5. ÜNİTE AÇILAR, ÜÇGENLER VE MESLEKİ UYGULAMALARI

Save this PDF as:
 WORD  PNG  TXT  JPG

Ebat: px
Şu sayfadan göstermeyi başlat:

Download "5. ÜNİTE AÇILAR, ÜÇGENLER VE MESLEKİ UYGULAMALARI"

Transkript

1 5. ÜNİTE ÇILR, ÜÇGENLER VE MESLEKİ UYGULMLRI açılar KONULR 1. çı, çı Türleri ve Mesleki Uygulamaları 2. Tümler ve ütünler çılar ÜÇGENLER 1. Üçgene it Temel ilgiler 2. Üçgen Türleri 3. Üçgenin Yardımcı Elemanları 4. Üçgenin çıları, Kenarları rasındaki ağıntılar ve Meslekî Uygulamaları 5. Özet 6. Değerlendirme Soruları

2 U ÜNİTEYE NEDEN ÇLIŞMLIYIZ? u bölümü çalıştığınızda; ütünler, komşu bütünler, tümler ve komşu tümler açılardan yararlanarak Mesleğinizde karşılaşacağınız problemleri çözebilecek. Üçgenin yardımcı elemanlarını gösterecek, Üçgenin kenarları ve açıları arasındaki bağlantılardan yararlanarak, Mesleğinizde karşılaşacağınız problemleri çözebilecek. Üçgenlerde açı hesaplarından yararlanarak mesleğinizde karşılaşacağınız Problemleri çözebilecek, Dik üçgenlerde Pisagor ve öklit bağıntılarını açıklayabilecek, Pisagor ve öklit bağıntılarını kullanarak mesleğinizde karşılaşacağınız Problemleri çözebileceksiniz.

3 U ÜNİTEYE NSIL ÇLIŞMLIYIZ? Örnekleri dikkatle okuyunuz. Örnek soruları kitaba bakmadan çözmeye çalışınız. nlamadan bir başka bölüme geçmeyiniz. Ünitenin sonundaki testte kendinizi deneyiniz, başarısız iseniz başarısız olduğunuz bölümleri tekrar gözden geçiriniz. u konular ile ilgili Matematik kitaplarından yararlanabilirsiniz.

4 3. SINIF ELEKTRİK TESİSTÇILIĞI MTEMTİK VE MESLEK MTEMTİĞİ 5.1 ÇILR çı, çı Türleri Ve Meslekî Uygulamaları çı: aşlangıç noktaları aynı olan iki ışının birleşimine denir Dar çı Ölçüsü 90 o dereceden küçük olan açılara denir. ÖRNEK: dar açı s () = Dik çı Ölçüsü 90 o derece olan açılara denir. s () = 90 0 dik açı 114

5 3. SINIF ELEKTRİK TESİSTÇILIĞI MTEMTİK VE MESLEK MTEMTİĞİ Geniş çı Ölçüsü 90 o dereceden büyük 180 o dereceden küçük olan açılara denir. s() = 60 0 Şeklinde ifade edilir. geniş açı Doğru çı Ölçüsü 180 o derece olan açılara denir O s (O) = Şeklinde ifade edilir. doğru açı Tam çı Ölçüsü 360 o derece olan açılara denir O tam açı Tümler ve ütünler çılar Komşu çılar: Köşeleri ve birer kenarları ortak olan açılara komşu açılar denir. 115

6 3. SINIF ELEKTRİK TESİSTÇILIĞI MTEMTİK VE MESLEK MTEMTİĞİ Tümler çılar Ölçülerinin toplamı 90 olan açılara tümler açı denir. s (O) + s (O) = 90 0 O ÖRNEK: Komşu ve tümler iki açıdan biri 15 0 olduğuna göre diğer açı kaç derecedir? 15 0 x 15 + x = 90 x = x = 75 O ütünler çılar Ölçülerinin toplamı 180 olan açılara bütünler açı denir.... O s (O) + s (O) = O ve O açıları bütünler açılardır. ÖRNEK: Komşu ve bütünler açılardan biri 75 0 derece olduğuna göre diğer açı kaç derecedir? 75 + x = 180. x = x = X. O.. 116

7 3. SINIF ELEKTRİK TESİSTÇILIĞI MTEMTİK VE MESLEK MTEMTİĞİ 5.2 ÜÇGENLER ir düzlemde üçü bir doğru üzerinde bulunmayan üç noktanın ikişer ikişer birleşmesiyle oluşan doğru parçalarının birleşim kümesine üçgen denir. E Tepe çısı c b F Taban çıları D a Üçgene it Temel ilgiler: Üç tane iç açısı vardır. İç açılarının ölçüleri toplamı 180 dir. Üç tane kenarı vardır. [], [], [] Üçgen Türleri Kenarlarına Göre Üçgenler Eşkenar Üçgen: Üç kenarı da birbirine eşit olan üçgenlere denir. c 60 b 60 a

8 3. SINIF ELEKTRİK TESİSTÇILIĞI MTEMTİK VE MESLEK MTEMTİĞİ İkiz Kenar Üçgen: İki kenarı birbirine eşit olan üçgenler denir. Çeşitkenar Üçgen: çıları ve kenarları birbirinden farklı olan üçgenlere denir. c b. a çılarına Göre Üçgenler Dar çılı Üçgenler: Üç açısının ölçüleri de 900 dereceden küçük olan üçgene denir. Dik çılı Üçgenler: ir açısının ölçüsü 900 derece olan üçgenlere denir. 118

9 3. SINIF ELEKTRİK TESİSTÇILIĞI MTEMTİK VE MESLEK MTEMTİĞİ Geniş çılı Üçgenler: ir açısının ölçüsü 900 dereceden büyük olan üçgenlere denir Üçgenin Yardımcı Elemanları Kenarortay: Üçgenin herhangi bir kenarının orta noktası ile karşı köşeyi birleştiren doğru parçasına o kenarın kenarortayı denir. (V) harfi ile gösterilir. K L N = Va L = Vb K = Vc N a kenarına ait kenarortay b kenarına ait kenarortay c kenarına ait kenarortay 119

10 3. SINIF ELEKTRİK TESİSTÇILIĞI MTEMTİK VE MESLEK MTEMTİĞİ Yükseklik: Her bir köşeden karşı kenara inilen dikmeye yükseklik denir. işareti ile gösterilir. K.. L. N = ha a kenarına ait yükseklik K = hc c kenarına ait yükseklik L = hb b kenarına ait yükseklik çıortay: ir açıyı iki eşit parçaya bölen ışına açıortay denir. (n) harfi ile gösterilir. K L.. N N = n a L = n b K = n c açısına ait açıortay açısına ait açıortay açısına ait açıortay Üçgende çı - Kenar ağıntıları ve Mesleki Uygulamaları ir üçgenin iç açıları ölçüleri toplamı derecedir. köşesinden kenarına paralel E ışınını çizersek. 120

11 3. SINIF ELEKTRİK TESİSTÇILIĞI MTEMTİK VE MESLEK MTEMTİĞİ // E E açısı açısına eşittir (Paralel iki doğruda içters açılar birbirine eşittir). ED açısı açısına eşittir. (Paralel iki doğruda yöndeş açılar birbirine eşittir). s ( ) + s ( E ) + s ( ED ) = 180 s ( ) + s ( ) + s ( ) = 180 olur. Dar çı: Dar açıların toplamı dir. ir dar açı kendisine komşu olmayan iki iç açının toplamına eşittir. ir üçgende büyük kenar karşısında büyük açı, küçük kenar karşısında küçük açı bulunur. ÖRNEK: 121

12 3. SINIF ELEKTRİK TESİSTÇILIĞI MTEMTİK VE MESLEK MTEMTİĞİ c 80 b ir üçgende büyük kenar karşısında büyük açı, küçük kenar karşısında küçük açı bulunur a > b > c a ir üçgende iki kenarın toplamı üçüncü kenardan büyük, farkından küçüktür. c. b a + b > c, a + c > b, b + c > a a - b < c, a - c < b, b - c < a a ÖRNEK: ir kenarı 5 cm, diğer kenarı 6 cm olan bir üçgenin üçüncü kenarı hangi sayılar arasında olabilir. a + b > c, = 11 a - b < c, 6-5 < 1 olduğundan c kenarı { 2, 3, 4, 5, 6, 7, 8, 9, 10} olabilir. 122

13 3. SINIF ELEKTRİK TESİSTÇILIĞI MTEMTİK VE MESLEK MTEMTİĞİ ÖZET çı: aşlangıç noktaları aynı olan iki ışının birleşimine denir. Ölçüsü 90 den küçük açılara dar açı, ölçüsü 90 olan açılara dik açı denir. Ölçüsü 90 dereceden büyük 180 dereceden küçük olan açılara geniş açı denir. ir düzlemde üçü bir doğru üzerinde bulunmayan üç noktanın ikişer ikişer birleşmesinden oluşan kapalı şekle üçgen denir. Kenarlarına Göre Üçgen Çeşitleri: Eşkenar Üçgen, Çeşitkenar üçgen, ikizkenar üçgen diye üçe ayrılır. çılarına göre üçgenler: Dar açılı üçgen, dik açılı üçgen, geniş açılı üçgenler diye üçe ayrılır. Üçgenin Yardımcı Elemanları: Kenarortay, yükseklik, açıortaydır. Üçgenlerin iç açıları toplamı 180 dir Üçgenlerin dış açıları toplamı 360 dir. 123

