Hafta 4 Yoğunluk Dönüşümleri ve Histogram İşleme

Ebat: px
Şu sayfadan göstermeyi başlat:

Download "Hafta 4 Yoğunluk Dönüşümleri ve Histogram İşleme"

Transkript

1 BLM429 Görüntü İşlemeye Giriş Hafta 4 Yoğunluk Dönüşümleri ve Histogram İşleme Yrd. Doç. Dr. Caner ÖZCAN It makes all the difference whether one sees darkness through the light or brightness through the shadows. (Bütün fark; birinin ışığın içinde karanlığı ya da gölgenin içinde aydınlığı görmesiyle oluşur.) ~David Lindsay

2 İçerik 3. Yeğinlik Dönüşümleri ve Uzamsal Filtreleme Temel Bazı Yeğinlik Dönüşüm Fonksiyonları Histogram İşleme Uzamsal Filtrelemenin Esasları Uzamsal Yumuşatma Filtreleri Uzamsal Keskinleştirme Filtreleri Uzamsal Zenginleştirme Yöntemlerini Birleştirme Yeğinlik Dönüşümleri ve Uzamsal Filtreleme İçin Bulanık Tekniklerin Kullanılması 2

3 Uzamsal Bölge ve Dönüşüm Bölgesi Uzamsal bölge Görüntüleme düzleminin kendisine karşılık gelir ve doğrudan görüntüdeki pikseller üzerinde işlem yapılır. Dönüşüm bölgesi Görüntü düzlemindeki yeğinlik değerlerini direk işlemeyerek dönüşüm katsayılarını işler. 3

4 Uzamsal Bölge İşlemleri g( x, y) T[ f ( x, y)]) f ( x, y) :input image g( x, y) : output image T giriş görüntüsü çıkış görüntüsü (x, y) noktasının komşuluğunda tanımlanmış f ye uygulanan bir operatör. : an operator on f defined over a neighborhood of point ( xy, ) 4

5 Uzamsal Bölge İşlemleri 5

6 Uzamsal Bölge İşlemleri Yeğinlik dönüşüm fonksiyonu Intensity transformation function s T( r) 6

7 Temel Bazı Yeğinlik Dönüşüm Fonksiyonları 7

8 Görüntü Negatifleri Image negatives Görüntü negatifleri s L 1 r 8

9 Örnek: Görüntü Negatifleri Küçük lezyon 9

10 Logaritma Dönüşümü Log Transformations Logaritma Dönüşümü s clog(1 r) 10

11 Örnek: Logaritma Dönüşümü 11

12 Kuvvet Kanunu(Gama) Dönüşümleri s cr 12

13 Örnek: Gama Dönüşümleri 13

14 Örnek: Gama Dönüşümleri s r 1/2.5 Örneğin, katot ışın tüplü (CRT) aygıtlar, bir kuvvet fonksiyonu şeklinde ifade edilen yeğinlikgerilim tepkisine sahiptir. Bu fonksiyonun üssü yaklaşık olarak 1.8 ile 2.5 arasında değişmektedir. 14

15 Örnek: Gama Dönüşümleri 15

16 Örnek: Gama Dönüşümleri 16

17 Parçalı-Doğrusal Dönüşümler Kontrast Germe Kayıt ortamının veya görüntü cihazının tüm yeğinlik aralığını kapsayacak şekilde yeğinlik seviye aralığının genişletilmesi işlemidir. Yeğinlik Seviyesi Dilimleme Bir görüntüdeki yeğinliklerin özel bir aralığını vurgulamadır. 17

18 18

19 Bu tip zenginleştirme, ikili bir görüntü oluşturur ve kontrast maddenin akış biçimini incelemede kullanışlıdır (örneğin tıkanıklıkları saptamak için) Kontrast maddenin bir dizi görüntüdeki gerçek akışını zamanın fonksiyonu olarak ölçmek istediğimizde böyle bir sonuç faydalı olabilir. 19

20 Bit Düzlemi Dilimleme 20

21 Bit Düzlemi Dilimleme 21

22 Bit Düzlemi Dilimleme 22

23 Histogram İşleme Histogram Denkleştirme Histogram Eşleştirme Yerel Histogram İşleme Görüntü İyileştirme İçin Histogram İstatistiklerini Kullanma 23

24 Histogram Nedir? Görüntüdeki gri değerlerin dağılımının grafiksel olarak gösterimidir. X ekseni görüntüdeki gri değerleri (yansıma değerleri), Y ekseni ise o gri değerdeki toplam piksel sayısını gösterir. X ekseni üzerinde sola doğru ilerledikçe (orijine yaklaştıkça) daha koyu ve siyah alanlara ait pikseller temsil edilir. X ekseni üzerinde histogram şekline ait orta kısımlar orta koyulukta gri alanları ve sol uç taraflar ışığın bol olduğu ve beyaz alanları temsil eder. Bu nedenle içerisinde sadece bir kaç koyu bölgeyi barındıran bol ışıklı ve çok parlak bir görüntüye ait histogramda veriler sol uç tarafa yığılmış olarak görülür. 8-bit bir görüntüde gri değerler arasındadır

25 Histogram İşleme Histogram h( r ) r n is the k th k n intensity value k Burada k r k, k. yeğinlik değeri n k k, görüntüdeki r k yeğinlik değerine sahip piksellerin sayısı is the number of pixels in the image with intensity r k nk Normalized histogram pr ( k ) MN n : the number of pixels in the image of Normalize edilmiş histogram: k size M N with intensity r k 25

26 Histogram İşleme Histogram h( r ) r n is the k th n ktemel olasılık k teorisinin tekrarı için intensity value Burada k r k, k. yeğinlik değeri kitabın web sitesine n k k, görüntüdeki rbaşvurunuz. k yeğinlik değerine sahip piksellerin sayısı is the number of pixels in the image with intensity r k nk Normalized histogram pr ( k ) MN n : the number of pixels in the image of Normalize edilmiş histogram: k size M N with intensity r k 26

27 27

28 Histogram Denkleştirme The intensity levels in an image may be viewed as Bir görüntüdeki yeğinlik değerlerine, [0, L-1] aralığında rasgele random değişkenler variables in olarak the interval bakılabilir. [0, L-1]. p r (r) Let ve pr( pr )(s), and psırasıyla s( s) denote r ve the s nin probability olasılık density yoğunluk fonksiyonunu (PDF) göstersin. function (PDF) of random variables r and s. 28

29 Histogram Denkleştirme s T( r) 0 r L 1 a. TT(r) r is, [0, a strictly L-1] aralığında monotonically monoton increasing bir şekilde functionartan bir in the fonksiyondur. interval 0 r L-1; b. 0 T( r) L -1 için for 0 r L

30 Histogram Denkleştirme s T( r) 0 r L 1 a. TT(r) r is, [0, a strictly L-1] aralığında monotonically monoton increasing bir şekilde functionartan bir in the fonksiyondur. interval 0 r L-1; b. 0 T( r) L -1 for 0 r L -1. Tr ( ) is continuous and differentiable. T r, sürekli ve türevlenebilir. p ( s) ds p ( r) dr s r 30

31 Histogram Denkleştirme r s T( r) ( L 1) pr ( w) dw ds dt () r d r ( L 1) p ( ) 0 r w dw dr dr dr ( L 1) p ( r) r 0 p () s s pr () r dr ( ) ( ) 1 pr r pr r ds ds dr ( L 1) p ( ) r r L 1 31

32 Örnek Suppose that the (continuous) intensity values Bir görüntüdeki sürekli yeğinlik değerlerinin aşağıda in an verilen image PDF e have the sahip PDF olduğunu varsayalım. p ( r) r 2r, için for 0 r L-1 2 ( L 1) 0, diğer otherwise yerlerde Find the transformation function for equalizing Görüntü histogramını denkleştirmek için dönüşüm fonksiyonunu the image bulma. histogram. 32

33 Örnek s T( r) ( L 1) p ( w) dw r r 0 ( L 1) r 2 L 1 r 0 2w ( L 1) 2 dw 33

34 Histogram Denkleştirme Continuous case: Sürekli durum: r s T( r) ( L 1) pr ( w) dw Ayrık değerler Discrete values: k s T( r ) ( L 1) p ( r ) k k r j j 0 j 0 j 0 0 k n k j L 1 ( L 1) nj k=0,1,..., L-1 MN MN 34

35 Örnek: Histogram Denkleştirme piksel boyutunda (MN = 4096) olan 3-bitlik (L=8) bir görüntünün tabloda gösterilen yeğinlik dağılımına sahip olduğunu varsayalım. Histogram denkleştirme dönüşüm fonksiyonu bulun ve her bir s k için p s (s k ) yı bulun. 35

36 Örnek: Histogram Denkleştirme s T( r ) 7 p ( r ) s T( r ) 7 p ( r ) 7 ( ) s s s 0 r j 1 j 0 1 r j 3 j s s s

