek; Fy f =(l r /L)*m*V 2 x /R ve Fyr=(lf/L)*m*Vx 2 /R δ - Fyf/Cαf + Fyr/Cαr = L/R Yanal kuvvetleri elimine edersek; δ = L/R +[(lr/l)/cαf - (lf/l)/cαr] * m*vx 2 /R δ = L/R + [Wf/ Cαf - Wr/ Cαr] *Vx 2 /(g*r) şeklinde ifade edilebilir. (Wf ve Wr sırasıyla ön ve arka akslardaki yükleri ifade etmektedir.) Wf/ Cαf - Wr/ Cαr azdönerlik gradyenti ya da katsayısı olarak isimlendirilir ve K ile ya da K us ile gösterilir. Yukarıdaki formül şu şekilde basitleştirilir. δ = L/R + K *Vx 2 /(g*r) Azdönerlik gradyenti daha genel biçimde olarak tanımlanır[9]. 5

6 Azdönerlik gradyenti taşıt kullanım karakteristiklerini tanımlar. Azdönerlik gradyenti; durağan dairesel harekette tek izli taşıt modeli kullanılarak, ağırlık dağılımı ve viraj sertliğinden tanımlanabilir. δ = L/R + K *Vx 2 /(g*r) denklemi bir taşıtın kullanım karakteristiğini tanımlanması için çok önemlidir. Denklem, yönlendirme açısının; dönemeç yarıçapının ve taşıtın çapraz hareket ivmesine (yanal ivmenin) göre nasıl değiştiğini tanımlar. K sıfırsa, taşıt tarafsız/nötr yönlendirmelidir. Taşıt hızı değişirken sabit yarıçaplı bir dönemeçte yönlendirme açısında herhangi bir değişme olmaz. K sıfırdan büyükse, taşıt az dönerdir ve sabit yarıçaplı bir dönemeçte yönlendirme açısı artan taşıt hızı ile artar. Benzer şekilde K sıfırdan küçükse, taşıt aşırı dönerdir ve sabit yarıçaplı bir dönemeçte yönlendirme açısı artan taşıt hızı ile azalır. Az dönerlik gösteren taşıtlar daima kararlıdır. Fakat taşıt cevabı daha yüksek hızlarda salınımlıdır. Aşırı döner taşıtlarşekil 5.4 de görüldüğü gibi yüksek hızlarda kararsızdırlar[10]. İki akslı bir taşıtın düşük hızla virajdaki hareketinin incelenmesi: Yönlendirme açısı ve boylamsal hızla değişme gösteren parametreler; Sapma hızı ya da sapma oranı (kafa açısının zamana göre türevi) Yanal ivmedir. Düşük hızlı bir dönüş için; Gerek duyulan yönlendirme açısı: δ = L / R (hıza bağlı olmaksızın) Sapma oranı : ω = Vx / R = Vx * δ / L (hız ile yönlendirme açısına orantılı olarak) Yanal ivmelenme : ay = Vx 2 / R = Vx 2 * δ / L (hız ile yönlendirme açısına orantılı olarak) Yönlendirme açısı bir kontrol parametresi olduğu için; yani δ lı kısımla kazanım (gains) olarak nitelendirilmesi tabii bir durumdur. Sapma oranı artışı/kazanımı (Yaw rate gain) = ω/δ = Vx/L Yanal ivmelenme artışı/kazanımı: ay/δ = Vx 2 /L Yüksek hızlı bir viraj hareketi için; δ = L/R + K *Vx 2 /(g*r) Sapma oranı artışı/kazanımı : ω δ =(Vx/R) / d=vx/(l + K *Vx 2 /g) Yanal ivmelenme artışı/kazanımı : ay/d = (Vx 2 /R) / d = Vx 2 /(L + K *Vx 2 /g) Vx e bağlı olarak bu durum: 6

7 Şekil 5.4 Hızla Yönlendirme Açısının Değişimi Kritik Hız ve Karasteristik Hız Karakteristik hız; az döner bir taşıt için, her hangi bir virajı dönmek için gerek duyulan yönlendirme açısının Ackerman açısının iki katı olduğundaki hız olarak tanımlanır. Kritik hız ise; aşırı döner bir taşıt için her hangi bir virajı dönmek için gerek duyulan yönlendirme açısının sıfır olduğu hız kritik hız olarak ifade edilir. Ön lastiklere göre arka lastiklerin viraj sertliğinin azalması, kullanım stbilitesini azaltan az dönerlik eğiliminde bir düşme oluşur. Lastikler ile yol arasındaki sürtünme katsayısındaki düşmenin ya da taşıt hızındaki artışın temel etkisi, kullanım stbilitesinin azaltır. Yanal ivmenin (lateral acceleration) düşük seviyelerinde, taşıt hafif bir şekilde az döner eğilimlidir. Az dönerlik stabıldır. Yanal ivme artarken, normal yük transferleri tahrik aksında hızlı bir şekilde artar. Aşırı döner taşıtlar; taşıt boyutlarına, ağırlık dağılımına ve lastiklerin mekanik özelliklerine bağlı olarak kritik hızda kararsız olur[11]. Bu karasızlık da monoton bir karasızlıktır. Yani taşıt dinamik olarak kararsız olduğu takdirde denge konumundan ayrıldığı zaman bu ayrılmadan evvelki hareketine, yani sabit yarıçaplı (bu yarıçap sonsuz olabilir) bir çembere dönemez, eğrilik yarıçapı gittikçe küçülen bir eğri çizer[şekil 5.5]. Aşırı döner taşıtlarda, kritik hız sınırına kadar artan taşıt hızıyla süspansiyon cevabı da (süspansiyon özelliğinin artması) artar[10]. Aşırı döner taşıtlar; taşıt boyutlarına, ağırlık dağılımına ve lastiklerin mekanik özelliklerine bağlı olarak kritik hızda kararsız olur[11]. Çekici ve yarı treyler kombinasyonunun sapma stabilitesi (yaw stability), hem çekicinin hem de yarı treylerin sürüş dinamiği açısından aşağıdaki şekillerdedir. Şayet hem çekici hem de yarı treyler az döner ise, taşıt sapmada daima kararlı olur. Şayet çekici az döner yarı treyler aşırı döner ise, taşıt sapmada daima kararlı olur. Şayet çekici aşırı döner yarı treyler az döner ise, taşıt kritik hızın üzerinde sapmada (yaw) kararsız olur. Bu durumdaki karasızlık durumu katarın katlanmasıdır [katarın bükülmesi]. Şayet hem çekici hem de yarı treyler aşırı döner ise, taşıt kritik hızın üzerinde sapmada (yaw) kararsız olur [12]. 7

8 Şekil 5.5 Hızın Fonksiyonu Olarak Sapma Hızı ve Yanal İvmelenme Kazanımı[8] Şekil 5.6 de yana kayma açısı, yüzme açısı olarak tanımlanmaktadır. Az dönerlik ve aşırı dönerlik için, bazı otomotivciler taşıtın pozitif/negatif yana kayma açısı gibi tanımlama yaparlar[9]. Şekil 5.6 Yüksek Hızlı Bir Virajda/Dönemeçte Yana Kayma Açısı[8] 6. Durağan Dairesel Harekette Az Dönerlik ve Aşırı Dönerlik Durağan dairesel bir harekette bir otomobilin yolu; hızı, yönlendirme açısı, dingiller arası açıklık ve direksiyon sisteminin, süspansiyon siteminin ve lastiklerin özelliklerine bağlıdır. Durağan dairesel hareketten kastedilen şey sabit yarıçaplı bir dönemeçte sabit hızda dönmedir. Verilmiş yarıçaplı bir çember üzerinde bir taşıtın dengede kalması için gerekli ön tekerlek sapmasının Ackerman tekerlek sapmasına oranını hızın fonksiyonu olarak vermektedir. Hız sıfır olduğu zaman sapma Ackermann sapmasına eşit olur. 1. [l A C αa l Ö C αö ] > 0 bu durumda hız arttıkça direksiyon tekerleğinin sapmasını arttırmak gerekir. Bu sürüş karakterine sahip taşıtlara az döner taşıtlar denir. Az döner taşıtlar direksiyon hareketlerine çabuk cevap verdikleri takdirde iyi olarak nitelendirilir. 2. [l A C αa l Ö C αö ] = 0 bu durumda taşıtın yönlendirilen tekerleğinin sapması bütün hız aralığında sabit kalır. Bu sürüş karakterine sahip taşıtlara tarafsız/nötr yönlendirmeli taşıtlar denir. 8

