Hafta 4 Yoğunluk Dönüşümleri ve Histogram İşleme

Ebat: px
Şu sayfadan göstermeyi başlat:

Download "Hafta 4 Yoğunluk Dönüşümleri ve Histogram İşleme"

Transkript

1 BLM429 Görüntü İşlemeye Giriş Hafta 4 Yoğunluk Dönüşümleri ve Histogram İşleme Yrd. Doç. Dr. Caner ÖZCAN It makes all the difference whether one sees darkness through the light or brightness through the shadows. (Bütün fark; birinin ışığın içinde karanlığı ya da gölgenin içinde aydınlığı görmesiyle oluşur.) ~David Lindsay

2 İçerik 3. Yeğinlik Dönüşümleri ve Uzamsal Filtreleme Temel Bazı Yeğinlik Dönüşüm Fonksiyonları Histogram İşleme Uzamsal Filtrelemenin Esasları Uzamsal Yumuşatma Filtreleri Uzamsal Keskinleştirme Filtreleri Uzamsal Zenginleştirme Yöntemlerini Birleştirme Yeğinlik Dönüşümleri ve Uzamsal Filtreleme İçin Bulanık Tekniklerin Kullanılması 2

3 Uzamsal Bölge ve Dönüşüm Bölgesi Uzamsal bölge Görüntüleme düzleminin kendisine karşılık gelir ve doğrudan görüntüdeki pikseller üzerinde işlem yapılır. Dönüşüm bölgesi Görüntü düzlemindeki yeğinlik değerlerini direk işlemeyerek dönüşüm katsayılarını işler. 3

4 Uzamsal Bölge İşlemleri g( x, y) T[ f ( x, y)]) f ( x, y) :input image g( x, y) : output image T giriş görüntüsü çıkış görüntüsü (x, y) noktasının komşuluğunda tanımlanmış f ye uygulanan bir operatör. : an operator on f defined over a neighborhood of point ( xy, ) 4

5 Uzamsal Bölge İşlemleri 5

6 Uzamsal Bölge İşlemleri Yeğinlik dönüşüm fonksiyonu Intensity transformation function s T( r) 6

7 Temel Bazı Yeğinlik Dönüşüm Fonksiyonları 7

8 Görüntü Negatifleri Image negatives Görüntü negatifleri s L 1 r 8

9 Örnek: Görüntü Negatifleri Küçük lezyon 9

10 Logaritma Dönüşümü Log Transformations Logaritma Dönüşümü s clog(1 r) 10

11 Örnek: Logaritma Dönüşümü 11

12 Kuvvet Kanunu(Gama) Dönüşümleri s cr 12

13 Örnek: Gama Dönüşümleri 13

14 Örnek: Gama Dönüşümleri s r 1/2.5 Örneğin, katot ışın tüplü (CRT) aygıtlar, bir kuvvet fonksiyonu şeklinde ifade edilen yeğinlikgerilim tepkisine sahiptir. Bu fonksiyonun üssü yaklaşık olarak 1.8 ile 2.5 arasında değişmektedir. 14

15 Örnek: Gama Dönüşümleri 15

16 Örnek: Gama Dönüşümleri 16

17 Parçalı-Doğrusal Dönüşümler Kontrast Germe Kayıt ortamının veya görüntü cihazının tüm yeğinlik aralığını kapsayacak şekilde yeğinlik seviye aralığının genişletilmesi işlemidir. Yeğinlik Seviyesi Dilimleme Bir görüntüdeki yeğinliklerin özel bir aralığını vurgulamadır. 17

18 18

19 Bu tip zenginleştirme, ikili bir görüntü oluşturur ve kontrast maddenin akış biçimini incelemede kullanışlıdır (örneğin tıkanıklıkları saptamak için) Kontrast maddenin bir dizi görüntüdeki gerçek akışını zamanın fonksiyonu olarak ölçmek istediğimizde böyle bir sonuç faydalı olabilir. 19

20 Bit Düzlemi Dilimleme 20

21 Bit Düzlemi Dilimleme 21

22 Bit Düzlemi Dilimleme 22

23 Histogram İşleme Histogram Denkleştirme Histogram Eşleştirme Yerel Histogram İşleme Görüntü İyileştirme İçin Histogram İstatistiklerini Kullanma 23

24 Histogram Nedir? Görüntüdeki gri değerlerin dağılımının grafiksel olarak gösterimidir. X ekseni görüntüdeki gri değerleri (yansıma değerleri), Y ekseni ise o gri değerdeki toplam piksel sayısını gösterir. X ekseni üzerinde sola doğru ilerledikçe (orijine yaklaştıkça) daha koyu ve siyah alanlara ait pikseller temsil edilir. X ekseni üzerinde histogram şekline ait orta kısımlar orta koyulukta gri alanları ve sol uç taraflar ışığın bol olduğu ve beyaz alanları temsil eder. Bu nedenle içerisinde sadece bir kaç koyu bölgeyi barındıran bol ışıklı ve çok parlak bir görüntüye ait histogramda veriler sol uç tarafa yığılmış olarak görülür. 8-bit bir görüntüde gri değerler arasındadır

25 Histogram İşleme Histogram h( r ) r n is the k th k n intensity value k Burada k r k, k. yeğinlik değeri n k k, görüntüdeki r k yeğinlik değerine sahip piksellerin sayısı is the number of pixels in the image with intensity r k nk Normalized histogram pr ( k ) MN n : the number of pixels in the image of Normalize edilmiş histogram: k size M N with intensity r k 25

26 Histogram İşleme Histogram h( r ) r n is the k th n ktemel olasılık k teorisinin tekrarı için intensity value Burada k r k, k. yeğinlik değeri kitabın web sitesine n k k, görüntüdeki rbaşvurunuz. k yeğinlik değerine sahip piksellerin sayısı is the number of pixels in the image with intensity r k nk Normalized histogram pr ( k ) MN n : the number of pixels in the image of Normalize edilmiş histogram: k size M N with intensity r k 26

27 27

28 Histogram Denkleştirme The intensity levels in an image may be viewed as Bir görüntüdeki yeğinlik değerlerine, [0, L-1] aralığında rasgele random değişkenler variables in olarak the interval bakılabilir. [0, L-1]. p r (r) Let ve pr( pr )(s), and psırasıyla s( s) denote r ve the s nin probability olasılık density yoğunluk fonksiyonunu (PDF) göstersin. function (PDF) of random variables r and s. 28

29 Histogram Denkleştirme s T( r) 0 r L 1 a. TT(r) r is, [0, a strictly L-1] aralığında monotonically monoton increasing bir şekilde functionartan bir in the fonksiyondur. interval 0 r L-1; b. 0 T( r) L -1 için for 0 r L

30 Histogram Denkleştirme s T( r) 0 r L 1 a. TT(r) r is, [0, a strictly L-1] aralığında monotonically monoton increasing bir şekilde functionartan bir in the fonksiyondur. interval 0 r L-1; b. 0 T( r) L -1 for 0 r L -1. Tr ( ) is continuous and differentiable. T r, sürekli ve türevlenebilir. p ( s) ds p ( r) dr s r 30

31 Histogram Denkleştirme r s T( r) ( L 1) pr ( w) dw ds dt () r d r ( L 1) p ( ) 0 r w dw dr dr dr ( L 1) p ( r) r 0 p () s s pr () r dr ( ) ( ) 1 pr r pr r ds ds dr ( L 1) p ( ) r r L 1 31

32 Örnek Suppose that the (continuous) intensity values Bir görüntüdeki sürekli yeğinlik değerlerinin aşağıda in an verilen image PDF e have the sahip PDF olduğunu varsayalım. p ( r) r 2r, için for 0 r L-1 2 ( L 1) 0, diğer otherwise yerlerde Find the transformation function for equalizing Görüntü histogramını denkleştirmek için dönüşüm fonksiyonunu the image bulma. histogram. 32

33 Örnek s T( r) ( L 1) p ( w) dw r r 0 ( L 1) r 2 L 1 r 0 2w ( L 1) 2 dw 33

34 Histogram Denkleştirme Continuous case: Sürekli durum: r s T( r) ( L 1) pr ( w) dw Ayrık değerler Discrete values: k s T( r ) ( L 1) p ( r ) k k r j j 0 j 0 j 0 0 k n k j L 1 ( L 1) nj k=0,1,..., L-1 MN MN 34

