3.5. Devre Parametreleri

Save this PDF as:
 WORD  PNG  TXT  JPG

Ebat: px
Şu sayfadan göstermeyi başlat:

Download "3.5. Devre Parametreleri"

Transkript

1 Devre Parametreleri 3.5. Devre Parametreleri Mikrodalga mühendisliğinde doğrusal mikrodalga devrelerini karakterize etmek için dört tip devre parametreleri kullanılır: açılma parametreleri (parametreleri) Yparametreleri parametreleri ABCDparametreleri.

2 Devre Parametreleri Bunların arasında, mikrodalga mühendisliğinde sıklıkla tercih edileni parametreleridir, çünkü türetiminde iletim hattı süreksizliklerindeki yönlü kuplör yardımıyla kolaylıkla ölçülebilecek ilerleyen ve yansıyan dalgalardan faydalanılır., Y ve ABCD parametreleri, kapılardaki gerilim ve akım değerlerine bağlıdır ve mikrodalga frekanslarında bu değerlerin doğrudan ölçümü çok zordur. Bu parametreler genellikle pasif devrelerin modellemelerinde tercih edilirler Parametreleri parametreleri «kara kutu» olarak gösterilen devreyi ifade etmek için kullanılan bir yöntemdir. Bu yöntem ile «kara kutu» nun davranışı içindeki bileşenler hakkında hiç bilgi sahibi olmadan elde dilebilir. Bu kara kutu herhangi bir mikrodalga devre elemanını içeriyor olabilir: Örneğin; Direnç, İletim hattı, Ya da entegre devre Yapısına sahip olabilir.

3 Parametreleri Bir «kara kutu» bir yada daha fazla sayıda kapıya (porta) sahip olabilir. Şekilde basit bir kapılı devre yer almaktadır Parametreleri parametrelerin ölçümü, tek bir frekansta sinyal yada dalgayı «kara kutu»ya gönderip, her bir kapıdan çıkan sinyalleri yada dalgaları kaydederek yapılır. Burada kaydedilen bilgi, güç, gerilim veya akım olabilir. Bu kapılı devre modeli için,. kapıya gelen sinyalin bir kısmı geri yansır bir kısmı da diğer (.kapıya) iletilir. 3

4 Parametreleri parametrelerini,, v.s. şeklinde ifade edildiği görülür. Bunlar neyi ifade ederler? İlk olarak ele alalım. ;. kapıdan devrenin beslenmesi halinde gene. kapıya geri yansıyan sinyali ifade eder. açılma parametresi (parametresi) iki dalganın oranı (b/a) olarak hesaplanır Parametreleri İkinci olarak ele alalım;. kapıdan devrenin beslenmesi halinde.kapıya iletilen sinyal miktarını temsil eder. açılma parametresi (parametresi) iki dalganın oranı (b/a) ile hesaplanır. 4

5 Parametreleri Benzer şekilde ve de hesaplanabilir. ;. kapıdan devrenin beslenmesi halinde gene. kapıya geri yansıyan sinyali ifade eder (b/a). ;. kapıdan devrenin beslenmesi halinde.kapıya iletilen sinyal miktarını temsil eder (b/a) Parametreleri Kapı gerilim ve akımlarını ilerleyen ve yansıyan diye aşağıdaki gibi ayırabiliriz: ( ) ( ), iletim hattının karakteristik empedansıdır, mikrodalga devrelerinde genellikle 5 dur. Kapılardaki yansıyan ve ilerleyen dalgalar, yukarıdaki denklemler çözülerek bulunabilir. 5

6 Parametreleri Her bir kapıdaki gelen ve yansıyan gerilimler normalizasyon empedansı kullanılarak normalize edilirler. Bu normalizasyon empedansı genellikle hattın karakteristik empedansı ile aynı seçilir. a,, b,, Parametreleri Güçdalgası tanımları; Girişçıkış kapılarındaki ilişkiyi tanımlamak için burada gelen ve yansıyan güç dalgası terimleri kullanılır. an ( n n) bn ( n n) Burada a n : normalize gelen güç dalgası, b n : normalize yansıyan güç dalgasıdır. 6

7 Parametreleri Gerilim ve Akım gösterimleri; n ( an bn) ( a b ) n n n Güç denklemi; * Pn Re{ nn} { an bn } n: port number Parametreleri Bu denklemler ile birlikte; b a b a a b a b a a a a b a b a reflected power wave at port incident power wave at port transmitted power wave at port incident power wave at port reflected power wave at port incident power wave at port transmitted power wave at port incident power wave at port 7

8 Parametreleri.Kapıdaki ortalama güç in P ( ) ( ) b a a in.kapıdaki DDO cinsinden; WR Gelen güç dalgasınına terimi ile ifadesi; a Pinc Kaynaktan maksimum gücün çekilmesi;, Örnek: Herhangi bir iki kapılı devrenin uygun empedansla hattın sonlandırılmış olması durumundaki parametrelerini hesaplayınız. ÇÖÜM: İlk olarak and değerini hesaplamak için aşağıdaki devre modeli ele alınır. Burada. Kapıdan besleme yapılıp,. kapıya uyumlu yük L = bağlanmıştır. G a [] a L L uyumlu iken a = b b b a in in a in o o 8

9 3..3 G a [] a L b b / / b a ( )/ / G a G (, ) G G İleri gerilim kazancı G G : İleri güç kazancı / an ( n n) bn ( n n) İkinci olarak and değerini hesaplamak için aşağıdaki devre modeli ele alınır. Burada. Kapıdan besleme yapılıp,. kapıya uyumlu yük L = bağlanmıştır. G a [] a G b b out out out o o : çıkış yansıma katsayısı / b a ( )/ G a : geri güç kazancı : geri gerilim kazancı, : directly compute as part of the impedance definition, : require the replacement of the defining voltages by the appropriate network parameters 9

10 3..3 Örnek: Yandaki iki kapılı devrenin sparametresini bulunuz. ÇÖÜM: Her iki kapıdan da karakteristik empedansa sahip olmasından dolayı yansıma olmaz. adece.6 uzunluğundaki transmisyon hattında iki kapı arasında. radyanlıkgecikme meydana gelir. Bu durum saçılma matrisinde aşağıdaki gibi gösterilir. e j. e j. Örnek: Yandaki iki kapılı devrenin sparametresini bulunuz. ÇÖÜM: Bu devrede transmisyon hattına karakteristik empedansa eşit bir empedans paralel bağlanmış. Öncelikle empedansın bağlı olduğu parçayı sıfır uzunluklu bir hat üzerinde gösterecek biçimde düzenleyelim. Giriş yansıma katsayısı aşağıdaki gibi yazılabilir: b in in a a in = / olduğuna göre, in 3 in o o

11 3..3 ( )a ( / 3 ) a AA noktasında toplam gerilim (ikinci kapı için) a b dir. a = olduğundan b =(/3)a yazılabilir. Dolayısıyla =/3 bulunur. Giriş ve çıkış arasındaki simetriden faydalanarak şekil deki sıfır uzunluklu bölüm için saçılma matrisi aşağıdaki gibi yazılabilir. / 3 [ ] / 3 / 3 / 3 Bütün devrenin saçılma parametrelerini bulmak için, faz faktörleri göz önüne alınmalıdır. 3/8 lik parçada oluşacak faz kayması 35 dir. j( 35 ) j7 ( / 3 )e ( / 3 ) e 3.e [ ] 3.e j7 j5 3.e 3.e j5 j8 Örnek: Bu iki kapılı devrenin elektriksel uzunluğu sıfırdır. Bir önceki devrede olduğu gibi devreyi aşağıda verildiği gibi düzenleyebiliriz. ÇÖÜM:, için devrenin. kapısı uyumlu yük ile sonlandırılır; in in in // a a / // Uygun empedansla sonlandırmadan dolayı a =, b = dir. Böylece =b /a, =/ elde edilir.

12 3..3, için devrenin. kapısı uyumlu yük ile sonlandırılır; out ( ) //( / ). 6 out out out. / 3.5 = ( )a.75a 4 3 [ ] / / / ve Y parametreleri ve Y parametreleri Şekil de gösterilen bağlantı noktalarındaki gerilim ve akımlar kullanılarak tanımlanırlar. Bağlantı gerilim ve akımlar cinsinden parametreleri aşağıdaki gibi yazılabilir. Yukarıdaki denklemler matris şeklinde aşağıdaki gibi yazılabilir.