9 3. [l A C αa l Ö C αö ] < 0 bu durumda taşıtın yönlendirilen tekerleğinin sapmasını hız arttıkça geri almak gerekir. Bu sürüş karakterine sahip taşıtlara aşırı döner taşıtlar denir[3]. Taşıtın, çapraz hareket katsayıları önde ve arkada aynı ise az döner taşıtlarda ağırlık merkezinin önde olması gerekir. Ağırlık merkezi taşıtın orta noktasında ise az dönerlik için arkadaki çapraz hareket katsayısının öndekine göre daha büyük olması gerekir. Pnomatik kaster mesafesi taşıtı daha az döner yapar. Pnomatik kaster mesafelerinin göz önüne alınması bir bakıma ağırlık merkezini ileriye götürmektedir. Keskin/sert virajlarda ya da kaygan yollarda; ayak, gaz pedalından ani olarak çekilirse taşıt aşırı dönerliğe doğru kayar[13] Az Dönerlik (Understeer) Ve Aşırı Dönerliği (Oversteer) Etkileyen Husular Bir taşıtın az dönerliğini ve aşırı dönerliğini etkileyen faktörler: Ön ve arka akslar arasındaki yük dağılımı: İç-dış tekerlek yük kayması; bu etki iyi bir yolda 0,3g merkezkaç ivmeden sonra kendini hissettirmeye başlar. İç-dış tekerlek yük kayması neticesinde dış tekerleklerin daha çok yüklenmesi doğal olarak yuvarlanma dirençlerini de arttırır. Bu durum da taşıtı dönülen dairenin dışına doğru çektiğinden etkisi taşıtı az döner karaktere doğru kaydırmak yönündedir. Lastik karakteri, Motorun tork akışı, Süspansiyon geometrisi ve sertliği Özellikle tipik lastik davranışından dolayı tahrik torku akışı; tork, arka aksa doğru yönlenirse taşıt aşırı dönerlik eğilimi gösterir. Bunun aksine ön tekerlekten tahrikli taşıtlar az dönerlik eğilimlidir. Tahrik kuvvetlerinin etkileri için var oldukları dingillerde çapraz hareket açısını küçülttükleri bu neden önde ise taşıtı az dönerliğe, arkada ise taşıtı aşırı dönerliğe doğru kaydırırlar. Pnomatik kaster, taşıtı az dönerliğe doğru iter. Ön aks civarında taşıtın burnunu dönülen eğrinin içine doğru iten aerodinamik bir kuvvet oluşur. Bu taşıtın karakterini aşırı dönerliğe doğru kaydırır. Tablo 6.1 Az Dönerlik ve Aşırı Dönerliği Etkileyen Hususlar Koşullar Daha fazla az dönerlik Daha fazla aşırı dönerlik Ön lastik basıncı Daha düşük Daha yüksek Arka lastik basıncı Daha yüksek Daha düşük Ön lastik kesiti Daha küçük Daha büyük Arka lastik kesiti Daha büyük Daha düşük Ön lastik genişliği Daha dar Daha geniş Arka lastik genişliği Daha geniş Daha dar Ön lastik kamberi Daha pozitif Daha negatif Arka lastik kamberi Daha negatif Daha pozitif 9

10 Ön yaylar Daha sert Daha yumuşak Arka yaylar Daha yumuşak Daha sert Ön yalpa azaltıcı Daha yoğun/daha sert Daha ince/daha yumuşak Arka yalpa azaltıcı Daha ince/daha yumuşak Daha yoğun/daha sert Ağırlık dağılımı Daha önde Daha arkada Ön aerodinamik Daha fazla bastırma kuvveti Daha az bastırma kuvveti Arka aerodinamik Daha az bastırma kuvveti Daha fazla bastırma kuvveti 7. Sonuçlar Taşıtın yük eğilimi, temel aşırı dönerlik ve az dönerlik karakteristiklerini belirlemektedir. Taşıtın ön tarafı arka tarafından daha ağır olduğunda taşıtlar az dönerlik eğilimine arka tarafı ön tarafından daha ağır olduğunda aşırı dönerliğe doğru eğilimlidirler. Taşıtın ağırlığı ön ve ark akslara eşit dağıtılabilirse taşıt tarafsız yönlendirmektedir. Taşıtın ağırlık dağılımı, süspansiyon dizaynı ve taşıt dizaynı açısından seçilen lastik ve teker boyutları bu sürüş karakteristiklerini belirleyen en önemli parametreleri oluşturmaktadır Bu çalışmada; ön düzen açılarının, yük transferlerinin, yuvarlanma direncinin, tahrik kuvvetlerinin aşırı dönerlik, az dönerlik ve tarafsız yönlendirme karakteristiklerinin taşıtları nasıl etkilediği ortaya konulmaya çalışılmıştır. Kaynaklar 1- Riley R.G., Automobile Ride, Handling, and Suspension Design with Implications for Low-Mass Vehicles (http://www.rqriley.com/suspensn.htm), Daniel A. Fittanto and Adam Senalik, Passenger Vehicle Steady-State Directional Stability Analysis Utilizing EDVSM and SIMON, Engineering Dynamics Corporation and Daniel A. Fittanto, P.E., WP# A. Işık Erzi, Cadde ve Ray Taşıtların Dinamiği, Ders Notları VI, Eric J., Rossetter; A Potential Field Framework for Active Vehicle Lanekeeping Assistance, Doctorate thesis, August K. Stonex, Car Control Factors and Their Measurement. SAE Transactions, 36:81 93, L. Segel, Research in The Fundamentals of Automobile Control and Stability. In Proceedings of the SAE National Summer Meeting, Pages , William Milliken and Douglas Milliken. Race Car Vehicle Dynamics, SAE International, 400 Commonwealth Dr. Warrendale, PA , Thomas D. Gillespie. Fundamentals of Vehicle Dynamics. Society of Automotive Engineers, Warrendale, PA, Bengt Jacobson, Theory of Ground Vehicles, Lecture Notes, September 12, Jihan Ryu, State and Parameter Estimation for Vehicle Dynamics Control using GPS, Doctorate thesis, December 2004]. 11- David John Matthew Sampson, Active Roll Control of Articulated Heavy Vehicles, Degree of Doctor of Philosophy, Churchill College, Cambridge University Engineering Department September L. Segel, Course on the Mechanics of Heavy-Duty Trucks and Truck Combinations, Australia, Koji Matsuno, Ryo Nitta, Koichi Inoue, Katsufumi Ichikawa and Yutaka Hiwatashi, Development of a New All-Wheel Drive Control System, Seoul 2000 FISITA World Automotive Congress June 12-15, 2000, Seoul, Korea. 10

İÇİNDEKİLER. Bölüm 1 GİRİŞ

İÇİNDEKİLER. Bölüm 1 GİRİŞ İÇİNDEKİLER Bölüm 1 GİRİŞ 1.1 TAŞITLAR VE SOSYAL YAŞAM... 1 1.2 TARİHSEL GELİŞİM... 1 1.2.1 Türk Otomotiv Endüstrisi... 11 1.3 TAŞITLARIN SINIFLANDIRILMASI... 14 1.4 TAŞITA ETKİYEN KUVVETLER... 15 1.5

Detaylı

İÇİNDEKİLER. Bölüm 1 GİRİŞ

İÇİNDEKİLER. Bölüm 1 GİRİŞ İÇİNDEKİLER Bölüm 1 GİRİŞ 1.1 TAŞITLAR VE SOSYAL YAŞAM... 1 1.2 TARİHSEL GELİŞİM... 1 1.2.1 Türk Otomotiv Endüstrisi... 5 1.3 TAŞITLARIN SINIFLANDIRILMASI... 8 1.4 TAŞITA ETKİYEN KUVVETLER... 9 1.5 TAŞIT

Detaylı

TEKNOLOJİK ARAŞTIRMALAR

TEKNOLOJİK ARAŞTIRMALAR www.teknolojikarastirmalar.org ISSN:1304-4141 Makine Teknolojileri Elektronik Dergisi 2006 (1) 45-50 TEKNOLOJİK ARAŞTIRMALAR Teknik Not Taşıtlardaki Dört Tekerden Tahrik (Awd - Fwd) Ve Kontrol Sistemlerinin

Detaylı

OTOMOTİV TEKNOLOJİLERİ

OTOMOTİV TEKNOLOJİLERİ OTOMOTİV TEKNOLOJİLERİ Prof. Dr. Atatürk Üniversitesi, Mühendislik Fakültesi, Makina Mühendisliği Bölümü, Erzurum Bu bölümde 1. Direnç a. Aerodinamik b. Dinamik, yuvarlanma c. Yokuş 2. Tekerlek tahrik

Detaylı

Mühendislik Mekaniği Dinamik. Yrd.Doç.Dr. Akın Ataş

Mühendislik Mekaniği Dinamik. Yrd.Doç.Dr. Akın Ataş Mühendislik Mekaniği Dinamik Yrd.Doç.Dr. Akın Ataş Bölüm 14 Parçacık Kinetiği: İş ve Enerji Kaynak: Mühendislik Mekaniği: Dinamik, R.C.Hibbeler, S.C.Fan, Çevirenler: A. Soyuçok, Ö. Soyuçok. 14 Parçacık