37 Örnek: Histogram Denkleştirme 37

38 38

39 Histogram Denkleştirme 39

40 Soru Histogram denkleştirme her zaman iyi midir? Hayır!! 40

41 Histogram Denkleştirme Histograms of an image before and after equalization. https://www.youtube.com/watch?v=pd5d7ekylca 41

42 Histogram Eşleştirme Histogram eşleştirme(histogram belirleme) Belirlenmiş bir histograma sahip işlenmiş bir görüntü oluşturmak için kullanılır. Let p pr( r) and pz( z) denote the continous probability r (r) ve p z (z) sırasıyla r ve z yeğinliklerine karşılık gelen density sürekli olasılık functions yeğinlik of the fonksiyonlarını variables r ifade and zetsin.. pz ( zp ) z (z) is the specified belirlenmiş probability olasılık yeğinlik density fonksiyonudur. function. s aşağıdaki Let s özelliğe be the random sahip rasgele variable bir değişken with the olsun: probability s T ( r) ( L 1) p ( w) dw Aşağıdaki Define özelliğe a random sahip variable rasgele bir z z with değişkeni the probability tanımlayalım: G( z) ( L 1) p ( t) dt s z 0 z r 0 r 42

43 Histogram Eşleştirme s T( r) ( L 1) p ( w) dw G( z) ( L 1) p ( t) dt s 0 z r 0 z r 1 ( ) 1 ( ) z G s G T r 43

44 Histogram Eşleştirme: Yöntem Giriş görüntüsünden p r (r) elde edilir ve daha sonra s nin değeri bulunur. r s ( L 1) pr ( w) dw Tanımlanan PDF kullanılır ve G(z) dönüşüm fonksiyonu elde edilir. s den z ye eşleştirme yapılır. 0 z G( z) ( L 1) pz ( t) dt s z G 1 () s 0 44

45 Histogram Eşleştirme: Örnek Yeğinlik değerlerinin sürekli olduğu varsayılsın; görüntünün yeğinliği PDF 2r, için for 0 r L-1 2 pr () r ( L 1) 0, diğer otherwise durumlar Yeğinlik PDF i aşağıdaki gibi olan bir görüntüyü oluşturan dönüşüm fonksiyonunu bulun. 2 3z, için for 0 z ( L-1) 3 pz () z ( L 1) 0, diğer otherwise durumlar 45

46 Histogram Eşleştirme: Örnek Giriş görüntüsü için histogram denkleştirme dönüşümü bulunur: 2 r r 2w r s T( r) ( L 1) p ( ) ( 1) 0 r w dw L dw 0 2 ( L 1) L 1 Belirlenen histogram için histogram denkleştirme dönüşümü bulunur. 2 3 z z 3t z G( z) ( L 1) p ( ) ( 1) 0 z t dt L dt s ( L 1) ( L 1) Dönüşüm fonksiyonu 2 1/3 2 1/3 2 r 2 1/3 z ( L 1) s ( L 1) ( L 1) r L 1 46

47 Histogram Eşleştirme: Ayrık Durumlar Verilen görüntünün p r (r) histogramını hesaplayın ve bunu histogram denkleştirme dönüşümünü bulmak için kullanın. Sonuç s k değerlerini [0, L-1] tamsayı değerler aralığına yuvarlayın. k k ( L 1) s T( r ) ( L 1) p ( r ) n k k r j j j 0 MN j 0 Tanımlanan PDF i kullanın, G(z q ) dönüşüm fonksiyonunu elde edin ve değerleri [0, L-1] tamsayı değerler aralığına yuvarlayın. q G( z ) ( L 1) p ( z ) s q z i k i 0 z G 1 ( s ) q k S k' dan to z q ye eşleştirin. 47

48 Örnek: Histogram Eşleştirme Yeğinlik dağılımı aşağıdaki soldaki tabloda verilen 3-bitlik (L=8) piksel (MN = 4096) boyutlu bir görüntüyü düşünelim. Bu histogramın aşağıdaki sağdaki tablonun ikinci sütunundaki belirli değerlere sahip olacak bir biçimde dönüştürülmesi istenmektedir. Belirtilmiş Gerçek 48

49 Örnek: Histogram Eşleştirme Ölçekli histogram denkleştirilmiş değerler elde edilmektedir. s 1, s 3, s 5, s 6, s 7, s 7, s 7, s Dönüşüm fonksiyonu G nin bütün değerlerini hesaplarız: 0 0 G( z ) 7 p ( z ) 0.00 j 0 z j 0 G( z ) 0.00 G( z ) G( z ) 1.05 G( z ) G( z ) 4.55 G( z ) Gz ( )

50 Örnek: Histogram Eşleştirme 50

51 Örnek: Histogram Eşleştirme Ölçeklenmiş histogram denkleştirilmiş değerler elde edilir: s 1, s 3, s 5, s 6, s 7, s 7, s 7, s G dönüşüm fonksiyonunun tüm değerleri hesaplanır: 0 0 G( z ) 7 p ( z ) 0.00 j 0 z j G( z1) G( z2) G( z3) s 0 G( z4) G( z ) G( z ) Gz ( ) s 2 s 3 s 5 s 6 s 7 s 4 s 1 51

52 Örnek: Histogram Eşleştirme s 1, s 3, s 5, s 6, s 7, s 7, s 7, s r k

53 Örnek: Histogram Eşleştirme r k z q

54 Örnek: Histogram Eşleştirme 54

55 Örnek: Histogram Eşleştirme 55

56 56

57 Görüntü Formatları Popular formats: BMP Microsoft Windows bitmap image EPS Adobe Encapsulated PostScript GIF CompuServe graphics interchange format JPEG Joint Photographic Experts Group PBM Portable bitmap format (black and white) PGM Portable graymap format (gray scale) PPM Portable pixmap format (color) PNG Portable Network Graphics PS Adobe PostScript TIFF Tagged Image File Format 57

58 Görüntü Formatları ASCII or binary Number of bits per pixel (color depth) Number of bands Support for compression (lossless, lossy) Support for metadata Support for transparency Format conversion 58

59 Kaynaklar Sayısal Görüntü İşleme, Palme Yayıncılık, Üçüncü Baskıdan Çeviri (Orj: R.C. Gonzalez and R.E. Woods: "Digital Image Processing", Prentice Hall, 3rd edition, 2008). Lecture Notes, CS Digital Image Processing, F.(Qingzhong) Liu, Ders Notları, BIL717-Image Processing, E.Erdem Ders Notları, EBM537-Görüntü İşleme, F.Karabiber 59

Digital Görüntü Temelleri Görüntü Oluşumu

Digital Görüntü Temelleri Görüntü Oluşumu Digital Görüntü Temelleri Görüntü Oluşumu Işık 3B yüzeye ulaşır. Yüzey yansıtır. Sensör elemanı ışık enerjisini alır. Yoğunluk (Intensity) önemlidir. Açılar önemlidir. Materyal (yüzey) önemlidir. 25 Ekim

Detaylı

Digital Görüntü Temelleri Görüntü Oluşumu

Digital Görüntü Temelleri Görüntü Oluşumu Digital Görüntü Temelleri Görüntü Oluşumu Işık 3B yüzeye ulaşır. Yüzey yansıtır. Sensör elemanı ışık enerjisini alır. Yoğunluk (Intensity) önemlidir. Açılar önemlidir. Materyal (yüzey) önemlidir. 06 Kasım

Detaylı

Görüntü İşleme. Dijital Görüntü Tanımları. Dijital görüntü ise sayısal değerlerden oluşur.

Görüntü İşleme. Dijital Görüntü Tanımları. Dijital görüntü ise sayısal değerlerden oluşur. Görüntü İşleme Görüntü işleme, dijital bir resim haline getirilmiş olan gerçek yaşamdaki görüntülerin bir girdi resim olarak işlenerek, o resmin özelliklerinin ve görüntüsünün değiştirilmesidir. Resimler

Detaylı

Uzaysal Görüntü İyileştirme/Filtreleme. Doç. Dr. Fevzi Karslı fkarsli@ktu.edu.tr

Uzaysal Görüntü İyileştirme/Filtreleme. Doç. Dr. Fevzi Karslı fkarsli@ktu.edu.tr Uasal Görüntü İileştirme/Filtreleme Doç. Dr. Fevi Karslı karsli@ktu.edu.tr İileştirme Herhangi bir ugulama için, görüntüü orijinalden daha ugun hale getirmek Ugunluğu her bir ugulama için sağlamak. Bir

Detaylı

GÖRÜNTÜ İŞLEME HAFTA 2 SAYISAL GÖRÜNTÜ TEMELLERİ

GÖRÜNTÜ İŞLEME HAFTA 2 SAYISAL GÖRÜNTÜ TEMELLERİ GÖRÜNTÜ İŞLEME HAFTA 2 SAYISAL GÖRÜNTÜ TEMELLERİ GÖRÜNTÜ ALGILAMA Üç temel zar ile kaplıdır. 1- Dış Zar(kornea ve Sklera) 2- Koroid 3- Retina GÖRÜNTÜ ALGILAMA ---Dış Zar İki kısımdan oluşur. Kornea ve

Detaylı

1. RESİM DÜZENLEME. Bir resmin piksel yoğunluğu yani PPI (Pixel Per Inches) 1 inç karede (1 inç = 2.54 cm) bulunan piksel sayısıdır.

