Gri Seviye Dönüşümleri ve Uzaysal Filtreleme. BMÜ-357 Sayısal Görüntü İşleme Yrd. Doç. Dr. İlhan AYDIN

Ebat: px
Şu sayfadan göstermeyi başlat:

Download "Gri Seviye Dönüşümleri ve Uzaysal Filtreleme. BMÜ-357 Sayısal Görüntü İşleme Yrd. Doç. Dr. İlhan AYDIN"

Transkript

1 Gri Seviye Dönüşümleri ve Uzaysal Filtreleme BMÜ-357 Sayısal Görüntü İşleme Yrd. Doç. Dr. İlhan AYDIN

2 GRİ SEVİYE DÖNÜŞÜMLERİ Herhangi bir görüntü işleme operasyonu, görüntüdeki pikselin gri seviye değerlerini dönüştürme işlemidir. Ancak, görüntü işleme operasyonları; dönüşümü gerçekleştirmek için, ihtiyaç duyacağı bilgilere göre 3 sınıfa ayrılabilir. Bunlar en zordan en basite göre; 1- Transformlar (Dönüşümler): değişik domainlere dönüşüm yapılarak görüntü işleme işlemidir. (Bu derste uzaysal domain(spatial domain) ve frekans domaininde (frequency domain) işlemler yapılacaktır. ) Çok etkili ve verimli algoritmalar bu şekilde çalıştırılır. Bir dönüşümü kullanarak, tüm görüntünün tek bir büyük blok gibi işlenmiş olduğunu düşünebilirsiniz. 2-Komşuluk ilişkili (Neighbourhood processing-bölgesel) işlemler: Belirli bir pikselin gri düzeyini değiştirmek için bilmemiz gereken tek şey verilen piksel etrafında küçük bir bölgedeki (komşuluk ilişkisinin olduğu yerde) gri düzeylerinin değeridir. 3-Noktasal İşlemler : Bir pikselin yeni gri seviye değerini, bağımsız olarak, etrafındaki piksel bilgilerine ihtiyaç olmadan elde etme işlemidir. Noktasal işlemler en basit işlemler olmasına rağmen birçok görüntü işleme operasyonlarında kullanılırlar. Özellikle bir görüntünün; ana işlemlerden geçirilmesine hazırlamak üzere kullanılırlar.

3 Tamamlayıcı Not Uzaysal domain (Spatial Domain): Günlük hayatta kullandığımız sayısal resimlerin oluşturulduğu domaindir. Bu domaindeki resimlerin pixelleri doğrudan doğruya işlenebilir. Frekans domain(frequency domain ): Görüntünün birçok farklı frekanslı bileşenden oluştuğu kabul edilir. Uzaysal domaindeki görüntü fourier v.b dönüşümü ile frekans domanine çevrilir. Burada işlenip ters dönüşüm yapılır.

4 Uzaysal Domain de görüntü işlemleri Uzaysal domain teknikleri, bir görüntünün pikselleri üzerinde doğrudan işlem yapar. Bu domendeki işlemler aşağıdaki denklemle ifade edilir. g(x, y) = T [f(x, y)] Burada f(x, y) giriş görüntüsüdür. g(x, y) ise çıkış (İşlenmiş ) görüntüsüdür. T ise f de belirli bir (x,y) komşuluk ilişkisi bölgesinde işlem yapan bir operatördür. Örneğin T operatörü; K görüntülerinde gürültü azaltmak için, bir görüntü seti işlemi olarak ta çalışabilir.

5 T ile belirtilen operasyonlar, Noktasal,Lokal(yerel)ve Global olarak yapılabilir. Noktasal Operasyon: Sadece 1x1 lik bölgede yapılan işlemlerdir. Nokta operasyonlarında, bir resimdeki her pikselin gri seviyesi yalnızca onun orijinal gri seviyesinden(tonundan) hesaplanır. Bu sebeple bu işlemlere piksel değeri haritalama veya griton değişikliği (modification) gibi isimler verilir. Nokta operasyonları genellikle resim onarımı (manipulation) için kullanılır. Mesela, bir resmin kontrastının yükseltilmesi gibi. Nokta operasyonları sıfır hafıza operasyonlarıdır. Bölgesel (lokal-komşuluk ilişkili) işlemlerde merkez pikselin değeri komşu piksellerin değeri ile belirlenir. Filitreleme işlemlerinde çok kullanılır. Global işlemlerde ise Domain dönüşümü ( uzaysaldan frekans domanine veya tersi) yapılarak image üzerinde işlem yapılır.

6 Bir piksel (x,y) in komşuluk bölgesi veya komşuluk ilişkisi için; merkezi (x,y) olan kare, dikdörtgen tanımlama kullanılır. Bu bölgenin merkezi,pikselden piksele hareket ettirilerek (Her yöne), etrafındaki farklı komşuları içine alır. T operatörü herbir lokasyona (x,y) uygulanarak lokasyonda işlenmiş g(x,y) çıkışı elde edilir. En küçük lokasyon (komşuluk ilişkisi-bölgesel) resim içindeki 1x1 lik bölgedir. Bu bölge içinde yapılan işlemlerde (çalışılan pikselde) diğer piksellerin hiçbir etkisi olamaz. Yani o tek piksele yapılan işlemde komşu piksellerin rolü olamaz. Bu tür işlemlere Noktasal işlemler denir. *** Dikkat Burada T yapılan işlemi belirtir. Yani her piksele; komşuluk ilişkisine göre gezilerek T nin belirttiği işlem yapılır.

7 Komşuluk İlişkili operasyonlar 1x1 lik komşuluk ilişkisine dayanan (Noktasal) operasyonlar; Kontrast Yayma (contrast stretching) Eşikleme (Thresholding) Aritmetiksel İşlemler Büyük çaplı komşuluk ilişkisine dayanan operasyonlar ise (maskeleme- filtreler (kernels, templates, pencereler, )) v.b. - Görüntü netleştirme (İmage sharpening)

8 GRİ SEVİYE HİSTOGRAMIN TARİFİ Gri seviyesi histogramı, görüntü içindeki her bir gri seviyesine karşılık gelen ilgili gri seviyesindeki piksel sayısını karşılık düşüren bir fonksiyondur. Apsis ekseni gri seviyesini gösterirken ordinat ekseni ise meydana gelme sıklığını göstermektedir. Şekil bir örnek göstermektedir. Histogram, sayısal bir resim içerisinde her renk değerinden kaç adet olduğunu gösteren grafiktir. Bu grafiğe bakılarak resmin parlaklık durumu ya da tonları hakkında bilgi sahibi olunabilir.

9 Verilen kötü kontraslı bir görüntüyü iyileştirmek için, görüntünün histogramını geniş bir alana yayabiliriz. Bu iki şekilde gerçekleştirilebilir. 1- Histogram Germe- Kontrast germe (Histogram streching): Histogram germe, histogram değiştirmenin özel bir halidir. 2- Histogram Eşitleme ( Histogram equalization)

10 Histogram Germe (Açma) -(Histogram Stretching) Kötü kontraslı resimlerin (histogramı dar bir alana yayılmış görüntüler), kontraslarını iyileştirmek için bir genel yöntemdir. Temel espirisi histogramı geniş bir bölgeye yaymaktır. Varsayalım ki histogramı ve ilişkin tablosu aşağıda verilen bir görüntüye sahibiz. Burada; n i, i.gri seviyedeki piksel sayısı değeridir. Biz bu gri seviye değerlerini, parça parça lineer bir fonksiyon uyguluyarak, orijinal aralığın dışına yayabiliriz.

11 Bu fonksiyon; 5-9 arasındaki gri seviyeli pikselleri 2-14 gri seviyeleri arasına yayar. Aşağıdaki denklemde i, orijinal gri seviye ve j dönüşümden sonraki değerdir. Bu aralığın dışındaki Gri seviyeleri ya (bu durumda olduğu gibi) tek başına kalır ya da aşağıdaki parça parça lineer fonksiyonun işlevine göre değişir. Bu uygulamada tek başına (değiştirilmeden) bırakılmıştır. Bu şekilde elde edilen histograma göre görüntü kontrastı iyileştirilmiştir. Görüntü germe işlemi için en uygun MATLAB fonksiyonu; imadjust

12 Parça parça Lineer germe fonksiyonu için Bilgi NOTU: Parça parça Lineer germe fonksiyonu ai, bi ve ai+1 ve bi+1 koordinatları arasında kalan piksel değerlerini bulmak için find komutu kullanılır.

13 Histogram Germe(Histogram streching): Matlab uygulaması A=imread('wom1.png'); A=rgb2gray(A); [m,n]=size(a); figure imshow(a) B=A; minp=min(min(a)); maxp=max(max(a)); for i=1:m for j=1:n B(i,j)=((250/(maxp-minp))*(A(i,j)-minp)); end end figure imshow(b)

14 Ödev: Yanda verilen RGB görüntüsü üzerinde histogram streching yöntemini uygulayınız? Not: Hazır Matlab fonksiyonu kullanılmayacaktır. Ödev Teslim tarihi:

15 imadjust Fonksiyonu Temel parlaklık işleme fonksiyonudur. Gri skala görüntülerde parlaklık seviyesi dönüşümü yapar. Giriş image ı f uınt8,uint16,double olabilir. g çıkışı da aynı formattadır. >> g= imadjust (f, [low_in high_in],[low_out high_out]), gamma

16 En basit görüntü işlemleri, o noktanın belirli bir fonksiyondan geçirilerek yeni nokta değerlerinin bulunmasına dayanır.

17 Bir resmin negatifini oluşturmak >> f = imread('rose_512.tif'); >> g1=imadjust(f,[0 1],[1 0]); >> subplot(1,2,1),imshow(f) >> subplot(1,2,2),imshow(g1)

18 Bir radyolojik görüntü üzerine inceleme (Sayısal Mamografi image ı) >> f=imread(( breast.tif ); Resimde; göğüs üzerinde küçük bir lezyon göze çarpmaktadır.