35 Örnek: Histogram Denkleştirme piksel boyutunda (MN = 4096) olan 3-bitlik (L=8) bir görüntünün tabloda gösterilen yeğinlik dağılımına sahip olduğunu varsayalım. Histogram denkleştirme dönüşüm fonksiyonu bulun ve her bir s k için p s (s k ) yı bulun. 35

36 Örnek: Histogram Denkleştirme s T( r ) 7 p ( r ) s T( r ) 7 p ( r ) 7 ( ) s s s 0 r j 1 j 0 1 r j 3 j s s s

37 Örnek: Histogram Denkleştirme 37

38 38

39 Histogram Denkleştirme 39

40 Soru Histogram denkleştirme her zaman iyi midir? Hayır!! 40

41 Histogram Denkleştirme Histograms of an image before and after equalization. https://www.youtube.com/watch?v=pd5d7ekylca 41

42 Histogram Eşleştirme Histogram eşleştirme(histogram belirleme) Belirlenmiş bir histograma sahip işlenmiş bir görüntü oluşturmak için kullanılır. Let p pr( r) and pz( z) denote the continous probability r (r) ve p z (z) sırasıyla r ve z yeğinliklerine karşılık gelen density sürekli olasılık functions yeğinlik of the fonksiyonlarını variables r ifade and zetsin.. pz ( zp ) z (z) is the specified belirlenmiş probability olasılık yeğinlik density fonksiyonudur. function. s aşağıdaki Let s özelliğe be the random sahip rasgele variable bir değişken with the olsun: probability s T ( r) ( L 1) p ( w) dw Aşağıdaki Define özelliğe a random sahip variable rasgele bir z z with değişkeni the probability tanımlayalım: G( z) ( L 1) p ( t) dt s z 0 z r 0 r 42

43 Histogram Eşleştirme s T( r) ( L 1) p ( w) dw G( z) ( L 1) p ( t) dt s 0 z r 0 z r 1 ( ) 1 ( ) z G s G T r 43

44 Histogram Eşleştirme: Yöntem Giriş görüntüsünden p r (r) elde edilir ve daha sonra s nin değeri bulunur. r s ( L 1) pr ( w) dw Tanımlanan PDF kullanılır ve G(z) dönüşüm fonksiyonu elde edilir. s den z ye eşleştirme yapılır. 0 z G( z) ( L 1) pz ( t) dt s z G 1 () s 0 44

45 Histogram Eşleştirme: Örnek Yeğinlik değerlerinin sürekli olduğu varsayılsın; görüntünün yeğinliği PDF 2r, için for 0 r L-1 2 pr () r ( L 1) 0, diğer otherwise durumlar Yeğinlik PDF i aşağıdaki gibi olan bir görüntüyü oluşturan dönüşüm fonksiyonunu bulun. 2 3z, için for 0 z ( L-1) 3 pz () z ( L 1) 0, diğer otherwise durumlar 45

46 Histogram Eşleştirme: Örnek Giriş görüntüsü için histogram denkleştirme dönüşümü bulunur: 2 r r 2w r s T( r) ( L 1) p ( ) ( 1) 0 r w dw L dw 0 2 ( L 1) L 1 Belirlenen histogram için histogram denkleştirme dönüşümü bulunur. 2 3 z z 3t z G( z) ( L 1) p ( ) ( 1) 0 z t dt L dt s ( L 1) ( L 1) Dönüşüm fonksiyonu 2 1/3 2 1/3 2 r 2 1/3 z ( L 1) s ( L 1) ( L 1) r L 1 46

47 Histogram Eşleştirme: Ayrık Durumlar Verilen görüntünün p r (r) histogramını hesaplayın ve bunu histogram denkleştirme dönüşümünü bulmak için kullanın. Sonuç s k değerlerini [0, L-1] tamsayı değerler aralığına yuvarlayın. k k ( L 1) s T( r ) ( L 1) p ( r ) n k k r j j j 0 MN j 0 Tanımlanan PDF i kullanın, G(z q ) dönüşüm fonksiyonunu elde edin ve değerleri [0, L-1] tamsayı değerler aralığına yuvarlayın. q G( z ) ( L 1) p ( z ) s q z i k i 0 z G 1 ( s ) q k S k' dan to z q ye eşleştirin. 47

48 Örnek: Histogram Eşleştirme Yeğinlik dağılımı aşağıdaki soldaki tabloda verilen 3-bitlik (L=8) piksel (MN = 4096) boyutlu bir görüntüyü düşünelim. Bu histogramın aşağıdaki sağdaki tablonun ikinci sütunundaki belirli değerlere sahip olacak bir biçimde dönüştürülmesi istenmektedir. Belirtilmiş Gerçek 48

49 Örnek: Histogram Eşleştirme Ölçekli histogram denkleştirilmiş değerler elde edilmektedir. s 1, s 3, s 5, s 6, s 7, s 7, s 7, s Dönüşüm fonksiyonu G nin bütün değerlerini hesaplarız: 0 0 G( z ) 7 p ( z ) 0.00 j 0 z j 0 G( z ) 0.00 G( z ) G( z ) 1.05 G( z ) G( z ) 4.55 G( z ) Gz ( )

50 Örnek: Histogram Eşleştirme 50

51 Örnek: Histogram Eşleştirme Ölçeklenmiş histogram denkleştirilmiş değerler elde edilir: s 1, s 3, s 5, s 6, s 7, s 7, s 7, s G dönüşüm fonksiyonunun tüm değerleri hesaplanır: 0 0 G( z ) 7 p ( z ) 0.00 j 0 z j G( z1) G( z2) G( z3) s 0 G( z4) G( z ) G( z ) Gz ( ) s 2 s 3 s 5 s 6 s 7 s 4 s 1 51

52 Örnek: Histogram Eşleştirme s 1, s 3, s 5, s 6, s 7, s 7, s 7, s r k

53 Örnek: Histogram Eşleştirme r k z q

54 Örnek: Histogram Eşleştirme 54

55 Örnek: Histogram Eşleştirme 55

56 56

57 Görüntü Formatları Popular formats: BMP Microsoft Windows bitmap image EPS Adobe Encapsulated PostScript GIF CompuServe graphics interchange format JPEG Joint Photographic Experts Group PBM Portable bitmap format (black and white) PGM Portable graymap format (gray scale) PPM Portable pixmap format (color) PNG Portable Network Graphics PS Adobe PostScript TIFF Tagged Image File Format 57

58 Görüntü Formatları ASCII or binary Number of bits per pixel (color depth) Number of bands Support for compression (lossless, lossy) Support for metadata Support for transparency Format conversion 58

59 Kaynaklar Sayısal Görüntü İşleme, Palme Yayıncılık, Üçüncü Baskıdan Çeviri (Orj: R.C. Gonzalez and R.E. Woods: "Digital Image Processing", Prentice Hall, 3rd edition, 2008). Lecture Notes, CS Digital Image Processing, F.(Qingzhong) Liu, Ders Notları, BIL717-Image Processing, E.Erdem Ders Notları, EBM537-Görüntü İşleme, F.Karabiber 59

Digital Görüntü Temelleri Görüntü Oluşumu

Digital Görüntü Temelleri Görüntü Oluşumu Digital Görüntü Temelleri Görüntü Oluşumu Işık 3B yüzeye ulaşır. Yüzey yansıtır. Sensör elemanı ışık enerjisini alır. Yoğunluk (Intensity) önemlidir. Açılar önemlidir. Materyal (yüzey) önemlidir. 25 Ekim

Detaylı

Digital Görüntü Temelleri Görüntü Oluşumu

Digital Görüntü Temelleri Görüntü Oluşumu Digital Görüntü Temelleri Görüntü Oluşumu Işık 3B yüzeye ulaşır. Yüzey yansıtır. Sensör elemanı ışık enerjisini alır. Yoğunluk (Intensity) önemlidir. Açılar önemlidir. Materyal (yüzey) önemlidir. 06 Kasım

Detaylı

Hafta 5 Uzamsal Filtreleme

Hafta 5 Uzamsal Filtreleme BLM429 Görüntü İşlemeye Giriş Hafta 5 Uzamsal Filtreleme Yrd. Doç. Dr. Caner ÖZCAN If the facts don't fit the theory, change the facts. ~Einstein İçerik 3. Yeğinlik Dönüşümleri ve Uzamsal Filtreleme Temel

Detaylı

Hafta 2 Görüntünün Alınması ve Sayısallaştırılması

Hafta 2 Görüntünün Alınması ve Sayısallaştırılması BLM429 Görüntü İşlemeye Giriş Hafta 2 Görüntünün Alınması ve Sayısallaştırılması Yrd. Doç. Dr. Caner ÖZCAN When something can be read without effort, great effort has gone into its writing. ~E. J. Poncela