1. RESİM DÜZENLEME. Bir resmin piksel yoğunluğu yani PPI (Pixel Per Inches) 1 inç karede (1 inç = 2.54 cm) bulunan piksel sayısıdır. 1.1. Temel Kavramlar 1.1.1. Piksel 1. RESİM DÜZENLEME Ekranda oluşturulan görüntüler noktalardan oluşur. Noktalar kare şeklindedir. Çok yakından bakıldığı veya resim büyütüldüğü zaman bu noktalar fark

Detaylı

Uzaktan Eğitim Ders Notları

Uzaktan Eğitim Ders Notları Grafik ve Animasyon Uzaktan Eğitim Ders Notları Bu ders içeriğinin basım, yayım ve satış hakları Yrd. Doç. Dr. Zekeriya PARLAK a aittir. "Uzaktan Öğretim" tekniğine uygun olarak hazırlanan bu ders içeriğinin

Detaylı

İMGE İŞLEME Ders-2. İmge Dosya Tipleri ve Temel İşlemler. Dersin web sayfası: http://mf.kou.edu.tr/elohab/kemalg/imge_web/odev.htm

İMGE İŞLEME Ders-2. İmge Dosya Tipleri ve Temel İşlemler. Dersin web sayfası: http://mf.kou.edu.tr/elohab/kemalg/imge_web/odev.htm İMGE İŞLEME Ders-2 İmge Dosya Tipleri ve Temel İşlemler (Yrd. Doç. Dr. M. Kemal GÜLLÜ) Dersin web sayfası: http://mf.kou.edu.tr/elohab/kemalg/imge_web/odev.htm Hazırlayan: M. Kemal GÜLLÜ MATLAB temel bilgiler

Detaylı

MMT 106 Teknik Fotoğrafçılık 3 Digital Görüntüleme

MMT 106 Teknik Fotoğrafçılık 3 Digital Görüntüleme MMT 106 Teknik Fotoğrafçılık 3 Digital Görüntüleme 2010-2011 Bahar Yarıyılı Ar. Gör. Dr. Ersoy Erişir 1 Konvansiyonel Görüntüleme (Fotografi) 2 Görüntü Tasarımı 3 Digital Görüntüleme 3.1 Renkler 3.2.1

Detaylı

GÖRÜNTÜ İŞLEME HAFTA 1 1.GİRİŞ

GÖRÜNTÜ İŞLEME HAFTA 1 1.GİRİŞ GÖRÜNTÜ İŞLEME HAFTA 1 1.GİRİŞ GÖRÜNTÜ İŞLEME Hafta Hafta 1 Hafta 2 Hafta 3 Hafta 4 Hafta 5 Hafta 6 Hafta 7 Hafta 8 Hafta 9 Hafta 10 Hafta 11 Hafta 12 Hafta 13 Hafta 14 Konu Giriş Digital Görüntü Temelleri-1

Detaylı

KODLAMA SİSTEMLERİ ve VERİLERİN BİLGİSAYARDA TEMSİLİ

KODLAMA SİSTEMLERİ ve VERİLERİN BİLGİSAYARDA TEMSİLİ KODLAMA SİSTEMLERİ ve VERİLERİN BİLGİSAYARDA TEMSİLİ KODLAMA SİSTEMLERİNİN TANIMI : Kodlama, iki küme elemanları arasında karşılıklı kesin olarak belirtilen kurallar bütünüdür diye tanımlanabilir. Diğer

Detaylı

SPSS (Statistical Package for Social Sciences)

SPSS (Statistical Package for Social Sciences) SPSS (Statistical Package for Social Sciences) SPSS Data Editor: Microsoft Excel formatına benzer satır ve sütunlardan oluşan çalışma sayfası (*sav) Data Editör iki arayüzden oluşur. 1. Data View 2. Variable

Detaylı

30/12/15 DOSYA FORMATLARI. Masaüstü yayıncılıkta kullanılan programlar bir birlerinden dosya alışverişinde bulunarak çalışırlar.

30/12/15 DOSYA FORMATLARI. Masaüstü yayıncılıkta kullanılan programlar bir birlerinden dosya alışverişinde bulunarak çalışırlar. DOSYA FORMATLARI Masaüstü yayıncılıkta kullanılan programlar bir birlerinden dosya alışverişinde bulunarak çalışırlar. Bir resmi veya vektörel çizimi, oluşturulan uygulama programından bağımsız hale gegrip

Detaylı

Dijital Görüntü İşleme Teknikleri

Dijital Görüntü İşleme Teknikleri Teknikleri Ders Notları, 2013 Doç. Dr. Fevzi Karslı Harita Mühendisliği Bölümü Mühendislik Fakültesi KTÜ 08 Ekim 2013 Salı 1 Ders Planı ve İçeriği 1. Hafta Giriş, dersin kapsamı, temel kavramlar, kaynaklar.

Detaylı

MIT OpenCourseWare http://ocw.mit.edu. 14.30 Ekonomide İstatistiksel Yöntemlere Giriş Bahar 2009

MIT OpenCourseWare http://ocw.mit.edu. 14.30 Ekonomide İstatistiksel Yöntemlere Giriş Bahar 2009 MIT OpenCourseWare http://ocw.mit.edu 14.30 Ekonomide İstatistiksel Yöntemlere Giriş Bahar 2009 Bu materyale atıfta bulunmak ve kullanım koşulları için http://ocw.mit.edu/terms sayfasını ziyaret ediniz.

Detaylı

Bilgisayar Mühendisliğine Giriş. Yrd.Doç.Dr.Hacer KARACAN

Bilgisayar Mühendisliğine Giriş. Yrd.Doç.Dr.Hacer KARACAN Bilgisayar Mühendisliğine Giriş Yrd.Doç.Dr.Hacer KARACAN SAYI VE KODLAMA SİSTEMLERİ Sayı sistemleri Veri sıkıştırma Şifreleme terimleri Giriş Her bilgisayarın ikili durum makinası olması, burada kullanılan

Detaylı

Gri Seviye Dönüşümleri ve Uzaysal Filtreleme. BMÜ-357 Sayısal Görüntü İşleme Yrd. Doç. Dr. İlhan AYDIN

Gri Seviye Dönüşümleri ve Uzaysal Filtreleme. BMÜ-357 Sayısal Görüntü İşleme Yrd. Doç. Dr. İlhan AYDIN Gri Seviye Dönüşümleri ve Uzaysal Filtreleme BMÜ-357 Sayısal Görüntü İşleme Yrd. Doç. Dr. İlhan AYDIN GRİ SEVİYE DÖNÜŞÜMLERİ Herhangi bir görüntü işleme operasyonu, görüntüdeki pikselin gri seviye değerlerini

Detaylı

MANTIK DEVRELERİ HALL, 2002) (SAYISAL TASARIM, ÇEVİRİ, LITERATUR YAYINCILIK) DIGITAL DESIGN PRICIPLES & PRACTICES (3. EDITION, PRENTICE HALL, 2001)

MANTIK DEVRELERİ HALL, 2002) (SAYISAL TASARIM, ÇEVİRİ, LITERATUR YAYINCILIK) DIGITAL DESIGN PRICIPLES & PRACTICES (3. EDITION, PRENTICE HALL, 2001) MANTIK DEVRELERİ DERSİN AMACI: SAYISAL LOJİK DEVRELERE İLİŞKİN KAPSAMLI BİLGİ SUNMAK. DERSİ ALAN ÖĞRENCİLER KOMBİNASYONEL DEVRE, ARDIŞIL DEVRE VE ALGORİTMİK DURUM MAKİNALARI TASARLAYACAK VE ÇÖZÜMLEMESİNİ

Detaylı

Chapter 3 Image Enhancement in the Spatial Domain. 2002 R. C. Gonzalez & R. E. Woods

Chapter 3 Image Enhancement in the Spatial Domain. 2002 R. C. Gonzalez & R. E. Woods Chapter 3 Image Enhancement in the Spatial Domain 2002 R. C. Gonzalez & R. E. Woods Chapter 3 Image Enhancement in the Spatial Domain 2002 R. C. Gonzalez & R. E. Woods Chapter 3 Image Enhancement in the