13 Benzer şekilde Y parametreleri matrisi de yazılabilir. parametreleri ile parametreleri arasındaki ilişki aşağıdaki gibi türetilebilir. Y Y Y Y Y Y Y Y ) ( ) ( İletim (ABCD) parametreleri İki kapılı mikroşerit hatları tanımlamada saçılma parametreleri en kullanışlı yol olmasına rağmen bazen yeterli olmaz. Bu gibi durumlarda iletim parametreleri metodu ile tanımlama yapılır. D C B A

14 3..3 A,B,C,D parametreleri her bir devrenin kendi matris elemanlarını göstermek için kullanılır. İletim matrisi aynı zamanda ABCD matrisi ve parametreleri olarak da bilinir. A,B,C,D parametreleri ise A C B D ÖRNEK: Şekilde verilen devrenin ABCD parametrelerini hesaplayınız. ÇÖÜM: A hesabı için.kapıdaki akımın sıfır olması yanı bu kapının açık devre olması gerekli. = A B hesabında.kapı kısa devre yapılıyor. B / 4

15 C hesabında gene. kapı açık devre bırakılır D hesabında. kapı kısa devre; C D ÖRNEK: l uzunluğundaki kayıpsız iletim hattının ABCD parametrelerini elde edin. ÇÖÜM: İletim hattının herhangi bir z noktasında gerilim ve akımlar için yazılırsa; Önce A değerinin hesabı ile başlarsak,. kapıyı açık devre yapalım; = = z j g z j i e e z j g z j i e e cos A cos e e j j,

16 3..3 B hesabı için. kapı kısa devre edilir. =, = = = j j e e j sin B j sin C ve D parametreleri aynı yolla bulunur. Bu örnekte devre simetrik olduğundan A=D ve ADBC= ise olarak bulunur. ABCD matrisi; / A C B cos D jy sin j sin cos ABCD matrisinden Matrisine geçiş matrisini, ABCD matrisi devresi için yazarsak; 6

17 3..3 Reciprocal(Karşılıklı) ve Kayıpsız Devreler İki kapılı bir devrenin reciprocal (karşılıklı) olabilmesi için parametresi matrisinin simetrik olması gereklidir. Kayıpsız olması için parametrelerinin toplamının e eşit olması gerekir. ÖRNEK: açılma matrisi yandaki gibi verilen bir devre için; a) Reciprocal ve kayıpsız mı? b) Eğer.kapı uyumlu yük ile sonlandırılırsa.kapıdan görülen geri dönüş kaybı nedir? c) Eğer.kapı kısa devre ile sonlandırılırsa.kapıdan görülen geri dönüş kaybı nedir? ÇÖÜM: a) matrisi simetrik olmadığı için reciprocal değildir. Kayıpsız değildir. 7

18 3..3 b).kapı uyumlu yük ile sonlanırsa. kapıdaki yansıma katsayısı.5.kapıdaki geri dönüş kaybı; c).kapı kısa devre ile sonlanırsa; 8

Anten Tasarımı. HFSS Anten Benzetimi

Anten Tasarımı. HFSS Anten Benzetimi Bu dokümanda, antene ait temel bilgiler verilmiş ve HFSS programında anten tasarımının nasıl yapıldığı gösterilmiştir. Anten Tasarımı HFSS Anten Benzetimi KAZIM EVECAN Dumlupınar Üniversitesi Elektrik-Elektronik

Detaylı

11. Sunum: İki Kapılı Devreler. Kaynak: Temel Mühendislik Devre Analizi, J. David IRWIN-R. Mark NELMS, Nobel Akademik Yayıncılık

11. Sunum: İki Kapılı Devreler. Kaynak: Temel Mühendislik Devre Analizi, J. David IRWIN-R. Mark NELMS, Nobel Akademik Yayıncılık 11. Sunum: İki Kapılı Devreler Kaynak: Temel Mühendislik Devre Analizi, J. David IRWIN-R. Mark NELMS, Nobel Akademik Yayıncılık 1 Giriş İki kapılı devreler giriş akımları ve gerilimleri ve çıkış akımları

Detaylı

İnce Antenler. Hertz Dipolü

İnce Antenler. Hertz Dipolü İnce Antenler Çapları boylarına göre küçük olan antenlere ince antenler denir. Alanların hesabında antenlerin sonsuz ince kabul edilmesi kolaylık sağlar. Ancak anten empedansı bulunmak istendiğinde kalınlığın

Detaylı

ANTEN VE MİKRODALGA LABORATUVARI

ANTEN VE MİKRODALGA LABORATUVARI Deney No: 4 ANTEN VE MİKRODALGA LABORATUVARI ANTEN EMPEDANSININ YARIKLI HAT (SLOTTED LINE) KULLANILARAK ÖLÇÜMÜ Bir dalga kılavuzundaki gerilimi voltmetre ile akımı da ampermetre ile ölçmek mümkün değildir.

Detaylı

ELEKTROMANYETİK DALGA TEORİSİ DERS - 5

ELEKTROMANYETİK DALGA TEORİSİ DERS - 5 ELEKTROMANYETİK DALGA TEORİSİ DERS - 5 İletim Hatları İLETİM HATLARI İletim hatlarının tarihsel gelişimi iki iletkenli basit hatlarla (ilk telefon hatlarında olduğu gibi) başlamıştır. Mikrodalga enerjisinin

Detaylı

KARADENĠZ TEKNĠK ÜNĠVERSĠTESĠ Mühendislik Fakültesi Elektrik-Elektronik Mühendisliği Bölümü ELK2008 DEVRELER II LABORATUARI

KARADENĠZ TEKNĠK ÜNĠVERSĠTESĠ Mühendislik Fakültesi Elektrik-Elektronik Mühendisliği Bölümü ELK2008 DEVRELER II LABORATUARI KARADENĠZ TEKNĠK ÜNĠERSĠTESĠ ELK008 DERELER LABORATUAR ĠKĠ KAPL DERELER E ĠKĠLĠLĠK ÖZELLĠĞĠ Hazırlık ÇalıĢması. T ve devreleri nedir? Bu devreler için en uygun devre parametreleri yöntemi hangisidir?.

Detaylı

DEVRE VE SİSTEM ANALİZİ ÇALIŞMA SORULARI

DEVRE VE SİSTEM ANALİZİ ÇALIŞMA SORULARI DEVRE VE SİSTEM ANALİZİ 01.1.015 ÇALIŞMA SORULARI 1. Aşağıda verilen devrede anahtar uzun süre konumunda kalmış ve t=0 anında a) v 5 ( geriliminin tam çözümünü diferansiyel denklemlerden faydalanarak bulunuz.

Detaylı

6. Sunum: Manye-k Bağlaşımlı Devreler. Kaynak: Temel Mühendislik Devre Analizi, J. David IRWIN-R. Mark NELMS, Nobel Akademik Yayıncılık

6. Sunum: Manye-k Bağlaşımlı Devreler. Kaynak: Temel Mühendislik Devre Analizi, J. David IRWIN-R. Mark NELMS, Nobel Akademik Yayıncılık 6. Sunum: Manye-k Bağlaşımlı Devreler Kaynak: Temel Mühendislik Devre Analizi, J. David IRWIN-R. Mark NELMS, Nobel Akademik Yayıncılık 1 Bu ders kapsamında ilgilendiğimiz bütün devre elamanlarının ideal

Detaylı

8. ALTERNATİF AKIM VE SERİ RLC DEVRESİ

8. ALTERNATİF AKIM VE SERİ RLC DEVRESİ 8. ATENATİF AKIM E SEİ DEESİ AMAÇA 1. Alternatif akım ve gerilim ölçmeyi öğrenmek. Direnç, kondansatör ve indüktans oluşan seri bir alternatif akım devresini analiz etmek AAÇA oltmetre, ampermetre, kondansatör

Detaylı

Küçük sinyal analizi transistörü AC domende temsilş etmek için kullanılan modelleri içerir.