19 Resimlerin negatifleri birçok uygulamada kullanılmaktadır, bunlara örnek olarak; medikal röntgen, ultrasound görüntüleri verilebilir. İnsan gözü, yapısı gereği açık tonlar arasındaki farklılığı koyu tonlar arasındaki farklılığa göre daha iyi algılayabilmektedir. Resmin gerektiği durumlarda negatifinin alınması algılamanın gücünü artırabilmektedir. Bu işlem giriş resimdeki gri-seviye değerlerinin ters çevrilmesiyle yapılmaktadır. Örneğin orijinal resimdeki bir pikselin değeri 255 (beyaz) ise negatifinde aynı pikselin değeri 0 (siyah) olacaktır. Gri-seviye resim için pikselin maksimum alabileceği değer 255 'dır. Bu resmin negatifini almak için resimdeki piksellerin renk değerlerini maksimum değer olan 255'den çıkarılıp ortaya çıkan sonuç aynı piksele atanırsa ve bu işlem resmin tüm piksellerine uygulanırsa orijinal resmin negatifi alınmış olur. Buradan da anlaşılacağı gibi bir resmi kendi negatifi ile toplarsak ortaya beyaz bir resim çıkar, yani resim içerisinde ki tüm piksellerin değeri 255 olur.

20

21

22 Histogram Processing and Function Plotting (Histogram İşleme ve fonksiyon çizimi) Gri seviye histogramlarından elde edilmiş bilgilere dayalı parlaklık dönüşüm fonksiyonları, görüntü işlemede önemli bir rol oynar. Bunlar görüntü iyileştirme, sıkıştırma, segmentasyon, tarif etme v.b. Sayısal görüntü işlemede en basit ve en çok kullanılan araçlardan birisi gri seviyesi histogramıdır. Bu fonksiyon bize görüntünün gri seviyesi içeriğini vermektedir.

23 Histogramdan elde edilen bilgiler Bir görüntünün histogramı, o görüntü hakkında önemli bilgiler verir. Önemlileri aşağıdadır. Koyu (Karanlık) bir görüntünün histogram grafiğinin düşük gri seviye bölgesine yığılacağı açıktır. Parlak (Açık renk) düzgün bir görüntünün histogram grafiğinin büyük gri seviye bölgesine yığılacağı açıktır. Eğer histogram bir bölgeye yığılmış ise ( yani gri sviye ekseninin belirli bir bölgesine) bu görüntünün kontrastı kötüdür denir. İyi kontraslı bir resmin histogram grafiği tüm gri seviye değerlerine eşit yayılmış olduğunu açıklar.

24

25 Genelde küçük yayılım gösteren histogramların kontrastı düşüktür, daha geniş alana yayılmış olan histogramların kontrastı daha yüksektir. Aralığın aşağı sonunda sıkışmış olan histogram koyu bir görüntüye ait olurken, aynı aralığın yukarı sonunda gruplanmış olan histogram parlak bir görüntüye aittir. Histogram aynı zamanda, daraltma, genişletme veya kaydırma işlemleri için bir karşılık düşürme fonksiyonu ile de değiştirilebilir. Histogram genişletme ve daraltma gri seviyesi değişimleri biçimindedir ve bazen histogram boyutlandırma olarakta adlandırılır.

26 Karşıtlığı düşük Karşıtlığı yüksek

27 Histogram la ilgili Bir [0,G] sahasında, Gri seviye toplam sayısı L olan bir sayısal görüntünün histogramı; h(r k ) = n k ayrık fonksiyonuyla tanımlanır. Burada r k, [0,G] aralığındaki grilik seviyesi değeridir. Grilik seviyesi r k olan piksel sayısı ise n k dır. (Örneğin 125.gri seviye değerinde (r k =125), 345 piksel olabilir (n k =325)) Buradaki G, uint8 de 255, double görüntü sınıfında 1 e eşittir. Not: uint8 ve uint16 sınıfında G=L-1 alınmalıdır.

28 Normalize edilmiş histogram h(r k ) nın tüm elemanlarının, görüntüdeki tüm piksel sayısına bölünmesiyle elde edilir. Normalize histogram çoğu uygulamada kullanılır. (r k.grilik seviyesindeki piksel sayısının toplam piksel sayısına bölünmesi ile o grilik seviyesindeki pikseller normalize edilmiş olur.)

29 Burada f, histogramı istenen görüntü, h görüntünün histogramı, b ise yatay ekseni bölme sayısıdır. Uint8 sınıfından bir görüntü b=8 alınırsa sadece 8 gri seviyeye bölünür. B yi hiç kullanmazsak /default değerdir) yatay eksen 256 gri seviyeye bölünür.

30 Histogram fonsiyonun çizdirme-örnekler

31 Histogramı BAR formunda göstermek

32 Histogramı STEM formunda göstermek

33 Histogramı plot ile(sürekli formda çizdirmek)

34 Bazı faydalı çizim fonksiyonları

35 Faydalı çizim fonksiyonları

36 Histogram Eşitleme Historam germenin; bir kullanıcı girişine ihtiyaç duyma gibi bir dezevantajı vardır. Histogram eşitleme ise otomatik bir presedürdür. (Aslında histogram eşitleme genel anlamada histogram germe kapsamına sokulabilir. Fakat germede parçaparça linerer veya değişik fonksiyonlar kullanmak gerekirken, eşitlemde otomatik işlem yapılır.) İdeal olarak Histogram eşitleme; Giriş histogramını, her gri seviyesinde eşit piksel sayısına sahip bir histograma dönüştürme işlemi gibi düşünülebilir. Bu pratikte mümkün değildir. Bu yöntem histogramı dar olan resimler ya da resim içindeki bölgeler için daha iyi sonuç verir. Yani Histogram eşitleme renk değerleri düzgün dağılımlı olmayan resimler için uygun bir görüntü iyileştirme metodudur. Resmin tümüne uygulanabileceği gibi sadece belli bir bölgesine de uygulanabilir. Tüm resme uygulanırsa global histogram eşitleme, resmin belli bir bölgesine uygulandığında ise lokal histogram eşitleme adını alır.

37 Histogram eşitlemenin özeti Uygulanışı: 1-Resmin histogramı bulunur (her gri seviye için piksel sayısı grafiği). 2-Histogramdan yararlanılarak kümülatif histogram bulunur. Kümülatif histogram, histogramın her değerinin kendisinden öncekiler ve kendisinin toplamı ile elde edilen değerleri içeren büyüklüktür. 3-Kümülatif histogram değerleri normalize edilip (toplam piksel sayısına bölünerek), yeni resimde olmasını istediğimiz max. renk değerleri ile çarpılır, çıkan değer tam sayıya yuvarlatılır. Böylelikle yeni gri seviye değerleri elde edilmiş olur. 4- Eski (Orijinal) gri seviye değerleri ile; 3.adımda elde edilen gri seviye değerleri biribirine karşılık düşürülür ve yeni histogram grafiği çizilir. n: giriş görüntüsündeki toplam piksel sayısı (n 0 +n 1 +.+n L-1 = n) n j (n k ): j. gri seviyedeki piksel sayısı, L: mümkün olan (veya istenilen) toplam gri seviye sayısı( 8 bit renk derinliğinde 255 v.b) s k : Daha iyi kontraslı bir görüntü elde etmek için gri seviye dönüşüm değeri.

38 ÖRNEK: Gri seviye i : (j. Gri değerli piksel sayısı) n i : Yukarıda, renk derinliği 4 bit olan gri seviyeli bir görüntünün histogram tablosu görülmektedir. Bunun histogram grafiği ise aşağıdaki şekildedir. (Toplam piksel sayısı n=360, istenen gri seviye L=16)

39 Buna göre aşağıdaki denklemden; gri seviye değerlerini tek tek hesaplarsak;

40 Histogram Eşitleme Amaç: İmgedeki düşük görünürlüğü iyileştirmek. Olasılık dağılımına bağlı olarak doğrusal olmayan dönüşüm gerçekleştirilir. Bu sayede, bulunma olasılığı yüksek pikseller arası fazlaca açılırken, düşük olasılıklı seviyeler birbirine daha yakın hale gelir.

41 Örnek: Görüntü bloğu cdf

42 Ödev: Ödev Teslim Tarihi: Gri bir görüntü üzerinde histogram eşitleme işlemini gerçekleştiren MATLAB kodunu yazınız?

43 Histogram Eşitleme İmgenin olasılık dağılım fonksiyonu doğrusallaştırılmaktadır.

44 f : giriş görüntüsüdür. nlev: Çıkış görüntüsü için özelleştirilmiş(belirtilmiş) gri seviye sayısıdır. nlev L (giriş görüntüdeki mümkün seviyelerin toplam sayı)sı ye eşit ise, o zaman histeq doğrudan dönüşüm fonksiyonu (önceki slaytta tanımlanan) uygular. Eğr nlev L den küçük ise; histeq gri seviyeleri düz bir histogram olacak şekilde dağıtmaya çalışır. İmhist in aksine histeq in default değeri 64 dür.

45 Histogram eşitlemeye örnek >> f=imread( pollen.tif ); >> imshow(f) >> figure, imhist(f) >> ylim( auto ) >> g=histeq(f,256); >> figure, imshow(g) >> figure, imhist(g) >> ylim( auto )

46 Bir polen in elektron mikroskopta 700 defa büyütülmüş resmi

47 Histogram Karşılaştırma (Histogram Matching) Bir görüntününün histogramının, bir diğer görüntü ile uyumlu bir hale gelmesini veya belirli bir fonksiyona uymasını isteyebiliriz.