Detaylı

Newton Kanunlarının Uygulaması

Newton Kanunlarının Uygulaması BÖLÜM 5 Newton Kanunlarının Uygulaması Hedef Öğretiler Newton Birinci Kanunu uygulaması Newtonİkinci Kanunu uygulaması Sürtünme ve akışkan direnci Dairesel harekette kuvvetler Giriş Newton Kanunlarını

Detaylı

HAFİF TİCARİ KAMYONETİN DEVRİLME KONTROLÜNDE FARKLI KONTROLÖR UYGULAMALARI

HAFİF TİCARİ KAMYONETİN DEVRİLME KONTROLÜNDE FARKLI KONTROLÖR UYGULAMALARI HAFİF TİCARİ KAMYONETİN DEVRİLME KONTROLÜNDE FARKLI KONTROLÖR UYGULAMALARI Emre SERT Anadolu Isuzu Otomotiv A.Ş 1. Giriş Özet Ticari araç kazalarının çoğu devrilme ile sonuçlanmaktadır bu nedenle devrilme

Detaylı

DİNAMİK - 7. Yrd. Doç. Dr. Mehmet Ali Dayıoğlu Ankara Üniversitesi Ziraat Fakültesi. Tarım Makinaları ve Teknolojileri Mühendisliği Bölümü

DİNAMİK - 7. Yrd. Doç. Dr. Mehmet Ali Dayıoğlu Ankara Üniversitesi Ziraat Fakültesi. Tarım Makinaları ve Teknolojileri Mühendisliği Bölümü DİNAMİK - 7 Yrd. Doç. Dr. Mehmet Ali Dayıoğlu Ankara Üniversitesi Ziraat Fakültesi Tarım Makinaları ve Teknolojileri Mühendisliği Bölümü 7. HAFTA Kapsam: Parçacık Kinetiği, Kuvvet İvme Yöntemi Newton hareket

Detaylı

Bir Binek Araç için Dört-Tekerlekten Yönlendirme Sisteminin Geliştirilmesi

Bir Binek Araç için Dört-Tekerlekten Yönlendirme Sisteminin Geliştirilmesi OTEKON 14 7. Otomotiv Teknolojileri Kongresi 26 27 Mayıs 2014, BURSA Bir Binek Araç için Dört-Tekerlekten Yönlendirme Sisteminin Geliştirilmesi Burak Ulaş Hexagon Studio A.Ş., Şasi ve Güç Aktarma Sistemleri

Detaylı

AKM 205-BÖLÜM 2-UYGULAMA SORU VE ÇÖZÜMLERİ

AKM 205-BÖLÜM 2-UYGULAMA SORU VE ÇÖZÜMLERİ AKM 205-BÖLÜM 2-UYGULAMA SORU VE ÇÖZÜMLERİ 1 Bir otomobil lastiğinin basıncı, lastik içerisindeki havanın sıcaklığına bağlıdır Hava sıcaklığı 25 C iken etkin basınç 210 kpa dır Eğer lastiğin hacmi 0025

Detaylı

MAKİNA MÜHENDİSLİĞİ BÖLÜMÜ AKIŞKANLAR MEKANİĞİ II FİNAL SINAVI 22.05.2015 Numara: Adı Soyadı: SORULAR-CEVAPLAR

MAKİNA MÜHENDİSLİĞİ BÖLÜMÜ AKIŞKANLAR MEKANİĞİ II FİNAL SINAVI 22.05.2015 Numara: Adı Soyadı: SORULAR-CEVAPLAR MAKİNA MÜHENDİSLİĞİ BÖLÜMÜ AKIŞKANLAR MEKANİĞİ II FİNAL SINAVI 22.05.2015 Numara: Adı Soyadı: 1- (24 Puan) Şekildeki 5.08 cm çaplı 38.1 m uzunluğunda, 15.24 cm çaplı 22.86 m uzunluğunda ve 7.62 cm çaplı

Detaylı

Hasan Esen ZKÜ FEN BİL. ENST. MAKİNE EĞT.BL. ÖĞRENCİSİ 2000 0281 07 007

Hasan Esen ZKÜ FEN BİL. ENST. MAKİNE EĞT.BL. ÖĞRENCİSİ 2000 0281 07 007 Hasan Esen ZKÜ FEN BİL. ENST. MAKİNE EĞT.BL. ÖĞRENCİSİ 2000 0281 07 007 I.GİRİŞ Motorlu araç frenleri alanındaki gelişme, taşıtları değişik sürüş koşullarında mümkün olan en iyi şekilde frenleyebilen verimli,

Detaylı

AERODİNAMİK KUVVETLER

AERODİNAMİK KUVVETLER AERODİNAMİK KUVVETLER Prof.Dr. Mustafa Cavcar Anadolu Üniversitesi, Sivil Havacılık Yüksekokulu, 26470 Eskişehir Bir uçak üzerinde meydana gelen aerodinamik kuvvetlerin bileşkesi ( ); uçağın etrafından

Detaylı

ERCİYES ÜNİVERSİTESİ MÜHENDİSLİK FAKÜLTESİ ENERJİ SİSTEMLERİ MÜHENDİSLİĞİ BÖLÜMÜ ISI TRANSFERİ LABORATUARI

ERCİYES ÜNİVERSİTESİ MÜHENDİSLİK FAKÜLTESİ ENERJİ SİSTEMLERİ MÜHENDİSLİĞİ BÖLÜMÜ ISI TRANSFERİ LABORATUARI ERCİYES ÜNİVERSİTESİ MÜHENDİSLİK FAKÜLTESİ ENERJİ SİSTEMLERİ MÜHENDİSLİĞİ BÖLÜMÜ ISI TRANSFERİ LABORATUARI DENEY FÖYÜ DENEY ADI ZORLANMIŞ TAŞINIM DERSİN ÖĞRETİM ÜYESİ DENEYİ YAPTIRAN ÖĞRETİM ELEMANI DENEY

Detaylı

Araç Devrilme Dinamiğinin için Model Öngörülü Kontrol

Araç Devrilme Dinamiğinin için Model Öngörülü Kontrol TOK 214 Bildiri Kitab 11-13 Eylül 214, Kocaeli Araç Devrilme Dinamiğinin için Model Öngörülü Kontrol Zafer ÖCAL 1, Emre SERT 1, Zafer BİNGÜL 2 1 Anadolu Isuzu Otomotiv San.Tic. A.Ş. Kocaeli emre.sert@isuzu.com.tr

Detaylı

MAK 4004 BİTİRME ÖDEVİ DERSİ PROJE ÖNERİSİ

MAK 4004 BİTİRME ÖDEVİ DERSİ PROJE ÖNERİSİ - ULUDAĞ ÜNİVERSİTESİ Form BTP-01 (1/) BAHAR 007-008 4/01/008 Taşıt Hareket Denklemlerinin Bilgisayar Yardımıyla Çözümü 1. Taşıta etkiyen kuvvetlerin belirlenmesi. Düz harekette taşıt hareket denklemlerinin

Detaylı

OTOMOTİV TEKNOLOJİLERİ

OTOMOTİV TEKNOLOJİLERİ OTOMOTİV TEKNOLOJİLERİ Prof. Dr. Atatürk Üniversitesi, Mühendislik Fakültesi, Makina Mühendisliği Bölümü, Erzurum Bu hafta Şasi Sistemleri Tekerlekler ve Lastikler Süspansiyonlar Direksiyon Sistemleri

Detaylı

OTOMOTİV TEKNOLOJİLERİ

OTOMOTİV TEKNOLOJİLERİ OTOMOTİV TEKNOLOJİLERİ Prof. Dr. Atatürk Üniversitesi, Mühendislik Fakültesi, Makina Mühendisliği Bölümü, Erzurum Bu bölümde Aktarma Organları Sistem Tanımı Mekanik Kavramalar Manuel Transmisyon ve Transaxle

Detaylı

Mühendislik Mekaniği Statik. Yrd.Doç.Dr. Akın Ataş

Mühendislik Mekaniği Statik. Yrd.Doç.Dr. Akın Ataş Mühendislik Mekaniği Statik Yrd.Doç.Dr. Akın Ataş Bölüm 10 Eylemsizlik Momentleri Kaynak: Mühendislik Mekaniği: Statik, R. C.Hibbeler, S. C. Fan, Çevirenler: A. Soyuçok, Ö. Soyuçok. 10. Eylemsizlik Momentleri

Detaylı

Aks yük hesaplamaları. Aks yükleri ve yük hesaplamaları ile ilgili genel bilgi

Aks yük hesaplamaları. Aks yükleri ve yük hesaplamaları ile ilgili genel bilgi Aks yükleri ve yük hesaplamaları ile ilgili genel bilgi Kamyonları kullanan tüm taşıma tipleri kamyon şasisinin belli bir üstyapı tarafından desteklenmesini gerektirir. Aks yükü hesaplamalarının amacı

Detaylı

1. Giriş 2. Yayınma Mekanizmaları 3. Kararlı Karasız Yayınma 4. Yayınmayı etkileyen faktörler 5. Yarı iletkenlerde yayınma 6. Diğer yayınma yolları