14 3. SINIF ELEKTRİK TESİSTÇILIĞI MTEMTİK VE MESLEK MTEMTİĞİ DEĞERLENDİRME SORULRI 1. Yandaki saatte akrep ile yelkovan arasındaki açı kaç derecedir? a. 60 b. 90 c. 120 d Yandaki komşu ve bütünler açılardan a açısı kaç derecedir? a. 70 b. 90 c. 110 d Saat tam iken akrep ile yelkovan arasındaki açı kaç derecedir? a. 90 b. 120 c. 150 d Dik açı kaç derecedir? a. 45 b. 90 c. 120 d Üçgenlerin iç açıları toplamı kaç derecedir? a. 90 b. 120 c. 150 d İkizkenar dik üçgenin taban açılarının her biri kaçar derecedir? a. 45 b. 90 c. 120 d

15 3. SINIF ELEKTRİK TESİSTÇILIĞI MTEMTİK VE MESLEK MTEMTİĞİ 7. Eşkenar üçgenin her bir açısı kaçar derecedir? a. 30 b. 45 c. 60 d ir üçgeninde açısı 100, açısı 45 olduğuna göre açısı kaç derecedir? a. 15 b. 30 c. 35 d şağıdakilerden hangisi üçgenin temel elemanıdır? a. Yükseklik b. Kenar c. Kenar Ortay d. çı Ortay 10. ir açısı 100 olan ikizkenar üçgenin taban açıları kaçar derecedir? a. 15 b. 30 c. 35 d şağıdakilerden hangisi yanlıştır? a. 90 den küçük açılara dar açı denir. b. 90 olan açılara dik açı denir. c. 90 den büyük açılara geniş açı denir. d. 180 den büyük açılara uzun açı denir. 12. ir açısı 100 olan ikizkenar üçgenin taban açıları kaçar derecedir? a. 15 b. 30 c. 35 d

ÜÇGENLER ÜNİTE 4. ÜNİTE 4. ÜNİTE 4. ÜNİTE 4. ÜNİT

ÜÇGENLER ÜNİTE 4. ÜNİTE 4. ÜNİTE 4. ÜNİTE 4. ÜNİT ÜÇGNLR ÜNİT. ÜNİT. ÜNİT. ÜNİT. ÜNİT ÜÇGNLRİN ŞLİĞİ Üçgende çılar. azanım : ir üçgenin iç açılarının ölçüleri toplamının 80, dış açılarının ölçüleri toplamının 0 olduğunu gösterir. İki Üçgenin şliği. azanım

Detaylı

EVVET ARKADAŞLAR HOŞGELDİNİZ BU DERSİMİZDE ÜÇGENLER VE ÖZELLİKLERİNE GÖZ ATACAĞIZ.

EVVET ARKADAŞLAR HOŞGELDİNİZ BU DERSİMİZDE ÜÇGENLER VE ÖZELLİKLERİNE GÖZ ATACAĞIZ. DERS : GEOMETRİ KONU : ÜÇGEN EVVET ARKADAŞLAR HOŞGELDİNİZ BU DERSİMİZDE ÜÇGENLER VE ÖZELLİKLERİNE GÖZ ATACAĞIZ. AMAN SIKILMAYIN NOT BİRAZ UZUN DA :-) Doğrusal olmayan üç noktayı birleştiren üç doğru parçasının

Detaylı

7. ÜNİTE DOĞRUDA VE ÜÇGENDE AÇILAR

7. ÜNİTE DOĞRUDA VE ÜÇGENDE AÇILAR 7. ÜNİTE DOĞRUDA VE ÜÇGENDE AÇILAR KONULAR 1. DOĞRUDA AÇILAR 2. Açı 3. Açının Düzlemde Ayırdığı Bölgeler 4. Açı Ölçü Birimleri 5. Ölçülerine Göre Açılar 6. Açıortay 7. Tümler Açı 8. Bütünler Açı 9. Ters

Detaylı

ÜÇGENDE AÇILAR. Doğrusal olmayan üç noktayı birleştiren üç doğru parçasının birleşimine üçgen denir. AB] [AC] [BC] = ABC dir.

ÜÇGENDE AÇILAR. Doğrusal olmayan üç noktayı birleştiren üç doğru parçasının birleşimine üçgen denir. AB] [AC] [BC] = ABC dir. ÜÇGENDE AÇILAR Doğrusal olmayan üç noktayı birleştiren üç doğru parçasının birleşimine üçgen denir. AB] [AC] [BC] = ABC dir. Burada; A, B, C noktaları üçgenin köşeleri, [AB], [AC], [BC] doğru parçaları

Detaylı

TEMEL BAZI KAVRAMLAR. Uzay: İçinde yaşadığımız sonsuz boşluktur. Uzay, bir noktalar kümesidir. Uzay, bütün varlıkları içine alır.

TEMEL BAZI KAVRAMLAR. Uzay: İçinde yaşadığımız sonsuz boşluktur. Uzay, bir noktalar kümesidir. Uzay, bütün varlıkları içine alır. 1 TEMEL ZI KVRMLR Nokta: Kalemin kâğıda, tebeşirin tahtaya bıraktığı ize nokta denir. Nokta boyutsuzdur. Yani; noktanın eni, boyu ve yüksekliği yoktur. ütün geometrik şekiller noktalardan oluşur. Noktalar

Detaylı

ÜÇGEN VE KENARLARI ARASINDA BAĞINTILAR

ÜÇGEN VE KENARLARI ARASINDA BAĞINTILAR ÜÇGEN VE KENARLARI ARASINDA BAĞINTILAR 1. Bir üçgende ölçüsü büyük olan açının karşısındaki kenar uzunluğu, ölçüsü küçük olan açının karşısındaki kenar uzunluğundan daha büyüktür. ABC üçgeninde m(a) >

Detaylı

8. SINIF MATEMATiK ÜÇGEN

8. SINIF MATEMATiK ÜÇGEN 05 8. SINIF MTMTiK ÜÇGN Kenarortay: ir kenarın orta noktası ile karşısındaki köşe arasına çekilen doğru parçasına kenarortay denir. çıortay: ir köşeden, karşısındaki kenara kadar giden ve bu köşedeki açıyı

Detaylı

DİK ÜÇGEN. şekilde, m(a) = 90. [BC] kenarı hipotenüs. [AB] ve [AC] kenarları. dik kenarlardır. P İSAGOR BAĞINTISI

DİK ÜÇGEN. şekilde, m(a) = 90. [BC] kenarı hipotenüs. [AB] ve [AC] kenarları. dik kenarlardır. P İSAGOR BAĞINTISI DİK ÜÇGEN Bir açısının ölçüsü 90 olan üçgene dik üçgen denir. Dik üçgende 90 nin karşısındaki kenara hipotenüs, diğer kenarlara dik kenar adı verilir. Hipotenüs üçgenin daima en uzun kenarıdır. şekilde,

Detaylı

9. ÜNİTE ÜÇGENLER, ÇOKGENLER VE MESLEKÎ UYGULAMALARI

9. ÜNİTE ÜÇGENLER, ÇOKGENLER VE MESLEKÎ UYGULAMALARI 9. ÜNİTE ÜÇGENLER, ÇOKGENLER VE MESLEKÎ UYGULAMALARI KONULAR DİK ÜÇGENLERDE METRİK BAĞINTILAR 1. Pythagoras (Pisagor) Bağıntısı. Euclides (öklit) Bağıntısı 3. Pisagor ve öklit Bağıntıları ile İlgili Problemler

Detaylı

9SINIF MATEMATİK. Üçgenler Veri

9SINIF MATEMATİK. Üçgenler Veri 9SINIF MTEMTİ Üçgenler Veri 4 YYIN RİNTÖRÜ ğuz GÜMÜŞ EİTÖR Hazal ÖZNR - Uğurcan YIN İZGİ Muhammed RTŞ SYF TSRIM - P F. Özgür FZ Eğer bir gün sözlerim bilim ile ters düşerse, bilimi seçin... M. emal tatürk

Detaylı

AÇILAR / TEST-1. B, C, E doğrusal = 50 E C. A, B, L doğrusal = 100 = 30 = 40 C 60 D

AÇILAR / TEST-1. B, C, E doğrusal = 50 E C. A, B, L doğrusal = 100 = 30 = 40 C 60 D ÇIR / TST-1 P = [P] m( P ) = //,, doğrusal m( ) = 30 // m( ) m( ) = = 30 d3 // d3 // d4 m( ) = Verilenlere göre, + + ) 250 ) 260 ) 270 ) 280 ) 300 Verilenlere göre, m( ) ) 25 ) 30 ) 35 ) 40 ) 50 10 Verilenlere

Detaylı

GEOMETRİK KAVRAMLAR. 1. Nokta: Geometrinin en temel terimidir.. biçiminde gösterilir. Boyutu yoktur.