Detaylı

İSTANBUL TİCARET ÜNİVERSİTESİ BİLGİSAYAR MÜHENDİSLİĞİ BÖLÜMÜ BİLGİSAYAR SİSTEMLERİ LABORATUVARI

İSTANBUL TİCARET ÜNİVERSİTESİ BİLGİSAYAR MÜHENDİSLİĞİ BÖLÜMÜ BİLGİSAYAR SİSTEMLERİ LABORATUVARI İSTANBUL TİCARET ÜNİVERSİTESİ BİLGİSAYAR MÜHENDİSLİĞİ BÖLÜMÜ BİLGİSAYAR SİSTEMLERİ LABORATUVARI Veri Sıkıştırma Yöntemleri ve Huffman Kodlama ile Veri Sıkıştırma 1. Deney Amacı Veri sıkıştırma sadece bilgisayar

Detaylı

Dijital Görüntü İşleme Teknikleri

Dijital Görüntü İşleme Teknikleri Teknikleri Ders Notları, 2015 Doç. Dr. Fevzi Karslı Harita Mühendisliği Bölümü Mühendislik Fakültesi KTÜ 19 Ekim 2015 Pazartesi 1 Ders Planı ve İçeriği 1. Hafta Giriş, dersin kapsamı, temel kavramlar,

Detaylı

Dijital (Sayısal) Fotogrametri

Dijital (Sayısal) Fotogrametri Dijital (Sayısal) Fotogrametri Dijital fotogrametri, cisimlere ait iki boyutlu görüntü ortamından üç boyutlu bilgi sağlayan, sayısal resim veya görüntü ile çalışan fotogrametri bilimidir. Girdi olarak

Detaylı

Olasılık ve İstatistik (IE 220) Ders Detayları

Olasılık ve İstatistik (IE 220) Ders Detayları Olasılık ve İstatistik (IE 220) Ders Detayları Ders Adı Ders Kodu Dönemi Ders Saati Uygulama Saati Laboratuar Saati Kredi AKTS Olasılık ve İstatistik IE 220 Her İkisi 3 0 0 3 5 Ön Koşul Ders(ler)i Dersin

Detaylı

Dijital (Sayısal) Fotogrametri

Dijital (Sayısal) Fotogrametri Dijital (Sayısal) Fotogrametri Dijital fotogrametri, cisimlere ait iki boyutlu görüntü ortamından üç boyutlu bilgi sağlayan, sayısal resim veya görüntü ile çalışan fotogrametri bilimidir. Girdi olarak

Detaylı

3.2. Raster Veriler. Satırlar. Sütunlar. Piksel/hücre büyüklüğü

3.2. Raster Veriler. Satırlar. Sütunlar. Piksel/hücre büyüklüğü 3.2. Raster Veriler Satırlar Piksel/hücre büyüklüğü Sütunlar 1 Görüntü formatlı veriler Her piksel için gri değerleri kaydedilmiştir iki veya üç bant (RGB) çok sayıda bant Fotoğraf, uydu görüntüsü, ortofoto,

Detaylı

İstatistik ve Olasılık

İstatistik ve Olasılık İstatistik ve Olasılık Rastgele Değişkenlerin Dağılımları I Prof. Dr. İrfan KAYMAZ Ders konusu Bu derste; Rastgele değişkenlerin tanımı ve sınıflandırılması Olasılık kütle fonksiyonu Olasılık yoğunluk

Detaylı

Merge To Hdr. Merge To Hdr. Merge to hdr. HDR resimleri. www.dersmax.com Merge To Hdr 1

Merge To Hdr. Merge To Hdr. Merge to hdr. HDR resimleri. www.dersmax.com Merge To Hdr 1 Merge To Hdr Merge to hdr HDR resimleri. www.dersmax.com Merge To Hdr 1 www.dersmax.com Merge To Hdr 2 HDR nedir? Yüksek kontrastlı ya da ters ışıklı ortamlar için yapılan çekimlerde kullanılan bir teknik

Detaylı

Yrd. Doç. Dr. Caner ÖZCAN

Yrd. Doç. Dr. Caner ÖZCAN Yrd. Doç. Dr. Caner ÖZCAN Grafik Programlama Bilgisayar kullanılırken monitörlerde iki tür ekran moduyla karşılaşılır. Bu ekran modları Text modu ve Grafik modu dur. Text modunda ekran 25 satır ve 80 sütundan

Detaylı

2 Ders Kodu: GSR3114 3 Ders Türü: Seçmeli 4 Ders Seviyesi Lisans

2 Ders Kodu: GSR3114 3 Ders Türü: Seçmeli 4 Ders Seviyesi Lisans DİJİTAL GÖRÜNTÜLEME TEKNİKLERİ 1 Ders Adi: DİJİTAL GÖRÜNTÜLEME TEKNİKLERİ 2 Ders Kodu: GSR3114 3 Ders Türü: Seçmeli 4 Ders Seviyesi Lisans 5 Dersin Verildiği Yıl: 3 6 Dersin Verildiği Yarıyıl 6 7 Dersin

Detaylı

Bazı MSDOS komutları BAZI DOS KOMUTLARI

Bazı MSDOS komutları BAZI DOS KOMUTLARI Bazı MSDOS komutları Windows XP, Vista işletim sisteminde Başlat\Çalıştır (Start \ Run) kısmına cmd veya command yazdığınızda MS-DOS penceresi gelir. BİR KOMUTUN NASIL KULLANILDIGINI ÖĞRENMEK İÇİN HELP

Detaylı

Yıldız Teknik Üniversitesi Fen Bilimleri Enstitüsü Bilgisayar Mühendisliği Bölümü. Bilgisayarla Görme. Vize. İris Segmentation. Selçuk BAŞAK 08501008

Yıldız Teknik Üniversitesi Fen Bilimleri Enstitüsü Bilgisayar Mühendisliği Bölümü. Bilgisayarla Görme. Vize. İris Segmentation. Selçuk BAŞAK 08501008 Yıldız Teknik Üniversitesi Fen Bilimleri Enstitüsü Bilgisayar Mühendisliği Bölümü Bilgisayarla Görme Vize İris Segmentation Selçuk BAŞAK 08501008 Not: Ödevi hazırlamak için geliştirdiğim program ve kaynak

Detaylı

Renk Kanallarını Farklı Şekilde Kodlayarak Sıkıştırma Oranını Arttırma

Renk Kanallarını Farklı Şekilde Kodlayarak Sıkıştırma Oranını Arttırma Renk Kanallarını Farklı Şekilde Kodlayarak Sıkıştırma Oranını Arttırma Emir Öztürk 1, Altan Mesut 2 1 Trakya Üniversitesi, Bilgisayar Mühendisliği Bölümü, Edirne 2 Trakya Üniversitesi, Bilgisayar Mühendisliği

Detaylı

Dersin Sorumlusu: Yrd. Doç. Dr. Birol SOYSAL. Sunumları Hazırlayan: Doç. Dr. Bülent ÇAKMAK

Dersin Sorumlusu: Yrd. Doç. Dr. Birol SOYSAL. Sunumları Hazırlayan: Doç. Dr. Bülent ÇAKMAK MATLAB de Bilgisayar Programlama Dersin Sorumlusu: Yrd. Doç. Dr. Birol SOYSAL Sunumları Hazırlayan: Doç. Dr. Bülent ÇAKMAK disp komutu: Ekrana mesaj veya bir değişken değeri yazdırmak için kullanılan komuttur.

Detaylı

Görüntü İşleme Teknikleri Kullanılarak Bir Ortamın İnsan Yoğunluğunun Hesaplanması

Görüntü İşleme Teknikleri Kullanılarak Bir Ortamın İnsan Yoğunluğunun Hesaplanması Görüntü İşleme Teknikleri Kullanılarak Bir Ortamın İnsan Yoğunluğunun Hesaplanması Calculating The People Density Of An Environment Using Image Processing Tecniques Fatih Ahmet ŞENEL 1, Sezai TOKAT 2 1

Detaylı

SPPS. Verileri Düzenleme ve Değiştirme 3 - Data Menüsü. Y. Doç. Dr. İbrahim Turan Nisan 2011

SPPS. Verileri Düzenleme ve Değiştirme 3 - Data Menüsü. Y. Doç. Dr. İbrahim Turan Nisan 2011 SPPS Verileri Düzenleme ve Değiştirme 3 - Data Menüsü Y. Doç. Dr. İbrahim Turan Nisan 2011 Data Menüsü 1- Define Variable 1- Properties (Değişken Özelliklerini Tanımlama) Değişken özelliklerini tanımlamak

Detaylı

Yüksek hacimli taramalar için ihtiyaç duyduğunuz hız ve kalite

Yüksek hacimli taramalar için ihtiyaç duyduğunuz hız ve kalite DR-7580 DR-9080C Yüksek Hızlı Tarayıcı Yüksek hacimli taramalar için ihtiyaç duyduğunuz hız ve kalite DR-7580 / DR-9080C Ultra verimli, yüksek kapasiteli tarayıcı Canon'un yeni seri başı yüksek kapasiteli

Detaylı

GRAFİK ve ANİMASYON Alakoç

GRAFİK ve ANİMASYON Alakoç 0 İÇİNDEKİLER A- GRAFİK ve ANİMASYON KAVRAMLARI... 2 1. TEMEL GRAFİK BİLGİLERİ... 2 1.1. Piksel Nedir?... 2 1.2. Derinlik... 2 1.3. Derinlik ve Ekran Kartı... 4 1.4. Çözünürlük... 4 1.4.1. İmage Çözünürlüğü...