1. Giriş 2. Yayınma Mekanizmaları 3. Kararlı Karasız Yayınma 4. Yayınmayı etkileyen faktörler 5. Yarı iletkenlerde yayınma 6. Diğer yayınma yolları 1. Giriş 2. Yayınma Mekanizmaları 3. Kararlı Karasız Yayınma 4. Yayınmayı etkileyen faktörler 5. Yarı iletkenlerde yayınma 6. Diğer yayınma yolları Sol üstte yüzey seftleştirme işlemi uygulanmış bir çelik

Detaylı

Akışkan Kinematiği 1

Akışkan Kinematiği 1 Akışkan Kinematiği 1 Akışkan Kinematiği Kinematik, akışkan hareketini matematiksel olarak tanımlarken harekete sebep olan kuvvetleri ve momentleri gözönüne almadan; Yerdeğiştirmeler Hızlar ve İvmeler cinsinden

Detaylı

AERODİNAMİK KUVVETLER

AERODİNAMİK KUVVETLER AERODİNAMİK KUVVETLER Hazırlayan Prof. Dr. Mustafa Cavcar Aerodinamik Kuvvet Bir uçak üzerinde meydana gelen aerodinamik kuvvetlerin bileşkesi ( ); uçağın havayagörehızının () karesi, havanın yoğunluğu

Detaylı

A. IS LM ANALİZİ A.1. IS

A. IS LM ANALİZİ A.1. IS A. ANALZ A.. Analizi (Mal Piyasası) (Investment aving) (atırım Tasarruf) Eğrisi, faiz oranları ile gelir düzeyi arasındaki ilişkiyi gösterir. Analizin bu kısmında yatırımları I = I bi olarak ifade edeceğiz.

Detaylı

BELĐRLĐ BĐR SIKMA KUVVETĐ ETKĐSĐNDE BĐSĐKLET FREN KOLU KUVVET ANALĐZĐNĐN YAPILMASI

BELĐRLĐ BĐR SIKMA KUVVETĐ ETKĐSĐNDE BĐSĐKLET FREN KOLU KUVVET ANALĐZĐNĐN YAPILMASI tasarım BELĐRLĐ BĐR SIKMA KUVVETĐ ETKĐSĐNDE BĐSĐKLET FREN KOLU KUVVET ANALĐZĐNĐN YAPILMASI Nihat GEMALMAYAN, Hüseyin ĐNCEÇAM Gazi Üniversitesi, Makina Mühendisliği Bölümü GĐRĐŞ Đlk bisikletlerde fren sistemi

Detaylı

Mühendislik Mekaniği Dinamik. Yrd.Doç.Dr. Akın Ataş

Mühendislik Mekaniği Dinamik. Yrd.Doç.Dr. Akın Ataş Mühendislik Mekaniği Dinamik Yrd.Doç.Dr. Akın Ataş Bölüm 13 Parçacık Kinetiği: Kuvvet ve İvme Kaynak: Mühendislik Mekaniği: Dinamik, R.C.Hibbeler, S.C.Fan, Çevirenler: A. Soyuçok, Ö. Soyuçok. 13 Parçacık

Detaylı

TAŞINIMIN FİZİKSEL MEKANİZMASI

TAŞINIMIN FİZİKSEL MEKANİZMASI BÖLÜM 6 TAŞINIMIN FİZİKSEL MEKANİZMASI 2 or Taşınımla ısı transfer hızı sıcaklık farkıyla orantılı olduğu gözlenmiştir ve bu Newton un soğuma yasasıyla ifade edilir. Taşınımla ısı transferi dinamik viskosite

Detaylı

BÖLÜM 4: MADDESEL NOKTANIN KİNETİĞİ: İMPULS ve MOMENTUM

BÖLÜM 4: MADDESEL NOKTANIN KİNETİĞİ: İMPULS ve MOMENTUM BÖLÜM 4: MADDESEL NOKTANIN KİNETİĞİ: İMPULS ve MOMENTUM 4.1. Giriş Bir önceki bölümde, hareket denklemi F = ma nın, maddesel noktanın yer değiştirmesine göre integrasyonu ile elde edilen iş ve enerji denklemlerini

Detaylı

HİDROLİK. Yrd. Doç. Dr. Fatih TOSUNOĞLU

HİDROLİK. Yrd. Doç. Dr. Fatih TOSUNOĞLU HİDROLİK Yrd. Doç. Dr. Fatih TOSUNOĞLU Ders Hakkında Genel Bilgiler Görüşme Saatleri:---------- Tavsiye edilen kitaplar: 1-Hidrolik (Prof. Dr. B. Mutlu SÜMER, Prof. Dr. İstemi ÜNSAL. ) 2-Akışkanlar Mekaniği

Detaylı

DEN 322. Pompa Sistemleri Hesapları

DEN 322. Pompa Sistemleri Hesapları DEN 3 Pompa Sistemleri Hesapları Sistem karakteristiği B h S P P B Gözönüne alınan pompalama sisteminde, ve B noktalarına Genişletilmiş Bernoulli denklemi uygulanırsa: L f B B B h h z g v g P h z g v g

Detaylı

Fizik 101-Fizik I 2013-2014. Dönme Hareketinin Dinamiği

Fizik 101-Fizik I 2013-2014. Dönme Hareketinin Dinamiği -Fizik I 2013-2014 Dönme Hareketinin Dinamiği Nurdan Demirci Sankır Ofis: 364, Tel: 2924332 İçerik Vektörel Çarpım ve Tork Katı Cismin Yuvarlanma Hareketi Bir Parçacığın Açısal Momentumu Dönen Katı Cismin

Detaylı

DİNAMİK (2.hafta) Yatay Hareket Formülleri: a x =0 olduğundan ilk hız ile yatay bileşende hareketine devam eder.

DİNAMİK (2.hafta) Yatay Hareket Formülleri: a x =0 olduğundan ilk hız ile yatay bileşende hareketine devam eder. EĞİK ATIŞ Bir merminin serbest uçuş hareketi iki dik bileşen şeklinde, yatay ve dikey hareket olarak incelenir. Bu harekette hava direnci ihmal edilerek çözüm yapılır. Hava direnci ihmal edilince yatay

Detaylı

Disk frenler, kuvvet iletimi, konstrüksiyon, kampanalı frenler, kuvvet iletimi, konstrüksiyon, ısınma, disk ve kampanalı frenlerin karşılaştırılması

Disk frenler, kuvvet iletimi, konstrüksiyon, kampanalı frenler, kuvvet iletimi, konstrüksiyon, ısınma, disk ve kampanalı frenlerin karşılaştırılması Disk frenler, kuvvet iletimi, konstrüksiyon, kampanalı frenler, kuvvet iletimi, konstrüksiyon, ısınma, disk ve kampanalı frenlerin karşılaştırılması Hidrolik Fren Sistemi Sürtünmeli Frenler Doğrudan doğruya

Detaylı

Yakıt tüketimi ile ilgili genel bilgiler. Hava direnci

Yakıt tüketimi ile ilgili genel bilgiler. Hava direnci Özet Özet Bu belgede, bir aracın yakıt tüketimini etkileyen faktörler özetlenip açıklanmaktadır. PTO, aracı ileriye doğru hareket ettirmek için ne kadar enerji kullanılacağını etkileyen en önemli etkenlerden

Detaylı

Massachusetts Teknoloji Enstitüsü-Fizik Bölümü

Massachusetts Teknoloji Enstitüsü-Fizik Bölümü Massachusetts Teknoloji Enstitüsü-Fizik Bölümü Fizik 8.01 Ödev # 8 Güz, 1999 ÇÖZÜMLER Dru Renner dru@mit.edu 14 Kasım 1999 Saat: 18.20 Problem 8.1 Bir sonraki hareket bir odağının merkezinde gezegenin

Detaylı

BURSA TECHNICAL UNIVERSITY (BTU) 2 DİŞLİ ÇARKLAR I: GİRİŞ

BURSA TECHNICAL UNIVERSITY (BTU) 2 DİŞLİ ÇARKLAR I: GİRİŞ Makine Elemanları 2 DİŞLİ ÇARKLAR I: GİRİŞ 1 Bu bölümden elde edilecek kazanımlar Güç Ve Hareket İletim Elemanları Basit Dişli Dizileri Redüktörler Ve Vites Kutuları : Sınıflandırma Ve Kavramlar Silindirik

Detaylı

Prof. Dr. Selim ÇETİNKAYA

Prof. Dr. Selim ÇETİNKAYA Prof. Dr. Selim ÇETİNKAYA Performans nedir? Performans nedir?... Performans: İcraat, başarı 1. Birinin veya bir şeyin görev veya çalışma biçimi; Klimaların soğutma performansları karşılaştırıldı."; Jetin