GEOMETRİK KAVRAMLAR. 1. Nokta: Geometrinin en temel terimidir.. biçiminde gösterilir. Boyutu yoktur. GEOMETRİK KAVRAMLAR Geometrinin temelini oluşturan bazı kavramları bir sıraya koymalıyız ki daha anlaşılabilir olsun. Geometride özel anlamı olan ifadelere geometrik terim denir. Nokta, doğru, açı, kare,

Detaylı

8. SINIF PİSAGOR BAĞINTISI

8. SINIF PİSAGOR BAĞINTISI 06. SINIF PİSGOR ĞINTISI a c (hipotenüs) 5 b 6 a 2 +b 2 =c 2 Pisagor bağıntısını kullanabilmek için dik üçgen olması gerekir. ÖR: şağıda verilmeyen kenarları bulunuz. 6 2 Pisagor bağıntısı kullanırken

Detaylı

ÜÇGENLER ÜNİTE 4. ÜNİTE 4. ÜNİTE 4. ÜNİTE 4. ÜNİT

ÜÇGENLER ÜNİTE 4. ÜNİTE 4. ÜNİTE 4. ÜNİTE 4. ÜNİT ÜÇGNLR ÜNİT. ÜNİT. ÜNİT. ÜNİT. ÜNİT ÜÇGNLRİN ŞLİĞİ Üçgende çılar 1. Kazanım : ir üçgenin iç açılarının ölçüleri toplamının 180, dış açılarının ölçüleri toplamının 0 olduğunu gösterir. İki Üçgenin şliği.

Detaylı

Geometrik Kavramlar, Tümler-Bütünler Açılar

Geometrik Kavramlar, Tümler-Bütünler Açılar / / / Geometrik avramlar, Tümlerütünler çılar 1 1. Tümler iki açıdan büyük açı küçük açının 2 katıdır. una göre, küçük açının bütünleri kaç derecedir? ) 160 ) 150 ) 140 4. ) 120 ) 110 0 Şekilde, O, doğrusal

Detaylı

9. SINIF Geometri TEMEL GEOMETRİK KAVRAMLAR

9. SINIF Geometri TEMEL GEOMETRİK KAVRAMLAR TEMEL GEOMETRİK KAVRAMLAR 9. SINIF Geometri Amaç-1: Nokta, Doğru, Düzlem, Işın ve Uzayı Kavrayabilme. 1. Nokta, doğru, düzlem ve uzay kavramlarım açıklama. 2. Farklı iki noktadan geçen doğru sayışım söyleme

Detaylı

GEOMETRİ KPSS 2019 VİDEO DESTEKLİ KONU ANLATIMLI GENEL YETENEK - GENEL KÜLTÜR PRATİK BİLGİLER SINAVLARA EN YAKIN ÖZGÜN SORULAR VE AÇIKLAMALARI SORU

GEOMETRİ KPSS 2019 VİDEO DESTEKLİ KONU ANLATIMLI GENEL YETENEK - GENEL KÜLTÜR PRATİK BİLGİLER SINAVLARA EN YAKIN ÖZGÜN SORULAR VE AÇIKLAMALARI SORU KPSS 2019 120 soruda 86 SRU VİDE DESTEKLİ GENEL YETENEK - GENEL KÜLTÜR GEMETRİ KNU NLTIMLI PRTİK İLGİLER SINVLR EN YKIN ÖZGÜN SRULR VE ÇIKLMLRI Komisyon KPSS Geometri Konu nlatımlı ISN 978-605-241-274-9

Detaylı

TEST 1. ABCD bir dörtgen AF = FB DE = EC AD = BC D E C. ABC bir üçgen. m(abc) = 20. m(bcd) = 10. m(acd) = 50. m(afe) = 80.

TEST 1. ABCD bir dörtgen AF = FB DE = EC AD = BC D E C. ABC bir üçgen. m(abc) = 20. m(bcd) = 10. m(acd) = 50. m(afe) = 80. 11 ÖLÜM SİZİN İÇİN SÇTİLR LRİMİZ 1 80 0 bir dörtgen = = = m() = 80 m() = 0 Verilenlere göre, açısının ölçüsü kaç derecedir? 0 10 0 bir üçgen m() = 0 m() = 10 m() = 0 Yukarıda verilenlere göre, oranı kaçtır?

Detaylı

a. İçbükey (konkav) çokgenler: Bir çokgenin bazı kenar doğruları çokgeni kesiyorsa bu tür çokgenlere İçbükey çokgen denir.

a. İçbükey (konkav) çokgenler: Bir çokgenin bazı kenar doğruları çokgeni kesiyorsa bu tür çokgenlere İçbükey çokgen denir. ÇOKGENLER 1. Çokgen Bir düzlemde birbirinden farklı ve herhangi üçü doğrusal olmayan A 1, A 2, A 3, gibi n tane (n 3) noktayı ikişer ikişer birleştiren doğru parçalarının oluşturduğu kapalı şekillere çokgen

Detaylı

BİRLİKTE ÇÖZELİM. ayırdığı parçalardan birinin uzunluğuna. Şekildeki ABC dik üçgeninde [AB] ^ [BC], G noktası ağırlık merkezi,

BİRLİKTE ÇÖZELİM. ayırdığı parçalardan birinin uzunluğuna. Şekildeki ABC dik üçgeninde [AB] ^ [BC], G noktası ağırlık merkezi, . SINI TTİ İRİT ÇÖZİ 1. P Yandaki, PRS ve üçgenlerinin sırasıyla [], [RS] ve [] ye ait kenarortaylarını çiziniz. R S 2. r O O merkezli, r yarıçaplı çemberde çapı gören açısının ölçüsü 90 dir. [O], hem

Detaylı

10. ÜNİTE HACİM VE SIVI ÖLÇÜLERİ, KATI CİSİMLERİN ALAN VE HACİMLERİ MESLEKİ UYGULAMALARI

10. ÜNİTE HACİM VE SIVI ÖLÇÜLERİ, KATI CİSİMLERİN ALAN VE HACİMLERİ MESLEKİ UYGULAMALARI 10. ÜNİTE HACİM VE SIVI ÖLÇÜLERİ, KATI CİSİMLERİN ALAN VE HACİMLERİ MESLEKİ UYGULAMALARI KONULAR HACİM VE HACİM ÖLÇÜLERİ KAVRAMI HACİM ÖLÇÜLERİ BİRİMLERİ 1. Metreküpün Katları As Katları 2. Birimlerin

Detaylı

TEST. Dik Üçgen ve Pisagor Bağıntısı. 4. Dik Kenarlar Hipotenüs. 5. Aşağıdaki dik üçgenlerden hangisinin çevre uzunluğu en fazladır?

TEST. Dik Üçgen ve Pisagor Bağıntısı. 4. Dik Kenarlar Hipotenüs. 5. Aşağıdaki dik üçgenlerden hangisinin çevre uzunluğu en fazladır? ik Üçgen ve Pisagor ağıntısı. Sınıf atematik Soru ankası TEST 1.. ik enarlar Hipotenüs m m cm 1 cm cm 60 cm y cm 100 cm z cm 1, cm 1,3 cm ir el fenerinden çıkan ışık m yol alarak yukarıdaki m uzunluğundaki

Detaylı

CEVAP ANAHTARI 1-B 2-C 3-C 4-C 5-B 6-E 7-D 8-E 9-C 10-E 11-E 12-A 13-A 1-A 2-D 3-C 4-D 5-D 6-B 7-D 8-B 9-D 10-E 11-D 12-C

CEVAP ANAHTARI 1-B 2-C 3-C 4-C 5-B 6-E 7-D 8-E 9-C 10-E 11-E 12-A 13-A 1-A 2-D 3-C 4-D 5-D 6-B 7-D 8-B 9-D 10-E 11-D 12-C 1. BÖLÜM: AÇISAL KAVRAMLAR VE DOĞRUDA AÇILAR 1-B 2-C 3-C 4-C 5-B 6-E 7-D 8-E 9-C 10-E 11-E 12-A 13-A 1-E 2-A 3-E 4-C 5-C 6-C 7-D 8-D 9-D 10-E 11-B 12-C 2. BÖLÜM: ÜÇGENDE AÇILAR 1-A 2-D 3-C 4-D 5-D 6-B

Detaylı

3. Ünsal Tülbentçi Matematik Yarışması Mayıs 2014 8.Sınıf Sayfa 1

3. Ünsal Tülbentçi Matematik Yarışması Mayıs 2014 8.Sınıf Sayfa 1 . Alanı 36 5 olan bir ABC ikizkenar üçgeninde ==2 ise bu üçgende B den AC ye inilen dikmenin ayağının C noktasına olan uzaklığı nedir? ) 2,8) 3) 3,2 ) 3,7 ) 4, 2. Ayrıt uzunlukları 4, 0 ve 4 5 olan dikdörtgenler

Detaylı

Gelecek için hazırlanan vatan evlâtlarına, hiçbir güçlük karşısında yılmayarak tam bir sabır ve metanetle çalışmalarını ve öğrenim gören

Gelecek için hazırlanan vatan evlâtlarına, hiçbir güçlük karşısında yılmayarak tam bir sabır ve metanetle çalışmalarını ve öğrenim gören Gelecek için hazırlanan vatan evlâtlarına, hiçbir güçlük karşısında yılmayarak tam bir sabır ve metanetle çalışmalarını ve öğrenim gören çocuklarımızın ana ve babalarına da yavrularının öğreniminin tamamlanması

Detaylı

ISBN :

ISBN : ISN : 978-605 - 4313-55 - 6 Doðrular ve çýlar DĞRUR ve ÇIR Eş çılar çı: ir düzlemde iki ışının birleşmesiyle açı elde ederiz. açısı [ ve [ ışınlarının birleşmesiyle elde edilmiştir. şeklinde gösterilir.