Küçük sinyal analizi transistörü AC domende temsilş etmek için kullanılan modelleri içerir. Küçük Sinyal Analizi Küçük sinyal analizi transistörü AC domende temsilş etmek için kullanılan modelleri içerir. 1. Karma (hibrid) model 2. r e model Üretici firmalar bilgi sayfalarında belirli bir çalışma

Detaylı

MAK 4026 SES ve GÜRÜLTÜ KONTROLÜ. 5. Hafta Boru (Kanal) Akustiği

MAK 4026 SES ve GÜRÜLTÜ KONTROLÜ. 5. Hafta Boru (Kanal) Akustiği MAK 4026 SES ve GÜRÜLTÜ KONTROLÜ 5. Hafta Boru (Kanal) Akustiği Kanal içinde sesin yayınımı Tek boyutta yayınan harmonik ses dalgasının genel formu: p(x,t) Pe P e e jkx jkx jt 1 2 Ses dalgasının düzlemsel

Detaylı

Waveguide to coax adapter. Rectangular waveguide. Waveguide bends

Waveguide to coax adapter. Rectangular waveguide. Waveguide bends Rectangular waveguide Waveguide to coax adapter Waveguide bends E-tee 1 Dalga Kılavuzları, elektromanyetik enerjiyi kılavuzlayan yapılardır. Dalga kılavuzları elektromanyetik enerjinin mümkün olan en az

Detaylı

4. Sunum: AC Kalıcı Durum Analizi. Kaynak: Temel Mühendislik Devre Analizi, J. David IRWIN-R. Mark NELMS, Nobel Akademik Yayıncılık

4. Sunum: AC Kalıcı Durum Analizi. Kaynak: Temel Mühendislik Devre Analizi, J. David IRWIN-R. Mark NELMS, Nobel Akademik Yayıncılık 4. Sunum: AC Kalıcı Durum Analizi Kaynak: Temel Mühendislik Devre Analizi, J. David IRWIN-R. Mark NELMS, Nobel Akademik Yayıncılık 1 Giriş Aşağıdaki şekillere ve ifadelere bakalım ve daha önceki derslerimizden

Detaylı

Smith Abağı ve Empedans Uydurma

Smith Abağı ve Empedans Uydurma Smith Abağı ve Empedans Uydurma 4.1. Smith Abağı İletim hat denklemleriyle uğrașmak, bilgisayarların olmadığı günlerde oldukça zahmetli ve yorucu idi. Özellikle karmașık empedanslar ve değișken koșullar

Detaylı

EEM220 Temel Yarıiletken Elemanlar Çözümlü Örnek Sorular

EEM220 Temel Yarıiletken Elemanlar Çözümlü Örnek Sorular EEM220 Temel Yarıiletken Elemanlar Çözümlü Örnek Sorular Kaynak: Fundamentals of Microelectronics, Behzad Razavi, Wiley; 2nd edition (April 8, 2013), Manuel Solutions. Bölüm 5 Seçme Sorular ve Çözümleri

Detaylı

Işıma Şiddeti (Radiation Intensity)

Işıma Şiddeti (Radiation Intensity) Işıma Şiddeti (Radiation Intensity) Bir antenin birim katı açıdan yaydığı güçtür U=Işıma şiddeti [W/sr] P or =Işıma yoğunluğu [ W/m 2 ] Örnek-4 Bir antenin güç yoğunluğu Olarak verildiğine göre, ışıyan

Detaylı

YÜKSEK GERİLİM ENERJİ NAKİL HATLARI

YÜKSEK GERİLİM ENERJİ NAKİL HATLARI Enerjinin Taşınması Genel olarak güç, iletim hatlarında üç fazlı sistem ile havai hat iletkenleri tarafından taşınır. Gücün taşınmasında ACSR(Çelik özlü Alüminyum iletkenler) kullanılırken, dağıtım kısmında

Detaylı

Toplam İkinci harmonik. Temel Üçüncü harmonik. Şekil 1. Temel, ikinci ve üçüncü harmoniğin toplamı

Toplam İkinci harmonik. Temel Üçüncü harmonik. Şekil 1. Temel, ikinci ve üçüncü harmoniğin toplamı FOURIER SERİLERİ Bu bölümde Fourier serilerinden bahsedeceğim. Önce harmoniklerle (katsıklıklarla) ilişkili sinüsoidin tanımından başlıyacağım ve serilerin trigonometrik açılımlarını kullanarak katsayıları

Detaylı

Elektromanyetik Dalga Teorisi Ders-3

Elektromanyetik Dalga Teorisi Ders-3 Elektromanyetik Dalga Teorisi Ders-3 Faz ve Grup Hızı Güç ve Enerji Düzlem Dalgaların Düzlem Sınırlara Dik Gelişi Düzlem Dalgaların Düzlem Sınırlara Eğik Gelişi Dik Kutuplama Paralel Kutuplama Faz ve Grup

Detaylı

BÖLÜM 3: İLETİM HAT TEORİSİ

BÖLÜM 3: İLETİM HAT TEORİSİ BÖLÜM 3: İLETİM HAT TEORİSİ 1 İLETİM HATLARI İletim hatlarının tarihsel gelişimi iki iletkenli basit hatlarla(ilk telefon hatlarında olduğu gibi) başlamıştır. Mikrodalga enerjisinin iletimini gerçekleştirmek

Detaylı

7. Sunum: Çok Fazlı Devreler. Kaynak: Temel Mühendislik Devre Analizi, J. David IRWIN-R. Mark NELMS, Nobel Akademik Yayıncılık

7. Sunum: Çok Fazlı Devreler. Kaynak: Temel Mühendislik Devre Analizi, J. David IRWIN-R. Mark NELMS, Nobel Akademik Yayıncılık 7. Sunum: Çok Fazlı Devreler Kaynak: Temel Mühendislik Devre Analizi, J. David IRWIN-R. Mark NELMS, Nobel Akademik Yayıncılık 1 Üç Fazlı Devreler Üç fazlı devreler bünyesinde üç fazlı gerilim içeren devrelerdir.

Detaylı

YÖNLÜ KUPLÖR TASARIMI

YÖNLÜ KUPLÖR TASARIMI T.C. KARADENİZ TEKNİK ÜNİVERSİTESİ Mühendislik Fakültesi Elektrik-Elektronik Mühendisliği Bölümü YÖNLÜ KUPLÖR TASARIMI Adı Soyadı 196134 Nesrin GÖKALP 210225 Münteha Şura YAVUZ Danışman Yrd. Dç. Dr. Haydar

Detaylı

Doç. Dr. Sabri KAYA Erciyes Üni. Müh. Fak. Elektrik-Elektronik Müh. Bölümü. Ders içeriği

Doç. Dr. Sabri KAYA Erciyes Üni. Müh. Fak. Elektrik-Elektronik Müh. Bölümü. Ders içeriği ANTENLER Doç. Dr. Sabri KAYA Erciyes Üni. Müh. Fak. Elektrik-Elektronik Müh. Bölümü Ders içeriği BÖLÜM 1: Antenler BÖLÜM 2: Antenlerin Temel Parametreleri BÖLÜM 3: Lineer Tel Antenler BÖLÜM 4: Halka Antenler

Detaylı

Bölüm 3 AC Devreler. 1. AC devrede, seri RC ağının karakteristiklerini anlamak. 2. Kapasitif reaktans, empedans ve faz açısı kavramlarını anlamak.

Bölüm 3 AC Devreler. 1. AC devrede, seri RC ağının karakteristiklerini anlamak. 2. Kapasitif reaktans, empedans ve faz açısı kavramlarını anlamak. Bölüm 3 AC Devreler DENEY 3-1 AC RC Devresi DENEYİN AMACI 1. AC devrede, seri RC ağının karakteristiklerini anlamak. 2. Kapasitif reaktans, empedans ve faz açısı kavramlarını anlamak. GENEL BİLGİLER Saf

Detaylı

ADIYAMAN ÜNİVERSİTESİ MÜHENDİSLİK FAKÜLTESİ ELEKTRİK-ELEKTRONİK MÜHENDİSLİĞİ BÖLÜMÜ DEVRE ANALİZİ LABORATUVARI-II DENEY RAPORU

ADIYAMAN ÜNİVERSİTESİ MÜHENDİSLİK FAKÜLTESİ ELEKTRİK-ELEKTRONİK MÜHENDİSLİĞİ BÖLÜMÜ DEVRE ANALİZİ LABORATUVARI-II DENEY RAPORU ADIYAMAN ÜNİVERSİTESİ MÜHENDİSLİK FAKÜLTESİ ELEKTRİK-ELEKTRONİK MÜHENDİSLİĞİ BÖLÜMÜ DEVRE ANALİZİ LABORATUVARI-II DENEY RAPORU DENEY NO : DENEYİN ADI : DENEY TARİHİ : DENEYİ YAPANLAR : RAPORU HAZIRLAYANIN

Detaylı

DENEY FÖYÜ 7: Seri ve Paralel Rezonans Devreleri

DENEY FÖYÜ 7: Seri ve Paralel Rezonans Devreleri DENEY FÖYÜ 7: Seri ve Paralel Rezonans Devreleri Deneyin Amacı: Seri ve paralel rezonans devrelerini incelemek, devrelerin karakteristik parametrelerini hesaplamak ve ölçmek, rezonans eğrilerini çizmek.