Detaylı

YÖNLENDİRİLEBİLİR İLAVE DİNGİL

YÖNLENDİRİLEBİLİR İLAVE DİNGİL OTEKON 14 7. Otomotiv Teknolojileri Kongresi 26 27 Mayıs 2014, BURSA YÖNLENDİRİLEBİLİR İLAVE DİNGİL N. Sefa Kuralay **, Mehmet Günal *, Mustafa Umut Karaoğlan **, Atilla Yenice *, Can Olguner * * Ege Endüstri

Detaylı

BURULMA DENEYİ 2. TANIMLAMALAR:

BURULMA DENEYİ 2. TANIMLAMALAR: BURULMA DENEYİ 1. DENEYİN AMACI: Burulma deneyi, malzemelerin kayma modülü (G) ve kayma akma gerilmesi ( A ) gibi özelliklerinin belirlenmesi amacıyla uygulanır. 2. TANIMLAMALAR: Kayma modülü: Kayma gerilmesi-kayma

Detaylı

SU ÜRÜNLERİNDE MEKANİZASYON

SU ÜRÜNLERİNDE MEKANİZASYON SU ÜRÜNLERİNDE MEKANİZASYON 8 Yrd.Doç.Dr. Mehmet Ali Dayıoğlu Ankara Üniversitesi Ziraat Fakültesi Tarım Makinaları & Teknolojileri Mühendisliği Bölümü Su Ürünleri Teknolojileri Su temini Boru parçaları

Detaylı

Geometriden kaynaklanan etkileri en aza indirmek için yük ve uzama, sırasıyla mühendislik gerilmesi ve mühendislik birim şekil değişimi parametreleri elde etmek üzere normalize edilir. Mühendislik gerilmesi

Detaylı

AÇIK KANAL AKIMI. Hopa Yukarı Sundura Deresi-ARTVİN

AÇIK KANAL AKIMI. Hopa Yukarı Sundura Deresi-ARTVİN AÇIK KANAL AKIMI Hopa Yukarı Sundura Deresi-ARTVİN AÇIK KANAL AKIMI (AKA) Açık kanal akımı serbest yüzeyli akımın olduğu bir akımdır. serbest yüzey hava ve su arasındaki ara yüzey @ serbest yüzeyli akımda

Detaylı

ĐŞ GÜÇ ENERJĐ. Zaman. 5. Uygulanan kuvvet cisme yol aldıramıyorsa iş yapılmaz. W = 0

ĐŞ GÜÇ ENERJĐ. Zaman. 5. Uygulanan kuvvet cisme yol aldıramıyorsa iş yapılmaz. W = 0 ĐŞ GÜÇ ENERJĐ Đş kelimesi, günlük hayatta çok kullanılan ve çok geniş kapsamlı bir kelimedir. Fiziksel anlamda işin tanımı tektir.. Yapılan iş, kuvvet ile kuvvetin etkisinde yapmış olduğu yerdeğiştirmenin

Detaylı

(Mekanik Sistemlerde PID Kontrol Uygulaması - 1) SÜSPANSİYON SİSTEMLERİNİN PID İLE KONTROLÜ. DENEY SORUMLUSU Arş.Gör. Sertaç SAVAŞ

(Mekanik Sistemlerde PID Kontrol Uygulaması - 1) SÜSPANSİYON SİSTEMLERİNİN PID İLE KONTROLÜ. DENEY SORUMLUSU Arş.Gör. Sertaç SAVAŞ T.C. ERCİYES ÜNİVERSİTESİ MÜHENDİSLİK FAKÜLTESİ MEKATRONİK MÜHENDİSLİĞİ BÖLÜMÜ MEKATRONİK LABORATUVARI 1 (Mekanik Sistemlerde PID Kontrol Uygulaması - 1) SÜSPANSİYON SİSTEMLERİNİN PID İLE KONTROLÜ DENEY

Detaylı

ASİSTAN ARŞ. GÖR. GÜL DAYAN

ASİSTAN ARŞ. GÖR. GÜL DAYAN ASİSTAN ARŞ. GÖR. GÜL DAYAN VİSKOZİTE ÖLÇÜMÜ Viskozite, bir sıvının iç sürtünmesi olarak tanımlanır. Viskoziteyi etkileyen en önemli faktör sıcaklıktır. Sıcaklık arttıkça sıvıların viskoziteleri azalır.

Detaylı

RİJİT CİSİMLERİN DÜZLEMSEL KİNEMATİĞİ

RİJİT CİSİMLERİN DÜZLEMSEL KİNEMATİĞİ RİJİT CİSİMLERİN DÜZLEMSEL KİNEMATİĞİ MUTLAK GENEL DÜZLEMSEL HAREKET: Genel düzlemsel hareket yapan bir karı cisim öteleme ve dönme hareketini eşzamanlı yapar. Eğer cisim ince bir levha olarak gösterilirse,

Detaylı

DİŞLİ ÇARKLAR II: HESAPLAMA

DİŞLİ ÇARKLAR II: HESAPLAMA DİŞLİ ÇARLAR II: HESAPLAMA Prof. Dr. İrfan AYMAZ Atatürk Üniversitesi Mühendislik Fakültesi Makine Mühendisliği Bölümü Giriş Bu bölüm sonunda öğreneceğiniz konular: Dişli Çark uvvetleri Diş Dibi Gerilmeleri

Detaylı

MAKİNE ELEMANLARI DERS SLAYTLARI

MAKİNE ELEMANLARI DERS SLAYTLARI MAKİNE ELEMANLARI DERS SLAYTLARI AKSLAR VE MİLLER P r o f. D r. İ r f a n K A Y M A Z P r o f. D r. A k g ü n A L S A R A N A r ş. G ör. İ l y a s H A C I S A L İ HOĞ LU Dönen parça veya elemanlar taşıyan

Detaylı

FRENLER SAKARYA ÜNİVERSİTESİ MAKİNE MÜHENDİSLİĞİ BÖLÜMÜ MAKİNE ELEMANLARI-II DERS NOTU

FRENLER SAKARYA ÜNİVERSİTESİ MAKİNE MÜHENDİSLİĞİ BÖLÜMÜ MAKİNE ELEMANLARI-II DERS NOTU FRENLER MAKİNE MÜHENDİSLİĞİ BÖLÜMÜ MAKİNE ELEMANLARI-II DERS NOTU Frenler 2 / 20 Frenler, sürtünme yüzeyli kavramalarla benzer prensiplere göre çalışan bir makine elemanı grubunu oluştururlar. Şu şekilde

Detaylı

Tablo 1 Deney esnasında kullanacağımız numunelere ait elastisite modülleri tablosu

Tablo 1 Deney esnasında kullanacağımız numunelere ait elastisite modülleri tablosu BASİT MESNETLİ KİRİŞTE SEHİM DENEYİ Deneyin Amacı Farklı malzeme ve kalınlığa sahip kirişlerin uygulanan yükün kirişin eğilme miktarına oranı olan rijitlik değerin değişik olduğunun gösterilmesi. Kiriş

Detaylı

Prof. Dr. İrfan KAYMAZ

Prof. Dr. İrfan KAYMAZ Prof. Dr. İrfan KAYMAZ Mühendislik Fakültesi Makine Mühendisliği Bölümü Giriş Bu bölüm sonunda öğreneceğiniz konular: Kayış-kasnak mekanizmalarının türü Kayış türleri Meydana gelen kuvvetler Geometrik

Detaylı

Dişli çark mekanizmaları en geniş kullanım alanı olan, gerek iletilebilen güç gerekse ulaşılabilen çevre hızları bakımından da mekanizmalar içinde

Dişli çark mekanizmaları en geniş kullanım alanı olan, gerek iletilebilen güç gerekse ulaşılabilen çevre hızları bakımından da mekanizmalar içinde DİŞLİ ÇARKLAR Dişli çark mekanizmaları en geniş kullanım alanı olan, gerek iletilebilen güç gerekse ulaşılabilen çevre hızları bakımından da mekanizmalar içinde özel bir yeri bulunan mekanizmalardır. Mekanizmayı

Detaylı

DİŞLİ ÇARKLAR III: HELİSEL DİŞLİ ÇARKLAR

DİŞLİ ÇARKLAR III: HELİSEL DİŞLİ ÇARKLAR DİŞLİ ÇARKLAR III: HELİSEL DİŞLİ ÇARKLAR Prof. Dr. İrfan KAYMAZ Prof. Dr. Akgün ALSARAN Arş. Gör. İlyas HACISALİHOĞLU Mühendislik Fakültesi Makine Mühendisliği Bölümü Giriş Helisel Dişli Çarklar Bu bölüm

Detaylı

TİCARİ ARAÇ GELİŞTİRME PROJESİ KAPSAMINDA DİNAMİK MODELİN TESTLER İLE DOĞRULANMASI

TİCARİ ARAÇ GELİŞTİRME PROJESİ KAPSAMINDA DİNAMİK MODELİN TESTLER İLE DOĞRULANMASI TİCARİ ARAÇ GELİŞTİRME PROJESİ KAPSAMINDA DİNAMİK MODELİN TESTLER İLE DOĞRULANMASI Baki Orçun ORGÜL, Mustafa Latif KOYUNCU, Sertaç DİLEROĞLU, Harun GÖKÇE Hexagon Studio Araç Mühendisliği Bölümü OTEKON