Detaylı

1203608-SIMÜLASYON DERS SORUMLUSU: DOÇ. DR. SAADETTIN ERHAN KESEN. Ders No:5 Rassal Değişken Üretimi

1203608-SIMÜLASYON DERS SORUMLUSU: DOÇ. DR. SAADETTIN ERHAN KESEN. Ders No:5 Rassal Değişken Üretimi 1203608-SIMÜLASYON DERS SORUMLUSU: DOÇ. DR. SAADETTIN ERHAN KESEN Ders No:5 RASSAL DEĞIŞKEN ÜRETIMI Bu bölümde oldukça yaygın bir biçimde kullanılan sürekli ve kesikli dağılımlardan örneklem alma prosedürleri

Detaylı

AMAÇ Araçlardaki Kamera Sistemleri

AMAÇ Araçlardaki Kamera Sistemleri SUNU PLANI AMAÇ OPEN CV GÖRÜNTÜ EŞİKLEME KENAR BULMA ŞEKİL BULMA GÖRÜNTÜ GENİŞLETME VE BOZMA GÖRÜNTÜ DOLDURMA AFFİNE DÖNÜŞÜMÜ PERSPEKTİF DÖNÜŞÜM KUŞ BAKIŞI GÖRÜNTÜ DÖNÜŞÜMÜ AMAÇ Araçlardaki Kamera Sistemleri

Detaylı

Adım Adım SPSS. 1- Data Girişi ve Düzenlemesi 2- Hızlı Menü. Y. Doç. Dr. İbrahim Turan Nisan 2011

Adım Adım SPSS. 1- Data Girişi ve Düzenlemesi 2- Hızlı Menü. Y. Doç. Dr. İbrahim Turan Nisan 2011 Adım Adım SPSS 1- Data Girişi ve Düzenlemesi 2- Hızlı Menü Y. Doç. Dr. İbrahim Turan Nisan 2011 File (Dosya) Menüsü Excel dosyalarını SPSS e aktarma Variable View (Değişken Görünümü 1- Name (İsim - Kod)

Detaylı

2. SAYI SİSTEMLERİ VE KODLAR

2. SAYI SİSTEMLERİ VE KODLAR 2. SAYI SİSTEMLERİ VE KODLAR 2.1. Sabit Noktalı Sayı Sistemleri 2.1.1. Ondalık Sayı Sistemi Günlük yaşantımızda kullandığımız sayı sistemi ondalık (decimal) sayı sistemidir. Ayrıca 10 tabanlı sistem olarak

Detaylı

Görüntü İşlemeye Giriş Introduction to Image Processing. Doç. Dr. Aybars UĞUR

Görüntü İşlemeye Giriş Introduction to Image Processing. Doç. Dr. Aybars UĞUR Görüntü İşlemeye Giriş Introduction to Image Processing Doç. Dr. Aybars UĞUR 2013 1 İçerik Görüntü ve Piksel Görüntü Türleri Görüntü İşleme Görüntü İşlemenin Amaçları Görüntü İyileştirme Görüntü Analizi

Detaylı

hkm 2004/90 5. Göllerin Çok Bantl Uydu Görüntülerinden Ç kar m 6. Sonuç ve Öneriler

hkm 2004/90 5. Göllerin Çok Bantl Uydu Görüntülerinden Ç kar m 6. Sonuç ve Öneriler Çöl arazide, yeşil bitki örtüsü su kenarlar nda bulunur. Bu ilişki göllerin ya da rmaklar n etraf nda yeşil bitki örtüsünün olabileceğini gösterir ve su nesnesinin tan nmas nda ve anlaş lmas nda yard mc

Detaylı

Görüntü Segmentasyonu (Bölütleme)

Görüntü Segmentasyonu (Bölütleme) Görüntü Segmentasyonu (Bölütleme) Segmentasyon, görüntüyü aynı cinsten obje ve bölgelere ayırmaktır. 20 Aralık 2014 Cumartesi 1 Görüntü Segmentasyonu 20 Aralık 2014 Cumartesi 2 Gestalt kanunları Görüntü

Detaylı

Karakter Değişkenlere İlişkin Komutlar

Karakter Değişkenlere İlişkin Komutlar Karakter Değişkenlere İlişkin Komutlar ASCII Kodlama Sistemi Bilgisayar sayılar üzerine kurulmuş makinalar olduklarından onların düşünmeleri ve hatırlamaları sayısal değerlerle olmaktadır. Bundan dolayı

Detaylı

SIRA İSTATİSTİKLERİ VE UYGULAMA ALANLARINDAN BİR ÖRNEĞİN DEĞERLENDİRMESİ

SIRA İSTATİSTİKLERİ VE UYGULAMA ALANLARINDAN BİR ÖRNEĞİN DEĞERLENDİRMESİ Sıra İstatistikleri ve Uygulama Alanlarından Bir Örneğin Değerlendirmesi 89 SIRA İSTATİSTİKLERİ VE UYGULAMA ALANLARINDAN BİR ÖRNEĞİN DEĞERLENDİRMESİ Esin Cumhur PİRİNÇCİLER Araş. Gör. Dr., Çanakkale Onsekiz

Detaylı

Yrd. Doç. Dr. Saygın ABDİKAN 2014-2015 Öğretim Yılı Bahar Dönemi

Yrd. Doç. Dr. Saygın ABDİKAN 2014-2015 Öğretim Yılı Bahar Dönemi Dijital Görüntü İşleme (JDF338) Yrd. Doç. Dr. Saygın ABDİKAN 2014-2015 Öğretim Yılı Bahar Dönemi 1 Dijital görüntü işlemede temel kavramlar Sayısal Görüntü İşleme; bilgisayar yardımı ile raster verilerin

Detaylı

Müzik Verilerini Saklama Biçimleri

Müzik Verilerini Saklama Biçimleri Müzik Verilerini Saklama Biçimleri Ege Üniversitesi Fen Bilimleri Fakültesi Bilgisayar Mühendisliği Ana Bilim Dalı İlker Kalaycı Haziran 2009 Kapsam Sayısal Müziğe Giriş Müzik Verilerini Saklama Türleri

Detaylı

SiberLojikCV Sayısal Görüntü İşleme Platformu

SiberLojikCV Sayısal Görüntü İşleme Platformu SiberLojikCV Sayısal Görüntü İşleme Platformu 1 Sayın Araştırmacı; Dünyada gelişen teknoloji ile hayatın her alanında, kendisini daha iyi hissettiren sayısal görüntü işleme yazılım algoritmaları, yaşantımızı

Detaylı

18.034 İleri Diferansiyel Denklemler

18.034 İleri Diferansiyel Denklemler MIT AçıkDersSistemi http://ocw.mit.edu 18.034 İleri Diferansiyel Denklemler 2009 Bahar Bu bilgilere atıfta bulunmak veya kullanım koşulları hakkında bilgi için http://ocw.mit.edu/terms web sitesini ziyaret

Detaylı

MMT 106 Teknik Fotoğrafçılık 3 Digital Görüntüleme

MMT 106 Teknik Fotoğrafçılık 3 Digital Görüntüleme MMT 106 Teknik Fotoğrafçılık 3 Digital Görüntüleme 2010-2011 Bahar Yarıyılı Ar. Gör. Dr. Ersoy Erişir 1 Konvansiyonel Görüntüleme (Fotografi) 2 Görüntü Tasarımı 3 Digital Görüntüleme 3.1 Renkler 3.2.1

Detaylı

KIFSAD LIGHTROOM 2 EĞİTİM DOKÜMANI

KIFSAD LIGHTROOM 2 EĞİTİM DOKÜMANI KIFSAD LIGHTROOM 2 EĞİTİM DOKÜMANI LIGHTROOM 2 Program açıldıktan sonra File / Import Photos From Disk menüsüne tıklanarak yüklenmek istenen fotoğraflar için seçim penceresi açılır. CTRL tuşuna basılı

Detaylı

TÜRKİYE CUMHURİYETİ DEVLETİNİN temellerinin atıldığı Çanakkale zaferinin 100. yılı kutlu olsun.