Detaylı

Düzenlenirse: 9I1 5I2 = 1 108I1 60I2 = 12 7I1 + 12I2 = 4 35I1 60I2 = I1 = 8 I 1

Düzenlenirse: 9I1 5I2 = 1 108I1 60I2 = 12 7I1 + 12I2 = 4 35I1 60I2 = I1 = 8 I 1 ELEKTRİK-ELEKTRONİK DERSİ FİNAL/BÜTÜNLEME SORU ÖRNEKLERİ Şekiller üzerindeki renkli işaretlemeler soruya değil çözüme aittir: Maviler ilk aşamada asgari bağımsız denklem çözmek için yapılan tanımları,

Detaylı

Bir antenin birim katı açıdan yaydığı güçtür. U=Işıma şiddeti [W/sr] P or =Işıma yoğunluğu [ W/m 2 ]

Bir antenin birim katı açıdan yaydığı güçtür. U=Işıma şiddeti [W/sr] P or =Işıma yoğunluğu [ W/m 2 ] Işıma Şiddeti (Radiation Intensity) Bir antenin birim katı açıdan yaydığı güçtür U=Işıma şiddeti [W/sr] P or =Işıma yoğunluğu [ W/m 2 ] Örnek-4 Bir antenin güç yoğunluğu Olarak verildiğine göre, ışıyan

Detaylı

Ders 3- Direnç Devreleri I

Ders 3- Direnç Devreleri I Ders 3- Direnç Devreleri I Yard.Doç.Dr. Ahmet Özkurt Ahmet.ozkurt@deu.edu.tr http://ahmetozkurt.net İçerik 2. Direnç Devreleri Ohm kanunu Güç tüketimi Kirchoff Kanunları Seri ve paralel dirençler Elektriksel

Detaylı

V cn V ca. V bc. V bn. V ab. -V bn. V an HATIRLATMALAR. Faz-Faz ve Faz-Nötr Gerilimleri. Yıldız ve Üçgen Bağlı Yüklerde Akım-Gerilim İlişkileri

V cn V ca. V bc. V bn. V ab. -V bn. V an HATIRLATMALAR. Faz-Faz ve Faz-Nötr Gerilimleri. Yıldız ve Üçgen Bağlı Yüklerde Akım-Gerilim İlişkileri HATIRLATMALAR Faz-Faz ve Faz-Nötr Gerilimleri V cn V ca V ab 30 10 V an V aa = V cc = V bb V aa = V bb = V cc V bn V bc V ab 30 -V bn V aa = V aa V bb V aa = V aa cos(30) 30 V an V aa = V aa cos(30) =

Detaylı

5. Elektriksel Büyüklüklerin Ölçülebilen Değerleri

5. Elektriksel Büyüklüklerin Ölçülebilen Değerleri Elektrik devrelerinde ölçülebilen büyüklükler olan; 5. Elektriksel Büyüklüklerin Ölçülebilen Değerleri Akım Gerilim Devrede bulunan kaynakların tiplerine göre değişik şekillerde olabilir. Zamana bağlı

Detaylı

10. Sunum: Laplace Dönüşümünün Devre Analizine Uygulanması

10. Sunum: Laplace Dönüşümünün Devre Analizine Uygulanması 10. Sunum: Laplace Dönüşümünün Devre Analizine Uygulanması Kaynak: Temel Mühendislik Devre Analizi, J. David IRWIN-R. Mark NELMS, Nobel Akademik Yayıncılık 1 Laplace Devre Çözümleri Aşağıdaki devrenin

Detaylı

Ayrık Fourier Dönüşümü

Ayrık Fourier Dönüşümü Ayrık Fourier Dönüşümü Tanım: 0 n N 1 aralığında tanımlı N uzunluklu bir dizi x[n] nin AYRIK FOURIER DÖNÜŞÜMÜ (DFT), ayrık zaman Fourier dönüşümü (DTFT) X(e jω ) nın0 ω < 2π aralığında ω k = 2πk/N, k =

Detaylı

Elektromanyetik Dalga Teorisi

Elektromanyetik Dalga Teorisi Elektromanyetik Dalga Teorisi Ders-2 Dalga Denkleminin Çözümü Düzlem Elektromanyetik Dalgalar Enine Elektromanyetik Dalgalar Kayıplı Ortamda Düzlem Dalgalar Düzlem Dalgaların Polarizasyonu Dalga Denkleminin

Detaylı

Mühendislik Fakültesi Elektrik-Elektronik Mühendisliği Bölümü Arş. Gör. KAZIM EVECAN 25.05.2015

Mühendislik Fakültesi Elektrik-Elektronik Mühendisliği Bölümü Arş. Gör. KAZIM EVECAN 25.05.2015 Mühendislik Fakültesi Elektrik-Elektrnik Mühendisliği Bölümü Arş. Gör. KAZIM EVECAN 5.05.05 Özet: Bu dkümanda haberleşme elektrniği dersine başlamadan önce hatırlanması gereken ve temel bilgiler özet halinde

Detaylı

DAĞITIM ŞEBEKELERİNDE GERİLİM DÜŞÜMÜ HESABI Genel Tanımlar Doğru Akımda Enerji Dağıtımı

DAĞITIM ŞEBEKELERİNDE GERİLİM DÜŞÜMÜ HESABI Genel Tanımlar Doğru Akımda Enerji Dağıtımı Genel Tanımlar Doğru Akımda Enerji Dağıtımı i,v l, R Hat Gerilim düşümü I,V t (s) Doğru Akım Sinyali υ = Δv Doğru akım devrelerinde daima υ = Δv = V 1 V 2 V 1 ; Hat başı gerilimi V 2 ; Hat sonu gerilimi

Detaylı

14. SİNÜSOİDAL AKIMDA DİRENÇ, KAPASİTE, İNDÜKTANS VE ORTAK İNDÜKTANSIN ÖLÇÜLMESİ

14. SİNÜSOİDAL AKIMDA DİRENÇ, KAPASİTE, İNDÜKTANS VE ORTAK İNDÜKTANSIN ÖLÇÜLMESİ 14. SİNÜSOİDAL AKIMDA DİRENÇ, KAPASİTE, İNDÜKTANS VE ORTAK İNDÜKTANSIN ÖLÇÜLMESİ Sinüsoidal Akımda Direncin Ölçülmesi Sinüsoidal akımda, direnç üzerindeki gerilim ve akım dalga şekilleri ve fazörleri aşağıdaki

Detaylı

ĠLETĠM HATTINA ĠLĠġKĠN KARAKTERĠSTĠK DEĞERLERĠN ELDE EDĠLMESĠ

ĠLETĠM HATTINA ĠLĠġKĠN KARAKTERĠSTĠK DEĞERLERĠN ELDE EDĠLMESĠ DENEY 1 ĠLETĠM HATTINA ĠLĠġKĠN KARAKTERĠSTĠK DEĞERLERĠN ELDE EDĠLMESĠ 1.1. Genel Bilgi MV 1424 Hat Modeli 40 kv lık nominal bir gerilim ve 350A lik nominal bir akım için tasarlanmış 40 km uzunluğundaki

Detaylı

TEMEL ELEKTROT SİSTEMLERİ Eş Merkezli Küresel Elektrot Sistemi

TEMEL ELEKTROT SİSTEMLERİ Eş Merkezli Küresel Elektrot Sistemi TEMEL ELEKTROT SİSTEMLERİ Eş Merkezli Küresel Elektrot Sistemi Merkezleri aynı, aralarında dielektrik madde bulunan iki küreden oluşur. Elektrik Alanı ve Potansiyel Yarıçapları ve ve elektrotlarına uygulanan

Detaylı

ELEKTRİK DEVRELERİ-2 LABORATUVARI VIII. DENEY FÖYÜ

ELEKTRİK DEVRELERİ-2 LABORATUVARI VIII. DENEY FÖYÜ EEKTRİK DEVREERİ-2 ABORATUVARI VIII. DENEY FÖYÜ SERİ VE PARAE REZONANS DEVRE UYGUAMASI Amaç: Seri ve paralel rezonans devrelerini incelemek, devrelerin karakteristik parametrelerini ölçmek, rezonans eğrilerini

Detaylı

RF MİKROELEKTRONİK GÜRÜLTÜ

RF MİKROELEKTRONİK GÜRÜLTÜ RF MİKROELEKTRONİK GÜRÜLTÜ RASTGELE BİR SİNYAL Gürültü rastgele bir sinyal olduğu için herhangi bir zamandaki değerini tahmin etmek imkansızdır. Bu sebeple tekrarlayan sinyallerde de kullandığımız ortalama

Detaylı

18.034 İleri Diferansiyel Denklemler

18.034 İleri Diferansiyel Denklemler MIT AçıkDersSistemi http://ocw.mit.edu 18.034 İleri Diferansiyel Denklemler 2009 Bahar Bu bilgilere atıfta bulunmak veya kullanım koşulları hakkında bilgi için http://ocw.mit.edu/terms web sitesini ziyaret

Detaylı

Manyetik Alanlar. Benzer bir durum hareketli yükler içinde geçerli olup bu yüklerin etrafını elektrik alana ek olarak bir manyetik alan sarmaktadır.