48 Burada f giriş görüntüsüdür. hspec belirtilen (istenen) histogramdır. (İstenen değerlerden oluşturulmuş satır vektörü v.b) g çıkış görüntüsüdür. Bunun histogramı istenen histograma yaklaştırılmıştır.

49 Aritmetiksel İşlemler Noktasal operasyonlardan olan aritmetiksel işlemler; y=f(x) gibi bir basit fonksiyonun, görüntüdeki herbir gri seviye değerine uygulanmasından ibarettir. Gri seviye resimde genellikle 0, 255 seviye değerleri arasında çalışıldığından, yukarıdaki fonksiyon bu değerler arasında geçerli olmalıdır. Bu basit fonksiyon ; Bir sabit değeri (c) herbir piksele ekler veya çıkartır (Y=x ± c) Veya herbir pikseli bir sabit değer (c) ile çarpar (y= x.c) İşlem sonuçlarının tamsayıya yuvarlatılması yapılır. Ayrıca arasında çalışıldığında kırpma yapılır. y > 255 ise y=255 y < 0 ise ise y=0 yapılır.

50 Y=f(x) fonksiyonunun etkisini incelemek için aşağıdaki grafikleri inceleyelim. Resim piksellerine 128 eklendiğinde, resmim piksellerindeki 127 ve daha büyük değerler 255 ile ifade edilecektir. Not: Resim piksellerine ilave edilen her değer resmin daha açık renkte görünmesine neden olur. Resim piksellerinden 128 çıkarıldığında, değerleri 128 den küçük olan piksellerin seviye değerleri 0 ile ifade edilecektir. Not: Resim piksellerinden çıkarılan her değer resmin daha koyu renkte görünmesine neden olur.

51 ÖRNEK

52 Çarpma ve bölme uygulamaları

53 Aritmetiksel İşlemler (Ters Alma) Gri skala görüntüde tersleme, görüntünün negatifi anlamına gelir. Bir görüntü matrisi m nin elemanları; double class ise; gray scala değeri 0-1 arasında değişir. Biz negatifi elde etmek için; >> 1-m Eğer image Binary ise: >> ~m Eğer uint8 class ise; hazır fonksiyon olan İmcomplement kullanılır.

54 Y=255 -x e göre oluşturulan fonksiyon ve onun işlenişi aşağıdadır.

55 Diğer Nokta operasyonu İşlemleri KESME (CLIPPING) Kontrast genişletmenin özel bir durumu kesme dir. Bu işlem giriş sinyalinin bulunduğu aralık [a,b] bilindiğinde gürültü azaltmak için oldukça kullanışlıdır.

56 Ödev: Bu ödevde sizden bir RGB görüntüsüne istenilen transfer fonksiyonunu uygulamanız isteniyor. Listeden bir görüntü seçilecek bu görüntüye yanda verilen transfer fonksiyonu uygulanacaktır. Örneğin Beyaz seviyeyi gösteren kaydırma çubuğu 184 olduğu için görüntüde184 üzerinde olanlara 255 değeri atılmaktadır. Siyah kaydırma çubuğu 51 de olduğu için 51 den düşük değere sahip piksellere 0 değeri atanmaktadır. Beyaz ile siyah kaydırma çubuğu arası mainimum 3 piksel değerinde olabilir. Yani beyaz seviye 130 ise siyah seviye maksimum 127 olabilir. Ödev Teslim tarihi:

57 Diğer Nokta operasyonu İşlemleri EŞİKLEME ( THRESHOLDING) Gritonlu resimleri siyah-beyaz gösterme metodu (binaryleştirme) resim bölümlemenin (image segmentation) en popüler metodudur. Bu, özellikle endüstriyel resim işlemede kullanılır. BinaryLeştirme aynı zamanda bir nokta operasyonudur. v u

58 Diğer Nokta operasyonu İşlemleri Bit plane Gri skala görüntüler, bir dizi binary görüntü şeklinde ifade edilebilirler. Her bir pikselinin koyuluk seviyesinin 8 bitle ifade edildiği bir görüntüyü gözönüne alırsak; 0. bit planı görüntünün en önemsiz bit planıdır. 7. bit planı is görüntü üzerinde etken olan en önemli bit planıdır.

59 Bit planes

60 İki Resim Arasındaki Aritmetiksel İşlemler (Toplama) İki veya daha fazla resimlerin piksel piksel birleştirilmesidir. Şekilde iki bölgeden müteşekkil iki resmi (sol) göstermektedir. Bir kaç bozulmuş veya gürültülü piksellerin dışında bölgelerin gritonları hemen hemen aynıdır (gritonlar 1 ve 10). Karşılıklı piksellerin ortalamalarının alınması bozulmanın sertliğini yok eder. Buradaki işlem birbirine uygun fakat gürültülü resimlerin gürültüsünü azaltmaktır. Resim sayısı arttıkça toplamanın gürültüyü azaltma tesiri artar. Şekil tekniğin gerçek resimlere uygulanmasını göstermektedir.

61

Görüntü İşleme. Dijital Görüntü Tanımları. Dijital görüntü ise sayısal değerlerden oluşur.

Görüntü İşleme. Dijital Görüntü Tanımları. Dijital görüntü ise sayısal değerlerden oluşur. Görüntü İşleme Görüntü işleme, dijital bir resim haline getirilmiş olan gerçek yaşamdaki görüntülerin bir girdi resim olarak işlenerek, o resmin özelliklerinin ve görüntüsünün değiştirilmesidir. Resimler

Detaylı

Uzaysal Görüntü İyileştirme/Filtreleme. Doç. Dr. Fevzi Karslı fkarsli@ktu.edu.tr

Uzaysal Görüntü İyileştirme/Filtreleme. Doç. Dr. Fevzi Karslı fkarsli@ktu.edu.tr Uasal Görüntü İileştirme/Filtreleme Doç. Dr. Fevi Karslı karsli@ktu.edu.tr İileştirme Herhangi bir ugulama için, görüntüü orijinalden daha ugun hale getirmek Ugunluğu her bir ugulama için sağlamak. Bir

Detaylı

Digital Görüntü Temelleri Görüntü Oluşumu

Digital Görüntü Temelleri Görüntü Oluşumu Digital Görüntü Temelleri Görüntü Oluşumu Işık 3B yüzeye ulaşır. Yüzey yansıtır. Sensör elemanı ışık enerjisini alır. Yoğunluk (Intensity) önemlidir. Açılar önemlidir. Materyal (yüzey) önemlidir. 25 Ekim

Detaylı

Digital Görüntü Temelleri Görüntü Oluşumu

Digital Görüntü Temelleri Görüntü Oluşumu Digital Görüntü Temelleri Görüntü Oluşumu Işık 3B yüzeye ulaşır. Yüzey yansıtır. Sensör elemanı ışık enerjisini alır. Yoğunluk (Intensity) önemlidir. Açılar önemlidir. Materyal (yüzey) önemlidir. 06 Kasım

Detaylı

GÖRÜNTÜ İŞLEME HAFTA 1 1.GİRİŞ

GÖRÜNTÜ İŞLEME HAFTA 1 1.GİRİŞ GÖRÜNTÜ İŞLEME HAFTA 1 1.GİRİŞ GÖRÜNTÜ İŞLEME Hafta Hafta 1 Hafta 2 Hafta 3 Hafta 4 Hafta 5 Hafta 6 Hafta 7 Hafta 8 Hafta 9 Hafta 10 Hafta 11 Hafta 12 Hafta 13 Hafta 14 Konu Giriş Digital Görüntü Temelleri-1

Detaylı

İmage segmentasyon (Görüntü Bölütleme)

İmage segmentasyon (Görüntü Bölütleme) İmage segmentasyon (Görüntü Bölütleme) Segmantasyon (Bölütleme) Segmentasyon genellikle görüntü analizinin ilk aşamasıdır. Görüntü bölütleme, bir görüntüyü her biri içerisinde farklı özelliklerin tutulduğu

Detaylı

Frekans domain inde İşlemler. BMÜ-357 Sayısal Görüntü İşleme Yrd. Doç. Dr. İlhan AYDIN

Frekans domain inde İşlemler. BMÜ-357 Sayısal Görüntü İşleme Yrd. Doç. Dr. İlhan AYDIN Frekans domain inde İşlemler BMÜ-357 Sayısal Görüntü İşleme Yrd. Doç. Dr. İlhan AYDIN Domain Dönüşümü Dönüşüm, bir sinyalin, başka parametrelerle ifade edilmesi şeklinde düşünülebilir. Ters dönüşüm ise,

Detaylı

Yıldız Teknik Üniversitesi Fen Bilimleri Enstitüsü Bilgisayar Mühendisliği Bölümü. Bilgisayarla Görme. Vize. İris Segmentation. Selçuk BAŞAK 08501008

Yıldız Teknik Üniversitesi Fen Bilimleri Enstitüsü Bilgisayar Mühendisliği Bölümü. Bilgisayarla Görme. Vize. İris Segmentation. Selçuk BAŞAK 08501008 Yıldız Teknik Üniversitesi Fen Bilimleri Enstitüsü Bilgisayar Mühendisliği Bölümü Bilgisayarla Görme Vize İris Segmentation Selçuk BAŞAK 08501008 Not: Ödevi hazırlamak için geliştirdiğim program ve kaynak

Detaylı

Dijital Görüntü İşleme Teknikleri

Dijital Görüntü İşleme Teknikleri Teknikleri Ders Notları, 2013 Doç. Dr. Fevzi Karslı Harita Mühendisliği Bölümü Mühendislik Fakültesi KTÜ 08 Ekim 2013 Salı 1 Ders Planı ve İçeriği 1. Hafta Giriş, dersin kapsamı, temel kavramlar, kaynaklar.