Detaylı

3. Düzlem: Her yönde sonsuza uzandığı kabul edilir. Sayılmaz çoğunlukta doğru ve noktalardan oluşmuştur.

3. Düzlem: Her yönde sonsuza uzandığı kabul edilir. Sayılmaz çoğunlukta doğru ve noktalardan oluşmuştur. DERS : GEOMETRİ KONU : GEOMETRİK KAVRAMLAR Geometrinin temelinde her soruda karşılaşacağımız terimler kavramlar vardır bu derste onları işleyeceğiz. Geometride özel anlamı olan ifadelere geometrik terim

Detaylı

İç bükey Dış bükey çokgen

İç bükey Dış bükey çokgen Çokgen Çokgensel bölge İç bükey Dış bükey çokgen Köşeleri: Kenarları: İç açıları: Dış açıları: Köşegenleri: Çokgenin temel elemanları Kenar Köşegen ilişkisi Bir köşe belirleyiniz ve belirlediğiniz köşeden

Detaylı

Öklid alıştırmaları. Mat 113, MSGSÜ. İçindekiler. 36. önermeden sonra önermeden sonra 8. Çarpma 11

Öklid alıştırmaları. Mat 113, MSGSÜ. İçindekiler. 36. önermeden sonra önermeden sonra 8. Çarpma 11 Öklid alıştırmaları Mat 113, MSSÜ 30 kim 2013 İçindekiler 1. önermeden sonra 2 5. önermeden sonra 2 6. önermeden sonra 2 7. önermeden sonra 3 8. önermeden sonra 3 9. önermeden sonra 3 10. önermeden sonra

Detaylı

Geometride Nokta, Doğru, Düzlem gibi kavramlar tanımsız olarak kabul edilir. E düzlemi yandaki gibi gösterilir.

Geometride Nokta, Doğru, Düzlem gibi kavramlar tanımsız olarak kabul edilir. E düzlemi yandaki gibi gösterilir. GEOMETRĐK KAVRAMLAR Geometride Nokta, Doğru, Düzlem gibi kavramlar tanımsız olarak kabul edilir. 1. Nokta:. biçiminde gösterilir. Boyutu yoktur. 2. Doğru: Đki uçtan sınırsız noktalar kümesidir. 3. Düzlem:

Detaylı

Öğrenci Seçme Sınavı (Öss) / 18 Nisan Matematik Soruları ve Çözümleri

Öğrenci Seçme Sınavı (Öss) / 18 Nisan Matematik Soruları ve Çözümleri Öğrenci Seçme Sınavı (Öss) / 8 Nisan 99 Matematik Soruları ve Çözümleri. Bir sayının inin fazlası, aynı sayıya eşittir. Bu sayı kaçtır? A) B) 0 C) D) 0 E) Çözüm Sayı olsun.. + +. Bir sınıftaki toplam öğrenci

Detaylı

GEOMETRİ. kpss SORU. Önce biz sorduk. Güncellenmiş Yeni Baskı. Genel Yetenek Genel Kültür. 120 Soruda 83

GEOMETRİ. kpss SORU. Önce biz sorduk. Güncellenmiş Yeni Baskı. Genel Yetenek Genel Kültür. 120 Soruda 83 Önce biz sorduk kpss 2 0 8 20 Soruda 83 SRU Güncellenmiş Yeni askı Genel Yetenek Genel Kültür GEMETRİ Konu nlatımı Pratik ilgiler Sınavlara En Yakın Özgün Sorular ve çıklamaları Çıkmış Sorular ve çıklamaları

Detaylı

Bu e-kitabın her hakkı saklıdır. Tüm hakları Ali Selim YAMAN a aittir. Kısmen de olsa alıntı yapılamaz.metin, biçim ve sorular elektronik, mekanik,

Bu e-kitabın her hakkı saklıdır. Tüm hakları Ali Selim YAMAN a aittir. Kısmen de olsa alıntı yapılamaz.metin, biçim ve sorular elektronik, mekanik, Bu e-kitabın her hakkı saklıdır. Tüm hakları Ali Selim YAMAN a aittir. Kısmen de olsa alıntı yapılamaz.metin, biçim ve sorular elektronik, mekanik, fotokopi ya da herhangi bir kayıt sistemiyle çoğaltılamaz,

Detaylı

TEST. Üçgenler ve Yardımcı Elemanları

TEST. Üçgenler ve Yardımcı Elemanları Üçgenler ve Yardımcı Elemanları 8. ınıf atematik oru ankası E 22 1. I. s( ) = 50, s( ) =, s( ) = II. = 3 cm, =, = III. s( FE) = 40, s(e F) =, F = 2 cm inem ile Gizem yukarıdaki tabloda elemanları verilen,

Detaylı

6. ABCD dikdörtgeninde

6. ABCD dikdörtgeninde Çokgenler ve örtgenler Test uharrem Şahin. enar sayısı ile köşegen sayısı toplamı olan düzgün çokgenin bir dış açısı kaç derecedir? ) ) 0 ) ) 0 ). Şekilde dikdörtgeninin içindeki P noktasının üç köşeye

Detaylı

LİSE ÖĞRENCİLERİNE OKULDA YARDIMCI VE ÜNİVERSİTE SINAVLARINA (YGS ve LYS NA) HAZIRLIK İÇİN

LİSE ÖĞRENCİLERİNE OKULDA YARDIMCI VE ÜNİVERSİTE SINAVLARINA (YGS ve LYS NA) HAZIRLIK İÇİN LİSE ÖĞRENCİLERİNE OKULDA YARDIMCI VE ÜNİVERSİTE SINAVLARINA (YGS ve LYS NA) HAZIRLIK İÇİN Konu Anlatımlı Örnek Çözümlü Test Çözümlü Test Sorulu Karma Testli GEOMETRİ 1 Hazırlayan Erol GEDİKLİ Matematik

Detaylı

1 06" A) 150 B) 156 c) 160 D) 164 E) 170. Bir açının ölçüsü tümleyeninin 3 katından 30'fazladır. Buna göre, bu açının ölçüsü kaç derecedir?

1 06 A) 150 B) 156 c) 160 D) 164 E) 170. Bir açının ölçüsü tümleyeninin 3 katından 30'fazladır. Buna göre, bu açının ölçüsü kaç derecedir? çılr 1 j. ütünler ikiaçının ölçüleriorun,,3 ] dür. una göre, bu açıların öiçülerifarkı kaç dereedir? )9 ) 18 )24 )30 )36 4. 1 06" [ l- I m() = 106o m () = x Yukarıdakiverilere göre, x kaç dereedir? ) 150

Detaylı

TEST. Düzgün Çokgenler. 4. Bir iç açısı 140 olan düzgün çokgenin iç açılar 5. A B. 2. Bir dış açısı Çevresi. toplamı kaç derecedir?

TEST. Düzgün Çokgenler. 4. Bir iç açısı 140 olan düzgün çokgenin iç açılar 5. A B. 2. Bir dış açısı Çevresi. toplamı kaç derecedir? üzgün Çokgenler 7. Sınıf Matematik Soru ankası S 49 1. 4. ir iç açısı 140 olan düzgün çokgenin iç açılar toplamı kaç derecedir? ) 70 ) 900 ) 1080 ) 160 Şekilde verilen düzgün çokgenine göre, I., köşesine

Detaylı

BİRLİKTE ÇÖZELİM. 1. Aşağıda verilen açıların ölçülerini açı ölçer yardımıyla bulup, açıları isimlendirerek ölçülerini L D) MLK

BİRLİKTE ÇÖZELİM. 1. Aşağıda verilen açıların ölçülerini açı ölçer yardımıyla bulup, açıları isimlendirerek ölçülerini L D) MLK 6. SINI MTMTİK 5.ÜNİT İRLİKT ÇÖZLİM 1. şağıda verilen açıların ölçülerini açı ölçer yardımıyla bulup, açıları isimlendirerek ölçülerini yazınız. % % s( ) = 30 s( KLM ) = 140 K L P M % s( ) = 105 % s( PRS

Detaylı

ÖN SÖZ. Değerli Adaylar,

ÖN SÖZ. Değerli Adaylar, ÖN SÖZ eğerli daylar, Okul ve meslek yaşamının en önemli sınavlarından birine, Kamu Personeli Seçme Sınavı(KPSS) na hazırlanmaktasınız ve buradaki başarınız gelecekteki iş yaşamınızı ciddi şekilde etkileyecek.

Detaylı

ÖZEL EGE LİSESİ EGE BÖLGESİ 14. OKULLAR ARASI MATEMATİK YARIŞMASI 8. SINIF ELEME SINAVI TEST SORULARI

ÖZEL EGE LİSESİ EGE BÖLGESİ 14. OKULLAR ARASI MATEMATİK YARIŞMASI 8. SINIF ELEME SINAVI TEST SORULARI EGE ÖLGESİ 4. OKULLR RSI MTEMTİK YRIŞMSI 8. SINIF ELEME SINVI TEST SORULRI. n bir tamsayı olmak üzere, n n 0 ( 4.( ) +.( ) + 7 + 8 ) işleminin sonucu kaçtır? ) 0 ) 5 ) 6 ). ir kitapçıda rastgele seçilen

Detaylı

1. Analitik düzlemde P(-4,3) noktasının eksenlerden ve O başlangıç noktasından uzaklığı kaç birimdir?

1. Analitik düzlemde P(-4,3) noktasının eksenlerden ve O başlangıç noktasından uzaklığı kaç birimdir? HAZİNE- HAZİNE-2 O başlangıç noktasında dik kesişen iki sayı ekseninin oluşturduğu sisteme koordinat sistemi denir. Bir noktanın x-eksenindeki dik izdüşümüne karşılık gelen x sayısına noktanın apsis i

Detaylı

Açıların Özellikleri ve Ölçü Birimleri

Açıların Özellikleri ve Ölçü Birimleri çıların Özellikleri ve Ölçü irimleri 1. ÜNİT ÇIRIN ÖZİRİ V ÖÇÜ İRİRİ çı; aynı başlangıç noktasından çıkan iki ışının oluşturduğu geometrik şekildir. [O ve [O ışınlarına açının kenarları denir. O noktası

Detaylı

V =, (V = hacim, m = kütle, d = özkütle) Bu bağıntı V = olarak da yazılabilir G: ağırlık (yerçekimi kuvveti) G = mg p = özgül ağırlık p = dg dir.