Manyetik Alanlar. Benzer bir durum hareketli yükler içinde geçerli olup bu yüklerin etrafını elektrik alana ek olarak bir manyetik alan sarmaktadır. Manyetik Alanlar Manyetik Alanlar Duran ya da hareket eden yüklü parçacığın etrafını bir elektrik alanın sardığı biliyoruz. Hatta elektrik alan konusunda şu sonuç oraya konulmuştur. Durgun bir deneme yükü

Detaylı

ERCİYES ÜNİVERSİTESİ MÜHENDİSLİK FAKÜLTESİ ENERJİ SİSTEMLERİ MÜHENDİSLİĞİ BÖLÜMÜ ENERJİ SİSTEMLERİ MÜHENDİSLİĞİ LABORATUARI

ERCİYES ÜNİVERSİTESİ MÜHENDİSLİK FAKÜLTESİ ENERJİ SİSTEMLERİ MÜHENDİSLİĞİ BÖLÜMÜ ENERJİ SİSTEMLERİ MÜHENDİSLİĞİ LABORATUARI ERCİYES ÜNİVERSİTESİ MÜHENDİSLİK FAKÜLTESİ ENERJİ SİSTEMLERİ MÜHENDİSLİĞİ BÖLÜMÜ ENERJİ SİSTEMLERİ MÜHENDİSLİĞİ LABORATUARI DENEY FÖYÜ DENEY ADI ELEKTRİK İLETİM HATLARINDA GERİLİM DÜŞÜMÜ VE GÜÇ FAKTÖRÜ

Detaylı

EEM211 ELEKTRİK DEVRELERİ-I

EEM211 ELEKTRİK DEVRELERİ-I EEM211 ELEKTRİK DEVRELERİ-I Prof. Dr. Selçuk YILDIRIM Siirt Üniversitesi Elektrik-Elektronik Mühendisliği Kaynak (Ders Kitabı): Fundamentals of Electric Circuits Charles K. Alexander Matthew N.O. Sadiku

Detaylı

KAÇAK ELEKTRİK KULLANIMININ UYUMLULUK YÖNTEMİ İLE BELİRLENMESİ. Yrd. Doç. Dr. Köksal ERENTÜRK

KAÇAK ELEKTRİK KULLANIMININ UYUMLULUK YÖNTEMİ İLE BELİRLENMESİ. Yrd. Doç. Dr. Köksal ERENTÜRK KAÇAK ELEKTRİK KULLANIMININ ELEKTROMANYETİK UYUMLULUK YÖNTEMİ İLE BELİRLENMESİ Yrd. Doç. Dr. Köksal ERENTÜRK Erzurum 2007 İÇERİK Bölgesel inceleme FACTS sistemler Elektromanyetik uyumluluk Kaçak kullanımda

Detaylı

Şekil 1. n kanallı bir FET in Geçiş ve Çıkış Özeğrileri

Şekil 1. n kanallı bir FET in Geçiş ve Çıkış Özeğrileri DENEY NO : 3 DENEYİN ADI : FET - Elektriksel Alan Etkili Transistör lerin Karakteristikleri DENEYİN AMACI : FET - Elektriksel Alan Etkili Transistör lerin karakteristiklerini çıkarmak, ilgili parametrelerini

Detaylı

Lineer Denklem Sistemleri Kısa Bilgiler ve Alıştırmalar

Lineer Denklem Sistemleri Kısa Bilgiler ve Alıştırmalar Lineer Denklem Sistemleri Kısa Bilgiler ve Alıştırmalar Bir Matrisin Rankı A m n matrisinin determinantı sıfırdan farklı olan alt kare matrislerinin boyutlarının en büyüğüne A matrisinin rankı denir. rank(a)

Detaylı

Yıldız Teknik Üniversitesi Elektronik ve Hab. Müh. Mikrodalga Lab. Deney No:6

Yıldız Teknik Üniversitesi Elektronik ve Hab. Müh. Mikrodalga Lab. Deney No:6 Deney No:6 Yıldız Teknik Üniversitesi Elektronik ve Hab. Müh. Mikrodalga Lab. VCO, Dedektör ve 3-Kapılı Sirkülatörün Tanınması Alçak Geçiren Filtreye Ait Araya Girme Kaybı Karakteristiğinin Belirlenmesi

Detaylı

12. DC KÖPRÜLERİ ve UYGULAMALARI

12. DC KÖPRÜLERİ ve UYGULAMALARI Wheatstone Köprüsü ile Direnç Ölçümü 12. DC KÖPRÜLERİ ve UYGULAMALARI Orta değerli dirençlerin (0.1Ω

Detaylı

DENEY 4: SERİ VE PARALEL REZONANS DEVRELERİ

DENEY 4: SERİ VE PARALEL REZONANS DEVRELERİ Deneyin Amacı DENEY 4: SERİ VE PARALEL REZONANS DEVRELERİ Seri ve paralel RLC devrelerinde rezonans durumunun gözlenmesi, rezonans eğrisinin elde edilmesi ve devrenin karakteristik parametrelerinin ölçülmesi

Detaylı

BÖLÜM 3 ALTERNATİF AKIMDA SERİ DEVRELER

BÖLÜM 3 ALTERNATİF AKIMDA SERİ DEVRELER BÖÜM 3 ATENATİF AKMDA SEİ DEVEE 3.1 - (DİENÇ - BOBİN SEİ BAĞANMAS 3. - (DİENÇ - KONDANSATÖÜN SEİ BAĞANMAS 3.3 -- (DİENÇ-BOBİN - KONDANSATÖ SEİ BAĞANMAS 3.4 -- SEİ DEVESİNDE GÜÇ 77 ATENATİF AKM DEVE ANAİİ

Detaylı

Dik koordinat sisteminde yatay eksen x ekseni (apsis ekseni), düşey eksen ise y ekseni (ordinat ekseni) dir.

Dik koordinat sisteminde yatay eksen x ekseni (apsis ekseni), düşey eksen ise y ekseni (ordinat ekseni) dir. ANALĐTĐK GEOMETRĐ 1. Analitik Düzlem Bir düzlemde dik kesişen iki sayı doğrusunun oluşturduğu sisteme analitik düzlem denir. Analitik düzlem, dik koordinat sistemi veya dik koordinat düzlemi olarak da

Detaylı

ERCİYES ÜNİVERSİTESİ MÜHENDİSLİK FAKÜLTESİ ENERJİ SİSTEMLERİ MÜHENDİSLİĞİ BÖLÜMÜ

ERCİYES ÜNİVERSİTESİ MÜHENDİSLİK FAKÜLTESİ ENERJİ SİSTEMLERİ MÜHENDİSLİĞİ BÖLÜMÜ ERCİYES ÜNİVERSİTESİ MÜHENDİSLİK FAKÜLTESİ ENERJİ SİSTEMLERİ MÜHENDİSLİĞİ BÖLÜMÜ DENEY FÖYÜ DENEY ADI AC AKIM, GERİLİM VE GÜÇ DENEYİ DERSİN ÖĞRETİM ÜYESİ DENEY SORUMLUSU DENEY GRUBU: DENEY TARİHİ : TESLİM

Detaylı

Deney 1: Transistörlü Yükselteç

Deney 1: Transistörlü Yükselteç Deneyin Amacı: Deney 1: Transistörlü Yükselteç Transistör eşdeğer modelleri ve bağlantı şekillerinin öğrenilmesi. Transistörün AC analizi yapılarak yükselteç olarak kullanılması. A.ÖNBİLGİ Transistörün

Detaylı

3.4. ÇEVRE AKIMLAR YÖNTEMİ

3.4. ÇEVRE AKIMLAR YÖNTEMİ 3.4. ÇEVRE AKIMLAR YÖNTEMİ 3.4. ÇEVRE AKıMLAR YÖNTEMI (Ç.A.Y): Bu yöntemde düğümlerdeki akımlar yerine, çevredeki akımlar ele alınarak devrenin analizi yapılır. Yöntemin temel prensibi her bir bağımsız

Detaylı

RF ve Mikrodalga Mühendisliği (EE 310*) Ders Detayları

RF ve Mikrodalga Mühendisliği (EE 310*) Ders Detayları RF ve Mikrodalga Mühendisliği (EE 310*) Ders Detayları Ders Adı Ders Kodu Dönemi Ders Uygulama Laboratuar Kredi AKTS Saati Saati Saati RF ve Mikrodalga Mühendisliği EE 310* Bahar 3 2 0 4 5 Ön Koşul Ders(ler)i

Detaylı

EMÜ 447 ANTENLER VE MİKRODALGA TEKNİĞİ DERSİ ARAŞTIRMA RAPORU

EMÜ 447 ANTENLER VE MİKRODALGA TEKNİĞİ DERSİ ARAŞTIRMA RAPORU T.C. FIRAT ÜNİVERSİTESİ MÜHENDİSLİK FAKÜLTESİ ELEKTRİK ELEKTRONİK MÜHENDİSLİĞİ BÖLÜMÜ EMÜ 447 ANTENLER VE MİKRODALGA TEKNİĞİ DERSİ ARAŞTIRMA RAPORU 99220504 99220515 99220521 HAZIRLAYANLAR Alper ALKOÇ