Detaylı

Dijital (Sayısal) Fotogrametri

Dijital (Sayısal) Fotogrametri Dijital (Sayısal) Fotogrametri Dijital fotogrametri, cisimlere ait iki boyutlu görüntü ortamından üç boyutlu bilgi sağlayan, sayısal resim veya görüntü ile çalışan fotogrametri bilimidir. Girdi olarak

Detaylı

GÖRÜNTÜ İŞLEME HAFTA 2 SAYISAL GÖRÜNTÜ TEMELLERİ

GÖRÜNTÜ İŞLEME HAFTA 2 SAYISAL GÖRÜNTÜ TEMELLERİ GÖRÜNTÜ İŞLEME HAFTA 2 SAYISAL GÖRÜNTÜ TEMELLERİ GÖRÜNTÜ ALGILAMA Üç temel zar ile kaplıdır. 1- Dış Zar(kornea ve Sklera) 2- Koroid 3- Retina GÖRÜNTÜ ALGILAMA ---Dış Zar İki kısımdan oluşur. Kornea ve

Detaylı

NEIGHBOURHOOD PROCESSING (KOMŞULUK İLİŞKİLİ İŞLEMLERİ- BÖLGESEL İŞLEMLER-UZAYSAL FİLTRELEME) BMÜ-357 Sayısal Görüntü İşleme Yrd. Doç. Dr.

NEIGHBOURHOOD PROCESSING (KOMŞULUK İLİŞKİLİ İŞLEMLERİ- BÖLGESEL İŞLEMLER-UZAYSAL FİLTRELEME) BMÜ-357 Sayısal Görüntü İşleme Yrd. Doç. Dr. NEIGHBOURHOOD PROCESSING (KOMŞULUK İLİŞKİLİ İŞLEMLERİ- BÖLGESEL İŞLEMLER-UZAYSAL FİLTRELEME) BMÜ-357 Sayısal Görüntü İşleme Yrd. Doç. Dr. İlhan AYDIN 1 KOMŞULUK İLİŞKİLİ İŞLEMLER (UZAYSAL FİLİTRELER) Noktasal

Detaylı

Rasgele Sayı Üretme. Rasgele Sayıların Özellikleri. İki önemli istaiksel özelliği var :

Rasgele Sayı Üretme. Rasgele Sayıların Özellikleri. İki önemli istaiksel özelliği var : Rasgele Sayı Üretme Rasgele Sayıların Özellikleri İki önemli istaiksel özelliği var : Düzgünlük (Uniformity) Bağımsızlık R i, rasgele sayısı olasılık yoğunluk fonksiyonu aşağıdaki gibi olan uniform bir

Detaylı

MATLAB DA SAYISAL ANALİZ DOÇ. DR. ERSAN KABALCI

MATLAB DA SAYISAL ANALİZ DOÇ. DR. ERSAN KABALCI MATLAB DA SAYISAL ANALİZ DOÇ. DR. ERSAN KABALCI Konu Başlıkları Lineer Denklem Sistemlerinin Çözümü İntegral ve Türev İntegral (Alan) Türev (Sayısal Fark ) Diferansiyel Denklem çözümleri Denetim Sistemlerinin

Detaylı

Dijital (Sayısal) Fotogrametri

Dijital (Sayısal) Fotogrametri Dijital (Sayısal) Fotogrametri Dijital fotogrametri, cisimlere ait iki boyutlu görüntü ortamından üç boyutlu bilgi sağlayan, sayısal resim veya görüntü ile çalışan fotogrametri bilimidir. Girdi olarak

Detaylı

Görüntü Restorasyonu. BMÜ-357 Sayısal Görüntü İşeme Yrd. Doç. Dr. İlhan AYDIN

Görüntü Restorasyonu. BMÜ-357 Sayısal Görüntü İşeme Yrd. Doç. Dr. İlhan AYDIN Görüntü Restorasyonu BMÜ-357 Sayısal Görüntü İşeme Yrd. Doç. Dr. İlhan AYDIN Görüntü İyileştirme (İmage restoration) Görüntü restorasyonu konusu, bir görüntünün oluşumu esnasında oluşabilen veri kayıplarını

Detaylı

AMAÇ Araçlardaki Kamera Sistemleri

AMAÇ Araçlardaki Kamera Sistemleri SUNU PLANI AMAÇ OPEN CV GÖRÜNTÜ EŞİKLEME KENAR BULMA ŞEKİL BULMA GÖRÜNTÜ GENİŞLETME VE BOZMA GÖRÜNTÜ DOLDURMA AFFİNE DÖNÜŞÜMÜ PERSPEKTİF DÖNÜŞÜM KUŞ BAKIŞI GÖRÜNTÜ DÖNÜŞÜMÜ AMAÇ Araçlardaki Kamera Sistemleri

Detaylı

İMGE İŞLEME Ders-2. İmge Dosya Tipleri ve Temel İşlemler. Dersin web sayfası: http://mf.kou.edu.tr/elohab/kemalg/imge_web/odev.htm

İMGE İŞLEME Ders-2. İmge Dosya Tipleri ve Temel İşlemler. Dersin web sayfası: http://mf.kou.edu.tr/elohab/kemalg/imge_web/odev.htm İMGE İŞLEME Ders-2 İmge Dosya Tipleri ve Temel İşlemler (Yrd. Doç. Dr. M. Kemal GÜLLÜ) Dersin web sayfası: http://mf.kou.edu.tr/elohab/kemalg/imge_web/odev.htm Hazırlayan: M. Kemal GÜLLÜ MATLAB temel bilgiler

Detaylı

RENK BİLEŞENLERİ YARDIMIYLA HAREKETLİ HEDEFLERİN GERÇEK ZAMANLI TESPİTİ

RENK BİLEŞENLERİ YARDIMIYLA HAREKETLİ HEDEFLERİN GERÇEK ZAMANLI TESPİTİ Journal of Naval Science and Engineering 2009, Vol 5, No2, pp 89-97 RENK BİLEŞENLERİ YARDIMIYLA HAREKETLİ HEDEFLERİN GERÇEK ZAMANLI TESPİTİ Öğr Kd Bnb Mustafa Yağımlı Elektrik/Elektronik Mühendisliği Bölümü,

Detaylı

SAY 203 MİKRO İKTİSAT

SAY 203 MİKRO İKTİSAT SAY 203 MİKRO İKTİSAT Esneklikler YRD. DOÇ. DR. EMRE ATILGAN SAY 203 MİKRO İKTİSAT - YRD. DOÇ. DR. EMRE ATILGAN 1 ESNEKLİKLER Talep Esneklikleri Talep esneklikleri: Bir malın talebinin talebi etkileyen

Detaylı

Renk kalitesi kılavuzu

Renk kalitesi kılavuzu Sayfa 1 / 6 Renk kalitesi kılavuzu Renk Kalitesi kılavuzu, kullanıcıların renk çıktısını ayarlamak ve özelleştirmek için yazıcının mevcut işlemlerinin nasıl kullanılabileceğini anlamasına yardımcı olur.

Detaylı

Görüntü Segmentasyonu (Bölütleme)

Görüntü Segmentasyonu (Bölütleme) Görüntü Segmentasyonu (Bölütleme) Segmentasyon, görüntüyü aynı cinsten obje ve bölgelere ayırmaktır. 20 Aralık 2014 Cumartesi 1 Görüntü Segmentasyonu 20 Aralık 2014 Cumartesi 2 Gestalt kanunları Görüntü

Detaylı

18.034 İleri Diferansiyel Denklemler

18.034 İleri Diferansiyel Denklemler MIT AçıkDersSistemi http://ocw.mit.edu 18.034 İleri Diferansiyel Denklemler 2009 Bahar Bu bilgilere atıfta bulunmak veya kullanım koşulları hakkında bilgi için http://ocw.mit.edu/terms web sitesini ziyaret

Detaylı

BÖLÜM 6 LAPLACE DÖNÜŞÜMLERİ

BÖLÜM 6 LAPLACE DÖNÜŞÜMLERİ BÖLÜM 6 LAPLACE DÖNÜŞÜMLERİ 6.2. Laplace Dönüşümü Tanımı Bir f(t) fonksiyonunun Laplace alındığında oluşan fonksiyon F(s) ya da L[f(t)] olarak gösterilir. Burada tanımlanan s; ÇÖZÜM: a) b) c) ÇÖZÜM: 6.3.

Detaylı

VEKTÖR UZAYLARI 1.GİRİŞ

VEKTÖR UZAYLARI 1.GİRİŞ 1.GİRİŞ Bu bölüm lineer cebirin temelindeki cebirsel yapıya, sonlu boyutlu vektör uzayına giriş yapmaktadır. Bir vektör uzayının tanımı, elemanları skalar olarak adlandırılan herhangi bir cisim içerir.