TÜRKİYE CUMHURİYETİ DEVLETİNİN temellerinin atıldığı Çanakkale zaferinin 100. yılı kutlu olsun. Doç.Dr.Mehmet MISIR-2013 TÜRKİYE CUMHURİYETİ DEVLETİNİN temellerinin atıldığı Çanakkale zaferinin 100. yılı kutlu olsun. Son yıllarda teknolojinin gelişmesi ile birlikte; geniş alanlarda, kısa zaman aralıklarında

Detaylı

Uzaktan Algılama (3) Öğr. Gör. Dr. Özgür ZEYDAN http://cevre.beun.edu.tr/zeydan/ Renk Teorileri

Uzaktan Algılama (3) Öğr. Gör. Dr. Özgür ZEYDAN http://cevre.beun.edu.tr/zeydan/ Renk Teorileri Uzaktan Algılama (3) Öğr. Gör. Dr. Özgür ZEYDAN http://cevre.beun.edu.tr/zeydan/ Renk Teorileri Eklemeli renk teorisi Çıkarmalı renk teorisi 1 RGB (Red Green - Blue) Kavramı Red Green - Blue RGB-Mixer

Detaylı

İşaret İşleme ve Haberleşmenin Temelleri. Yrd. Doç. Dr. Ender M. Ekşioğlu eksioglue@itu.edu.tr http://www2.itu.edu.tr/~eksioglue

İşaret İşleme ve Haberleşmenin Temelleri. Yrd. Doç. Dr. Ender M. Ekşioğlu eksioglue@itu.edu.tr http://www2.itu.edu.tr/~eksioglue İşaret İşleme ve Haberleşmenin Temelleri Yrd. Doç. Dr. Ender M. Ekşioğlu eksioglue@itu.edu.tr http://www2.itu.edu.tr/~eksioglue İşaretler: Bilgi taşıyan işlevler Sistemler: İşaretleri işleyerek yeni işaretler

Detaylı

DERS 2. Fonksiyonlar

DERS 2. Fonksiyonlar DERS Fonksionlar.1. Fonksion Kavramı. Her bilim dalının önemli bir işlevi, çeşitli nesneler vea büüklükler arasında eşlemeler kurmaktır. Böle bir eşleme kurulması tahmin ürütme olanağı verir. Örneğin,

Detaylı

Dijital Fotoğraf Nedir?

Dijital Fotoğraf Nedir? Dijital Fotoğraf Nedir? Dijital fotoğraf, piksel olarak adlandırılan milyonlarca minik noktacıktan oluşan görüntüdür. Bir ressamın ufak vuruşlarla resim yapması gibi, sizin bilgisayarınızda minik pikseller

Detaylı

Yrd.Doç.Dr. Celal Murat KANDEMİR. Kodlama (Coding) : Bir nesneler kümesinin bir dizgi (bit dizisi) kümesi ile temsil edilmesidir.

Yrd.Doç.Dr. Celal Murat KANDEMİR. Kodlama (Coding) : Bir nesneler kümesinin bir dizgi (bit dizisi) kümesi ile temsil edilmesidir. Bilgisayar Mimarisi İkilik Kodlama ve Mantık Devreleri Yrd.Doç.Dr. Celal Murat KANDEMİR ESOGÜ Eğitim Fakültesi - BÖTE twitter.com/cmkandemir Kodlama Kodlama (Coding) : Bir nesneler kümesinin bir dizgi

Detaylı

İçindekiler. Giriş... 1. Kanuni Uyarılar... 3. IRISCompressor Yüklemesi ve Kurulumu... 5. Sistem Gereksinimleri... 5. Kurulum... 5. Etkinleştirme...

İçindekiler. Giriş... 1. Kanuni Uyarılar... 3. IRISCompressor Yüklemesi ve Kurulumu... 5. Sistem Gereksinimleri... 5. Kurulum... 5. Etkinleştirme... Kullanım Kılavuzu İçindekiler Giriş... 1 ÖNEMLİ NOTLAR... 1 Kanuni Uyarılar... 3 IRISCompressor Yüklemesi ve Kurulumu... 5 Sistem Gereksinimleri... 5 Kurulum... 5 Etkinleştirme... 7 Otomatik Güncelleme...

Detaylı

Çoklu Kordinat Sistemi

Çoklu Kordinat Sistemi Çoklu Kordinat Sistemi Uçak pistte durduğu zaman burnunun kuleye göre kordinatı: (50, 5, 0), buna karşın uçağın kordinatlarına göre pozisyonu ise:(0,0,0). Benzer bir biçimde, kulenin tabanı kule kordinat

Detaylı

SAYISAL İŞARET İŞLEME. M. Kemal GÜLLÜ

SAYISAL İŞARET İŞLEME. M. Kemal GÜLLÜ SAYISAL İŞARET İŞLEME M. Kemal GÜLLÜ İçerik Giriş Ayrık Zamanlı İşaretler Ayrık Zamanlı Sistemler İşaret ve Sistemlerin Frekans Uzayı Analizi Sürekli Zaman İşaretlerin Ayrık Zamanlı İşlenmesi İşaret ve

Detaylı

1.4. BİT Nİ KULLANMA ve YÖNETME

1.4. BİT Nİ KULLANMA ve YÖNETME ANKARA MAMAK MEHMET ÇEKİÇ ORTAOKULU 1.4. BİT Nİ KULLANMA ve YÖNETME Ankara, 2014 Hazırlayan: Mustafa KATLANÇ 2 1.4. BİT Nİ KULLANMA ve YÖNETME Mehmet Çekiç Ortaokulu Sayfa 1 / 13 Mustafa KATLANÇ, Ankara

Detaylı

VEKTÖR UZAYLARI 1.GİRİŞ

VEKTÖR UZAYLARI 1.GİRİŞ 1.GİRİŞ Bu bölüm lineer cebirin temelindeki cebirsel yapıya, sonlu boyutlu vektör uzayına giriş yapmaktadır. Bir vektör uzayının tanımı, elemanları skalar olarak adlandırılan herhangi bir cisim içerir.

Detaylı

İmage segmentasyon (Görüntü Bölütleme)

İmage segmentasyon (Görüntü Bölütleme) İmage segmentasyon (Görüntü Bölütleme) Segmantasyon (Bölütleme) Segmentasyon genellikle görüntü analizinin ilk aşamasıdır. Görüntü bölütleme, bir görüntüyü her biri içerisinde farklı özelliklerin tutulduğu

Detaylı

Tanı Testlerinin Değerlendirilmesi. ROC Analizi. Prof.Dr. Rian DİŞÇİ

Tanı Testlerinin Değerlendirilmesi. ROC Analizi. Prof.Dr. Rian DİŞÇİ Tanı Testlerinin Değerlendirilmesi ROC Analizi Prof.Dr. Rian DİŞÇİ İstanbul Üniversitesi, Onkoloji Enstitüsü Kanser Epidemiyolojisi Ve Biyoistatistik Bilim Dalı Tanı Testleri Klinik çalışmalarda, özellikle

Detaylı

sanat terimi olarak resim ve fotoğraf yoluyla yapılan tüm iletişim araçlarına verilen addır. Grafik sanatçısı mesajını resim, fotoğraf, illüstrasyon

sanat terimi olarak resim ve fotoğraf yoluyla yapılan tüm iletişim araçlarına verilen addır. Grafik sanatçısı mesajını resim, fotoğraf, illüstrasyon Grafik Nedir? Y a z ı, ğdaş r e s sanat terimi olarak resim ve fotoğraf yoluyla yapılan tüm iletişim araçlarına verilen addır. Grafik sanatçısı mesajını resim, fotoğraf, illüstrasyon ve yazı (tipografi)

Detaylı

DİJİTAL GÖRÜNTÜ İŞLEME SİSTEMİ KULLANARAK BARTIN ORMAN FAKÜLTESİ BİNASININ VE YERLEŞKE GİRİŞİNİN DÜZENLENMESİ

DİJİTAL GÖRÜNTÜ İŞLEME SİSTEMİ KULLANARAK BARTIN ORMAN FAKÜLTESİ BİNASININ VE YERLEŞKE GİRİŞİNİN DÜZENLENMESİ DİJİTAL GÖRÜNTÜ İŞLEME SİSTEMİ KULLANARAK BARTIN ORMAN FAKÜLTESİ BİNASININ VE YERLEŞKE GİRİŞİNİN DÜZENLENMESİ Alper AYTEKİN, Burcu YALÇINKAYA ZKÜ Bartın Orman Fakültesi 74100 BARTIN ÖZET Bu çalışmada,

Detaylı

Dijital Kameralar (Airborne Digital Cameras)

Dijital Kameralar (Airborne Digital Cameras) Dijital Kameralar (Airborne Digital Cameras) Klasik fotogrametrik görüntü alımındaki değişim, dijital kameraların gelişimi ile sağlanmaktadır. Dijital görüntü, analog görüntü ile kıyaslandığında önemli

Detaylı

Rastlantı Değişkenleri

Rastlantı Değişkenleri Rastlantı Değişkenleri Olasılık Kütle Fonk. Example: A shipment of 8 similar microcomputers to a retail outlet contains 3 that are defective. If a school makes a random purchase of 2 of these computers,

Detaylı

Dijital Panoramik Görüntülemede HD Teknolojisi. Süper Hızlı Dijital Panoramik X-ray Cihazı. Thinking ahead. Focused on life.