V =, (V = hacim, m = kütle, d = özkütle) Bu bağıntı V = olarak da yazılabilir G: ağırlık (yerçekimi kuvveti) G = mg p = özgül ağırlık p = dg dir. Geometrik Cisimlerin Hacimleri Uzayda yer kaplayan (üç boyutlu) nesnelere cisim denir. Düzgün geometrik cisimlerin hacimleri bağıntılar yardımıyla bulunur. Eğer cisim düzgün değilse cismin hacmi cismin

Detaylı

AB a c ~B D ZS= 6. Sekildeki açilar ger. çek ölçülerde çizil. seydi, asagidakilerden hangisi yanlis olurdu? ÜÇGENDE AÇi-KENAR BAGINTILARI (TEST - 1)

AB a c ~B D ZS= 6. Sekildeki açilar ger. çek ölçülerde çizil. seydi, asagidakilerden hangisi yanlis olurdu? ÜÇGENDE AÇi-KENAR BAGINTILARI (TEST - 1) G/NT/LR/ ÖLÜM -3 GEOMETRi SORU NKSI ÜÇGENE Çi-KENR GINTILRI (TEST - 1)...._...-...u u _. - _. _. -... - -- -.- u "' U"' u - --._----'u--- --- _u._-.. "- 1. m()=80,ii>ici ise x in alabileegi en büyük tamsayi

Detaylı

OLİMPİK GEOMETRİ ALTIN NOKTA YAYINEVİ MATEMATİK OLİMPİYATLARINA HAZIRLIK ÖMER GÜRLÜ KONU ANLATIMLI - ÖRNEK ÇÖZÜMLÜ

OLİMPİK GEOMETRİ ALTIN NOKTA YAYINEVİ MATEMATİK OLİMPİYATLARINA HAZIRLIK ÖMER GÜRLÜ KONU ANLATIMLI - ÖRNEK ÇÖZÜMLÜ OLİMPİK GEOMETRİ MATEMATİK OLİMPİYATLARINA HAZIRLIK KONU ANLATIMLI - ÖRNEK ÇÖZÜMLÜ ÖMER GÜRLÜ ALTIN NOKTA YAYINEVİ İZMİR - 2014 İÇİNDEKİLER 1. TEMEL ÇİZİMLER... 7 2. ÜÇGENLER... 21 (Üçgende Açılar, Üçgende

Detaylı

1982 ÖYS. c d. ifadesinin sadeleştirilmiş biçimi aşağıdakilerden hangisidir? çarpımının değeri nedir? B) 2 C) 2 A) 2 D) 2 E) 2. A) a B) 1 C) E) a+12

1982 ÖYS. c d. ifadesinin sadeleştirilmiş biçimi aşağıdakilerden hangisidir? çarpımının değeri nedir? B) 2 C) 2 A) 2 D) 2 E) 2. A) a B) 1 C) E) a+12 8 ÖYS a c. olduğuna göre b d çarpımının değeri nedir? A). B) C) 7 a b b D) 5 c d c E) a a 5. a a ifadesinin sadeleştirilmiş biçimi aşağıdakilerden hangisidir? A) a B) C) E) a+ a a D) a 6. 5 kız, 5 erkek

Detaylı

örnektir örnektir Geometri TYT Yeni müfredata tam uygun MİKRO KONU TARAMA TEST AYRINTILARI VE ÖRNEKLERİ (1-10. Testler)

örnektir örnektir Geometri TYT Yeni müfredata tam uygun MİKRO KONU TARAMA TEST AYRINTILARI VE ÖRNEKLERİ (1-10. Testler) TYT Geometri MİKRO KONU TRM TST YRINTILRI V ÖRNKLRİ (-0. Testler) Yeni müfredata tam uygun eğerli öğretmenimiz, branşınızla ilgili TYT konu tarama testlerimizden bazı örnekleri incelemeniz için size sunuyoruz.

Detaylı

SERİMYA II. MATEMATİK YARIŞMASI I. AŞAMA SORULARI

SERİMYA II. MATEMATİK YARIŞMASI I. AŞAMA SORULARI SERİMYA - 4 II. MATEMATİK YARIŞMASI I. AŞAMA SORULARI. 4? 4 4. A B denkleminde A ve B birbirinden farklı pozitif tam sayılar olduğuna göre, A + B toplamı kaçtır? işleminin sonucu kaçtır? A) 6 B) 8 C) D)

Detaylı

MATDER HARRAN ÜNİVERSİTESİ 2017 MATEMATİK YARIŞMASI I. AŞAMA SORULARI

MATDER HARRAN ÜNİVERSİTESİ 2017 MATEMATİK YARIŞMASI I. AŞAMA SORULARI Soru 1: Bir üçgenin iç açılarının ölçüleri aritmetik dizi oluşturmaktadır. Bu üçgenin en kısa kenar uzunluğu 6 cm ve en uzun kenarı 14 cm ise, ortanca kenar uzunluğu kaç cm dir? A) 2 37 B) 39 C) 13 D)

Detaylı

4. Çok büyük ve çok küçük pozitif sayıları bilimsel gösterimle ifade eder.

4. Çok büyük ve çok küçük pozitif sayıları bilimsel gösterimle ifade eder. LENDİRME ŞEMASI ÜNİTE Üslü 1. Bir tam sayının negatif kuvvetini belirler ve rasyonel sayı olarak ifade eder.. Ondalık kesirlerin veya rasyonel sayıların kendileriyle tekrarlı çarpımını üslü sayı olarak

Detaylı

OKUL ADI : ÖMER ÇAM ANADOLU İMAM HATİP LİSESİ EĞİTİM VE ÖĞRETİM YILI : 2015 2016 DERSİN ADI : MATEMATİK SINIFLAR : 9

OKUL ADI : ÖMER ÇAM ANADOLU İMAM HATİP LİSESİ EĞİTİM VE ÖĞRETİM YILI : 2015 2016 DERSİN ADI : MATEMATİK SINIFLAR : 9 OKUL ADI : ÖMER ÇAM ANADOLU İMAM HATİP LİSESİ EĞİTİM VE ÖĞRETİM YILI : 015 01 1 Eylül 18 Eylül Kümelerde Temel Kavramlar 1. Küme kavramını örneklerle açıklar ve kümeleri ifade etmek için farklı gösterimler.

Detaylı

ÖRNEK 3712 nin esas ölçüsünü bulunuz. ÇÖZÜM esas ölçüsü 112 olur. ÖRNEK ÇÖZÜM cos 1, 1 sin 1

ÖRNEK 3712 nin esas ölçüsünü bulunuz. ÇÖZÜM esas ölçüsü 112 olur. ÖRNEK ÇÖZÜM cos 1, 1 sin 1 MTEMTİK TRİGONOMETRİ - I irim Çember II III sin I IV 0 nin esas ölçüsünü bulunuz 0 00 0 00 + olduğundan, esas ölçüsü olur I ölge (0 < < II ölge ( ) < < ) III ölge ( < < IV ölge ( ) < < ) sin tan cot +

Detaylı

1983 ÖSS. A) x+y+2 B) 2(x+y+2) C) x+y D) 2 E) 4. işleminin sonucu nedir?

1983 ÖSS. A) x+y+2 B) 2(x+y+2) C) x+y D) 2 E) 4. işleminin sonucu nedir? 98 ÖSS. 0, 0,0 0,0 0,0 0, işleminin sonucu nedir? 7. 0,, işleminin sonucu nedir?,7-0, -9, -9, -9,. +y+ (+y+) +y 7. n ir doğal sayı olmak üzere den n ye kadar olan sayıların toplamı, ten n ye kadar olan

Detaylı

ÜÇGEN LE LG L TEMEL KAVRAMLAR

ÜÇGEN LE LG L TEMEL KAVRAMLAR III. ÖLÜM ÜÇGN L LG L TML KVRMLR Tan m (Çokgen) : n > olmak üzere, bir düzlemde 1,, 3,..., n gibi birbirinden farkl, herhangi üçü do rusal olmayan n nokta verilsin. Uç noktalar d fl nda kesiflmeyen [ 1

Detaylı

DEVREK ANADOLU LİSESİ 9. SINIF MATEMATİK DERSİ YILLIK PLANI Alt Öğrenme Alanı

DEVREK ANADOLU LİSESİ 9. SINIF MATEMATİK DERSİ YILLIK PLANI Alt Öğrenme Alanı ELÜL TRİH/SÜRE HFT Eylül 0Eylül Eylül 7 Eylül STİ LNI 0-0 DEVREK NDOLU LİSESİ 9. SINIF MTEMTİK İ ILLIK PLNI lt de Temel Kavramlar de Temel Kavramlar de Temel Kavramlar de Temel Kavramlar de de de de. Küme

Detaylı

4. a = 3 ve b = 12 olmak üzere aşağıdakilerden hangisi bir irrasyonel sayıdır?