Detaylı

Hafta 7 Görüntü Onarma ve Geriçatma (Kısım 1)

Hafta 7 Görüntü Onarma ve Geriçatma (Kısım 1) BLM429 Görüntü İşlemeye Giriş Hafta 7 Görüntü Onarma ve Geriçatma (Kısım 1) Yrd. Doç. Dr. Caner ÖZCAN Gördüğümüz şeyler tek başlarına ne gördüğümüz değildir... Hislerimizin algı yeteneğinden ayrı olarak

Detaylı

Hafta 3 Görüntü İşleme ile İlgili Temel Kavramlar

Hafta 3 Görüntü İşleme ile İlgili Temel Kavramlar BLM429 Görüntü İşlemeye Giriş Hafta 3 Görüntü İşleme ile İlgili Temel Kavramlar Yrd. Doç. Dr. Caner ÖZCAN Those who wish to succeed must ask the right preliminary questions. (Başarmak isteyenler doğru

Detaylı

Hafta 1 Sayısal Görüntü İşlemeye Giriş ve Temel Adımlar

Hafta 1 Sayısal Görüntü İşlemeye Giriş ve Temel Adımlar BLM429 Görüntü İşlemeye Giriş Hafta 1 Sayısal Görüntü İşlemeye Giriş ve Temel Adımlar Yrd. Doç. Dr. Caner ÖZCAN Fall in love with the process, and the results will come. ~ Eric Thomas Derse Giriş Ders

Detaylı

Görüntü İşleme. Dijital Görüntü Tanımları. Dijital görüntü ise sayısal değerlerden oluşur.

Görüntü İşleme. Dijital Görüntü Tanımları. Dijital görüntü ise sayısal değerlerden oluşur. Görüntü İşleme Görüntü işleme, dijital bir resim haline getirilmiş olan gerçek yaşamdaki görüntülerin bir girdi resim olarak işlenerek, o resmin özelliklerinin ve görüntüsünün değiştirilmesidir. Resimler

Detaylı

GÖRÜNTÜ İŞLEME HAFTA 4 DÖNÜŞÜMLER UZAYSAL FİLTRELEME

GÖRÜNTÜ İŞLEME HAFTA 4 DÖNÜŞÜMLER UZAYSAL FİLTRELEME GÖRÜNTÜ İŞLEME HAFTA 4 DÖNÜŞÜMLER UZAYSAL FİLTRELEME DERS İÇERİĞİ Histogram İşleme Filtreleme Temelleri HİSTOGRAM Histogram bir resimdeki renk değerlerinin sayısını gösteren grafiktir. Histogram dengeleme

Detaylı

Görüntü İşleme. K.Sinan YILDIRIM Cenk İNCE Tahir Emre KALAYCI. Ege Üniversitesi Bilgisayar Mühendisliği Bölümü 2003

Görüntü İşleme. K.Sinan YILDIRIM Cenk İNCE Tahir Emre KALAYCI. Ege Üniversitesi Bilgisayar Mühendisliği Bölümü 2003 Görüntü İşleme K.Sinan YILDIRIM Cenk İNCE Tahir Emre KALAYCI Ege Üniversitesi Bilgisayar Mühendisliği Bölümü 2003 İçerik Görüntü İşleme Nedir? Görüntü Tanımlamaları Görüntü Operasyonları Görüntü İşleme

Detaylı

İMGE İŞLEME Ders-2. İmgeler, Dosya Tipleri ve Temel İşlemler. (Prof. Dr. Sarp ERTÜRK)

İMGE İŞLEME Ders-2. İmgeler, Dosya Tipleri ve Temel İşlemler. (Prof. Dr. Sarp ERTÜRK) İMGE İŞLEME Ders-2 İmgeler, Dosya Tipleri ve Temel İşlemler (Prof. Dr. Sarp ERTÜRK) Görüntüleme 29 Eylül 2013 2 Video 29 Eylül 2013 3 Video İşaretlerinin İletimi 29 Eylül 2013 4 Tarama 29 Eylül 2013 5

Detaylı

Uzaysal Görüntü İyileştirme/Filtreleme. Doç. Dr. Fevzi Karslı fkarsli@ktu.edu.tr

Uzaysal Görüntü İyileştirme/Filtreleme. Doç. Dr. Fevzi Karslı fkarsli@ktu.edu.tr Uasal Görüntü İileştirme/Filtreleme Doç. Dr. Fevi Karslı karsli@ktu.edu.tr İileştirme Herhangi bir ugulama için, görüntüü orijinalden daha ugun hale getirmek Ugunluğu her bir ugulama için sağlamak. Bir

Detaylı

1. RESİM DÜZENLEME. Bir resmin piksel yoğunluğu yani PPI (Pixel Per Inches) 1 inç karede (1 inç = 2.54 cm) bulunan piksel sayısıdır.

1. RESİM DÜZENLEME. Bir resmin piksel yoğunluğu yani PPI (Pixel Per Inches) 1 inç karede (1 inç = 2.54 cm) bulunan piksel sayısıdır. 1.1. Temel Kavramlar 1.1.1. Piksel 1. RESİM DÜZENLEME Ekranda oluşturulan görüntüler noktalardan oluşur. Noktalar kare şeklindedir. Çok yakından bakıldığı veya resim büyütüldüğü zaman bu noktalar fark

Detaylı

GÖRÜNTÜ İŞLEME HAFTA 2 SAYISAL GÖRÜNTÜ TEMELLERİ

GÖRÜNTÜ İŞLEME HAFTA 2 SAYISAL GÖRÜNTÜ TEMELLERİ GÖRÜNTÜ İŞLEME HAFTA 2 SAYISAL GÖRÜNTÜ TEMELLERİ GÖRÜNTÜ ALGILAMA Üç temel zar ile kaplıdır. 1- Dış Zar(kornea ve Sklera) 2- Koroid 3- Retina GÖRÜNTÜ ALGILAMA ---Dış Zar İki kısımdan oluşur. Kornea ve

Detaylı

İMGE İŞLEME Ders-2. İmge Dosya Tipleri ve Temel İşlemler. (Yrd. Doç. Dr. M. Kemal GÜLLÜ)

İMGE İŞLEME Ders-2. İmge Dosya Tipleri ve Temel İşlemler. (Yrd. Doç. Dr. M. Kemal GÜLLÜ) İMGE İŞLEME Ders-2 İmge Dosya Tipleri ve Temel İşlemler (Yrd. Doç. Dr. M. Kemal GÜLLÜ) Dersin web sayfası: http://mf.kou.edu.tr/elohab/kemalg/imge_web/odev.htm Hazırlayan: M. Kemal GÜLLÜ MATLAB temel bilgiler

Detaylı

Uzaktan Algılama Teknolojileri

Uzaktan Algılama Teknolojileri Uzaktan Algılama Teknolojileri Ders 8 Multispektral Görüntüleme ve Uygulamaları Alp Ertürk alp.erturk@kocaeli.edu.tr Multispektral Görüntüleme Her piksel için birkaç adet spektral kanalda ölçüm değeri

Detaylı

İMGE İŞLEME Ders-2. İmge Dosya Tipleri ve Temel İşlemler. Dersin web sayfası: http://mf.kou.edu.tr/elohab/kemalg/imge_web/odev.htm

İMGE İŞLEME Ders-2. İmge Dosya Tipleri ve Temel İşlemler. Dersin web sayfası: http://mf.kou.edu.tr/elohab/kemalg/imge_web/odev.htm İMGE İŞLEME Ders-2 İmge Dosya Tipleri ve Temel İşlemler (Yrd. Doç. Dr. M. Kemal GÜLLÜ) Dersin web sayfası: http://mf.kou.edu.tr/elohab/kemalg/imge_web/odev.htm Hazırlayan: M. Kemal GÜLLÜ MATLAB temel bilgiler

Detaylı

MMT 106 Teknik Fotoğrafçılık 3 Digital Görüntüleme

MMT 106 Teknik Fotoğrafçılık 3 Digital Görüntüleme MMT 106 Teknik Fotoğrafçılık 3 Digital Görüntüleme 2010-2011 Bahar Yarıyılı Ar. Gör. Dr. Ersoy Erişir 1 Konvansiyonel Görüntüleme (Fotografi) 2 Görüntü Tasarımı 3 Digital Görüntüleme 3.1 Renkler 3.2.1