Detaylı

TIBBİ ENSTRUMANTASYON TASARIM VE UYGULAMALARI SAYISAL FİLTRELER

TIBBİ ENSTRUMANTASYON TASARIM VE UYGULAMALARI SAYISAL FİLTRELER TIBBİ ENSTRUMANTASYON TASARIM VE UYGULAMALARI SAYISAL FİLTRELER SUNU PLANI Analog sayısal çevirici FIR Filtreler IIR Filtreler Adaptif Filtreler Pan-Tompkins Algoritması Araş. Gör. Berat Doğan 08/04/2015

Detaylı

Dr. Fatih AY Tel: 0 388 225 22 55 fatihay@fatihay.net www.fatihay.net

Dr. Fatih AY Tel: 0 388 225 22 55 fatihay@fatihay.net www.fatihay.net Bilgisayar Programlama Ders 6 Dr. Fatih AY Tel: 0 388 225 22 55 fatihay@fatihay.net www.fatihay.net Fonksiyon Prototipleri Fonksiyon Prototipleri Derleyici, fonksiyonların ilk hallerini (prototiplerini)

Detaylı

VERİLERİN GRAFİKLER YARDIMIYLA SUNUMU. 3.2.1.Daire Grafikleri Yardımıyla Verilerin Sunumu. 3.2.2.Sütun(Çubuk) Grafikleri Yardımıyla Sunumu

VERİLERİN GRAFİKLER YARDIMIYLA SUNUMU. 3.2.1.Daire Grafikleri Yardımıyla Verilerin Sunumu. 3.2.2.Sütun(Çubuk) Grafikleri Yardımıyla Sunumu SAÜ 3. BÖLÜM VERİLERİN GRAFİKLER YARDIMIYLA SUNUMU PROF. DR. MUSTAFA AKAL İÇİNDEKİLER 3.2.Grafiksel Sunumlar 3.2.1.Daire Grafikleri Yardımıyla Verilerin Sunumu 3.2.2.Sütun(Çubuk) Grafikleri Yardımıyla

Detaylı

Temel Bilgi Teknolojileri - II Ayrıntılı Ders İçerikleri

Temel Bilgi Teknolojileri - II Ayrıntılı Ders İçerikleri Temel Bilgi Teknolojileri - II Ayrıntılı Ders İçerikleri Hesap Tabloları(Excel 2007) HAFTA 1 1. Hesap Tablolarına Giriş 1.1. Hesap tablosu tanımı, kullanım amacı ve yerleri 1.2. MS Excel Uygulamasına giriş

Detaylı

Toplam İkinci harmonik. Temel Üçüncü harmonik. Şekil 1. Temel, ikinci ve üçüncü harmoniğin toplamı

Toplam İkinci harmonik. Temel Üçüncü harmonik. Şekil 1. Temel, ikinci ve üçüncü harmoniğin toplamı FOURIER SERİLERİ Bu bölümde Fourier serilerinden bahsedeceğim. Önce harmoniklerle (katsıklıklarla) ilişkili sinüsoidin tanımından başlıyacağım ve serilerin trigonometrik açılımlarını kullanarak katsayıları

Detaylı

BİYOMETRİK İRİS SINIFLANDIRMA SİSTEMLERİ

BİYOMETRİK İRİS SINIFLANDIRMA SİSTEMLERİ BİYOMETRİK İRİS SINIFLANDIRMA SİSTEMLERİ Emre DANDIL, K.İBRAHİM KAPLAN Akademik Bilişim 2013 İnternet ve bilgisayar teknolojilerinin etkin kullanılmaya başlanması ile birlikte, bazı kişisel bilgilere veya

Detaylı

Türev Uygulamaları ÜNİTE. Amaçlar. İçindekiler. Yazar Prof.Dr. Vakıf CAFEROV

Türev Uygulamaları ÜNİTE. Amaçlar. İçindekiler. Yazar Prof.Dr. Vakıf CAFEROV Türev Uygulamaları Yazar Prof.Dr. Vakıf CAFEROV ÜNİTE 10 Amaçlar Bu üniteyi çalıştıktan sonra; türev kavramı yardımı ile fonksiyonun monotonluğunu, ekstremum noktalarını, konvekslik ve konkavlığını, büküm

Detaylı

MAK1010 MAKİNE MÜHENDİSLİĞİ BİLGİSAYAR UYGULAMALARI

MAK1010 MAKİNE MÜHENDİSLİĞİ BİLGİSAYAR UYGULAMALARI .. MAK MAKİNE MÜHENDİSLİĞİ BİLGİSAYAR UYGULAMALARI Polinom MATLAB p=[8 ] d=[ - ] h=[ -] c=[ - ] POLİNOMUN DEĞERİ >> polyval(p, >> fx=[ -..9 -. -.9.88]; >> polyval(fx,9) ans =. >> x=-.:.:.; >> y=polyval(fx,;

Detaylı

6. Osiloskop. Periyodik ve periyodik olmayan elektriksel işaretlerin gözlenmesi ve ölçülmesini sağlayan elektronik bir cihazdır.

6. Osiloskop. Periyodik ve periyodik olmayan elektriksel işaretlerin gözlenmesi ve ölçülmesini sağlayan elektronik bir cihazdır. 6. Osiloskop Periyodik ve periyodik olmayan elektriksel işaretlerin gözlenmesi ve ölçülmesini sağlayan elektronik bir cihazdır. Osiloskoplar üç gruba ayrılabilir; 1. Analog osiloskoplar 2. Dijital osiloskoplar

Detaylı

MATLAB Semineri. EM 314 Kontrol Sistemleri 1 GÜMMF Elektrik-Elektronik Müh. Bölümü. 30 Nisan / 1 Mayıs 2007

MATLAB Semineri. EM 314 Kontrol Sistemleri 1 GÜMMF Elektrik-Elektronik Müh. Bölümü. 30 Nisan / 1 Mayıs 2007 MATLAB Semineri EM 314 Kontrol Sistemleri 1 GÜMMF Elektrik-Elektronik Müh. Bölümü 30 Nisan / 1 Mayıs 2007 İçerik MATLAB Ekranı Değişkenler Operatörler Akış Kontrolü.m Dosyaları Çizim Komutları Yardım Kontrol

Detaylı

Cebirsel Fonksiyonlar

Cebirsel Fonksiyonlar Cebirsel Fonksiyonlar Yazar Prof.Dr. Vakıf CAFEROV ÜNİTE 4 Amaçlar Bu üniteyi çalıştıktan sonra; polinom, rasyonel ve cebirsel fonksiyonları tanıyacak ve bu türden bazı fonksiyonların grafiklerini öğrenmiş

Detaylı

MALZEME BİLGİSİ DERS 8 DR. FATİH AY. www.fatihay.net fatihay@fatihay.net

MALZEME BİLGİSİ DERS 8 DR. FATİH AY. www.fatihay.net fatihay@fatihay.net MALZEME BİLGİSİ DERS 8 DR. FATİH AY www.fatihay.net fatihay@fatihay.net BÖLÜM IV METALLERİN MEKANİK ÖZELLİKLERİ GERİLME VE BİRİM ŞEKİL DEĞİŞİMİ ANELASTİKLİK MALZEMELERİN ELASTİK ÖZELLİKLERİ ÇEKME ÖZELLİKLERİ

Detaylı

BÖLÜM I GİRİŞ (1.1) y(t) veya y(x) T veya λ. a t veya x. Şekil 1.1 Dalga. a genlik, T peryod (veya λ dalga boyu)

BÖLÜM I GİRİŞ (1.1) y(t) veya y(x) T veya λ. a t veya x. Şekil 1.1 Dalga. a genlik, T peryod (veya λ dalga boyu) BÖLÜM I GİRİŞ 1.1 Sinyal Bir sistemin durum ve davranış bilgilerini taşıyan, bir veya daha fazla değişken ile tanımlanan bir fonksiyon olup veri işlemde dalga olarak adlandırılır. Bir dalga, genliği, dalga

Detaylı

mustafacosar@hitit.edu.tr http://web.hitit.edu.tr/mustafacosar

mustafacosar@hitit.edu.tr http://web.hitit.edu.tr/mustafacosar Algoritma ve Programlamaya Giriş mustafacosar@hitit.edu.tr http://web.hitit.edu.tr/mustafacosar İçerik Algoritma Akış Diyagramları Programlamada İşlemler o o o Matematiksel Karşılaştırma Mantıksal Programlama

Detaylı

İMGE İŞLEME Ders-7. Morfolojik İmge İşleme. Dersin web sayfası: http://mf.kou.edu.tr/elohab/kemalg/imge_web/odev.htm. (Yrd. Doç. Dr. M.

İMGE İŞLEME Ders-7. Morfolojik İmge İşleme. Dersin web sayfası: http://mf.kou.edu.tr/elohab/kemalg/imge_web/odev.htm. (Yrd. Doç. Dr. M. İMGE İŞLEME Ders-7 Morfolojik İmge İşleme (Yrd. Doç. Dr. M. Kemal GÜLLÜ) Dersin web sayfası: http://mf.kou.edu.tr/elohab/kemalg/imge_web/odev.htm Hazırlayan: M. Kemal GÜLLÜ Morfoloji Biyolojinin canlıların

Detaylı

SÜREKLİ RASSAL DEĞİŞKENLER

SÜREKLİ RASSAL DEĞİŞKENLER SÜREKLİ RASSAL DEĞİŞKENLER Sürekli Rassal Değişkenler Sürekli Rassal Değişken: Değerleriölçümyadatartımla elde edilen, bir başka anlatımla sayımla elde edilemeyen, değişkene sürekli rassal değişken denir.