4. a = 3 ve b = 12 olmak üzere aşağıdakilerden hangisi bir irrasyonel sayıdır? . SINIF 1. lanı 39 m olan kare şeklindeki bir bah- 3. çenin bir kenar uzunluğu, hangi metreler arasındadır? ) 4 - B) - 6 MTEMTİK C) 6-7 D) 7 - B C Yukarıdaki geometri tahtasında, bir lastik, B ve C noktalarındaki

Detaylı

1990 ÖYS. 1. si 13 olan si kaçtır? A) 91 B) 84 C) 72 D) 60 E) 52 A) 65 B) 63 C) 56 D) 54 E) 45

1990 ÖYS. 1. si 13 olan si kaçtır? A) 91 B) 84 C) 72 D) 60 E) 52 A) 65 B) 63 C) 56 D) 54 E) 45 990 ÖYS. si olan si kaçtır? A) 9 B) 8 C) D) 60 E) 5. Ağırlıkça %0 si şeker olan 0 kg lık un-şeker karışımına 8 kg daha un eklendiğine göre, yeni şeker (kg) karışımın oranı kaçtır? un (kg) A) B) C) D) E)

Detaylı

1983 ÖSS. 6. x.y çarpımında her çarpana 2 eklenirse çarpım ne kadar büyür? işleminin sonucu nedir? A) x+y+2 B) 2(x+y+2) C) x+y D) 2 E) 4

1983 ÖSS. 6. x.y çarpımında her çarpana 2 eklenirse çarpım ne kadar büyür? işleminin sonucu nedir? A) x+y+2 B) 2(x+y+2) C) x+y D) 2 E) 4 198 ÖSS 1. 0,1 0,01 0,04 0,0 0, işleminin sonucu nedir? A) 4 B) 7 C) 15 D) E) 41 6..y çarpımında er çarpana eklenirse çarpım ne kadar üyür? A) +y+ B) (+y+) C) +y D) E) 4. 0,5 11 1, 44 işleminin sonucu

Detaylı

GEOMETRİ DERS NOTLARI. Doç.Dr.Recep ASLANER MALATYA

GEOMETRİ DERS NOTLARI. Doç.Dr.Recep ASLANER MALATYA www.matematikce.com 'dan indirilmiştir. İM 154 GEOMETRİ ERS NOTLRI oç.r.recep SLNER İNÖNÜ ÜNİVERSİTESİ EĞİTİM FKÜLTESİ MLTY 2009 İçindekiler Geometri Nedir? vii ölüm 1. GEOMETRİK KVRMLR 1 1. NOKT, OĞRU,

Detaylı

4. 8. A. D 2. ABC üçgeninin alanı kaç birim karedir? ABC üçgeninin alanı kaç birim karedir? A) 16 B) 18 C) 20 D) 24 E) 32 120º 135º

4. 8. A. D 2. ABC üçgeninin alanı kaç birim karedir? ABC üçgeninin alanı kaç birim karedir? A) 16 B) 18 C) 20 D) 24 E) 32 120º 135º ğlence başlıyor yor 1 º 0º üçgeninin alanı kaç birim karedir? ) ) 9 LN SI 1 LN SI 1 )1 ) üçgeninin alanı kaç birim karedir? üçgeninin alanı kaç birim karedir? ) ) ) ) ) ) üçgen, = birim, = birim, m() =

Detaylı

YGS GEOMETRİ DENEME 1

YGS GEOMETRİ DENEME 1 YGS GTİ 1 G 1) G ) şağıdaki adımlar takip edilerek geometrik çizim yapıl- bir üçgen mak isteniyor = = m() = 7 o = 9 cm, = 1 cm, m() = 90 olacak şekilde dik üçgeni çiziliyor = eşitliğini sağlayan Î [] noktası

Detaylı

kpss matematik geometri tamamı çözümlü kenan osmanoğlu / kerem köker

kpss matematik geometri tamamı çözümlü kenan osmanoğlu / kerem köker kpss soru bankası tamamı çözümlü sözel adaylar için matematik geometri kenan osmanoğlu / kerem köker ÖN SÖZ Değerli daylar, Okul ve meslek yaşamının en önemli sınavlarından birine, Kamu Personeli Seçme

Detaylı

2011 YGS MATEMATİK Soruları

2011 YGS MATEMATİK Soruları 0 YGS MTEMTİK Soruları. + + ) 8 ) 0 ) 6 ) E). a = 6 b = ( a)b olduğuna göre, ifadesinin değeri kaçtır? ) ) 6 ) 9 ) 8 E). (.0 ) ) 0, ) 0, ) 0, ) E) 6. x = y = 8 z = 6 olduğuna göre, aşağıdaki sıralamalardan

Detaylı

İçindekiler. Geometri Nedir? Bölüm 1. GEOMETRİK KAVRAMLAR 1 1. NOKTA, DOĞRU, DOĞRU PARÇASI VE IŞIN 2 2. DÜZLEM ve İLGİLİ AKSİYOMLAR 5

İçindekiler. Geometri Nedir? Bölüm 1. GEOMETRİK KAVRAMLAR 1 1. NOKTA, DOĞRU, DOĞRU PARÇASI VE IŞIN 2 2. DÜZLEM ve İLGİLİ AKSİYOMLAR 5 İçindekiler Geometri Nedir? v ölüm 1. GEOMETRİK KVRMLR 1 1. NOKT, OĞRU, OĞRU PRÇSI VE IŞIN 2 2. ÜZLEM ve İLGİLİ KSİYOMLR 5 ölüm 2. ÇILR 9 1. ÇILRL İLGİLİ GENEL KVRMLR 9 2. PRLEL İKİ OĞRUNUN İR KESENLE

Detaylı

GEOMETRİ SORU BANKASI KİTABI

GEOMETRİ SORU BANKASI KİTABI LİSE ÖĞRENCİLERİNİN ÜNİVERSİTE SINAVLARINA HAZIRLANMALARI İÇİN GEOMETRİ SORU BANKASI KİTABI HAZIRLAYAN Erol GEDİKLİ Matematik Öğretmeni SUNUŞ Sevgili öğrenciler! Bu kitap; hazırlandığınız üniversite sınavlarında,

Detaylı

Sunum ve Sistematik 1. ÜNİTE: TEMEL GEOMETRİK KAVRAMLAR VE KOORDİNAT GEOMETRİYE GİRİŞ

Sunum ve Sistematik 1. ÜNİTE: TEMEL GEOMETRİK KAVRAMLAR VE KOORDİNAT GEOMETRİYE GİRİŞ Sunum ve Sistematik 1. ÜNİT: TML GOMTRİK KVRMLR V KOORİNT GOMTRİY GİRİŞ KONU ÖZTİ u başlık altında, ünitenin en can alıcı bilgileri, kazanım sırasına göre en alt başlıklara ayrılarak hap bilgi niteliğinde

Detaylı

TEMEL GEOMETRİK KAVRAMLAR VE ÇİZİMLER

TEMEL GEOMETRİK KAVRAMLAR VE ÇİZİMLER T GOTRİ VRR V ÇİZİR 1. oğru, oğru Parçası ve Işın Her iki yönden sonsuza kadar uzadığı kabul edilen ve noktaların yan yana gelmesiyle oluşan düz çizgiye doğru denir. d d, veya şeklinde gösterilir. oğrunun

Detaylı

Geometri TYT-AYT. Ünite Değerlendirme Sınavı Örnekleri. Yeni müfredata ve yeni sınav sistemine tam uygun

Geometri TYT-AYT. Ünite Değerlendirme Sınavı Örnekleri. Yeni müfredata ve yeni sınav sistemine tam uygun Yeni müfredata ve yeni sınav sistemine tam uygun TYT-YT Geometri Ünite eğerlendirme Sınavı Örnekleri Genellikle bir aylık öğrenme sürecinin sonunda ünitelerin sınanması amacıyla hazırlanan bu sınavlar

Detaylı

TRİGONOMETRİ Test -1

TRİGONOMETRİ Test -1 TRİGONOMETRİ Test -. y. y K O O. nalitik düzlemde verilen O merkezli birim çemberde hangi noktanın koordinatları (0, ) dir? (O noktası orijindir.) O y [OK] açıortay olmak üzere, nalitik düzlemde verilen

Detaylı

E.Ö.Y TEKİRDAĞ S.B LİSESİ 9. SINIF MATEMATİK DERSİ YILLIK PLANI Alt Öğrenme Alanı

E.Ö.Y TEKİRDAĞ S.B LİSESİ 9. SINIF MATEMATİK DERSİ YILLIK PLANI Alt Öğrenme Alanı A ELÜL 9 Eylül Eylül Eylül 0 Eylül 0-07 E.Ö. TEKİRDAĞ S.B LİSESİ 9. SINIF MATEMATİK İ ILLIK PLANI Temel Kavramlar Temel Kavramlar Temel Kavramlar Temel Kavramlar. Küme kavramını örneklerle açıklar ve kümeleri

Detaylı

π a) = cosa Öğrenci Seçme Sınavı (Öss) / 17 Haziran 2007 Matematik II Soruları ve Çözümleri