Detaylı

İLERİ GÖRÜNTÜ İŞLEME Ders-1

İLERİ GÖRÜNTÜ İŞLEME Ders-1 İLERİ GÖRÜNTÜ İŞLEME Ders- Elektromanyetik Spektrum Görünür Bölge 7 nm 4 nm Temel Kavramlar (Prof. Dr. Sarp ERTÜRK) 9/24/24 2 Hazırlayan: M. Kemal GÜLLÜ Sayısal İmge Gösterimi f x, y imgesi örneklendiğinde

Detaylı

Matematik Ders Notları. Doç. Dr. Murat Donduran

Matematik Ders Notları. Doç. Dr. Murat Donduran Matematik Ders Notları Doç. Dr. Murat Donduran Mart 18, 28 2 İçindekiler 1 Tanımlı Integral Uygulamaları 5 1.1 Olasılık.............................. 5 3 4 İÇINDEKILER Bölüm 1 Tanımlı Integral Uygulamaları

Detaylı

Uzaktan Eğitim Ders Notları

Uzaktan Eğitim Ders Notları Grafik ve Animasyon Uzaktan Eğitim Ders Notları Bu ders içeriğinin basım, yayım ve satış hakları Yrd. Doç. Dr. Zekeriya PARLAK a aittir. "Uzaktan Öğretim" tekniğine uygun olarak hazırlanan bu ders içeriğinin

Detaylı

Dijital Görüntü İşleme (COMPE 464) Ders Detayları

Dijital Görüntü İşleme (COMPE 464) Ders Detayları Dijital Görüntü İşleme (COMPE 464) Ders Detayları Ders Adı Ders Kodu Dönemi Ders Saati Uygulama Saati Laboratuar Saati Kredi AKTS Dijital Görüntü İşleme COMPE 464 Her İkisi 3 0 0 3 5 Ön Koşul Ders(ler)i

Detaylı

Appendix B: Olasılık ve Dağılım Teorisi

Appendix B: Olasılık ve Dağılım Teorisi Yıldız Teknik Üniversitesi İktisat Bölümü Ekonometri I Ders Notları Ders Kitabı: J.M. Wooldridge, Introductory Econometrics A Modern Approach, 2nd. edition, Thomson Learning Appendix B: Olasılık ve Dağılım

Detaylı

WEEK 11 CME323 NUMERIC ANALYSIS. Lect. Yasin ORTAKCI.

WEEK 11 CME323 NUMERIC ANALYSIS. Lect. Yasin ORTAKCI. WEEK 11 CME323 NUMERIC ANALYSIS Lect. Yasin ORTAKCI yasinortakci@karabuk.edu.tr 2 INTERPOLATION Introduction A census of the population of the United States is taken every 10 years. The following table

Detaylı

MIT OpenCourseWare Ekonomide İstatistiksel Yöntemlere Giriş Bahar 2009

MIT OpenCourseWare Ekonomide İstatistiksel Yöntemlere Giriş Bahar 2009 MIT OpenCourseWare http://ocw.mit.edu 14.30 Ekonomide İstatistiksel Yöntemlere Giriş Bahar 2009 Bu materyale atıfta bulunmak ve kullanım koşulları için http://ocw.mit.edu/terms sayfasını ziyaret ediniz.

Detaylı

11. HAFTA BLM323 SAYISAL ANALİZ. Okt. Yasin ORTAKCI.

11. HAFTA BLM323 SAYISAL ANALİZ. Okt. Yasin ORTAKCI. 11. HAFTA BLM323 SAYISAL ANALİZ Okt. Yasin ORTAKCI yasinortakci@karabuk.edu.tr Karabük Üniversitesi Uzaktan Eğitim Uygulama ve Araştırma Merkezi 2 İNTERPOLASYON Deney sonuçları veya benzer çalışmalar için

Detaylı

Gri Seviye Dönüşümleri ve Uzaysal Filtreleme. BMÜ-357 Sayısal Görüntü İşleme Yrd. Doç. Dr. İlhan AYDIN

Gri Seviye Dönüşümleri ve Uzaysal Filtreleme. BMÜ-357 Sayısal Görüntü İşleme Yrd. Doç. Dr. İlhan AYDIN Gri Seviye Dönüşümleri ve Uzaysal Filtreleme BMÜ-357 Sayısal Görüntü İşleme Yrd. Doç. Dr. İlhan AYDIN GRİ SEVİYE DÖNÜŞÜMLERİ Herhangi bir görüntü işleme operasyonu, görüntüdeki pikselin gri seviye değerlerini

Detaylı

İşaret ve Sistemler. Ders 1: Giriş

İşaret ve Sistemler. Ders 1: Giriş İşaret ve Sistemler Ders 1: Giriş Ders 1 Genel Bakış Haberleşme sistemlerinde temel kavramlar İşaretin tanımı ve çeşitleri Spektral Analiz Fazörlerin frekans düzleminde gösterilmesi. Periyodik işaretlerin

Detaylı

GÖRÜNTÜ İŞLEME HAFTA 1 1.GİRİŞ

GÖRÜNTÜ İŞLEME HAFTA 1 1.GİRİŞ GÖRÜNTÜ İŞLEME HAFTA 1 1.GİRİŞ GÖRÜNTÜ İŞLEME Hafta Hafta 1 Hafta 2 Hafta 3 Hafta 4 Hafta 5 Hafta 6 Hafta 7 Hafta 8 Hafta 9 Hafta 10 Hafta 11 Hafta 12 Hafta 13 Hafta 14 Konu Giriş Digital Görüntü Temelleri-1

Detaylı

Görüntü İyileştirme Teknikleri. Hafta-6

Görüntü İyileştirme Teknikleri. Hafta-6 Görüntü İyileştirme Teknikleri Hafta-6 Doç. Dr. Oğuz Güngör Karadeniz Teknik Üniversitesi Harita Mühendisliği Bölümü 6080 Trabzon ogungor@ktu.edu.tr İndisler Görüntü İyileştirme Teknikleri Radyometrik

Detaylı

KODLAMA SİSTEMLERİ ve VERİLERİN BİLGİSAYARDA TEMSİLİ

KODLAMA SİSTEMLERİ ve VERİLERİN BİLGİSAYARDA TEMSİLİ KODLAMA SİSTEMLERİ ve VERİLERİN BİLGİSAYARDA TEMSİLİ KODLAMA SİSTEMLERİNİN TANIMI : Kodlama, iki küme elemanları arasında karşılıklı kesin olarak belirtilen kurallar bütünüdür diye tanımlanabilir. Diğer

Detaylı

SPSS (Statistical Package for Social Sciences)

SPSS (Statistical Package for Social Sciences) SPSS (Statistical Package for Social Sciences) SPSS Data Editor: Microsoft Excel formatına benzer satır ve sütunlardan oluşan çalışma sayfası (*sav) Data Editör iki arayüzden oluşur. 1. Data View 2. Variable

Detaylı

Yrd. Doç. Dr. Caner ÖZCAN

Yrd. Doç. Dr. Caner ÖZCAN Yrd. Doç. Dr. Caner ÖZCAN Derse Giriş Ders Web Sitesi: www.canerozcan.net Ofis Saatleri: Salı 11:00-13:00 Perşembe 15:30-17:30 ya da email ile randevu alınız: canerozcan@karabuk.edu.tr Kaynak Kitaplar:

Detaylı

Dijital Görüntü İşleme Teknikleri

Dijital Görüntü İşleme Teknikleri Teknikleri Ders Notları, 2013 Doç. Dr. Fevzi Karslı Harita Mühendisliği Bölümü Mühendislik Fakültesi KTÜ 08 Ekim 2013 Salı 1 Ders Planı ve İçeriği 1. Hafta Giriş, dersin kapsamı, temel kavramlar, kaynaklar.

Detaylı

Çizim Yapma. Renk. Boyama

Çizim Yapma. Renk. Boyama Çalışma Alanı Çalışma alanıyla ilgili temel bilgiler Çalışma alanını özelleştirme Araçlar Araç galerileri Güvenli Mod Dilimleme ve kesme aracı galerisi Birden çok çalışma yüzeyi oluşturma Çökmeden sonra

Detaylı

YTÜ İktisat Bölümü EKONOMETRİ I Ders Notları

YTÜ İktisat Bölümü EKONOMETRİ I Ders Notları Yıldız Teknik Üniversitesi İktisat Bölümü Ekonometri I Ders Kitabı: J.M. Wooldridge, Introductory Econometrics A Modern Approach, 2nd. edition, Thomson Learning Appendix B: Olasılık ve Dağılım Teorisi

Detaylı

YTÜ İktisat Bölümü EKONOMETRİ I Ders Notları

YTÜ İktisat Bölümü EKONOMETRİ I Ders Notları Yıldız Teknik Üniversitesi İktisat Bölümü Ekonometri I Ders Kitabı: J.M. Wooldridge, Introductory Econometrics A Modern Approach, 2nd. edition, Thomson Learning Appendix B: Olasılık ve Dağılım Teorisi

Detaylı

İMGE İŞLEME Ders-9. İmge Sıkıştırma. Dersin web sayfası: (Yrd. Doç. Dr. M.