Detaylı

Mühendislikte İstatistik Yöntemler

Mühendislikte İstatistik Yöntemler .0.0 Mühendislikte İstatistik Yöntemler İstatistik Parametreler Tarih Qma.3.98 4..98 0.3.983 45 7..984 37.3.985 48 0.4.986 67.4.987 5 0.3.988 45.5.989 34.3.990 59.4.99 3 4 34 5 37 6 45 7 45 8 48 9 5 0

Detaylı

Excel de çalışma alanı satır ve sütunlardan oluşur. Satırları rakamlar, sütunları ise harfler temsil eder. Excel çalışma sayfası üzerinde toplam

Excel de çalışma alanı satır ve sütunlardan oluşur. Satırları rakamlar, sütunları ise harfler temsil eder. Excel çalışma sayfası üzerinde toplam Microsoft Excel Microsoft Office paket programı ile bizlere sunulan Excel programı bir hesap tablosu programıdır. her türlü veriyi tablolar yada listeler halinde tutmak ve bu veriler üzerinde hesaplamalar

Detaylı

Yrd. Doç. Dr. Saygın ABDİKAN 2014-2015 Öğretim Yılı Bahar Dönemi

Yrd. Doç. Dr. Saygın ABDİKAN 2014-2015 Öğretim Yılı Bahar Dönemi Dijital Görüntü İşleme (JDF338) Yrd. Doç. Dr. Saygın ABDİKAN 2014-2015 Öğretim Yılı Bahar Dönemi 1 Dijital görüntü işlemede temel kavramlar Sayısal Görüntü İşleme; bilgisayar yardımı ile raster verilerin

Detaylı

BÖLÜM 8 B- SUNU PROGRAMI 1. MICROSOFT POWERPOINT NEDİR? 2. POWERPOINT PROGRAMININ BAŞLATILMASI

BÖLÜM 8 B- SUNU PROGRAMI 1. MICROSOFT POWERPOINT NEDİR? 2. POWERPOINT PROGRAMININ BAŞLATILMASI BÖLÜM 8 B- SUNU PROGRAMI 1. MICROSOFT POWERPOINT NEDİR? Microsoft Office Paketi ile birlikte kullanıcıya sunulan Powerpoint Programı, etkileşimli sunular (Presentation) hazırlamaya yarayan metin tabanlı

Detaylı

Bilgisayar Programlama MATLAB

Bilgisayar Programlama MATLAB Bilgisayar Programlama MATLAB Grafik İşlemleri Doç. Dr. İrfan KAYMAZ MATLAB Ders Notları MATLAB de GRAFİK İŞLEMLERİ MATLAB diğer programlama dillerine nazaran oldukça güçlü bir grafik araçkutusuna (toolbox)

Detaylı

3.3. İki Tabanlı Sayı Sisteminde Dört İşlem

3.3. İki Tabanlı Sayı Sisteminde Dört İşlem 3.3. İki Tabanlı Sayı Sisteminde Dört İşlem A + B = 2 0 2 1 (Elde) A * B = Sonuç A B = 2 0 2 1 (Borç) A / B = Sonuç 0 + 0 = 0 0 0 * 0 = 0 0 0 = 0 0 0 / 0 = 0 0 + 1 = 1 0 0 * 1 = 0 0 1 = 1 1 0 / 1 = 0 1

Detaylı

Şekil 6.2 Çizgisel interpolasyon

Şekil 6.2 Çizgisel interpolasyon 45 Yukarıdaki şekil düzensiz bir X,Y ilişkisini göstermektedir. bu fonksiyon eğri üzerindeki bir dizi noktayı birleştiren bir seri düzgün çizgi halindeki bölümlerle açıklanabilir. Noktaların sayısı ne

Detaylı

Chapter 3 Image Enhancement in the Spatial Domain. 2002 R. C. Gonzalez & R. E. Woods

Chapter 3 Image Enhancement in the Spatial Domain. 2002 R. C. Gonzalez & R. E. Woods Chapter 3 Image Enhancement in the Spatial Domain 2002 R. C. Gonzalez & R. E. Woods Chapter 3 Image Enhancement in the Spatial Domain 2002 R. C. Gonzalez & R. E. Woods Chapter 3 Image Enhancement in the

Detaylı

Şirketin Tanıtımı Huger

Şirketin Tanıtımı Huger Şirketin Tanıtımı Huger Endoscopy Instruments Co., Ltd., medikal video endoskopların geliştirilmesine yönelik bir imalat şirketidir. Firmamız, Çin Bilim ve Teknoloji Bakanlığı tarafından, medikal endoskopi

Detaylı

Grafik Komutları. Grafik Türleri plot: çizgisel grafikler bar: sütun bar şeklindeki grafikler stem: sütun çizgisel grafikler pie: pasta grafikleri

Grafik Komutları. Grafik Türleri plot: çizgisel grafikler bar: sütun bar şeklindeki grafikler stem: sütun çizgisel grafikler pie: pasta grafikleri Matlab Grafikler Grafik Türleri Grafik Komutları Grafik Türleri plot: çizgisel grafikler bar: sütun bar şeklindeki grafikler stem: sütun çizgisel grafikler pie: pasta grafikleri Yardımcı Komutlar hold

Detaylı

MATLAB. Grafikler DOÇ. DR. ERSAN KABALCI

MATLAB. Grafikler DOÇ. DR. ERSAN KABALCI MATLAB Grafikler DOÇ. DR. ERSAN KABALCI Matlab yüksek seviyede grafik oluşturulabilir. Matlab ile çizilebilecek grafikler; Dikdörtgen (x-y) ve 3 boyutlu çizgi grafikleri Ağ (mesh) ve yüzey grafikleri Çubuk

Detaylı

Dijital Görüntü İşleme Teknikleri

Dijital Görüntü İşleme Teknikleri Teknikleri Ders Notları, 2015 Doç. Dr. Fevzi Karslı Harita Mühendisliği Bölümü Mühendislik Fakültesi KTÜ 19 Ekim 2015 Pazartesi 1 Ders Planı ve İçeriği 1. Hafta Giriş, dersin kapsamı, temel kavramlar,

Detaylı

GRAFİK ÇİZİMİ VE UYGULAMALARI 2

GRAFİK ÇİZİMİ VE UYGULAMALARI 2 GRAFİK ÇİZİMİ VE UYGULAMALARI 2 1. Verinin Grafikle Gösterilmesi 2 1.1. İki Değişkenli Grafikler 3 1.1.1. Serpilme Diyagramı 4 1.1.2. Zaman Serisi Grafikleri 5 1.1.3. İktisadi Modellerde Kullanılan Grafikler

Detaylı

BİLGİSAYAR PROGRAMLAMA. Yrd. Doç. Dr. Beytullah EREN beren@sakarya.edu.tr 0264 295 5642

BİLGİSAYAR PROGRAMLAMA. Yrd. Doç. Dr. Beytullah EREN beren@sakarya.edu.tr 0264 295 5642 BİLGİSAYAR PROGRAMLAMA Yrd. Doç. Dr. Beytullah EREN beren@sakarya.edu.tr 0264 295 5642 EXCEL DE GRAFİK UYGULAMA GRAFİKLER Grafikler, çok sayıda verinin ve farklı veri serileri arasındaki ilişkinin anlaşılmasını

Detaylı

BMÜ-357 Sayısal Görüntü İşleme. MATLAB İLE GÖRÜNTÜ İŞLEME Yrd. Doç. Dr. İlhan AYDIN

BMÜ-357 Sayısal Görüntü İşleme. MATLAB İLE GÖRÜNTÜ İŞLEME Yrd. Doç. Dr. İlhan AYDIN BMÜ-357 Sayısal Görüntü İşleme MATLAB İLE GÖRÜNTÜ İŞLEME Yrd. Doç. Dr. İlhan AYDIN Sayısal Görüntü İşleme: Sensörlerden gelen görüntünün bilgisayara aktarılıp üzerinde herhangi bir işlem yapılması ve ardından

Detaylı

CNC TORNA TEZGAHLARININ PROGRAMLANMASI

CNC TORNA TEZGAHLARININ PROGRAMLANMASI CNC TORNA TEZGAHLARININ PROGRAMLANMASI Yardımcı fonksiyonu (soğ. sıvısı, mili on/off) İlerleme miktarı Kesme hızı Blok(Satır) numarası Dairesel interpolasyonda yay başlangıcının yay merkezine X,Y veya

Detaylı

TÜRKİYE CUMHURİYETİ DEVLETİNİN temellerinin atıldığı Çanakkale zaferinin 100. yılı kutlu olsun.

TÜRKİYE CUMHURİYETİ DEVLETİNİN temellerinin atıldığı Çanakkale zaferinin 100. yılı kutlu olsun. Doç.Dr.Mehmet MISIR-2013 TÜRKİYE CUMHURİYETİ DEVLETİNİN temellerinin atıldığı Çanakkale zaferinin 100. yılı kutlu olsun. Son yıllarda teknolojinin gelişmesi ile birlikte; geniş alanlarda, kısa zaman aralıklarında

Detaylı

1. MİCROSOFT EXCEL 2010 A GİRİŞ

1. MİCROSOFT EXCEL 2010 A GİRİŞ 1. MİCROSOFT EXCEL 2010 A GİRİŞ 1.1. Microsoft Excel Penceresi ve Temel Kavramlar Excel, Microsoft firması tarafından yazılmış elektronik hesaplama, tablolama ve grafik programıdır. Excel de çalışılan

Detaylı

ARTOS7F1 ARIZA TESPİT CİHAZI VE PC OSİLOSKOP 7 FONKSİYON 1 CİHAZDA

ARTOS7F1 ARIZA TESPİT CİHAZI VE PC OSİLOSKOP 7 FONKSİYON 1 CİHAZDA ARTOS7F1 ARIZA TESPİT CİHAZI VE PC OSİLOSKOP 7 FONKSİYON 1 CİHAZDA ARTOS7F1 Arıza Tespit Cihazı ve PC Osiloskop her tür elektronik kartın arızasını bulmada çok etkili bir sistemdir. Asıl tasarım amacı

Detaylı

İşaret İşleme ve Haberleşmenin Temelleri. Yrd. Doç. Dr. Ender M. Ekşioğlu eksioglue@itu.edu.tr http://www2.itu.edu.tr/~eksioglue

İşaret İşleme ve Haberleşmenin Temelleri. Yrd. Doç. Dr. Ender M. Ekşioğlu eksioglue@itu.edu.tr http://www2.itu.edu.tr/~eksioglue İşaret İşleme ve Haberleşmenin Temelleri Yrd. Doç. Dr. Ender M. Ekşioğlu eksioglue@itu.edu.tr http://www2.itu.edu.tr/~eksioglue İşaretler: Bilgi taşıyan işlevler Sistemler: İşaretleri işleyerek yeni işaretler