Detaylı

MIG-MAG GAZALTI KAYNAĞINDA KAYNAK PAMETRELERİ VE SEÇİMİ

MIG-MAG GAZALTI KAYNAĞINDA KAYNAK PAMETRELERİ VE SEÇİMİ MIG-MAG GAZALTI KAYNAĞINDA KAYNAK PAMETRELERİ VE SEÇİMİ Prof. Dr. Ramazan YILMAZ Sakarya Üniversitesi, Teknoloji Fakültesi, Metalurji ve Malzeme Mühendisliği Bölümü Esentepe Kampüsü, 54187, SAKARYA Kaynak

Detaylı

T.C YILDIZ TEKNİK ÜNİVERSİTESİ MAKİNA FAKÜLTESİ MAKİNA TEORİSİ,SİSTEM DİNAMİĞİ VE KONTROL ANA BİLİM DALI

T.C YILDIZ TEKNİK ÜNİVERSİTESİ MAKİNA FAKÜLTESİ MAKİNA TEORİSİ,SİSTEM DİNAMİĞİ VE KONTROL ANA BİLİM DALI T.C YILDIZ TEKNİK ÜNİVERSİTESİ MAKİNA FAKÜLTESİ MAKİNA TEORİSİ,SİSTEM DİNAMİĞİ VE KONTROL ANA BİLİM DALI T A Ş I T T İ T R E Ş İ M L E R İ D E R S İ & R A Y L I S İ S T E M L E R D E T İ T R E Ş İ M A

Detaylı

İSTANBUL TEKNİK ÜNİVERSİTESİ FEN BİLİMLERİ ENSTİTÜSÜ

İSTANBUL TEKNİK ÜNİVERSİTESİ FEN BİLİMLERİ ENSTİTÜSÜ İSTANBUL TEKNİK ÜNİVERSİTESİ FEN BİLİMLERİ ENSTİTÜSÜ ADAMS CHASSIS PROGRAMI İLE SUV ARAÇ MODELLENMESİ VE EŞ ZAMANLI SİMÜLASYON YARDIMI İLE AKTİF GÜVENLİK SİSTEMLERİ TASARIMI YÜKSEK LİSANS TEZİ Mehmet Eren

Detaylı

DİŞLİ ÇARKLAR III: HELİSEL DİŞLİ ÇARKLAR

DİŞLİ ÇARKLAR III: HELİSEL DİŞLİ ÇARKLAR DİŞLİ ÇARKLAR III: HELİSEL DİŞLİ ÇARKLAR Prof. Dr. İrfan KAYMAZ Atatürk Üniversitesi Mühendislik Fakültesi Makine Mühendisliği Bölümü Giriş Helisel Dişli Çarklar Bu bölüm sonunda öğreneceğiniz konular:

Detaylı

Temel bilgiler-flipped Classroom Akslar ve Miller

Temel bilgiler-flipped Classroom Akslar ve Miller Makine Elemanları I Prof. Dr. İrfan KAYMAZ Temel bilgiler-flipped Classroom Akslar ve Miller İçerik Aks ve milin tanımı Akslar ve millerin mukavemet hesabı Millerde titreşim hesabı Mil tasarımı için tavsiyeler

Detaylı

AKÜ FEMÜBİD 15(2015) (1-5) AKU J. Sci. Eng.15 (2015) (1-5) DOI: /fmbd.9970 Araştırma Makalesi / Research Article

AKÜ FEMÜBİD 15(2015) (1-5) AKU J. Sci. Eng.15 (2015) (1-5) DOI: /fmbd.9970 Araştırma Makalesi / Research Article Afyon Kocatepe Üniversitesi Fen ve Mühendislik Bilimleri Dergisi Afyon Kocatepe University Journal of Science and Engineering AKÜ FEMÜBİD 15(2015) 035901 (1-5) AKU J. Sci. Eng.15 (2015) 035901 (1-5) DOI:

Detaylı

Newton un ikinci yasası: Bir cisim ivmesi cisim üzerine etki eden toplam kuvvet ile doğru orantılı cismin kütlesi ile ters orantılıdır.

Newton un ikinci yasası: Bir cisim ivmesi cisim üzerine etki eden toplam kuvvet ile doğru orantılı cismin kütlesi ile ters orantılıdır. Bölüm 5: Hareket Yasaları(Özet) Önceki bölümde hareketin temel kavramları olan yerdeğiştirme, hız ve ivme tanımlanmıştır. Bu bölümde ise hareketli cisimlerin farklı hareketlerine sebep olan etkilerin hareketi

Detaylı

Termodinamik Termodinamik Süreçlerde İŞ ve ISI

Termodinamik Termodinamik Süreçlerde İŞ ve ISI Termodinamik Süreçlerde İŞ ve ISI Termodinamik Hareketli bir pistonla bağlantılı bir silindirik kap içindeki gazı inceleyelim (Şekil e bakınız). Denge halinde iken, hacmi V olan gaz, silindir çeperlerine

Detaylı

Doç. Dr. Muhammet Cerit Öğretim Üyesi Makine Mühendisliği Bölümü (Mekanik Ana Bilim Dalı) Elektronik posta ( ):

Doç. Dr. Muhammet Cerit Öğretim Üyesi Makine Mühendisliği Bölümü (Mekanik Ana Bilim Dalı) Elektronik posta ( ): Tanışma ve İletişim... Doç. Dr. Muhammet Cerit Öğretim Üyesi Makine Mühendisliği Bölümü (Mekanik Ana Bilim Dalı) Elektronik posta (e-mail): mcerit@sakarya.edu.tr Öğrenci Başarısı Değerlendirme... Öğrencinin

Detaylı

TĠCARĠ ARAÇ GELĠġTĠRME PROJESĠ KAPSAMINDA DĠNAMĠK MODELĠN TESTLER ĠLE DOĞRULANMASI

TĠCARĠ ARAÇ GELĠġTĠRME PROJESĠ KAPSAMINDA DĠNAMĠK MODELĠN TESTLER ĠLE DOĞRULANMASI TĠCARĠ ARAÇ GELĠġTĠRME PROJESĠ KAPSAMINDA DĠNAMĠK MODELĠN TESTLER ĠLE DOĞRULANMASI Baki Orçun ORGÜL, Mustafa Latif KOYUNCU, Sertaç DĠLEROĞLU, Harun GÖKÇE Hexagon Studio Araç Mühendisliği Bölümü OTEKON

Detaylı

6x2 Kamyon Arka Dingil Grubunun Fren Performansına Etkisi ve Daha İyi Fren Performansı İçin Öneriler

6x2 Kamyon Arka Dingil Grubunun Fren Performansına Etkisi ve Daha İyi Fren Performansı İçin Öneriler 6x2 Kamyon Arka Dingil Grubunun Fren Performansına Etkisi ve Daha İyi Fren Performansı İçin Öneriler Alpay LÖK Makina Yüksek Mühendisi, alpay@frenteknik.com Tuncay AVUNÇ Makina Yüksek Mühendisi, tuncayavunc@gmail.com

Detaylı

ALAN ETKİLİ TRANSİSTÖR

ALAN ETKİLİ TRANSİSTÖR ALAN ETKİLİ TRANİTÖR Y.oç.r.A.Faruk BAKAN FET (Alan Etkili Transistör) gerilim kontrollu ve üç uçlu bir elemandır. FET in uçları G (Kapı), (rain) ve (Kaynak) olarak tanımlanır. FET in yapısı ve sembolü

Detaylı

2. YATAY KURBALAR. 2.1.1 Basit daire kurbaları

2. YATAY KURBALAR. 2.1.1 Basit daire kurbaları 2. YATAY KURBALAR Yatay kurbalar genel olarak daire yaylarından ibarettir. Ancak, kurbaya ait dairenin yarıçapı küçük ise süratin fazla olduğu durumlarda alinyimandan kurbaya geçiş noktasında ortaya çıkan

Detaylı

Massachusetts Teknoloji Enstitüsü-Fizik Bölümü

Massachusetts Teknoloji Enstitüsü-Fizik Bölümü Massachusetts Teknoloji Enstitüsü-Fizik Bölümü Fizik 8.01 Ödev # 7 Güz, 1999 ÇÖZÜMLER Dru Renner dru@mit.edu 7 Kasım 1999 Saat: 21.50 Problem 7.1 (Ohanian, sayfa 271, problem 55) Bu problem boyunca roket

Detaylı

FİYATLAR GENEL DÜZEYİ VE MİLLİ GELİR DENGESİ

FİYATLAR GENEL DÜZEYİ VE MİLLİ GELİR DENGESİ FİYATLAR GENEL DÜZEYİ VE MİLLİ GELİR DENGESİ Bu bölümde Fiyatlar genel düzeyi (Fgd) ile MG dengesi arasındaki ilişkiler incelenecek. Mg dengesi; Toplam talep ile toplam arzın kesiştiği noktada bulunacaktır.