İMGE İŞLEME Ders-9. İmge Sıkıştırma. Dersin web sayfası:  (Yrd. Doç. Dr. M. İMGE İŞLEME Ders-9 İmge Sıkıştırma (Yrd. Doç. Dr. M. Kemal GÜLLÜ) Dersin web sayfası: http://mf.kou.edu.tr/elohab/kemalg/imge_web/odev.htm Hazırlayan: M. Kemal GÜLLÜ İmge Sıkıştırma Veri sıkıştırmanın

Detaylı

30/12/15 DOSYA FORMATLARI. Masaüstü yayıncılıkta kullanılan programlar bir birlerinden dosya alışverişinde bulunarak çalışırlar.

30/12/15 DOSYA FORMATLARI. Masaüstü yayıncılıkta kullanılan programlar bir birlerinden dosya alışverişinde bulunarak çalışırlar. DOSYA FORMATLARI Masaüstü yayıncılıkta kullanılan programlar bir birlerinden dosya alışverişinde bulunarak çalışırlar. Bir resmi veya vektörel çizimi, oluşturulan uygulama programından bağımsız hale gegrip

Detaylı

Bilgisayar Mühendisliğine Giriş. Yrd.Doç.Dr.Hacer KARACAN

Bilgisayar Mühendisliğine Giriş. Yrd.Doç.Dr.Hacer KARACAN Bilgisayar Mühendisliğine Giriş Yrd.Doç.Dr.Hacer KARACAN SAYI VE KODLAMA SİSTEMLERİ Sayı sistemleri Veri sıkıştırma Şifreleme terimleri Giriş Her bilgisayarın ikili durum makinası olması, burada kullanılan

Detaylı

MIT OpenCourseWare http://ocw.mit.edu. 14.30 Ekonomide İstatistiksel Yöntemlere Giriş Bahar 2009

MIT OpenCourseWare http://ocw.mit.edu. 14.30 Ekonomide İstatistiksel Yöntemlere Giriş Bahar 2009 MIT OpenCourseWare http://ocw.mit.edu 14.30 Ekonomide İstatistiksel Yöntemlere Giriş Bahar 2009 Bu materyale atıfta bulunmak ve kullanım koşulları için http://ocw.mit.edu/terms sayfasını ziyaret ediniz.

Detaylı

Görüntü İşleme Dersi Ders-8 Notları

Görüntü İşleme Dersi Ders-8 Notları Görüntü İşleme Dersi Ders-8 Notları GRİ SEVİYE DÖNÜŞÜMLERİ Herhangi bir görüntü işleme operasyonu, görüntüdeki pikselin gri seviye değerlerini dönüştürme işlemidir. Ancak, görüntü işleme operasyonları;

Detaylı

MANTIK DEVRELERİ HALL, 2002) (SAYISAL TASARIM, ÇEVİRİ, LITERATUR YAYINCILIK) DIGITAL DESIGN PRICIPLES & PRACTICES (3. EDITION, PRENTICE HALL, 2001)

MANTIK DEVRELERİ HALL, 2002) (SAYISAL TASARIM, ÇEVİRİ, LITERATUR YAYINCILIK) DIGITAL DESIGN PRICIPLES & PRACTICES (3. EDITION, PRENTICE HALL, 2001) MANTIK DEVRELERİ DERSİN AMACI: SAYISAL LOJİK DEVRELERE İLİŞKİN KAPSAMLI BİLGİ SUNMAK. DERSİ ALAN ÖĞRENCİLER KOMBİNASYONEL DEVRE, ARDIŞIL DEVRE VE ALGORİTMİK DURUM MAKİNALARI TASARLAYACAK VE ÇÖZÜMLEMESİNİ

Detaylı

Wavelet Transform and Applications. A. Enis Çetin Bilkent Üniversitesi

Wavelet Transform and Applications. A. Enis Çetin Bilkent Üniversitesi Wavelet Transform and Applications A. Enis Çetin Bilkent Üniversitesi Multiresolution Signal Processing Lincoln idea by Salvador Dali Dali Museum, Figueres, Spain M. Mattera Multi-resolution signal and

Detaylı

Görüntü İyileştirme Teknikleri. Hafta-8

Görüntü İyileştirme Teknikleri. Hafta-8 Görüntü İyileştirme Teknikleri Hafta-8 1 Spektral İyileştirme PCA (Principal Component Analysis) Dönüşümü. Türkçesi Ana Bileşenler Dönüşümü Decorrelation Germe Tasseled Cap RGB den IHS ye dönüşüm IHS den

Detaylı

Bilgisayar ne elde eder (görüntüden)? Dijital Görüntü İşleme Fevzi Karslı, KTÜ. 08 Ekim 2013 Salı 51

Bilgisayar ne elde eder (görüntüden)? Dijital Görüntü İşleme Fevzi Karslı, KTÜ. 08 Ekim 2013 Salı 51 Bilgisayar ne elde eder (görüntüden)? 08 Ekim 2013 Salı 51 Zorluk 1: bakış açısı 2012, Selim Aksoy 08 Ekim 2013 Salı 52 Zorluk 2: aydınlatma 08 Ekim 2013 Salı 53 Zorluk 3: oklüzyon (ölü bölge oluşumu)

Detaylı

Bilgisayarla Görüye Giriş

Bilgisayarla Görüye Giriş Bilgisayarla Görüye Giriş Ders 5 Görüntü Süzgeçleme ve Gürültü Giderimi Alp Ertürk alp.erturk@kocaeli.edu.tr Motivasyon: Gürültü Giderimi Bir kamera ve sabit bir sahne için gürültüyü nasıl azaltabiliriz?

Detaylı

Fonksiyon Optimizasyonunda Genetik Algoritmalar

Fonksiyon Optimizasyonunda Genetik Algoritmalar 01-12-06 Ümit Akıncı Fonksiyon Optimizasyonunda Genetik Algoritmalar 1 Fonksiyon Optimizasyonu Fonksiyon optimizasyonu fizikte karşımıza sık çıkan bir problemdir. Örneğin incelenen sistemin kararlı durumu

Detaylı

Bilgisayarla Fotogrametrik Görme

Bilgisayarla Fotogrametrik Görme Bilgisayarla Fotogrametrik Görme Dijital Görüntü ve Özellikleri Yrd. Doç. Dr. Mustafa DİHKAN 1 Dijital görüntü ve özellikleri Siyah-beyaz resimler için değer elemanları 0-255 arasındadır. 256 farklı durum

Detaylı

geometrik şekillerin birleşmesinden meydana gelen karmaşık yapılardır. Not: Bütün karmaşık grafikler basit şekillerin birleşmesinden oluşur.

geometrik şekillerin birleşmesinden meydana gelen karmaşık yapılardır. Not: Bütün karmaşık grafikler basit şekillerin birleşmesinden oluşur. Grafik: En küçük birim olan noktaların bir araya gelmesiyle oluşan, basit geometrik şekillerin birleşmesinden meydana gelen karmaşık yapılardır. Not: Bütün karmaşık grafikler basit şekillerin birleşmesinden

Detaylı

Yrd. Doç. Dr. Saygın ABDİKAN Öğretim Yılı Bahar Dönemi

Yrd. Doç. Dr. Saygın ABDİKAN Öğretim Yılı Bahar Dönemi Dijital Görüntü İşleme (JDF338) Yrd. Doç. Dr. Saygın ABDİKAN 2014-2015 Öğretim Yılı Bahar Dönemi 1 İletişim bilgileri sabdikan@beun.edu.tr 0 372 2574010 1718 http://geomatik.beun.edu.tr/abdikan/ Öğrenci

Detaylı

MAT 202-DİFERENSİYEL DENKLEMLER-Güz Dönemi. Ders Uygulama Planı. -

MAT 202-DİFERENSİYEL DENKLEMLER-Güz Dönemi. Ders Uygulama Planı. - MAT 202-DİFERENSİYEL DENKLEMLER-Güz 2016-2017 Dönemi Ders Uygulama Planı 04 02 ve 03 01 Öğretim Üyesi Prof. Dr. Ömer AKIN (Ders Koordinatörü) Prof. Dr. Abdullah ALTIN Doç. Dr. Niyazi ŞAHİN Ofis No 226

Detaylı

MATEMATİK ÖĞRETMENLİK ALAN BİLGİSİ - DENEME SINAVI DENEME. Diğer sayfaya geçiniz.