Detaylı

BÖLÜM 1: MADDESEL NOKTANIN KİNEMATİĞİ

BÖLÜM 1: MADDESEL NOKTANIN KİNEMATİĞİ BÖLÜM 1: MADDESEL NOKTANIN KİNEMATİĞİ 1.1. Giriş Kinematik, daha öncede vurgulandığı üzere, harekete sebep olan veya hareketin bir sonucu olarak ortaya çıkan kuvvetleri dikkate almadan cisimlerin hareketini

Detaylı

ELN1001 BİLGİSAYAR PROGRAMLAMA I

ELN1001 BİLGİSAYAR PROGRAMLAMA I ELN1001 BİLGİSAYAR PROGRAMLAMA I DEPOLAMA SINIFLARI DEĞİŞKEN MENZİLLERİ YİNELEMELİ FONKSİYONLAR Depolama Sınıfları Tanıtıcılar için şu ana kadar görülmüş olan özellikler: Ad Tip Boyut Değer Bunlara ilave

Detaylı

EKOM WEB DESIGNER PROGRMI KULLANMA KILAVUZ. 1 - Web Sayfası Tasarımı Oluşturma / Var Olan Tasarımı Açma:

EKOM WEB DESIGNER PROGRMI KULLANMA KILAVUZ. 1 - Web Sayfası Tasarımı Oluşturma / Var Olan Tasarımı Açma: EKOM WEB DESIGNER PROGRMI KULLANMA KILAVUZ 1 Web Sayfası Tasarımı Oluşturma / Var Olan Tasarımı Açma 2 Web Sayfasına Yeni Element Ekleme Ve Özelliklerini Belirleme Değişiklik Yapma 3 Web Sayfası Tasarımını

Detaylı

MAPINFO PROFESSIONAL TEMEL VE İLERİ SEVİYE KURS İÇERİĞİ

MAPINFO PROFESSIONAL TEMEL VE İLERİ SEVİYE KURS İÇERİĞİ MAPINFO PROFESSIONAL TEMEL VE İLERİ SEVİYE KURS İÇERİĞİ Başar Bilgisayar Sistemleri Ve İletişim Teknolojileri San. Ve Tic. Ltd. Şti. Web site: http://www.basarsoft.com.tr Kontak mail: basar@basarsoft.com.tr

Detaylı

HABERLEŞMENIN AMACI. Haberleşme sistemleri istenilen haberleşme türüne göre tasarlanır.

HABERLEŞMENIN AMACI. Haberleşme sistemleri istenilen haberleşme türüne göre tasarlanır. 2 HABERLEŞMENIN AMACI Herhangi bir biçimdeki bilginin zaman ve uzay içinde, KAYNAK adı verilen bir noktadan KULLANICI olarak adlandırılan bir başka noktaya aktarılmasıdır. Haberleşme sistemleri istenilen

Detaylı

Üretim Süreci: Girdi İşlem Ürün (Sonuç) Araştırma Süreci: Hangi alanda olursa olsun araştırma bir BİLGİ ye ulaşma sürecidir.

Üretim Süreci: Girdi İşlem Ürün (Sonuç) Araştırma Süreci: Hangi alanda olursa olsun araştırma bir BİLGİ ye ulaşma sürecidir. BİYOİSTATİSTİK Üretim Süreci: Girdi İşlem Ürün (Sonuç) Araştırma Süreci: Hangi alanda olursa olsun araştırma bir BİLGİ ye ulaşma sürecidir. Veri Analiz Bilgi El ile ya da birtakım bilgisayar programları

Detaylı

Renk kalitesi kılavuzu

Renk kalitesi kılavuzu Sayfa 1 / 5 Renk kalitesi kılavuzu Bu kılavuz, renk çıktısını ayarlamak ve özelleştirmek için yazıcının mevcut işlemlerinin nasıl kullanılabileceğini anlamanıza yardımcı olur. Kalite menüsü Yazdırma Modu

Detaylı

Bilgisayar Programlama MATLAB

Bilgisayar Programlama MATLAB What is a computer??? Bilgisayar Programlama MATLAB ler Prof. Dr. İrfan KAYMAZ What is a computer??? MATLAB de GRAFİK İŞLEMLERİ MATLAB diğer programlama dillerine nazaran oldukça güçlü bir grafik araçkutusuna

Detaylı

OTOMATİK KONTROL SİSTEMLERİ. DİNAMİK SİSTEMLERİN MODELLENMESİ ve ANALİZİ

OTOMATİK KONTROL SİSTEMLERİ. DİNAMİK SİSTEMLERİN MODELLENMESİ ve ANALİZİ OTOMATİK KONTROL SİSTEMLERİ DİNAMİK SİSTEMLERİN MODELLENMESİ ve ANALİZİ 1) İdeal Sönümleme Elemanı : a) Öteleme Sönümleyici : Mekanik Elemanların Matematiksel Modeli Basit mekanik elemanlar, öteleme hareketinde;

Detaylı

MIT OpenCourseWare http://ocw.mit.edu. 14.30 Ekonomide İstatistiksel Yöntemlere Giriş Bahar 2009

MIT OpenCourseWare http://ocw.mit.edu. 14.30 Ekonomide İstatistiksel Yöntemlere Giriş Bahar 2009 MIT OpenCourseWare http://ocw.mit.edu 14.30 Ekonomide İstatistiksel Yöntemlere Giriş Bahar 2009 Bu materyale atıfta bulunmak ve kullanım koşulları için http://ocw.mit.edu/terms sayfasını ziyaret ediniz.

Detaylı

Excel de Pivot Tablolar Tasarım ve Kullanımı

Excel de Pivot Tablolar Tasarım ve Kullanımı FARUK ÇUBUKÇU EXCEL AKADEMİ Excel de Pivot Tablolar Tasarım ve Kullanımı Pivot tablolar; satışlar, siparişler gibi verileri gruplamayı, alt toplamlarını almayı ve filtreleme işlemleri yapmayı sağlayan

Detaylı

Çoklu Ortam Uygulamaları. FATİH Projesi PARDUS Temel Eğitim Kursu

Çoklu Ortam Uygulamaları. FATİH Projesi PARDUS Temel Eğitim Kursu Çoklu Ortam Uygulamaları FATİH Projesi PARDUS Temel Eğitim Kursu Gwenview Gwenview uygulama yazılımı,genel resim göstericisi ve temel fotoğraf düzenleyicisidir. Resim ve Fotoğraf Gösterici ve aynı zamanda

Detaylı

MMT 106 Teknik Fotoğrafçılık 3 Digital Görüntüleme

MMT 106 Teknik Fotoğrafçılık 3 Digital Görüntüleme MMT 106 Teknik Fotoğrafçılık 3 Digital Görüntüleme 2010-2011 Bahar Yarıyılı Ar. Gör. Dr. Ersoy Erişir 1 Konvansiyonel Görüntüleme (Fotografi) 2 Görüntü Tasarımı 3 Digital Görüntüleme 3.1 Renkler 3.2.1

Detaylı

DC DEVRE ÇÖZÜM YÖNTEMLERİ

DC DEVRE ÇÖZÜM YÖNTEMLERİ DC DEVRE ÇÖZÜM YÖNTEMLERİ Elektrik devresi, kaynak ve yük gibi çeşitli devre elemanlarının herhangi bir şekilde bağlantısından meydana gelir. Bu gibi devrelerin çözümünde genellikle, seri-paralel devrelerin

Detaylı

ALAN ETKİLİ TRANSİSTÖR

ALAN ETKİLİ TRANSİSTÖR ALAN ETKİLİ TRANİTÖR Y.oç.r.A.Faruk BAKAN FET (Alan Etkili Transistör) gerilim kontrollu ve üç uçlu bir elemandır. FET in uçları G (Kapı), (rain) ve (Kaynak) olarak tanımlanır. FET in yapısı ve sembolü

Detaylı

İstatistik ve Olasılık

İstatistik ve Olasılık İstatistik ve Olasılık Rastgele Değişkenlerin Dağılımları I Prof. Dr. İrfan KAYMAZ Ders konusu Bu derste; Rastgele değişkenlerin tanımı ve sınıflandırılması Olasılık kütle fonksiyonu Olasılık yoğunluk

Detaylı

BULANIK C-ORTALAMA (FCM) ALGORİTMASINA DAYALI YENİ GÖRÜNTÜ BÖLÜTLEME SİSTEMİNİN GELİŞTİRİLMESİ

BULANIK C-ORTALAMA (FCM) ALGORİTMASINA DAYALI YENİ GÖRÜNTÜ BÖLÜTLEME SİSTEMİNİN GELİŞTİRİLMESİ TEKNOLOJİ, Cilt 7, (004), Sayı 3, 36-367 TEKNOLOJİ BULANIK C-ORTALAMA (FCM) ALGORİTMASINA DAYALI YENİ GÖRÜNTÜ BÖLÜTLEME SİSTEMİNİN GELİŞTİRİLMESİ Mehmet BULUT* Ayhan İSTANBULLU** *Elektrik Üretim A.Ş.Genel

Detaylı

Yıldız Teknik Üniversitesi Fen Bilimleri Enstitüsü Bilgisayar Mühendisliği Bölümü. Bilgisayarla Görme. Proje

Yıldız Teknik Üniversitesi Fen Bilimleri Enstitüsü Bilgisayar Mühendisliği Bölümü. Bilgisayarla Görme. Proje Yıldız Teknik Üniversitesi Fen Bilimleri Enstitüsü Bilgisayar Mühendisliği Bölümü Bilgisayarla Görme Proje Renk ve Şekil Temelli Trafik İşareti Tespiti Selçuk BAŞAK 08501008 1. Not: Ödevi hazırlamak için

Detaylı

25. Aşağıdaki çıkarma işlemlerini doğrudan çıkarma yöntemi ile yapınız.

25. Aşağıdaki çıkarma işlemlerini doğrudan çıkarma yöntemi ile yapınız. BÖLÜM. Büyüklüklerin genel özellikleri nelerdir? 2. Analog büyüklük, analog işaret, analog sistem ve analog gösterge terimlerini açıklayınız. 3. Analog sisteme etrafınızdaki veya günlük hayatta kullandığınız