Detaylı

Otomatik moment değiştiriciler

Otomatik moment değiştiriciler Otomatik moment değiştiriciler ANA FONKSİYON GRUPLARI 1. Hidrodinamik moment değiştirici (Trilok moment değiştirici), 2. Gereken sayıda kademeleri olan dişli grubu (genel olarak lamelli kavramalarla ve

Detaylı

Kar Mücadelesi. Prof.Dr.Mustafa KARAŞAHİN

Kar Mücadelesi. Prof.Dr.Mustafa KARAŞAHİN Kar Mücadelesi Prof.Dr.Mustafa KARAŞAHİN Yüzey Kaplaması Yüzey Dokusu Kaplamanın yüzeysel dokusu ve pürüzlülüğü hem sürüş konforunu hem de sürüş emniyetini belirler. Kaplama yeterince düzgün ama gerekli

Detaylı

BÖLÜM-6 BLOK DİYAGRAMLARI

BÖLÜM-6 BLOK DİYAGRAMLARI 39 BÖLÜM-6 BLOK DİYAGRAMLARI Kontrol sistemlerinin görünür hale getirilmesi Bileşenlerin transfer fonksiyonlarını gösterir. Sistemin fiziksel yapısını yansıtır. Kontrol giriş ve çıkışlarını karakterize

Detaylı

TEMEL MEKANİK 12. Yrd. Doç. Dr. Mehmet Ali Dayıoğlu Ankara Üniversitesi Ziraat Fakültesi Tarım Makinaları ve Teknolojileri Mühendisliği Bölümü

TEMEL MEKANİK 12. Yrd. Doç. Dr. Mehmet Ali Dayıoğlu Ankara Üniversitesi Ziraat Fakültesi Tarım Makinaları ve Teknolojileri Mühendisliği Bölümü TEMEL MEKANİK 12 Yrd. Doç. Dr. Mehmet Ali Dayıoğlu Ankara Üniversitesi Ziraat Fakültesi Tarım Makinaları ve Teknolojileri Mühendisliği Bölümü Ders Kitapları: Mühendisler İçin Vektör Mekaniği, Statik, Yazarlar:

Detaylı

DETERMINING BRAKE PERFORMANCE BY ANALYZING BRAKE PRESSURE DATA IN VEHICLES WITH ABS

DETERMINING BRAKE PERFORMANCE BY ANALYZING BRAKE PRESSURE DATA IN VEHICLES WITH ABS 5. Uluslar arası İleri Teknolojiler Sempozyumu (İATS 09), 13-15 Mayıs 2009, Karabük, Türkiye ABS (ANTİ-LOCK BRAKE SYSTEM) KULLANILAN TAŞITLARDA FREN BASINÇ VERİ ANALİZİ YAPILARAK FREN PERFORMANSININ BELİRLENMESİ

Detaylı

Aks ağırlığı hesaplamaları. Aks ağırlık hesaplamaları hakkında genel bilgiler

Aks ağırlığı hesaplamaları. Aks ağırlık hesaplamaları hakkında genel bilgiler Aks ağırlık hesaplamaları hakkında genel bilgiler Kamyonları kullanan tüm taşıma tipleri, fabrikadan tedarik edilen şasinin belli bir üstyapı tarafından desteklenmesini gerektirir. Aks ağırlık hesaplamaları

Detaylı

KAYMALI YATAKLAR II: Radyal Kaymalı Yataklar

KAYMALI YATAKLAR II: Radyal Kaymalı Yataklar KAYMALI YATAKLAR II: Radyal Prof. Dr. İrfan KAYMAZ Mühendislik Fakültesi Makine Mühendisliği Bölümü Giriş Bu bölüm sonunda öğreneceğiniz konular: Radyal yataklama türleri Sommerfield Sayısı Sonsuz Genişlikte

Detaylı

04 Kasım 2010 TÜBİTAK ikince kademe seviyesinde Deneme Sınavı (Prof.Dr.Ventsislav Dimitrov)

04 Kasım 2010 TÜBİTAK ikince kademe seviyesinde Deneme Sınavı (Prof.Dr.Ventsislav Dimitrov) 04 Kasım 010 TÜBİTAK ikince kademe seviyesinde Deneme Sınavı (Prof.Dr.Ventsislav Dimitrov) Soru 1. Şamandıra. Genç ama yetenekli fizikçi Ali bir yaz boyunca, Karabulak köyünde misafirdi. Bir gün isimi

Detaylı

OTOMATİK KONTROL SİSTEMLERİ. DİNAMİK SİSTEMLERİN MODELLENMESİ ve ANALİZİ

OTOMATİK KONTROL SİSTEMLERİ. DİNAMİK SİSTEMLERİN MODELLENMESİ ve ANALİZİ OTOMATİK KONTROL SİSTEMLERİ DİNAMİK SİSTEMLERİN MODELLENMESİ ve ANALİZİ 1) İdeal Sönümleme Elemanı : a) Öteleme Sönümleyici : Mekanik Elemanların Matematiksel Modeli Basit mekanik elemanlar, öteleme hareketinde;

Detaylı

ELEKTRONİK KONTROLLÜ YÖNLENDİRME SİSTEMİ

ELEKTRONİK KONTROLLÜ YÖNLENDİRME SİSTEMİ ELEKTRONİK KONTROLLÜ YÖNLENDİRME SİSTEMİ Ali ÇAVDAR 1 Abdullah DEMİR 2 ÖZET Otomobil üreticileri gelişmiş yönlendirme kontrollü, sürüş ve yol tutum özelliklerine sahip direksiyon sistemlerini üretmek için

Detaylı

YAVAŞ DEĞİŞEN ÜNİFORM OLMAYAN AKIM

YAVAŞ DEĞİŞEN ÜNİFORM OLMAYAN AKIM YAVAŞ DEĞİŞEN ÜNİFORM OLMAYAN AKIM Yavaş değişen akımların analizinde kullanılacak genel denklem bir kanal kesitindeki toplam enerji yüksekliği: H = V g + h + z x e göre türevi alınırsa: dh d V = dx dx

Detaylı

FİYAT MEKANİZMASI: TALEP, ARZ VE FİYAT

FİYAT MEKANİZMASI: TALEP, ARZ VE FİYAT FİYAT MEKANİZMASI: TALEP, ARZ VE FİYAT TALEP Bir ekonomide bütün tüketicilerin belli bir zaman içinde satın almayı planladıkları mal veya hizmet miktarına talep edilen miktar denir. Bu tanımda, belirli

Detaylı

Otomatik Kontrol I. Dinamik Sistemlerin Matematik Modellenmesi. Yard.Doç.Dr. Vasfi Emre Ömürlü

Otomatik Kontrol I. Dinamik Sistemlerin Matematik Modellenmesi. Yard.Doç.Dr. Vasfi Emre Ömürlü Otomatik Kontrol I Dinamik Sistemlerin Matematik Modellenmesi Yard.Doç.Dr. Vasfi Emre Ömürlü Mekanik Sistemlerin Modellenmesi Elektriksel Sistemlerin Modellenmesi Örnekler 2 3 Giriş Karmaşık sistemlerin

Detaylı

AKM 205 BÖLÜM 2 - UYGULAMA SORU VE ÇÖZÜMLERİ. Doç.Dr. Ali Can Takinacı Ar.Gör. Yük. Müh. Murat Özbulut

AKM 205 BÖLÜM 2 - UYGULAMA SORU VE ÇÖZÜMLERİ. Doç.Dr. Ali Can Takinacı Ar.Gör. Yük. Müh. Murat Özbulut AKM 205 BÖLÜM 2 - UYGULAMA SORU VE ÇÖZÜMLERİ Doç.Dr. Ali Can Takinacı Ar.Gör. Yük. Müh. Murat Özbulut 1. Bir otomobile lastiğinin basıncı, lastik içerisindeki havanın sıcaklığına bağlıdır. Hava sıcaklığı

Detaylı

KAYMALI YATAKLAR-II RADYAL YATAKLAR

KAYMALI YATAKLAR-II RADYAL YATAKLAR Makine Elemanları 2 KAYMALI YATAKLAR-II RADYAL YATAKLAR Doç.Dr. Ali Rıza Yıldız 1 Bu Bölümden Elde Edilecek Kazanımlar Radyal yataklama türleri Sommerfield Sayısı Sonsuz Genişlikte Radyal Yatak Hesabı

Detaylı

Öğrenim Kazanımları Bu programı başarı ile tamamlayan öğrenci;

Öğrenim Kazanımları Bu programı başarı ile tamamlayan öğrenci; Image not found http://bologna.konya.edu.tr/panel/images/pdflogo.png Ders Adı : Hareket Kontrol Sistemleri Ders No : 0690040082 Teorik : 3 Pratik : Kredi : 3.5 ECTS : 4 Ders Bilgileri Ders Türü Öğretim