Detaylı

Çukurova Üniversitesi Biyomedikal Mühendisliği

Çukurova Üniversitesi Biyomedikal Mühendisliği Çukurova Üniversitesi Biyomedikal Mühendisliği BMM212 Elektronik-1 Laboratuvarı Deney Föyü Deney#9 Alan Etkili Transistörlü Kuvvetlendiriciler Doç. Dr. Mutlu AVCI Arş. Gör. Mustafa İSTANBULLU ADANA, 2015

Detaylı

Kompozit Malzemeler ve Mekaniği. Yrd.Doç.Dr. Akın Ataş

Kompozit Malzemeler ve Mekaniği. Yrd.Doç.Dr. Akın Ataş Kompozit Malzemeler ve Mekaniği Yrd.Doç.Dr. Akın Ataş Bölüm 4 Laminatların Makromekanik Analizi Kaynak: Kompozit Malzeme Mekaniği, Autar K. Kaw, Çevirenler: B. Okutan Baba, R. Karakuzu. 4 Laminatların

Detaylı

İşaret ve Sistemler. Ders 3: Periyodik İşaretlerin Frekans Spektrumu

İşaret ve Sistemler. Ders 3: Periyodik İşaretlerin Frekans Spektrumu İşaret ve Sistemler Ders 3: Periyodik İşaretlerin Frekans Spektrumu Fourier Serileri Periyodik işaretlerin spektral analizini yapabilmek için periyodik işaretler sinüzoidal işaretlerin toplamına dönüştürülür

Detaylı

ADIYAMAN ÜNĠVERSĠTESĠ MÜHENDĠSLĠK FAKÜLTESĠ ELEKTRĠK-ELEKTRONĠK MÜHENDĠSLĠĞĠ BÖLÜMÜ DEVRE ANALĠZĠ LABORATUVARI-II DENEY RAPORU

ADIYAMAN ÜNĠVERSĠTESĠ MÜHENDĠSLĠK FAKÜLTESĠ ELEKTRĠK-ELEKTRONĠK MÜHENDĠSLĠĞĠ BÖLÜMÜ DEVRE ANALĠZĠ LABORATUVARI-II DENEY RAPORU ADIYAMAN ÜNĠVERSĠTESĠ MÜHENDĠSLĠK FAKÜLTESĠ ELEKTRĠK-ELEKTRONĠK MÜHENDĠSLĠĞĠ BÖLÜMÜ DEVRE ANALĠZĠ LABORATUVARI-II DENEY RAPORU DENEY NO : DENEYĠN ADI : DENEY TARĠHĠ : DENEYĠ YAPANLAR : RAPORU HAZIRLAYANIN

Detaylı

Örneğin bir önceki soruda verilen rüzgâr santralinin kapasite faktörünü bulmak istersek

Örneğin bir önceki soruda verilen rüzgâr santralinin kapasite faktörünü bulmak istersek KAPASİTE FAKTÖRÜ VE ENERJİ TAHMİNİ Kapasite faktörü (KF) bir santralin ne kadar verimli kullanıldığını gösteren bir parametredir. Santralin nominal gücü ile yıllık sağladığı enerji miktarı arasında ilişki

Detaylı

KOCAELİ ÜNİVERSİTESİ ELEKTRONİK VE HABERLEŞME MÜHENDİSLİĞİ ELEKTRONİK LAB 1 DERSİ İŞLEMSEL KUVVETLENDİRİCİ - 2 DENEYİ

KOCAELİ ÜNİVERSİTESİ ELEKTRONİK VE HABERLEŞME MÜHENDİSLİĞİ ELEKTRONİK LAB 1 DERSİ İŞLEMSEL KUVVETLENDİRİCİ - 2 DENEYİ KOCAELİ ÜNİVERSİTESİ ELEKTRONİK VE HABERLEŞME MÜHENDİSLİĞİ ELEKTRONİK LAB 1 DERSİ İŞLEMSEL KUVVETLENDİRİCİ - 2 DENEYİ Amaç: Bu deney, tersleyen kuvvetlendirici, terslemeyen kuvvetlendirici ve toplayıcı

Detaylı

Çukurova Üniversitesi Biyomedikal Mühendisliği

Çukurova Üniversitesi Biyomedikal Mühendisliği Çukurova Üniversitesi Biyomedikal Mühendisliği BMM309 Elektronik-2 Laboratuarı Deney Föyü Deney#3 Güç Kuvvetlendiricileri Doç. Dr. Mutlu AVCI Arş. Gör. Mustafa İSTANBULLU ADANA, 2015 DENEY 3 Güç Kuvvetlendiricileri

Detaylı

Per-unit değerlerin avantajları

Per-unit değerlerin avantajları PER-UNİT DEĞERLER Per-unit değerlerin avantajları Elektriksel büyüklüklerin karşılaştırılmasında ve değerlendirilmesinde kolaylık sağlar. Trafoların per-unit eşdeğer empedansları primer ve sekonder taraf

Detaylı

ALÇAK FREKANS GÜÇ YÜKSELTEÇLERİ VE ÇIKIŞ KATLARI

ALÇAK FREKANS GÜÇ YÜKSELTEÇLERİ VE ÇIKIŞ KATLARI ALÇAK FREKANS GÜÇ YÜKSELTEÇLERİ VE ÇIKIŞ KATLARI Giriş Temel güç kuvvetlendiricisi yapılarından olan B sınıfı ve AB sınıfı kuvvetlendiricilerin çalışma mantığını kavrayarak, bu kuvvetlendiricileri verim

Detaylı

m=n şeklindeki matrislere kare matris adı verilir. şeklindeki matrislere ise sütun matrisi denir. şeklindeki A matrisi bir kare matristir.

m=n şeklindeki matrislere kare matris adı verilir. şeklindeki matrislere ise sütun matrisi denir. şeklindeki A matrisi bir kare matristir. Matrisler Satır ve sütunlar halinde düzenlenmiş tabloya matris denir. m satırı, n ise sütunu gösterir. a!! a!" a!! a!" a!! a!! a!! a!! a!" m=n şeklindeki matrislere kare matris adı verilir. [2 3 1] şeklinde,

Detaylı

ELEKTRİK ENERJİ SİSTEMLERİNDE OLUŞAN HARMONİKLERİN FİLTRELENMESİNİN BİLGİSAYAR DESTEKLİ MODELLENMESİ VE SİMÜLASYONU

ELEKTRİK ENERJİ SİSTEMLERİNDE OLUŞAN HARMONİKLERİN FİLTRELENMESİNİN BİLGİSAYAR DESTEKLİ MODELLENMESİ VE SİMÜLASYONU T.C. MARMARA ÜNİVERSİTESİ FEN BİLİMLERİ ENSTİTÜSÜ ELEKTRİK ENERJİ SİSTEMLERİNDE OLUŞAN HARMONİKLERİN FİLTRELENMESİNİN BİLGİSAYAR DESTEKLİ MODELLENMESİ VE SİMÜLASYONU Mehmet SUCU (Teknik Öğretmen, BSc.)

Detaylı

İletken Düzlemler Üstüne Yerleştirilmiş Antenler

İletken Düzlemler Üstüne Yerleştirilmiş Antenler İletken Düzlemler Üstüne Yerleştirilmiş Antenler Buraya dek sınırsız ortamlarda tek başına bulunan antenlerin ışıma alanları incelendi. Anten yakınında bulunan başka bir ışınlayıcı ya da bir yansıtıcı,

Detaylı

KARADENİZ TEKNİK ÜNİVERSİTESİ Mühendislik Fakültesi Elektrik-Elektronik Mühendisliği Bölümü ELK222 TEMEL ELEKTRİK LABORATUARI-II

KARADENİZ TEKNİK ÜNİVERSİTESİ Mühendislik Fakültesi Elektrik-Elektronik Mühendisliği Bölümü ELK222 TEMEL ELEKTRİK LABORATUARI-II ALTERNATİF AKIM KÖPRÜLERİ 1. Hazırlık Soruları Deneye gelmeden önce aşağıdaki soruları cevaplayınız ve deney öncesinde rapor halinde sununuz. Omik, kapasitif ve endüktif yük ne demektir? Açıklayınız. Omik

Detaylı

Karadeniz Teknik Üniversitesi Elektrik-Elektronik Mühendisliği Bölümü Elektronik Laboratuvarı I İŞLEMSEL YÜKSELTECİN TEMEL ÖZELLİKLERİ VE UYGULAMALARI