Dijital Panoramik Görüntülemede HD Teknolojisi. Süper Hızlı Dijital Panoramik X-ray Cihazı. Thinking ahead. Focused on life. Dijital Panoramik Görüntülemede HD Teknolojisi Süper Hızlı Dijital Panoramik X-ray Cihazı Konsept!! W E N Süper Yüksek Hız 5.5 sn & Süper Yüksek Çözünürlük 16 bit Yeni teknoloji HD tüp ve sensör Yeni nesil

Detaylı

Problem B. Beton duvar (perde) Beton. E = 29500 ksi, Poisson oranı = 0.2. Yapılacaklar

Problem B. Beton duvar (perde) Beton. E = 29500 ksi, Poisson oranı = 0.2. Yapılacaklar Problem B Beton duvar (perde) Beton E = 29500 ksi, Poisson oranı = 0.2 Yapılacaklar Duvarı modellerken shell (kabuk) elemanları kullanınız. A Perdesindeki kesme kuvvetini, eksenel kuvveti ve momenti hesaplayınız.

Detaylı

RİSK ANALİZİ VE AKTÜERYAL MODELLEME MAYIS 2015

RİSK ANALİZİ VE AKTÜERYAL MODELLEME MAYIS 2015 RİSK ANALİZİ VE AKTÜERYAL MODELLEME MAYIS 2015 SORU 2: Motosiklet sigortası pazarlamak isteyen bir şirket, motosiklet kaza istatistiklerine bakarak, poliçe başına yılda ortalama 0,095 kaza olacağını tahmin

Detaylı

RASSAL DEĞİŞKENLER VE OLASILIK DAĞILIMLARI. Yrd. Doç. Dr. Emre ATILGAN

RASSAL DEĞİŞKENLER VE OLASILIK DAĞILIMLARI. Yrd. Doç. Dr. Emre ATILGAN RASSAL DEĞİŞKENLER VE OLASILIK DAĞILIMLARI Yrd. Doç. Dr. Emre ATILGAN 1 RASSAL DEĞİŞKENLER VE OLASILIK DAĞILIMLARI Olasılığa ilişkin olayların çoğunluğunda, deneme sonuçlarının bir veya birkaç yönden incelenmesi

Detaylı

ECDL ImageMaker Müfredat

ECDL ImageMaker Müfredat ECDL ImageMaker Müfredat Test Hedefleri: ECDL ImageMaker testi bir görüntü işleme uygulaması kullanarak Adayın yetkin olmasını ve sayısal görüntülerin altında yatan ana kavramların bazılarını anlamasını

Detaylı

ELM019 - Ölçme ve Enstrümantasyon 3

ELM019 - Ölçme ve Enstrümantasyon 3 DAQ - Converters Veri Toplayıcılar Data Acquisition Bir Veri Toplama Sisteminin (DAS) Bileşenleri Bazı tıbbi cihazlar bir hastadan gelen fizyolojik işaretlerin takibini ve analizini yapabilir. Şekildeki

Detaylı

1-2 - * Bu Ders Notları tam olarak emin olmamakla birlikte 2012-2013 yıllarına aiitir.tekrardan Sn.Hakan Paçal'a çoook tsk ederiz...

1-2 - * Bu Ders Notları tam olarak emin olmamakla birlikte 2012-2013 yıllarına aiitir.tekrardan Sn.Hakan Paçal'a çoook tsk ederiz... 1-2 - * Bu Ders Notları tam olarak emin olmamakla birlikte 2012-2013 yıllarına aiitir.tekrardan Sn.Hakan Paçal'a çoook tsk ederiz... CABİR VURAL BAHAR 2006 Açıklamalar

Detaylı

MATM 133 MATEMATİK LOJİK. Dr. Doç. Çarıyar Aşıralıyev

MATM 133 MATEMATİK LOJİK. Dr. Doç. Çarıyar Aşıralıyev MATM 133 MATEMATİK LOJİK Dr. Doç. Çarıyar Aşıralıyev 5.KONU Cebiresel yapılar; Grup, Halka 1. Matematik yapı 2. Denk yapılar ve eş yapılar 3. Grup 4. Grubun basit özellikleri 5. Bir elemanın kuvvetleri

Detaylı

SPSS (Statistical Package for Social Sciences)

SPSS (Statistical Package for Social Sciences) SPSS (Statistical Package for Social Sciences) SPSS Data Editor: Microsoft Excel formatına benzer satır ve sütunlardan oluşan çalışma sayfası (*sav) SPSS Data Editör iki arayüzden oluşur. 1. Data View

Detaylı

25. Aşağıdaki çıkarma işlemlerini doğrudan çıkarma yöntemi ile yapınız.

25. Aşağıdaki çıkarma işlemlerini doğrudan çıkarma yöntemi ile yapınız. BÖLÜM. Büyüklüklerin genel özellikleri nelerdir? 2. Analog büyüklük, analog işaret, analog sistem ve analog gösterge terimlerini açıklayınız. 3. Analog sisteme etrafınızdaki veya günlük hayatta kullandığınız

Detaylı

MATLAB DA SAYISAL ANALİZ DOÇ. DR. ERSAN KABALCI

MATLAB DA SAYISAL ANALİZ DOÇ. DR. ERSAN KABALCI MATLAB DA SAYISAL ANALİZ DOÇ. DR. ERSAN KABALCI Konu Başlıkları Lineer Denklem Sistemlerinin Çözümü İntegral ve Türev İntegral (Alan) Türev (Sayısal Fark ) Diferansiyel Denklem çözümleri Denetim Sistemlerinin

Detaylı

Simülasyonda İstatiksel Modeller

Simülasyonda İstatiksel Modeller Simülasyonda İstatiksel Modeller Amaç Model-geliştirici dünyaya deterministik değil olasıksal olarak bakar. İstatiksel modeller değişimleri iyi tanımlayabilir. İlgilenilen olayın örneklenmesi ile uygun

Detaylı

Akademik Rapor Hazırlama ve Yazışma Teknikleri

Akademik Rapor Hazırlama ve Yazışma Teknikleri Akademik Rapor Hazırlama ve Yazışma Teknikleri 6.DERS AKADEMİ K RAPORLARDA Ş EKİ L VE TABLO KULLANIMLARI Gündem Görsel temsil elemanları Grafikler Şekiller, diyagramlar Metinsel temsil elemanı Tablolar

Detaylı

Gerçek Zamanlı Olarak, Anfis İle Renk Tabanlı Nesne Tespit Ve Motorlu Sistem İle Takip Edilmesi

Gerçek Zamanlı Olarak, Anfis İle Renk Tabanlı Nesne Tespit Ve Motorlu Sistem İle Takip Edilmesi S Ü L E Y M A N D E M İ R E L Ü N İ V E R S İ T E S İ T E K N İ K B İ L İ M L E R M E S L E K Y Ü K S E K O K U L U S U L E Y M A N D E M I R E L U N I V E R S I T Y T E C H N I C A L S C I E N C E S V

Detaylı

İSTATİSTİK SPSS UYGULAMA

İSTATİSTİK SPSS UYGULAMA İSTATİSTİK SPSS UYGULAMA Yrd. Doç. Dr. H. İbrahim CEBECİ SPSS UYGULAMA Bu bölümde SPSS veri girişi, Basit grafik hazırlama, örneklem çekimi ve tanımlayıcı istatistiksel analizler hakkında SPSS uygulamaları

Detaylı

Şekil 6.2 Çizgisel interpolasyon

Şekil 6.2 Çizgisel interpolasyon 45 Yukarıdaki şekil düzensiz bir X,Y ilişkisini göstermektedir. bu fonksiyon eğri üzerindeki bir dizi noktayı birleştiren bir seri düzgün çizgi halindeki bölümlerle açıklanabilir. Noktaların sayısı ne

Detaylı

2 INDESIGN CC DE NELER YENİ?

2 INDESIGN CC DE NELER YENİ? İÇİNDEKİLER VII İÇİNDEKİLER 1 TEMEL KAVRAMLAR 1 Neler Öğreneceksiniz? 1 Başlarken 1 Sistem Gereksinimleri 2 Mizanpaj Nedir? 3 Forma Nedir? 3 Grafik Formatları ve Genel Özellikleri 3 Bitmap Grafikler 4

Detaylı

Frekans domain inde İşlemler. BMÜ-357 Sayısal Görüntü İşleme Yrd. Doç. Dr. İlhan AYDIN

Frekans domain inde İşlemler. BMÜ-357 Sayısal Görüntü İşleme Yrd. Doç. Dr. İlhan AYDIN Frekans domain inde İşlemler BMÜ-357 Sayısal Görüntü İşleme Yrd. Doç. Dr. İlhan AYDIN Domain Dönüşümü Dönüşüm, bir sinyalin, başka parametrelerle ifade edilmesi şeklinde düşünülebilir. Ters dönüşüm ise,

Detaylı

Rasterize işlemi: Aynı işlem shapeler için de geçerlidir.