π a) = cosa Öğrenci Seçme Sınavı (Öss) / 17 Haziran 2007 Matematik II Soruları ve Çözümleri Öğrenci Seçme Sınavı (Öss) 7 Haziran 7 Matematik II Soruları ve Çözümleri. Karmaşık sayılar kümesi üzerinde * işlemi, Z * Z Z + Z + Z Z biçiminde tanımlanıyor. Buna göre, ( i) * ( + i) işleminin sonucu

Detaylı

YGS MATEMATİK DENEMESİ-1

YGS MATEMATİK DENEMESİ-1 YGS MATEMATİK DENEMESİ- Mustafa SEVİMLİ Fatih KAYGISIZ İbrahim KUŞÇUOĞLU Aydın DANIŞMAN ÇAKABEY ANADOLU LİSESİ Serkan TÜRKER Nejdet KİRPİ Şenay TAĞ GÜRLER Taner KAHYA Çakabey Anadolu Lisesi 0-0 . x olduğuna

Detaylı

İlkokulu - 3/ Sınıfı *** Matematik *** Geometrik şekiller - 3

İlkokulu - 3/ Sınıfı *** Matematik *** Geometrik şekiller - 3 İlkokulu - 3/ Sınıfı *** Matematik *** Geometrik şekiller - 3 Adım Soyadım : Okul Numaram:. S ü l e y m a n O C A K S ü l e y m a n O C A K S O ü l C e y A m a K n İlkokulu - 3/ Sınıfı *** Matematik ***

Detaylı

Pegem Pegem. Pegem Pegem. Pegem. Pegem. Pegem

Pegem Pegem. Pegem Pegem. Pegem. Pegem. Pegem İ itörler: Kerem KÖKR - Kenan SMNĞLU Pegem Pegem Pegem Pegem Pegem Pegem Pegem Pegem Pegem Pegem Pegem Pegem Pegem Pegem Pegem KPSS Geometri itörler: Kerem Köker / Kenan smanoğlu KPSS Geometri ISN 978-605-364-197-1

Detaylı

Öğrenci Seçme Sınavı (Öss) / 19 Nisan Matematik Soruları ve Çözümleri

Öğrenci Seçme Sınavı (Öss) / 19 Nisan Matematik Soruları ve Çözümleri Öğrenci Seçme Sınavı (Öss) / 9 Nisan 99 Matematik Soruları ve Çözümleri. Üç basamaklı bir sayının iki basamaklı bir sayıyla çarpımı en az kaç basamaklı bir sayı olur? A) B) C) D) 6 E) 7 Çözüm I. Yol basamaklı

Detaylı

TYT-AYT GEOMETRİ Orta ve İleri Düzey Soru Bankası

TYT-AYT GEOMETRİ Orta ve İleri Düzey Soru Bankası Yuksekogretim urumları Sınavı TYT-YT GOMTRİ Orta ve İleri üzey Soru ankası kıllı Tahta Uygulaması Video Çözümlü Rafet Özdemir ürün adı afadengi TYT-YT Geometri Soru ankası / Üç şamalı ürün no 00-SS.01MH08

Detaylı

ÖZEL EGE LİSESİ 10. MATEMATİK YARIŞMASI 7. SINIF TEST SORULARI

ÖZEL EGE LİSESİ 10. MATEMATİK YARIŞMASI 7. SINIF TEST SORULARI 4. + :. 4 7 7 7 =? + : 6 4. x, y, z, a, b, c Z olmak üzere x+a = y+b = z+c= - bağıntısı vardır. x,y,z sayılarının aritmetik ortalaması olduğuna göre, a, b, c sayılarının aritmetik ortalaması kaçtır? A)

Detaylı

TEST. Çemberde Açılar. 1. Yandaki. 4. Yandaki saat şekildeki. 2. Yandaki O merkezli. 5. Yandaki O merkezli. 6. Yandaki. O merkezli çemberde %

TEST. Çemberde Açılar. 1. Yandaki. 4. Yandaki saat şekildeki. 2. Yandaki O merkezli. 5. Yandaki O merkezli. 6. Yandaki. O merkezli çemberde % Çemberde çılar 7. Sınıf Matematik Soru ankası 58. Yandaki merkezli s ( ) = 50c 4. Yandaki saat şekildeki gibi 04.00 ı gösterdiğinde akrep ile yelkovan arasında oluşan x açısı kaç derecedir? ' olduğuna

Detaylı

8. SINIF ESLiK ve BENZERLiK

8. SINIF ESLiK ve BENZERLiK 0 8. SINI SLiK ve NZRLiK şlik: Karşılıklı açılar ve kenar uzunlukları eşit olmalı. Sembolleri enzerlik: Karşılıklı açılar eşit, karşılıklı kenarlar orantılı olmalı. Sembolleri ~ veya olduğuna göre verilmeyen

Detaylı

7 Mayıs 2006 Pazar,

7 Mayıs 2006 Pazar, TÜBİTAK TÜRKİYE BİLİMSEL VE TEKNOLOJİK ARAŞTIRMA KURUMU BİLİM İNSANI DESTEKLEME DAİRE BAŞKANLIĞI 14. ULUSAL MATEMATİK OLİMPİYATI - 2006 BİRİNCİ AŞAMA SINAVI Soru kitapçığı türü A 7 Mayıs 2006 Pazar, 13.00-15.30

Detaylı

geometri kpss 94 soru yakaladık ÖSYM tarzına en yakın özgün sorular ve açıklamaları 2014 kpss de

geometri kpss 94 soru yakaladık ÖSYM tarzına en yakın özgün sorular ve açıklamaları 2014 kpss de kpss 05 konu anlatımlı ayrıntılı çözümlü örnekler uyarılar pratik bilgiler çıkmış sorular ve açıklamaları ÖSYM tarzına en yakın özgün sorular ve açıklamaları geometri 04 kpss de 94 soru yakaladık Editörler

Detaylı

EĞİTİM ÖĞRETİM YILI. ANADOLU LİSESİ 9.SINIF MATEMATİK DERSİ ÜNİTELENDİRİLMİŞ YILLIK PLANI 9.SINIF KAZANIM VE SÜRE TABLOSU

EĞİTİM ÖĞRETİM YILI. ANADOLU LİSESİ 9.SINIF MATEMATİK DERSİ ÜNİTELENDİRİLMİŞ YILLIK PLANI 9.SINIF KAZANIM VE SÜRE TABLOSU 08 09 EĞİTİM ÖĞRETİM YILI. ANADOLU LİSESİ 9.SINIF MATEMATİK DERSİ ÜNİTELENDİRİLMİŞ YILLIK PLANI 9.SINIF KAZANIM VE SÜRE TABLOSU No Konular Kazanım sayısı Ders Saati Ağırlık (%) SAYILAR VE CEBİR 9. MANTIK

Detaylı

G E O M E T R İ. Dar Açılı Üçgen. denir. < 90, < 90, < 90 = lik açının karşısındaki kenara hipotenüs denir. > 90

G E O M E T R İ. Dar Açılı Üçgen. denir. < 90, < 90, < 90 = lik açının karşısındaki kenara hipotenüs denir. > 90 G O M T R İ. ÖLÜM Üçgende çılr. ÜÇGN oğrusl olmyn üç noktyı birleştiren doğru prçlrının birleşim kümesine üçgen denir. ış çı ış çı ış çı. ÇILRIN GÖR ÜÇG N ÇŞİTLR İ r çılı Üçgen Üç çının ölçüsü de 90 den

Detaylı

BİRİNCİ AŞAMA DENEME SINAVI. 1. Bir kenarortayı 2, diğeri 3 olan bir üçgenin alanı en fazla kaç olabilir? A) 2 3 B) 3 C) 3 2 D) 4 E) 6

BİRİNCİ AŞAMA DENEME SINAVI. 1. Bir kenarortayı 2, diğeri 3 olan bir üçgenin alanı en fazla kaç olabilir? A) 2 3 B) 3 C) 3 2 D) 4 E) 6 BİRİNCİ AŞAMA DENEME SINAVI. Bir kenarortayı, diğeri olan bir üçgenin alanı en fazla kaç olabilir? A) B) C) D) 4 E) 6. 90 a bölünen ve tam 0 tane pozitif tam böleni bulunan kaç tane pozitif tam sayı vardır?