Karadeniz Teknik Üniversitesi Elektrik-Elektronik Mühendisliği Bölümü Elektronik Laboratuvarı I İŞLEMSEL YÜKSELTECİN TEMEL ÖZELLİKLERİ VE UYGULAMALARI Öğr. Gör. Oğuzhan ÇAKIR 377 42 03, KTÜ, 2010 Karadeniz Teknik Üniversitesi Elektrik-Elektronik Mühendisliği Bölümü Elektronik Laboratuvarı I İŞLEMSEL YÜKSELTECİN TEMEL ÖZELLİKLERİ VE UYGULAMALARI 1. Deneyin

Detaylı

Mekatronik Mühendisliği Lab1 (Elektrik-Elektronik) Seri ve Paralel RLC Devreleri

Mekatronik Mühendisliği Lab1 (Elektrik-Elektronik) Seri ve Paralel RLC Devreleri YILDIZ TEKNİK ÜNİVERSİTESİ MAKİNA FAKÜLTESİ MEKATRONİK MÜHENDİSLİĞİ BÖLÜMÜ ELEKTRİK-ELEKTRONİK LABORATUARI (LAB I) DENEY 3 Deney Adı: Seri ve Paralel RLC Devreleri Öğretim Üyesi: Yard. Doç. Dr. Erhan AKDOĞAN

Detaylı

ELK273 Elektrik ve Elektronik Mühendisliğinin Temelleri Ders 8- AC Devreler. Yard.Doç.Dr. Ahmet Özkurt.

ELK273 Elektrik ve Elektronik Mühendisliğinin Temelleri Ders 8- AC Devreler. Yard.Doç.Dr. Ahmet Özkurt. ELK273 Elektrik ve Elektronik Mühendisliğinin Temelleri Ders 8- AC Devreler Yard.Doç.Dr. Ahmet Özkurt Ahmet.ozkurt@deu.edu.tr http://ahmetozkurt.net İçerik AC ve DC Empedans RMS değeri Bobin ve kondansatörün

Detaylı

KOCAELİ ÜNİVERSİTESİ ELEKTRONİK VE HABERLEŞME MÜHENDİSLİĞİ ELEKTRONİK LAB 1 DERSİ İŞLEMSEL KUVVETLENDİRİCİ - 2 DENEYİ

KOCAELİ ÜNİVERSİTESİ ELEKTRONİK VE HABERLEŞME MÜHENDİSLİĞİ ELEKTRONİK LAB 1 DERSİ İŞLEMSEL KUVVETLENDİRİCİ - 2 DENEYİ KOCAELİ ÜNİVERSİTESİ ELEKTRONİK VE HABERLEŞME MÜHENDİSLİĞİ ELEKTRONİK LAB 1 DERSİ İŞLEMSEL KUVVETLENDİRİCİ - 2 DENEYİ Amaç: Bu deneyde terslemeyen kuvvetlendirici, toplayıcı kuvvetlendirici ve karşılaştırıcı

Detaylı

ELEKTRİK DEVRE TEMELLERİ ÖDEV-2

ELEKTRİK DEVRE TEMELLERİ ÖDEV-2 ELEKTRİK DEVRE TEMELLERİ 06.05.2015 ÖDEV-2 1. Aşağıdaki şekilde verilen devrenin; a) a-b uçlarının solunda kalan kısmının Thevenin eşdeğerini bulunuz. b) Bu eşdeğerden faydalanarak R L =4 luk yük direncinde

Detaylı

14. ÜNİTE GERİLİM DÜŞÜMÜ

14. ÜNİTE GERİLİM DÜŞÜMÜ 14. ÜNİTE GERİLİM DÜŞÜMÜ KONULAR 1. GERİLİM DÜŞÜMÜNÜN ANLAMI VE ÖNEMİ 2. ÇEŞİTLİ TESİSLERDE KABUL EDİLEBİLEN GERİLİM DÜŞÜMÜ SINIRLARI 3. TEK FAZLI ALTERNATİF AKIM (OMİK) DEVRELERİNDE YÜZDE (%) GERİLİM

Detaylı

8.Konu Vektör uzayları, Alt Uzaylar

8.Konu Vektör uzayları, Alt Uzaylar 8.Konu Vektör uzayları, Alt Uzaylar 8.1. Düzlemde vektörler Düzlemdeki her noktası ile reel sayılardan oluşan ikilisini eşleştirebiliriz. Buna P noktanın koordinatları denir. y-ekseni P x y O dan P ye

Detaylı

EET-202 DEVRE ANALİZİ-II DENEY FÖYÜ OSİLOSKOP İLE PERİYOT, FREKANS VE GERİLİM ÖLÇME

EET-202 DEVRE ANALİZİ-II DENEY FÖYÜ OSİLOSKOP İLE PERİYOT, FREKANS VE GERİLİM ÖLÇME OSİLOSKOP İLE PERİYOT, FREKANS VE GERİLİM ÖLÇME Deney No:1 Amaç: Osiloskop kullanarak AC gerilimin genlik periyot ve frekans değerlerinin ölçmesi Gerekli Ekipmanlar: AC Güç Kaynağı, Osiloskop, 2 tane 1k

Detaylı

KURANPORTÖR SİSTEMİ MEHMET ŞENLENMİŞ ELEKTRONİK BAŞ MÜHENDİSİ

KURANPORTÖR SİSTEMİ MEHMET ŞENLENMİŞ ELEKTRONİK BAŞ MÜHENDİSİ MEHMET ŞENLENMİŞ ELEKTRONİK BAŞ MÜHENDİSİ Üretim merkezlerinde üretilen elektrik enerjisini dağıtım merkezlerine oradan da kullanıcılara güvenli bir şekilde ulaştırmak için EİH (Enerji İletim Hattı) ve

Detaylı

Deney No:3 Güç iletiminde ve yansıma ölçümlerinde yönlendirici kuplör kullanılması. Deneyin Amacı: Bu deneyde,

Deney No:3 Güç iletiminde ve yansıma ölçümlerinde yönlendirici kuplör kullanılması. Deneyin Amacı: Bu deneyde, Deney No:3 Güç iletiminde ve yansıma ölçümlerinde yönlendirici kuplör kullanılması. Deneyin Amacı: Bu deneyde, Yıldız Teknik Üniversitesi Elektronik ve Hab. Müh. Mikrodalga Lab. Yönlendirici kuplörlerin

Detaylı

GENETEK. Güç Sistemlerinde Kısa Devre Analizi Eğitimi. Güç, Enerji, Elektrik Sistemleri Özel Eğitim ve Danışmanlık San. Tic. Ltd. Şti.

GENETEK. Güç Sistemlerinde Kısa Devre Analizi Eğitimi. Güç, Enerji, Elektrik Sistemleri Özel Eğitim ve Danışmanlık San. Tic. Ltd. Şti. GENETEK Güç, Enerji, Elektrik Sistemleri Özel Eğitim ve Danışmanlık San. Tic. Ltd. Şti. Güç Sistemlerinde Kısa Devre Analizi Eğitimi Yeniköy Merkez Mh. KOÜ Teknopark No:83 C-13, 41275, Başiskele/KOCAELİ

Detaylı

Bir özvektörün sıfırdan farklı herhangi bri sabitle çarpımı yine bir özvektördür.

Bir özvektörün sıfırdan farklı herhangi bri sabitle çarpımı yine bir özvektördür. ÖZDEĞER VE ÖZVEKTÖRLER A n n tipinde bir matris olsun. AX = λx (1.1) olmak üzere n 1 tipinde bileşenleri sıfırdan farklı bir X matrisi için λ sayıları için bu denklemi sağlayan bileşenleri sıfırdan farklı

Detaylı

Avf = 1 / 1 + βa. Yeterli kazanca sahip amplifikatör βa 1 şartını sağlamalıdır.