Rasterize işlemi: Aynı işlem shapeler için de geçerlidir. Rasterize işlemi: Type katmanında silgi, fırça, gradient vs. kullanılmaz. Kullanılması için rasterize işlemini yapmak gerekir. Katmana sağ tıklanarak Rasterize type tıklanır ve type katmanı normal katmana

Detaylı

8. HAFTA BLM323 SAYISAL ANALİZ. Okt. Yasin ORTAKCI.

8. HAFTA BLM323 SAYISAL ANALİZ. Okt. Yasin ORTAKCI. 8. HAFTA BLM323 SAYISAL ANALİZ Okt. Yasin ORTAKCI yasinortakci@karabuk.edu.tr Karabük Üniversitesi Uzaktan Eğitim Uygulama ve Araştırma Merkezi 2 MATRİSLER Matris veya dizey, dikdörtgen bir sayılar tablosu

Detaylı

10/17/2007 Nesneye Yonelik Programlama 3.1

10/17/2007 Nesneye Yonelik Programlama 3.1 Procedure-Based Programming in C++ Çoğu gerçek dünya problemleri binlerce kod satırı gerektirir ( MS Windows NT 5.0 25 million dan fazla kod satırından oluşmaktadır). Yazılımın tasarımı, kodlanması ve

Detaylı

Matematikte karşılaştığınız güçlükler için endişe etmeyin. Emin olun benim karşılaştıklarım sizinkilerden daha büyüktür.

Matematikte karşılaştığınız güçlükler için endişe etmeyin. Emin olun benim karşılaştıklarım sizinkilerden daha büyüktür. - 1 - ÖĞRENME ALANI CEBİR BÖLÜM KARMAŞIK SAYILAR ALT ÖĞRENME ALANLARI 1) Karmaşık Sayılar Karmaşık Sayıların Kutupsal Biçimi KARMAŞIK SAYILAR Kazanım 1 : Gerçek sayılar kümesini genişletme gereğini örneklerle

Detaylı

BİLGİSAYAR 4 MOLEKÜLER BİYOLOJİ VE GENETİK BÖLÜMÜ YARD. DOÇ. DR. MEHTAP YALÇINKAYA 08.04.2011

BİLGİSAYAR 4 MOLEKÜLER BİYOLOJİ VE GENETİK BÖLÜMÜ YARD. DOÇ. DR. MEHTAP YALÇINKAYA 08.04.2011 BİLGİSAYAR 4 MOLEKÜLER BİYOLOJİ VE GENETİK BÖLÜMÜ HTML DERS NOTLARI 6. DERS YARD. DOÇ. DR. MEHTAP YALÇINKAYA 08.04.2011 HYPERLINKS - KÖPRÜ Sayfalara link (bağlantılar) oluşturmak için kullanılır.

Detaylı

TEKNİK ŞARTNAME VİDEO KURGU İSTASYONU (15 ADET) VİDEO KURGU İSTASYONU DONANIM ÖZELLİKLERİ VİDEO KURGU KARTI ÖZELLİKLERİ

TEKNİK ŞARTNAME VİDEO KURGU İSTASYONU (15 ADET) VİDEO KURGU İSTASYONU DONANIM ÖZELLİKLERİ VİDEO KURGU KARTI ÖZELLİKLERİ TEKNİK ŞARTNAME KONU: Kurumumuzda kullanılmak üzere 15 adet profesyonel video kurgu istasyonu ve 6 adet profesyonel video kurgu kartı alımı, teknik şartlarını kapsar. VİDEO KURGU İSTASYONU (15 ADET) VİDEO

Detaylı

MAK 210 SAYISAL ANALİZ

MAK 210 SAYISAL ANALİZ MAK 210 SAYISAL ANALİZ BÖLÜM 6- İSTATİSTİK VE REGRESYON ANALİZİ Doç. Dr. Ali Rıza YILDIZ 1 İSTATİSTİK VE REGRESYON ANALİZİ Bütün noktalardan geçen bir denklem bulmak yerine noktaları temsil eden, yani

Detaylı

Teknoloji ile Tanışalım

Teknoloji ile Tanışalım 2 ANKARA MAMAK MEHMET ÇEKİÇ ORTAOKULU 1.4. BİT Nİ KULLANMA ve YÖNETME 1.4. BİT Nİ KULLANMA ve YÖNETME Ankara, 2014 Hazırlayan: Mustafa KATLANÇ 3 1.4.1. TEKNOLOJİ İLE TANIŞALIM 4 Teknoloji ile Tanışalım

Detaylı

YABANCI DİL EĞİTİMİ VEREN ÖZEL BİR EĞİTİM KURUMUNDAKİ ÖĞRENCİLERİN BEKLENTİLERİNİN ARAŞTIRILMASI. Sibel SELİM 1 Efe SARIBAY 2

YABANCI DİL EĞİTİMİ VEREN ÖZEL BİR EĞİTİM KURUMUNDAKİ ÖĞRENCİLERİN BEKLENTİLERİNİN ARAŞTIRILMASI. Sibel SELİM 1 Efe SARIBAY 2 Dokuz Eylül Üniversitesi Sosyal Bilimler Enstitüsü Dergisi Cilt 5, Sayı:2, 2003 YABANCI DİL EĞİTİMİ VEREN ÖZEL BİR EĞİTİM KURUMUNDAKİ ÖĞRENCİLERİN BEKLENTİLERİNİN ARAŞTIRILMASI Sibel SELİM 1 Efe SARIBAY

Detaylı

AKU J. Sci. Eng. 14 (2014) 025101 (1-10) DOI:10.5578/fmbd.7849 Araştırma Makalesi / Research Article

AKU J. Sci. Eng. 14 (2014) 025101 (1-10) DOI:10.5578/fmbd.7849 Araştırma Makalesi / Research Article Afyon Kocatepe Üniversitesi Fen ve Mühendislik ilimleri Dergisi Afyon Kocatepe University Journal of Science and Engineering AKÜ FEMÜİD 14 (2014) 025101 (1-10) AKU J. Sci. Eng. 14 (2014) 025101 (1-10)

Detaylı

MIT OpenCourseWare http://ocw.mit.edu. 14.30 Ekonomide İstatistiksel Yöntemlere Giriş Bahar 2009

MIT OpenCourseWare http://ocw.mit.edu. 14.30 Ekonomide İstatistiksel Yöntemlere Giriş Bahar 2009 MIT OpenCourseWare http://ocw.mit.edu 14.30 Ekonomide İstatistiksel Yöntemlere Giriş Bahar 2009 Bu materyale atıfta bulunmak ve kullanım koşulları için http://ocw.mit.edu/terms sayfasını ziyaret ediniz.

Detaylı

NEIGHBOURHOOD PROCESSING (KOMŞULUK İLİŞKİLİ İŞLEMLERİ- BÖLGESEL İŞLEMLER-UZAYSAL FİLTRELEME) BMÜ-357 Sayısal Görüntü İşleme Yrd. Doç. Dr.

NEIGHBOURHOOD PROCESSING (KOMŞULUK İLİŞKİLİ İŞLEMLERİ- BÖLGESEL İŞLEMLER-UZAYSAL FİLTRELEME) BMÜ-357 Sayısal Görüntü İşleme Yrd. Doç. Dr. NEIGHBOURHOOD PROCESSING (KOMŞULUK İLİŞKİLİ İŞLEMLERİ- BÖLGESEL İŞLEMLER-UZAYSAL FİLTRELEME) BMÜ-357 Sayısal Görüntü İşleme Yrd. Doç. Dr. İlhan AYDIN 1 KOMŞULUK İLİŞKİLİ İŞLEMLER (UZAYSAL FİLİTRELER) Noktasal

Detaylı

BÖLÜM 8 BİLGİSAYAR UYGULAMALARI - 2

BÖLÜM 8 BİLGİSAYAR UYGULAMALARI - 2 1 BÖLÜM 8 BİLGİSAYAR UYGULAMALARI - 2 Bu bölümde bir veri seti üzerinde betimsel istatistiklerin kestiriminde SPSS paket programının kullanımı açıklanmaktadır. Açıklamalar bir örnek üzerinde hareketle

Detaylı