MATEMATİK ÖĞRETMENLİK ALAN BİLGİSİ - DENEME SINAVI DENEME. Diğer sayfaya geçiniz. MATEMATİK. DENEME ÖĞRETMENLİK ALAN BİLGİSİ - DENEME SINAVI. f : X tanımlı y = f() fonksiyonu için lim f ( ) = L ise aşağıdaki önermelerden kaç tanesi kesinlikle doğrudur? 0 I. X dir. 0 II. f() fonksiyonu

Detaylı

Chapter 3 Image Enhancement in the Spatial Domain. 2002 R. C. Gonzalez & R. E. Woods

Chapter 3 Image Enhancement in the Spatial Domain. 2002 R. C. Gonzalez & R. E. Woods Chapter 3 Image Enhancement in the Spatial Domain 2002 R. C. Gonzalez & R. E. Woods Chapter 3 Image Enhancement in the Spatial Domain 2002 R. C. Gonzalez & R. E. Woods Chapter 3 Image Enhancement in the

Detaylı

İkili (Binary) Görüntü Analizi

İkili (Binary) Görüntü Analizi İkili (Binary) Görüntü Analizi İkili görüntü analizine giriş Eşikleme (Thresholding) Matematiksel morfoloji Piksel ve komşulukları (neighborhoods) Bağlantılı bileşenler analizi (Connected components analysis)

Detaylı

MIT OpenCourseWare Ekonomide İstatistiksel Yöntemlere Giriş Bahar 2009

MIT OpenCourseWare Ekonomide İstatistiksel Yöntemlere Giriş Bahar 2009 MIT OpenCourseWare http://ocw.mit.edu 14.30 Ekonomide İstatistiksel Yöntemlere Giriş Bahar 2009 Bu materyale atıfta bulunmak ve kullanım koşulları için http://ocw.mit.edu/terms sayfasını ziyaret ediniz.

Detaylı

BLM-112 PROGRAMLAMA DİLLERİ II. Ders-1 Kapsama Kuralları & Rasgele Sayı Üretimi & Rekürsif (Özyinelemeli) Fonksiyonlar

BLM-112 PROGRAMLAMA DİLLERİ II. Ders-1 Kapsama Kuralları & Rasgele Sayı Üretimi & Rekürsif (Özyinelemeli) Fonksiyonlar BLM-112 PROGRAMLAMA DİLLERİ II Ders-1 Kapsama Kuralları & Rasgele Sayı Üretimi & Rekürsif (Özyinelemeli) Fonksiyonlar Yrd. Doç. Dr. Ümit ATİLA umitatila@karabuk.edu.tr http://web.karabuk.edu.tr/umitatilla/

Detaylı

GÖRÜNTÜ İŞLEME - (7.Hafta) KENAR BELİRLEME ALGORİTMALARI

GÖRÜNTÜ İŞLEME - (7.Hafta) KENAR BELİRLEME ALGORİTMALARI GÖRÜNTÜ İŞLEME - (7.Hafta) KENAR BELİRLEME ALGORİTMALARI Bu konuda bir çok algoritma olmasına rağmen en yaygın kullanılan ve etkili olan Sobel algoritması burada anlatılacaktır. SOBEL FİLTRESİ Görüntüyü

Detaylı

SAYISAL GÖRÜNTÜ İŞLEME İLE GEOMETRİK ŞEKİL VE ROTASYON TESPİTİ

SAYISAL GÖRÜNTÜ İŞLEME İLE GEOMETRİK ŞEKİL VE ROTASYON TESPİTİ SAYISAL GÖRÜNTÜ İŞLM İL GOMTRİK ŞKİL V ROTASYON TSPİTİ Fatih GÜNDÜZ 1 Mesud KARİMAN 1, lektronik ve aberleşme Mühendisliği Bölümü, Süleyman Demirel Üniversitesi, Isparta 1 e-posta: gunduz4@gmail.com e-posta:

Detaylı

Bazı MSDOS komutları BAZI DOS KOMUTLARI

Bazı MSDOS komutları BAZI DOS KOMUTLARI Bazı MSDOS komutları Windows XP, Vista işletim sisteminde Başlat\Çalıştır (Start \ Run) kısmına cmd veya command yazdığınızda MS-DOS penceresi gelir. BİR KOMUTUN NASIL KULLANILDIGINI ÖĞRENMEK İÇİN HELP

Detaylı

İkili (Binary) Görüntü Analizi

İkili (Binary) Görüntü Analizi İkili (Binary) Görüntü Analizi İkili görüntü analizine giriş Eşikleme (Thresholding) Matematiksel morfoloji Piksel ve komşulukları (neighborhoods) Bağlantılı bileşenler analizi (Connected components analysis)

Detaylı

Çoktan Seçmeli Değerlendirme Soruları Akış Şemaları İle Algoritma Geliştirme Örnekleri Giriş 39 1.Gündelik Hayattan Algoritma Örnekleri 39 2.Say

Çoktan Seçmeli Değerlendirme Soruları Akış Şemaları İle Algoritma Geliştirme Örnekleri Giriş 39 1.Gündelik Hayattan Algoritma Örnekleri 39 2.Say İÇİNDEKİLER 1. Bilgisayarın Yapısı Ve Programlama Dilleri Giriş 1 Bilgisayar ve Programlamanın Kısa Bir Tarihçesi 2 Donanım ve Yazılım Kavramları 3 Bilgisayarın Donanımsal yapısı 4 Giriş Birimi (Input

Detaylı

KAYIPSIZ GÖRÜNTÜ SIKIŞTIRMA YÖNTEMLERİNİN KARŞILAŞTIRILMASI

KAYIPSIZ GÖRÜNTÜ SIKIŞTIRMA YÖNTEMLERİNİN KARŞILAŞTIRILMASI KAYIPSIZ GÖRÜNTÜ SIKIŞTIRMA YÖNTEMLERİNİN KARŞILAŞTIRILMASI Altan MESUT, Aydın CARUS Trakya Üniversitesi, Mühendislik-Mimarlık Fakültesi, Bilgisayar Mühendisliği Bölümü Edirne e-posta: altanmesut@trakya.edu.tr

Detaylı

İleri Diferansiyel Denklemler

İleri Diferansiyel Denklemler MIT AçıkDersSistemi http://ocw.mit.edu 18.034 İleri Diferansiyel Denklemler 2009 Bahar Bu bilgilere atıfta bulunmak veya kullanım koşulları hakkında bilgi için http://ocw.mit.edu/terms web sitesini ziyaret

Detaylı

SÜREKLİ OLASILIK DAĞILIŞLARI

SÜREKLİ OLASILIK DAĞILIŞLARI SÜREKLİ OLASILIK DAĞILIŞLARI Sürekli verilerin göstermiş olduğu dağılışa sürekli olasılık dağılışı denir. Sürekli olasılık dağılışlarının fonksiyonlarına yoğunluk fonksiyonu denilmekte ve bu dağılışlarla

Detaylı

GÖRÜNTÜ İŞLEME - (6.Hafta) GÖRÜNTÜ NETLEŞTİRME ALGORİTMALARI

GÖRÜNTÜ İŞLEME - (6.Hafta) GÖRÜNTÜ NETLEŞTİRME ALGORİTMALARI GÖRÜNTÜ İŞLEME - (6.Hafta) GÖRÜNTÜ NETLEŞTİRME ALGORİTMALARI NETLEŞTİRME/KESKİNLEŞTİRME FİLTRESİ (Sharpening Filter) Bu algoritma orjinal görüntüden, görüntünü yumuşatılmış halini çıkararak belirgin kenarların

Detaylı

Dijital (Sayısal) Fotogrametri

Dijital (Sayısal) Fotogrametri Dijital (Sayısal) Fotogrametri Dijital fotogrametri, cisimlere ait iki boyutlu görüntü ortamından üç boyutlu bilgi sağlayan, sayısal resim veya görüntü ile çalışan fotogrametri bilimidir. Girdi olarak