Detaylı

2004 II. MATEMATİK YARIŞMASI I. AŞAMA SORULARI

2004 II. MATEMATİK YARIŞMASI I. AŞAMA SORULARI 4 II MATEMATİK YARIŞMASI I AŞAMA SORULARI 4? 4 4 A B denkleminde A ve B birbirinden farklı pozitif tam sayılar olduğuna göre, A + B toplamı kaçtır? işleminin sonucu kaçtır? 5 A) B) C) - D) E) - 8 4 x x

Detaylı

ÖZEL YUNUS GÜNER FEN ve ANADOLU LĐSESĐ MATEMATĐK OLĐMPĐYATI TAKIM SEÇME SINAVI

ÖZEL YUNUS GÜNER FEN ve ANADOLU LĐSESĐ MATEMATĐK OLĐMPĐYATI TAKIM SEÇME SINAVI ÖZEL YUNUS GÜNER FEN ve NDOLU LĐSESĐ MTEMTĐK OLĐMPĐYTI TKIM SEÇME SINVI Süre: 90 dakika ÖĞRENĐNĐN DI SOYDI: SINVL ĐLGĐLĐ UYRILR: u sınav çoktan seçmeli 32 sorudan oluşmaktadır. Her sorunun sadece bir doğru

Detaylı

1. Beş tam sayının toplamı 3 e bölünüyorsa, bu sayılardan en çok kaç tanesi 3 e bölünmeyebilir? a) 1 b) 2 c) 3 d) 4 e) 5. x x x

1. Beş tam sayının toplamı 3 e bölünüyorsa, bu sayılardan en çok kaç tanesi 3 e bölünmeyebilir? a) 1 b) 2 c) 3 d) 4 e) 5. x x x TÜBİTAK TÜRKİYE BİLİMSEL VE TEKNOLOJİK ARAŞTIRMA KURUMU BİLİM İNSANI DESTEKLEME DAİRE BAŞKANLIĞI 9. ULUSAL İLKÖĞRETİM MATEMATİK OLİMPİYATI SINAVI - 2004 Soru kitapçığı türü A 1. Beş tam sayının toplamı

Detaylı

SAYISAL BÖLÜM. 5. a, b, c pozitif tamsayılar, c asal sayı ve. olduğuna göre, aşağıdaki sıralamalardan hangisi doğrudur? 6 E) 1

SAYISAL BÖLÜM. 5. a, b, c pozitif tamsayılar, c asal sayı ve. olduğuna göre, aşağıdaki sıralamalardan hangisi doğrudur? 6 E) 1 SYISL ÖLÜM ĐKKT! U ÖLÜM VPLYĞINIZ TOPLM SORU SYISI 90 IR. Đlk 4 Matematiksel Đlişkilerden Yararlanma Gücü, Son 4 en ilimlerindeki Temel Kavram ve Đlkelerle üşünme Gücü ile ilgilidir. şit ğırlık ÖSS puanınızın

Detaylı

PH AB, PH =x kaç cm.dir?

PH AB, PH =x kaç cm.dir? ABCD bir kare. ABCD bir kare. AB =10 cm. m(pcb)=x kaç derecedir? PH AB, PH =x kaç cm.dir? PA ve PB ait oldukları çemberlerin yarıçaplarıdır. PA = AB =PB olduğundan PAB eşkenar üçgendir. m(pab)=60 o AB

Detaylı

SINIF MATEMATİK ÇEMBERDE AÇI. Telat B l can. 70 o. x 20. Yukarıdak şek lde O merkezl çemberde A, B ve C çember üzer nde

SINIF MATEMATİK ÇEMBERDE AÇI. Telat B l can. 70 o. x 20. Yukarıdak şek lde O merkezl çemberde A, B ve C çember üzer nde 7. SINIF MTEMTİK ÇEMERE ÇI 1. 70 o 6. 20 Yukarıdak şek lde merkezl çemberde ve çember üzer nde una göre kaç dereced r? ) 20 ) 70 ) 110 ) 290 Yukarıdak şek lde merkezl çemberde, çember üzer nde una göre

Detaylı

Dik koordinat sisteminde yatay eksen x ekseni (apsis ekseni), düşey eksen ise y ekseni (ordinat ekseni) dir.

Dik koordinat sisteminde yatay eksen x ekseni (apsis ekseni), düşey eksen ise y ekseni (ordinat ekseni) dir. ANALĐTĐK GEOMETRĐ 1. Analitik Düzlem Bir düzlemde dik kesişen iki sayı doğrusunun oluşturduğu sisteme analitik düzlem denir. Analitik düzlem, dik koordinat sistemi veya dik koordinat düzlemi olarak da

Detaylı

Olimpiyat Eğitimi TUĞBA DENEME SINAVI

Olimpiyat Eğitimi TUĞBA DENEME SINAVI TUSİ Ortaöğretim Öğretmenleri için Olimpiyat Eğitimi TUĞBA DENEME SINAVI 10.01.2014-17.01.2014 2 1. Tuğba üç test yapar. İlkinde, 25 sorudan %60 ını, ikinci de 30 sorudan ve %70 ini ve son olarak 45 sorudan

Detaylı

2013 2014 EĞİTİM ÖĞRETİM YILI 8. SINIF MATEMATİK DERSİ KAZANIMLARININ ÇALIŞMA TAKVİMİNE GÖRE DAĞILIM ÇİZELGESİ KAZANIMLAR

2013 2014 EĞİTİM ÖĞRETİM YILI 8. SINIF MATEMATİK DERSİ KAZANIMLARININ ÇALIŞMA TAKVİMİNE GÖRE DAĞILIM ÇİZELGESİ KAZANIMLAR KASIM EKİM EYLÜL Ay Hafta D.Saat i 0 04 EĞİTİM ÖĞRETİM YILI 8. SINIF MATEMATİK DERSİ KAZANIMLARININ ÇALIŞMA TAKVİMİNE GÖRE SÜRE ÖĞRENME ALANI ALT ÖĞRENME ALANI Örüntü Süslemeler si KAZANIMLAR.Doğru, çokgen

Detaylı

8. SINIF MATEMATİK. Asal Çarpanlar Test sayısının kaç tane asal çarpanı vardır?

8. SINIF MATEMATİK. Asal Çarpanlar Test sayısının kaç tane asal çarpanı vardır? 8. SINIF MTEMTİ sal Çarpanlar Test. 84 sayısının kaç tane asal çarpanı vardır? ) 2 ) 3 ) 4 ) 5 5. İki basamaklı 9m sayısı asal sayıdır. una göre m yerine kaç farklı rakam yazılabilir? ) ) 2 ) 3 ) 4 2.

Detaylı

ÖZEL EGE LİSESİ OKULLAR ARASI 14.MATEMATİK YARIŞMASI 8. SINIFLAR FİNAL SORULARI

ÖZEL EGE LİSESİ OKULLAR ARASI 14.MATEMATİK YARIŞMASI 8. SINIFLAR FİNAL SORULARI 8 SINIFLAR FİNAL SORULARI 1 3+ 1 denkleminin çözüm kümesini bulunuz ( R ) Aritmetik bir dizinin ilk 0 teriminin toplamı 400 ve dördüncü terimi olduğuna göre, birinci terimini bulunuz 3 4 öğrencinin katıldığı

Detaylı

2013 2014 EĞİTİM ÖĞRETİM YILI 8. SINIF MATEMATİK DERSİ KONULARININ ÇALIŞMA TAKVİMİNE GÖRE DAĞILIM ÇİZELGESİ ALT ÖĞRENME. Örüntü ve Süslemeler

2013 2014 EĞİTİM ÖĞRETİM YILI 8. SINIF MATEMATİK DERSİ KONULARININ ÇALIŞMA TAKVİMİNE GÖRE DAĞILIM ÇİZELGESİ ALT ÖĞRENME. Örüntü ve Süslemeler 2013 2014 EĞİTİM ÖĞRETİM YILI 8. SINIF MATEMATİK DERSİ KONULARININ ÇALIŞMA TAKVİMİNE GÖRE DAĞILIM ÇİZELGESİ SÜRE ÖĞRENME Ay Hafta D.Saati ALANI EYLÜL 2 Geometri 2 3 Geometri 2 Geometri 2 Olasılıkve ALT

Detaylı

TEST: 6. Verilenlere göre EF =? A) 1 B) 2 C) 3 D) 4 E) 5 A) 7 B) 8 C) 10 D) 11 E) 12. x eksenini 5 te, y eksenini 7 de kesen doğrunun denklemi

TEST: 6. Verilenlere göre EF =? A) 1 B) 2 C) 3 D) 4 E) 5 A) 7 B) 8 C) 10 D) 11 E) 12. x eksenini 5 te, y eksenini 7 de kesen doğrunun denklemi TEST: 6 5. 1. Verilenlere göre EF =? A) 1 B) 2 C) 3 D) 4 E) 5 A) 7 B) 8 C) 10 D) 11 E) 12 2. 6. x eksenini 5 te, y eksenini 7 de kesen doğrunun denklemi aşağıdakilerden hangisidir? A) 7x+5y=35 B) 7x-5y=35

Detaylı

5.2. 5.2.1. Üçgenin Alanı. Neler Öğreneceğiz? Başlarken

5.2. 5.2.1. Üçgenin Alanı. Neler Öğreneceğiz? Başlarken ölüm 5. Üçgende lan Neler Öğreneceğiz? Üçgenin alanını veren bağıntılar ve üçgenin alanıyla ilgili uygulamaları nahtar Terimler 5... Üçgenin lanı aşlarken İnşaat sektöründe ustalar, çatı, duvar ya da zemini

Detaylı

EĞİTİM ÖĞRETİM YILI. ANADOLU LİSESİ 9.SINIF MATEMATİK DERSİ ÜNİTELENDİRİLMİŞ YILLIK PLANI 9.SINIF KAZANIM VE SÜRE TABLOSU

EĞİTİM ÖĞRETİM YILI. ANADOLU LİSESİ 9.SINIF MATEMATİK DERSİ ÜNİTELENDİRİLMİŞ YILLIK PLANI 9.SINIF KAZANIM VE SÜRE TABLOSU 09 00 EĞİTİM ÖĞRETİM YILI. ANADOLU LİSESİ 9.SINIF MATEMATİK DERSİ ÜNİTELENDİRİLMİŞ YILLIK PLANI 9.SINIF KAZANIM VE SÜRE TABLOSU No Konular Kazanım sayısı Ders Saati Ağırlık (%) SAYILAR VE CEBİR 9. MANTIK

Detaylı