Detaylı

MAK 210 SAYISAL ANALİZ

MAK 210 SAYISAL ANALİZ MAK 210 SAYISAL ANALİZ BÖLÜM 6- İSTATİSTİK VE REGRESYON ANALİZİ Doç. Dr. Ali Rıza YILDIZ 1 İSTATİSTİK VE REGRESYON ANALİZİ Bütün noktalardan geçen bir denklem bulmak yerine noktaları temsil eden, yani

Detaylı

Fizik 101-Fizik I 2013-2014. Statik Denge ve Esneklik

Fizik 101-Fizik I 2013-2014. Statik Denge ve Esneklik 1 -Fizik I 2013-2014 Statik Denge ve Esneklik Nurdan Demirci Sankır Ofis: 364, Tel: 2924332 2 İçerik Denge Şartları Ağırlık Merkezi Statik Dengedeki Katı Cisimlere ler Katıların Esneklik Özellikleri 1

Detaylı

Makine Elemanları II Prof. Dr. Akgün ALSARAN. Konik Dişli Çarklar DİŞLİ ÇARKLAR

Makine Elemanları II Prof. Dr. Akgün ALSARAN. Konik Dişli Çarklar DİŞLİ ÇARKLAR Makine Elemanları II Prof. Dr. Akgün ALSARAN Konik Dişli Çarklar DİŞLİ ÇARKLAR İçerik Giriş Konik dişli çark mekanizması Konik dişli çark mukavemet hesabı Konik dişli ark mekanizmalarında oluşan kuvvetler

Detaylı

TİCARİ ARAÇ GELİŞTİRME PROJESİ KAPSAMINDA DİNAMİK MODELİN TESTLER İLE DOĞRULANMASI

TİCARİ ARAÇ GELİŞTİRME PROJESİ KAPSAMINDA DİNAMİK MODELİN TESTLER İLE DOĞRULANMASI OTEKON 2010 5. Otomotiv Teknolojileri Kongresi 07 08 Haziran 2010, BURSA TİCARİ ARAÇ GELİŞTİRME PROJESİ KAPSAMINDA DİNAMİK MODELİN TESTLER İLE DOĞRULANMASI Baki Orçun ORGÜL *, Mustafa Latif KOYUNCU *,

Detaylı

BAŞKENT ÜNİVERSİTESİ MAKİNE MÜHENDİSLİĞİ BÖLÜMÜ MAK 402 MAKİNE MÜHENDİSLİĞİ LABORATUVARI DENEY 9B - BURULMA DENEYİ

BAŞKENT ÜNİVERSİTESİ MAKİNE MÜHENDİSLİĞİ BÖLÜMÜ MAK 402 MAKİNE MÜHENDİSLİĞİ LABORATUVARI DENEY 9B - BURULMA DENEYİ BAŞKENT ÜNİVERSİTESİ MAKİNE MÜHENDİSLİĞİ BÖLÜMÜ MAK 402 MAKİNE MÜHENDİSLİĞİ LABORATUVARI DENEY 9B - BURULMA DENEYİ GİRİŞ Mekanik tasarım yaparken öncelikli olarak tasarımda kullanılması düşünülen malzemelerin

Detaylı

1. Yatırımın Faiz Esnekliği

1. Yatırımın Faiz Esnekliği DERS NOTU 08 YATIRIMIN FAİZ ESNEKLİĞİ, PARA VE MALİYE POLİTİKALARININ ETKİNLİKLERİ, TOPLAM TALEP (AD) EĞRİSİNİN ELDE EDİLİŞİ Bugünki dersin içeriği: 1. YATIRIMIN FAİZ ESNEKLİĞİ... 1 2. PARA VE MALİYE POLİTİKALARININ

Detaylı

Süspansiyon elemanları

Süspansiyon elemanları Süspansiyon elemanları Çelik yaylar Helisel yaylar, süspansiyon yayı Yaprak yaylar. süspansiyon yayı Burulma Çubukları, stabilizatör, süspansiyon yayı Helisel yay Yaprak yaylar Otomobillerde nadiren kullanılmaktadır.

Detaylı

TİTREŞİM VE DALGALAR BÖLÜM PERİYODİK HAREKET

TİTREŞİM VE DALGALAR BÖLÜM PERİYODİK HAREKET TİTREŞİM VE DALGALAR Periyodik Hareketler: Belirli aralıklarla tekrarlanan harekete periyodik hareket denir. Sabit bir nokta etrafında periyodik hareket yapan cismin hareketine titreşim hareketi denir.

Detaylı

BASMA DENEYİ MALZEME MÜHENDİSLİĞİ BÖLÜMÜ. 1. Basma Deneyinin Amacı

BASMA DENEYİ MALZEME MÜHENDİSLİĞİ BÖLÜMÜ. 1. Basma Deneyinin Amacı 1. Basma Deneyinin Amacı Mühendislik malzemelerinin çoğu, uygulanan gerilmeler altında biçimlerini kalıcı olarak değiştirirler, yani plastik şekil değişimine uğrarlar. Bu malzemelerin hangi koşullar altında

Detaylı

Kar Mücadelesi-Siperler. Prof.Dr.Mustafa KARAŞAHİN

Kar Mücadelesi-Siperler. Prof.Dr.Mustafa KARAŞAHİN Kar Mücadelesi-Siperler Prof.Dr.Mustafa KARAŞAHİN Yüzey Kaplaması Yüzey Dokusu Kaplamanın yüzeysel dokusu ve pürüzlülüğü hem sürüş konforunu hem de sürüş emniyetini belirler. Kaplama yeterince düzgün ama

Detaylı

KLOTOİD EĞRİSİNDE YOL DİNAMİĞİNİN İNCELENMESİ

KLOTOİD EĞRİSİNDE YOL DİNAMİĞİNİN İNCELENMESİ TMMOB Harita ve Kadastro Mühendisleri Odası 10. Türkiye Harita Bilimsel ve Teknik Kurultayı Mart 005, Ankara KLOTOİD EĞRİSİNDE YOL DİNAMİĞİNİN İNCELENMESİ B. Bostancı 1 1 Afyon Kocatepe Üniversitesi, Emirdağ

Detaylı

BİNEK TAŞITLARINDA ÖN DÜZEN GEOMETRİSİ VE SÜSPANSİYON SİSTEMLERİNİN YAPISAL ÖZELLİKLERİNİN İNCELENMESİ. Yakup PUTGÜL

BİNEK TAŞITLARINDA ÖN DÜZEN GEOMETRİSİ VE SÜSPANSİYON SİSTEMLERİNİN YAPISAL ÖZELLİKLERİNİN İNCELENMESİ. Yakup PUTGÜL BİNEK TAŞITLARINDA ÖN DÜZEN GEOMETRİSİ VE SÜSPANSİYON SİSTEMLERİNİN YAPISAL ÖZELLİKLERİNİN İNCELENMESİ Yakup PUTGÜL YÜKSEK LİSANS TEZİ OTOMOTİV MÜHENDİSLİĞİ ANABİLİM DALI GAZİ ÜNİVERSİTESİ FEN BİLİMLERİ

Detaylı

Yakıt tüketimi ile ilgili genel bilgiler. Özet PGRT

Yakıt tüketimi ile ilgili genel bilgiler. Özet PGRT Özet Özet Bu belgede, bir aracın yakıt tüketimini etkileyen faktörler özetlenip açıklanmaktadır. Bir aracın yakıt tüketimini etkileyen çeşitli faktörler vardır. Lastikler Ekonomik sürüş Araç durumu 03:60-02

Detaylı

TAŞIYICI-YÜKLEYİCİ BİR İŞ MAKİNESİ İÇİN DİFRANSİYEL DİŞLİ KUTUSU TASARIMI

TAŞIYICI-YÜKLEYİCİ BİR İŞ MAKİNESİ İÇİN DİFRANSİYEL DİŞLİ KUTUSU TASARIMI TAŞIYICI-YÜKLEYİCİ BİR İŞ MAKİNESİ İÇİN DİFRANSİYEL DİŞLİ KUTUSU TASARIMI Tuncay KAZAR 1, Cihan ASAL 2, Hakan Serhad SOYHAN 3,4, Vedat DEMIRTAS 5 1 HEMA Research and Development Center, İstanbul, Turkey;

Detaylı

Makine Mühendisliği İçin Elektrik-Elektronik Bilgisi. Ders Notu-2 Hazırlayan: Yrd. Doç. Dr. Ahmet DUMLU

Makine Mühendisliği İçin Elektrik-Elektronik Bilgisi. Ders Notu-2 Hazırlayan: Yrd. Doç. Dr. Ahmet DUMLU Makine Mühendisliği İçin Elektrik-Elektronik Bilgisi Ders Notu-2 Hazırlayan: Yrd. Doç. Dr. Ahmet DUMLU DİRENÇLER Direnci elektrik akımına gösterilen zorluk olarak tanımlayabiliriz. Bir iletkenin elektrik

Detaylı