Detaylı

Bilgisayarla Görüye Giriş

Bilgisayarla Görüye Giriş Bilgisayarla Görüye Giriş Ders 9 Stereo Görüntüleme Alp Ertürk alp.erturk@kocaeli.edu.tr Tek Kamera Geometrisi??? x Tek Kamera Geometrisi Tek Kamera Geometrisi İğne Deliği Kamera Modeli ) /, / ( ),, (

Detaylı

Sinyaller ve Sistemler (EE 303) Ders Detayları

Sinyaller ve Sistemler (EE 303) Ders Detayları Sinyaller ve Sistemler (EE 303) Ders Detayları Ders Adı Ders Kodu Dönemi Ders Saati Uygulama Saati Laboratuar Saati Kredi AKTS Sinyaller ve Sistemler EE 303 Güz 3 0 2 4 7 Ön Koşul Ders(ler)i EE 206 (FD),

Detaylı

Dijital Görüntü İşleme Teknikleri

Dijital Görüntü İşleme Teknikleri Teknikleri Ders Notları, 2015 Doç. Dr. Fevzi Karslı Harita Mühendisliği Bölümü Mühendislik Fakültesi KTÜ 19 Ekim 2015 Pazartesi 1 Ders Planı ve İçeriği 1. Hafta Giriş, dersin kapsamı, temel kavramlar,

Detaylı

Olasılık ve İstatistik (IE 220) Ders Detayları

Olasılık ve İstatistik (IE 220) Ders Detayları Olasılık ve İstatistik (IE 220) Ders Detayları Ders Adı Ders Kodu Dönemi Ders Saati Uygulama Saati Laboratuar Saati Kredi AKTS Olasılık ve İstatistik IE 220 Her İkisi 3 0 0 3 5 Ön Koşul Ders(ler)i Dersin

Detaylı

İSTANBUL TİCARET ÜNİVERSİTESİ BİLGİSAYAR MÜHENDİSLİĞİ BÖLÜMÜ BİLGİSAYAR SİSTEMLERİ LABORATUVARI

İSTANBUL TİCARET ÜNİVERSİTESİ BİLGİSAYAR MÜHENDİSLİĞİ BÖLÜMÜ BİLGİSAYAR SİSTEMLERİ LABORATUVARI İSTANBUL TİCARET ÜNİVERSİTESİ BİLGİSAYAR MÜHENDİSLİĞİ BÖLÜMÜ BİLGİSAYAR SİSTEMLERİ LABORATUVARI Veri Sıkıştırma Yöntemleri ve Huffman Kodlama ile Veri Sıkıştırma 1. Deney Amacı Veri sıkıştırma sadece bilgisayar

Detaylı

UYDU GÖRÜNTÜLERİ VE SAYISAL UZAKTAN ALGILAMA

UYDU GÖRÜNTÜLERİ VE SAYISAL UZAKTAN ALGILAMA UYDU GÖRÜNTÜLERİ VE SAYISAL UZAKTAN ALGILAMA Son yıllarda teknolojinin gelişmesi ile birlikte; geniş alanlarda, kısa zaman aralıklarında ucuz ve hızlı sonuç alınabilen uzaktan algılama tekniğinin, yenilenebilir

Detaylı

Kingston Technology Özelleştirme Programı

Kingston Technology Özelleştirme Programı Kingston Technology Özelleştirme Programı kingston.com/us/usb/customization Kingston ın Özelleştirme Programı, şirketlere markalarını kişiselleştirmek ve tanıtmak için kaliteli DataTraveler USB sürücüleri

Detaylı

Renk Kanallarını Farklı Şekilde Kodlayarak Sıkıştırma Oranını Arttırma. Increasing Compression Ratio With Encoding Color Channels In Different Ways

Renk Kanallarını Farklı Şekilde Kodlayarak Sıkıştırma Oranını Arttırma. Increasing Compression Ratio With Encoding Color Channels In Different Ways Akademik Bilişim 0 XV. Akademik Bilişim Konferansı Bildirileri - Ocak 0 Akdeniz Üniversitesi, Antalya Renk Kanallarını Farklı Şekilde Kodlayarak Sıkıştırma Oranını Arttırma Emir Öztürk, Altan Mesut Trakya

Detaylı

2 Ders Kodu: GSR3114 3 Ders Türü: Seçmeli 4 Ders Seviyesi Lisans

2 Ders Kodu: GSR3114 3 Ders Türü: Seçmeli 4 Ders Seviyesi Lisans DİJİTAL GÖRÜNTÜLEME TEKNİKLERİ 1 Ders Adi: DİJİTAL GÖRÜNTÜLEME TEKNİKLERİ 2 Ders Kodu: GSR3114 3 Ders Türü: Seçmeli 4 Ders Seviyesi Lisans 5 Dersin Verildiği Yıl: 3 6 Dersin Verildiği Yarıyıl 6 7 Dersin

Detaylı

rasgele değişkeninin olasılık yoğunluk fonksiyonu,

rasgele değişkeninin olasılık yoğunluk fonksiyonu, 3.6. Bazı Sürekli Dağılımlar 3.6.1 Normal Dağılım Normal dağılım hem uygulamalı hem de teorik istatistikte kullanılan oldukça önemli bir dağılımdır. Normal dağılımın istatistikte önemli bir yerinin olmasının

Detaylı

Dijital (Sayısal) Fotogrametri

Dijital (Sayısal) Fotogrametri Dijital (Sayısal) Fotogrametri Dijital fotogrametri, cisimlere ait iki boyutlu görüntü ortamından üç boyutlu bilgi sağlayan, sayısal resim veya görüntü ile çalışan fotogrametri bilimidir. Girdi olarak

Detaylı

Dijital (Sayısal) Fotogrametri

Dijital (Sayısal) Fotogrametri Dijital (Sayısal) Fotogrametri Dijital fotogrametri, cisimlere ait iki boyutlu görüntü ortamından üç boyutlu bilgi sağlayan, sayısal resim veya görüntü ile çalışan fotogrametri bilimidir. Girdi olarak

Detaylı

3.2. Raster Veriler. Satırlar. Sütunlar. Piksel/hücre büyüklüğü

3.2. Raster Veriler. Satırlar. Sütunlar. Piksel/hücre büyüklüğü 3.2. Raster Veriler Satırlar Piksel/hücre büyüklüğü Sütunlar 1 Görüntü formatlı veriler Her piksel için gri değerleri kaydedilmiştir iki veya üç bant (RGB) çok sayıda bant Fotoğraf, uydu görüntüsü, ortofoto,

Detaylı

İstatistik ve Olasılık

İstatistik ve Olasılık İstatistik ve Olasılık Ders 5: Rastgele Değişkenlerin Dağılımları II Prof. Dr. İrfan KAYMAZ Sık Kullanılan Dağılımlar Frekans tablolarına dayalı histogram ve frekans poligonları, verilerin dağılımı hakkında

Detaylı

Dijital Fotogrametri

Dijital Fotogrametri Dijital Fotogrametri 2016-2017, Bahar YY Fevzi Karslı (Prof. Dr.) Harita Mühendisliği Bölümü Mühendislik Fakültesi KTÜ 20 Mart 2017 Pazartesi Ders Planı ve İçeriği 1. Hafta Giriş, dersin kapsamı, kavramlar,

Detaylı

GÖRÜNTÜ İŞLEME UYGULAMALARI. Arş. Gör. Dr. Nergis TURAL POLAT

GÖRÜNTÜ İŞLEME UYGULAMALARI. Arş. Gör. Dr. Nergis TURAL POLAT GÖRÜNTÜ İŞLEME UYGULAMALARI Arş. Gör. Dr. Nergis TURAL POLAT İçerik Görüntü işleme nedir, amacı nedir, kullanım alanları nelerdir? Temel kavramlar Uzaysal frekanslar Örnekleme (Sampling) Aynalama (Aliasing)

Detaylı

Eyüp Ersan SÜLÜN Photoshop CS4 Kullanım Kursu ADOBE PHOTOSHOP KATMAN HARMANLAMA (KARIŞTIRMA) MODLARI

Eyüp Ersan SÜLÜN Photoshop CS4 Kullanım Kursu ADOBE PHOTOSHOP KATMAN HARMANLAMA (KARIŞTIRMA) MODLARI Eyüp Ersan SÜLÜN Photoshop CS4 Kullanım Kursu ADOBE PHOTOSHOP KATMAN HARMANLAMA (KARIŞTIRMA) MODLARI Photoshop ile çalışırken, katmanlar üzerinde kullanılan nesneleri ve renkleri bir biri ile karıştırarak