Detaylı

MAK 210 SAYISAL ANALİZ

MAK 210 SAYISAL ANALİZ MAK 210 SAYISAL ANALİZ BÖLÜM 6- İSTATİSTİK VE REGRESYON ANALİZİ Doç. Dr. Ali Rıza YILDIZ 1 İSTATİSTİK VE REGRESYON ANALİZİ Bütün noktalardan geçen bir denklem bulmak yerine noktaları temsil eden, yani

Detaylı

VERİ MADENCİLİĞİ. Karar Ağacı Algoritmaları: SPRINT algoritması Öğr.Gör.İnan ÜNAL

VERİ MADENCİLİĞİ. Karar Ağacı Algoritmaları: SPRINT algoritması Öğr.Gör.İnan ÜNAL VERİ MADENCİLİĞİ Karar Ağacı Algoritmaları: SPRINT algoritması Öğr.Gör.İnan ÜNAL SPRINT Algoritması ID3,CART, ve C4.5 gibi algoritmalar önce derinlik ilkesine göre çalışırlar ve en iyi dallara ayırma kriterine

Detaylı

22. Ölçü ve Kot Eklemek

22. Ölçü ve Kot Eklemek 22. Ölçü ve Kot Eklemek Bu Konuda Öğrenilecekler: Ölçülendirme birimi ve hassasiyetini ayarlamak Doğrusal ölçülendirme aracı geçerli ayarları ile çalışmak Doğrusal ölçülendirme çizgisi oluşturmak Mevcut

Detaylı

Diğer sayfaya geçiniz. 2013 - YGS / MAT TEMEL MATEMATİK TESTİ. olduğuna göre, a kaçtır? olduğuna göre, m kaçtır?

Diğer sayfaya geçiniz. 2013 - YGS / MAT TEMEL MATEMATİK TESTİ. olduğuna göre, a kaçtır? olduğuna göre, m kaçtır? TEMEL MATEMATİK TESTİ 1. Bu testte 40 soru vardır. 2. Cevaplarınızı, cevap kâğıdının Temel Matematik Testi için ayrılan kısmına işaretleyiniz. 1. 3. olduğuna göre, a kaçtır? olduğuna göre, m kaçtır? A)

Detaylı

EM302 Yöneylem Araştırması 2 Doğrusal Olmayan Programlamaya Giriş. Dr. Özgür Kabak

EM302 Yöneylem Araştırması 2 Doğrusal Olmayan Programlamaya Giriş. Dr. Özgür Kabak EM302 Yöneylem Araştırması 2 Doğrusal Olmayan Programlamaya Giriş Dr. Özgür Kabak Doğrusal Olmayan Programlama Eğer bir Matematiksel Programlama modelinin amaç fonksiyonu ve/veya kısıtları doğrusal değil

Detaylı

İÇİNDEKİLER İÇİNDEKİLER KODLAB

İÇİNDEKİLER İÇİNDEKİLER KODLAB İÇİNDEKİLER IX İÇİNDEKİLER 1 GİRİŞ 1 Kitabın Amacı 1 Algoritmanın Önemi 2 Bilgisayarın Doğuşu ve Kullanım Amaçları 3 Programlama Dili Nedir? 3 Entegre Geliştirme Ortamı (IDE) Nedir? 4 2 ALGORİTMA VE AKIŞ

Detaylı

İSTANBUL TEKNİK ÜNİVERSİTESİ ELEKTRİK-ELEKTRONİK FAKÜLTESİ ELEKTRONİK MÜHENDİSLİĞİ BÖLÜMÜ

İSTANBUL TEKNİK ÜNİVERSİTESİ ELEKTRİK-ELEKTRONİK FAKÜLTESİ ELEKTRONİK MÜHENDİSLİĞİ BÖLÜMÜ İSTANBUL TEKNİK ÜNİVERSİTESİ ELEKTRİK-ELEKTRONİK FAKÜLTESİ ELEKTRONİK MÜHENDİSLİĞİ BÖLÜMÜ BİTİRME PROJESİ Karar Ağacı ve SOM Ağı ile Doku Bölütleme Hazırlayan Cem Mutlu, 040090365 Danışman Prof. Dr. Zümray

Detaylı

BMÜ-421 Benzetim ve Modelleme MATLAB SIMULINK. İlhan AYDIN

BMÜ-421 Benzetim ve Modelleme MATLAB SIMULINK. İlhan AYDIN BMÜ-421 Benzetim ve Modelleme MATLAB SIMULINK İlhan AYDIN SIMULINK ORTAMI Simulink bize karmaşık sistemleri tasarlama ve simülasyon yapma olanağı vermektedir. Mühendislik sistemlerinde simülasyonun önemi

Detaylı

Verilerin Özetlenmesinde Kullanılan Tablolar ve Grafiksel Yöntemler

Verilerin Özetlenmesinde Kullanılan Tablolar ve Grafiksel Yöntemler Verilerin Özetlenmesinde Kullanılan Tablolar ve Grafiksel Yöntemler Frekans Dağılımları Verilerin Düzenlenmesi Sıralı dizi bir dizi verinin küçükten büyüğe yada büyükten küçüğe göre sıralanması Dağılı

Detaylı

RF MİKROELEKTRONİK GÜRÜLTÜ

RF MİKROELEKTRONİK GÜRÜLTÜ RF MİKROELEKTRONİK GÜRÜLTÜ RASTGELE BİR SİNYAL Gürültü rastgele bir sinyal olduğu için herhangi bir zamandaki değerini tahmin etmek imkansızdır. Bu sebeple tekrarlayan sinyallerde de kullandığımız ortalama

Detaylı

1203608-SIMÜLASYON DERS SORUMLUSU: DOÇ. DR. SAADETTIN ERHAN KESEN. Ders No:5 Rassal Değişken Üretimi

1203608-SIMÜLASYON DERS SORUMLUSU: DOÇ. DR. SAADETTIN ERHAN KESEN. Ders No:5 Rassal Değişken Üretimi 1203608-SIMÜLASYON DERS SORUMLUSU: DOÇ. DR. SAADETTIN ERHAN KESEN Ders No:5 RASSAL DEĞIŞKEN ÜRETIMI Bu bölümde oldukça yaygın bir biçimde kullanılan sürekli ve kesikli dağılımlardan örneklem alma prosedürleri

Detaylı

Bölüm 3: Vektörler. Kavrama Soruları. Konu İçeriği. Sunuş. 3-1 Koordinat Sistemleri

Bölüm 3: Vektörler. Kavrama Soruları. Konu İçeriği. Sunuş. 3-1 Koordinat Sistemleri ölüm 3: Vektörler Kavrama Soruları 1- Neden vektörlere ihtiyaç duyarız? - Vektör ve skaler arasındaki fark nedir? 3- Neden vektörel bölme işlemi yapılamaz? 4- π sayısı vektörel mi yoksa skaler bir nicelik

Detaylı

BİLGİSAYAR PROGRAMLAMA VE FİZİKTE PROGRAMLAMA DERSLERİ İÇİN MATLAB ÇALIŞMA NOTLARI. Mehmet ÖZKAN

BİLGİSAYAR PROGRAMLAMA VE FİZİKTE PROGRAMLAMA DERSLERİ İÇİN MATLAB ÇALIŞMA NOTLARI. Mehmet ÖZKAN BİLGİSAYAR PROGRAMLAMA VE FİZİKTE PROGRAMLAMA DERSLERİ İÇİN MATLAB ÇALIŞMA NOTLARI Mehmet ÖZKAN input:bu komut kullanıcıdan veri girişi istiğinde kullanılır. Etkin ve etkileşimli bir program yazımında

Detaylı

Mühendislik Mimarlık Fakültesi Makine Mühendisliği Bölümü

Mühendislik Mimarlık Fakültesi Makine Mühendisliği Bölümü ÇEKME DENEYİ 1. DENEYİN AMACI Mühendislik malzemeleri rijit olmadığından kuvvet altında deforme olup, şekil ve boyut değişiklikleri gösterirler. Malzeme özelliklerini anlamak üzere mekanik testler yapılır.

Detaylı

TEMEL İNŞAATI ŞERİT TEMELLER

TEMEL İNŞAATI ŞERİT TEMELLER TEMEL İNŞAATI ŞERİT TEMELLER Kaynak; Temel Mühendisliğine Giriş, Prof. Dr. Bayram Ali Uzuner 1 2 Duvar Altı (veya Perde Altı) Şerit Temeller (Duvar Temelleri) 3 Taş Duvar Altı Şerit Temeller Basit tek

Detaylı

EXCEL 2007 ELEKTRONİK ÇİZELGE

EXCEL 2007 ELEKTRONİK ÇİZELGE EXCEL 2007 ELEKTRONİK ÇİZELGE Excel, Microsoft Office paketinde yer alan ve iş hayatında en sık kullanılan programlardandır. Bir hesap tablosu programıdır. Excel, her türlü veriyi (özellikle sayısal verileri)

Detaylı

Horn ve Schunck Optik Akış yöntemi ile hareket vektörlerinin gerçek zamanlı veya videolar üzerinden gerçeklenmesi.(matlab)

Horn ve Schunck Optik Akış yöntemi ile hareket vektörlerinin gerçek zamanlı veya videolar üzerinden gerçeklenmesi.(matlab) Horn ve Schunck Optik Akış yöntemi ile hareket vektörlerinin gerçek zamanlı veya videolar üzerinden gerçeklenmesi.(matlab) Dersin Adı: Say.İşaret İşleme Tas.&Uyg. Sınıf Eğitmeni: Bilge Günsel Kalyoncu

Detaylı