Avf = 1 / 1 + βa. Yeterli kazanca sahip amplifikatör βa 1 şartını sağlamalıdır. Karadeniz Teknik Üniversitesi Elektrik-Elektronik Mühendisliği Bölümü Elektronik Lab. 2 OSİLATÖRLER 1. Ön Bilgiler 1.1 Osilatör Osilatörler DC güç kaynağındaki elektrik enerjisini AC elektrik enerjisine

Detaylı

T.C. ERCİYES ÜNİVERSİTESİ MÜHENDİSLİK FAKÜLTESİ MEKATRONİK MÜHENDİSLİĞİ BÖLÜMÜ ELEKTRONİK SİSTEMLER LABORATUVARI 1 OPAMP DEVRELERİ-1

T.C. ERCİYES ÜNİVERSİTESİ MÜHENDİSLİK FAKÜLTESİ MEKATRONİK MÜHENDİSLİĞİ BÖLÜMÜ ELEKTRONİK SİSTEMLER LABORATUVARI 1 OPAMP DEVRELERİ-1 T.C. ERCİYES ÜNİVERSİTESİ MÜHENDİSLİK FAKÜLTESİ MEKATRONİK MÜHENDİSLİĞİ BÖLÜMÜ ELEKTRONİK SİSTEMLER LABORATUVARI 1 OPAMP DEVRELERİ-1 DENEY SORUMLUSU Arş. Gör. Memduh SUVEREN MART 2015 KAYSERİ OPAMP DEVRELERİ

Detaylı

Bölüm 1. Elektriksel Büyüklükler ve Elektrik Devre Elemanları

Bölüm 1. Elektriksel Büyüklükler ve Elektrik Devre Elemanları Bölüm Elektriksel Büyüklükler ve Elektrik Devre Elemanları. Temel Elektriksel Büyüklükler: Akım, Gerilim, Güç, Enerji. Güç Polaritesi.3 Akım ve Gerilim Kaynakları F.Ü. Teknoloji Fak. EEM M.G. .. Temel

Detaylı

DC DEVRE ÇÖZÜM YÖNTEMLERİ

DC DEVRE ÇÖZÜM YÖNTEMLERİ DC DEVRE ÇÖZÜM YÖNTEMLERİ Elektrik devresi, kaynak ve yük gibi çeşitli devre elemanlarının herhangi bir şekilde bağlantısından meydana gelir. Bu gibi devrelerin çözümünde genellikle, seri-paralel devrelerin

Detaylı

Makine Mühendisliği İçin Elektrik-Elektronik Bilgisi. Ders Notu-3 Doğru Akım Devreleri Hazırlayan: Yrd. Doç. Dr. Ahmet DUMLU

Makine Mühendisliği İçin Elektrik-Elektronik Bilgisi. Ders Notu-3 Doğru Akım Devreleri Hazırlayan: Yrd. Doç. Dr. Ahmet DUMLU Makine Mühendisliği İçin Elektrik-Elektronik Bilgisi Ders Notu-3 Doğru Akım Devreleri Hazırlayan: Yrd. Doç. Dr. Ahmet DUMLU ELEKTROMOTOR KUVVETİ Kapalı bir devrede sabit bir akımın oluşturulabilmesi için

Detaylı

Mühendislik Mekaniği Statik. Yrd.Doç.Dr. Akın Ataş

Mühendislik Mekaniği Statik. Yrd.Doç.Dr. Akın Ataş Mühendislik Mekaniği Statik Yrd.Doç.Dr. Akın Ataş Bölüm 10 Eylemsizlik Momentleri Kaynak: Mühendislik Mekaniği: Statik, R. C.Hibbeler, S. C. Fan, Çevirenler: A. Soyuçok, Ö. Soyuçok. 10. Eylemsizlik Momentleri

Detaylı

8. HAFTA BLM323 SAYISAL ANALİZ. Okt. Yasin ORTAKCI.

8. HAFTA BLM323 SAYISAL ANALİZ. Okt. Yasin ORTAKCI. 8. HAFTA BLM323 SAYISAL ANALİZ Okt. Yasin ORTAKCI yasinortakci@karabuk.edu.tr Karabük Üniversitesi Uzaktan Eğitim Uygulama ve Araştırma Merkezi 2 MATRİSLER Matris veya dizey, dikdörtgen bir sayılar tablosu

Detaylı

DENEY 2: ALTERNATİF AKIM DEVRELERİNDE KONDANSATÖR VE BOBİN DAVRANIŞININ İNCELENMESİ

DENEY 2: ALTERNATİF AKIM DEVRELERİNDE KONDANSATÖR VE BOBİN DAVRANIŞININ İNCELENMESİ DENEY 2: ALTERNATİF AKIM DEVRELERİNDE KONDANSATÖR VE BOBİN DAVRANIŞININ İNCELENMESİ Deneyin Amacı *Alternatif akım devrelerinde sıklıkla kullanılan (alternatif işaret, frekans, faz farkı, fazör diyagramı,

Detaylı

Şekil 1: Direnç-bobin seri devresi. gerilim düşümü ile akımdan 90 o ileri fazlı olan bobin uçlarındaki U L gerilim düşümüdür.

Şekil 1: Direnç-bobin seri devresi. gerilim düşümü ile akımdan 90 o ileri fazlı olan bobin uçlarındaki U L gerilim düşümüdür. 1 TEME DEVEEİN KAMAŞIK SAYIAA ÇÖÜMÜ 1. Direnç Bbin Seri Devresi: (- Seri Devresi Direnç ve bbinin seri bağlı lduğu Şekil 1 deki devreyi alalım. Burada devre gerilimi birbirine dik lan iki bileşene ayrılabilir.

Detaylı

Mühendislik Mekaniği Dinamik. Yrd.Doç.Dr. Akın Ataş

Mühendislik Mekaniği Dinamik. Yrd.Doç.Dr. Akın Ataş Mühendislik Mekaniği Dinamik Yrd.Doç.Dr. Akın Ataş Bölüm 17 Rijit Cismin Düzlemsel Kinetiği; Kuvvet ve İvme Kaynak: Mühendislik Mekaniği: Dinamik, R.C.Hibbeler, S.C.Fan, Çevirenler: A. Soyuçok, Ö. Soyuçok.

Detaylı

KATI CİSİMLERİN BAĞIL İVME ANALİZİ:

KATI CİSİMLERİN BAĞIL İVME ANALİZİ: KATI CİSİMLERİN BAĞIL İVME ANALİZİ: Genel düzlemsel hareket yapmakta olan katı cisim üzerinde bulunan iki noktanın ivmeleri aralarındaki ilişki, bağıl hız v A = v B + v B A ifadesinin zamana göre türevi

Detaylı

2.5. İletkenlerde R, L, C Hesabı İletim Hatlarında Direnç (R) İletim hatlarında gerilim düşümüne ve güç kaybına sebebiyet veren direncin doğru

2.5. İletkenlerde R, L, C Hesabı İletim Hatlarında Direnç (R) İletim hatlarında gerilim düşümüne ve güç kaybına sebebiyet veren direncin doğru 2.5. İletkenlerde R, L, C Hesabı 2.5.1. İletim Hatlarında Direnç (R) İletim hatlarında gerilim düşümüne ve güç kaybına sebebiyet veren direncin doğru hesaplanması gerekir. DA direnci, R=ρ.l/A eşitliğinden

Detaylı

BÖLÜM 4: MADDESEL NOKTANIN KİNETİĞİ: İMPULS ve MOMENTUM

BÖLÜM 4: MADDESEL NOKTANIN KİNETİĞİ: İMPULS ve MOMENTUM BÖLÜM 4: MADDESEL NOKTANIN KİNETİĞİ: İMPULS ve MOMENTUM 4.1. Giriş Bir önceki bölümde, hareket denklemi F = ma nın, maddesel noktanın yer değiştirmesine göre integrasyonu ile elde edilen iş ve enerji denklemlerini

Detaylı

Güç elektroniği elektrik mühendisliğinde enerji ve elektronik bilim dalları arasında bir bilim dalıdır.

Güç elektroniği elektrik mühendisliğinde enerji ve elektronik bilim dalları arasında bir bilim dalıdır. 3. Bölüm Güç Elektroniğinde Temel Kavramlar ve Devre Türleri Doç. Dr. Ersan KABALC AEK-207 GÜNEŞ ENERJİSİ İLE ELEKTRİK ÜRETİMİ Güç Elektroniğine Giriş Güç elektroniği elektrik mühendisliğinde enerji ve

Detaylı

Elektrik Müh. Temelleri -II EEM 112

Elektrik Müh. Temelleri -II EEM 112 Elektrik Müh. Temelleri II EEM 112 7 1 TRANSFORMATÖR Transformatörler elektrik enerjisinin gerilim ve akım değerlerini frekansta değişiklik yapmadan ihtiyaca göre değiştiren elektrik makinesidir. Transformatörler

Detaylı

* DC polarma, transistörün uçları arasında uygun DC çalışma gerilimlerinin veya öngerilimlerin sağlanmasıdır.

* DC polarma, transistörün uçları arasında uygun DC çalışma gerilimlerinin veya öngerilimlerin sağlanmasıdır. Elektronik Devreler 1. Transistörlü Devreler 1.1 Transistör DC Polarma Devreleri 1.1.1 Gerilim Bölücülü Polarma Devresi 1.2 Transistörlü Yükselteç Devreleri 1.2.1 Gerilim Bölücülü Yükselteç Devresi Konunun

Detaylı

Elektrik Devre Temelleri

Elektrik Devre Temelleri Elektrik Devre Temelleri 2. TEMEL KANUNLAR Doç. Dr. M. Kemal GÜLLÜ Elektronik ve Haberleşme Mühendisliği Kocaeli Üniversitesi Bu bölümde Ohm Kanunu Düğüm, dal, çevre 2.1. Giriş Kirchhoff Kanunları Paralel

Detaylı