Detaylı

Tesadüfi Değişken. w ( )

Tesadüfi Değişken. w ( ) 1 Tesadüfi Değişken Tesadüfi değişkenler gibi büyük harflerle veya gibi yunan harfleri ile bunların aldığı değerler de gibi küçük harflerle gösterilir. Tesadüfi değişkenler kesikli veya sürekli olmak üzere

Detaylı

İstatistik ve Olasılık

İstatistik ve Olasılık İstatistik ve Olasılık Rastgele Değişkenlerin Dağılımları I Prof. Dr. İrfan KAYMAZ Ders konusu Bu derste; Rastgele değişkenlerin tanımı ve sınıflandırılması Olasılık kütle fonksiyonu Olasılık yoğunluk

Detaylı

SAYISAL ELEKTRONİK. Ege Ü. Ege MYO Mekatronik Programı

SAYISAL ELEKTRONİK. Ege Ü. Ege MYO Mekatronik Programı SAYISAL ELEKTRONİK Ege Ü. Ege MYO Mekatronik Programı BÖLÜM 2 Sayı Sistemleri İkilik, Onaltılık ve İKO Sayılar İkilik Sayı Sistemi 3 Çoğu dijital sistemler 8, 16, 32, ve 64 bit gibi, 2 nin çift kuvvetleri

Detaylı

Merge To Hdr. Merge To Hdr. Merge to hdr. HDR resimleri. www.dersmax.com Merge To Hdr 1

Merge To Hdr. Merge To Hdr. Merge to hdr. HDR resimleri. www.dersmax.com Merge To Hdr 1 Merge To Hdr Merge to hdr HDR resimleri. www.dersmax.com Merge To Hdr 1 www.dersmax.com Merge To Hdr 2 HDR nedir? Yüksek kontrastlı ya da ters ışıklı ortamlar için yapılan çekimlerde kullanılan bir teknik

Detaylı

Adım Adım SPSS. 1- Data Girişi ve Düzenlemesi 2- Hızlı Menü. Y. Doç. Dr. İbrahim Turan Nisan 2011

Adım Adım SPSS. 1- Data Girişi ve Düzenlemesi 2- Hızlı Menü. Y. Doç. Dr. İbrahim Turan Nisan 2011 Adım Adım SPSS 1- Data Girişi ve Düzenlemesi 2- Hızlı Menü Y. Doç. Dr. İbrahim Turan Nisan 2011 File (Dosya) Menüsü Excel dosyalarını SPSS e aktarma Variable View (Değişken Görünümü 1- Name (İsim - Kod)

Detaylı

Yıldız Teknik Üniversitesi Fen Bilimleri Enstitüsü Bilgisayar Mühendisliği Bölümü. Bilgisayarla Görme. Vize. İris Segmentation. Selçuk BAŞAK 08501008

Yıldız Teknik Üniversitesi Fen Bilimleri Enstitüsü Bilgisayar Mühendisliği Bölümü. Bilgisayarla Görme. Vize. İris Segmentation. Selçuk BAŞAK 08501008 Yıldız Teknik Üniversitesi Fen Bilimleri Enstitüsü Bilgisayar Mühendisliği Bölümü Bilgisayarla Görme Vize İris Segmentation Selçuk BAŞAK 08501008 Not: Ödevi hazırlamak için geliştirdiğim program ve kaynak

Detaylı

Yrd. Doç. Dr. Caner ÖZCAN

Yrd. Doç. Dr. Caner ÖZCAN Yrd. Doç. Dr. Caner ÖZCAN Grafik Programlama Bilgisayar kullanılırken monitörlerde iki tür ekran moduyla karşılaşılır. Bu ekran modları Text modu ve Grafik modu dur. Text modunda ekran 25 satır ve 80 sütundan

Detaylı

1.4. BİT Nİ KULLANMA ve YÖNETME

1.4. BİT Nİ KULLANMA ve YÖNETME ANKARA MAMAK MEHMET ÇEKİÇ ORTAOKULU 1.4. BİT Nİ KULLANMA ve YÖNETME Ankara, 2014 Hazırlayan: Mustafa KATLANÇ 2 1.4. BİT Nİ KULLANMA ve YÖNETME Mehmet Çekiç Ortaokulu Sayfa 1 / 13 Mustafa KATLANÇ, Ankara

Detaylı

GÖRÜNTÜ İŞLEME - (2.Hafta)

GÖRÜNTÜ İŞLEME - (2.Hafta) C# PROGRAMLAMA İLE GÖRÜNTÜ İŞLEME GÖRÜNTÜ İŞLEME - (2.Hafta) Görüntü işleme kapsamında geliştirilecek algoritmalar C# diliyle yazılacaktır. Bu amaçla bilgisayarımızda Visual Studio programının kurulu olması

Detaylı

Renk Kanallarını Farklı Şekilde Kodlayarak Sıkıştırma Oranını Arttırma

Renk Kanallarını Farklı Şekilde Kodlayarak Sıkıştırma Oranını Arttırma Renk Kanallarını Farklı Şekilde Kodlayarak Sıkıştırma Oranını Arttırma Emir Öztürk 1, Altan Mesut 2 1 Trakya Üniversitesi, Bilgisayar Mühendisliği Bölümü, Edirne 2 Trakya Üniversitesi, Bilgisayar Mühendisliği

Detaylı

Dersin Sorumlusu: Yrd. Doç. Dr. Birol SOYSAL. Sunumları Hazırlayan: Doç. Dr. Bülent ÇAKMAK

Dersin Sorumlusu: Yrd. Doç. Dr. Birol SOYSAL. Sunumları Hazırlayan: Doç. Dr. Bülent ÇAKMAK MATLAB de Bilgisayar Programlama Dersin Sorumlusu: Yrd. Doç. Dr. Birol SOYSAL Sunumları Hazırlayan: Doç. Dr. Bülent ÇAKMAK disp komutu: Ekrana mesaj veya bir değişken değeri yazdırmak için kullanılan komuttur.

Detaylı

Yüksek hacimli taramalar için ihtiyaç duyduğunuz hız ve kalite

Yüksek hacimli taramalar için ihtiyaç duyduğunuz hız ve kalite DR-7580 DR-9080C Yüksek Hızlı Tarayıcı Yüksek hacimli taramalar için ihtiyaç duyduğunuz hız ve kalite DR-7580 / DR-9080C Ultra verimli, yüksek kapasiteli tarayıcı Canon'un yeni seri başı yüksek kapasiteli

Detaylı

İleri Diferansiyel Denklemler

İleri Diferansiyel Denklemler MIT AçıkDersSistemi http://ocw.mit.edu 18.034 İleri Diferansiyel Denklemler 2009 Bahar Bu bilgilere atıfta bulunmak veya kullanım koşulları hakkında bilgi için http://ocw.mit.edu/terms web sitesini ziyaret

Detaylı

18.034 İleri Diferansiyel Denklemler

18.034 İleri Diferansiyel Denklemler MIT AçıkDersSistemi http://ocw.mit.edu 18.034 İleri Diferansiyel Denklemler 2009 Bahar Bu bilgilere atıfta bulunmak veya kullanım koşulları hakkında bilgi için http://ocw.mit.edu/terms web sitesini ziyaret

Detaylı

SPPS. Verileri Düzenleme ve Değiştirme 3 - Data Menüsü. Y. Doç. Dr. İbrahim Turan Nisan 2011

SPPS. Verileri Düzenleme ve Değiştirme 3 - Data Menüsü. Y. Doç. Dr. İbrahim Turan Nisan 2011 SPPS Verileri Düzenleme ve Değiştirme 3 - Data Menüsü Y. Doç. Dr. İbrahim Turan Nisan 2011 Data Menüsü 1- Define Variable 1- Properties (Değişken Özelliklerini Tanımlama) Değişken özelliklerini tanımlamak

Detaylı

Ders Adı Kodu Yarıyılı T+U Saati Ulusal Kredisi AKTS

Ders Adı Kodu Yarıyılı T+U Saati Ulusal Kredisi AKTS DERS BİLGİLERİ Ders Adı Kodu Yarıyılı T+U Saati Ulusal Kredisi AKTS Sayısal Görüntü İşleme BIL413 7 3+0 3 5 Ön Koşul Dersleri Yok Dersin Dili Dersin Seviyesi Dersin Türü Türkçe Lisans Seçmeli / Yüz Yüze

Detaylı