Statistical Package for the Social Sciences

Save this PDF as:
 WORD  PNG  TXT  JPG

Ebat: px
Şu sayfadan göstermeyi başlat:

Download "01.02.2013. Statistical Package for the Social Sciences"

Transkript

1 Hipotezlerin test edilip onaylanması için çeşitli istatistiksel testler kullanılmaktadır. Fakat... Her istatistik teknik her tür analize elverişli değildir. Modele veya hipoteze uygun test istatistiği seçilmedikçe sonuçlar anlamlı olmaktan uzaklaşır. Statistical Package for the Social Sciences Bilgisayar yazılımı İstatistiksel verileri analiz etmeye yardımcı Birçok disiplin tarafından kullanılıyor. Veri dosyalarının uzantısı sav Analiz çıktılarının uzantısı ise spo veya spv dir. 1

2 Tüm veri dizisinin toplanmasi ve bu toplamin veri sayısına bölünmesi ile elde edilen bir sayıdır Elimizdeki veriler küçükten büyüğe doğru sıralandığında orta noktada olan değere medyan adı verilir. Eğer veri setini oluşturan gözlem sayısı tek ise medyan orta noktadır. Eğer gözlem sayısı çift sayı ise medyan orta noktadaki iki gözlemin ortalamasına eşit olacaktır. Mod elimizdeki Mod, veri setinde en çok tekrar eden değere verilen isimdir. Mod değerinin de medyan da olduğu gibi en önemli üstünlüğü en büyük ve en küçük değerleri dikkate almaması nedeniyle uç değerlerden etkilenmemesidir. 2

3 Veri değerlerinin aritmetik ortalamadan farklarının karelerinin toplamının veri sayısı -1'e bölümünün kare köküdür Basit anakütle için kilogram birimi ile veri (4, 8, 12) olsun. Aritmetik ortalama 8 olur Kare toplamlarının ortalaması olan varyans [(4-8) 2 +(8-8) 2 +(12-8) 2 ]/2 = 32/2 = 16 olur ve kilogram kare birimi ile verilir. Standart sapma 16 nin karekökü olup 4 değerdedir ve kilogram birimi ile ölçülür. 1) Yaşınız? a) b) c) 36 ve üstü 2) Cinsiyetiniz? a) Kadın b) Erkek 3) Hangi futbol takımını destekliyorsunuz? a) Beşiktaş b) Fenerbahçe c) Galatasaray d) Trabzonspor e) Desteklemiyorum f) Diğer (belirtiniz) 4) sezonunda hangi takımın şampiyon olacağını düşünüyorsunuz? a) Beşiktaş b) Fenerbahçe c) Galatasaray d) Trabzonspor e) Diğer (belirtiniz). 5) Türk futbolu özellikle son yıllarda büyük düşüş yaşamaktadır. ifadesine yönelik görüşleriniz nedir? a) Kesinlikle katılıyorum b) Katılıyorum c) Kararsızım d) Katılmıyorum e) Kesinlikle katılmıyorum Veri Girişi 3

4 Data View Veri girişi ekranı Variable View Veri Alanları Ekleme Ekranı Sayılar ile Kodlama Gerçek anlamı Ankette sorulan sorular tek tek Name kısmına kısaltılarak yazılır. Diğer sütunlar otomatik olarak belirir. Decimal sütunu 2 dir. 0 olarak değiştirilir. Values sütununda sağ köşedeki üç noktaya tıklanınca Value Labels açılır. Scale kısmı ölçeğe uygun seçilmelidir. Value Labels kısmına anket sorularındaki şıklar sırasıyla ve 1,2, 3 olarak değer verilerek yazılır. Label kısmına anketteki şıkta yer alan metin yazılır. Add butonuna basılarak şıklar listelenir. Her bir anket sorusu için süreç tekrarlanır. 4

5 Tüm veri ekleme alanları tanımlandıktan sonra sol alt köşedeki Data View e tıklanır. Anketler data view kısmına girilmelidir. Her satır bir anket anlamına gelir. Anketler yapılan kodlamaya uygun olarak sayısal ifadeler ile veritabanına girilir. 5

6 Analyze Descriptive Statistics Frequencies Sol taraftaki analiz edilmesi istenen değişkenler seçilerek ortadaki ok işaretiyle sağ tarafa atılır. 6

7 Katılımcıların Demografik Özellikleri Tablosu İçin Bir Örnek Katılımcıların Demografik Özellikleri N Geçerli % Kadın Cinsiyet Erkek Toplam Yaş Toplam aylık hane geliri Otomobil Sahipliği Toplam 500 YTL den az YTL arası YTL arası YTL arası YTL arası 2500YTL den fazla Toplam Ailenin otomobili var Ailenin otomobili yok Toplam

8 Analyze Descriptive Statistics Crosstabs Sol tarafta ter alan liste içerisinden bir değişken satıra (Rows) diğer değişken sütuna (Columns) ortadaki ok işaretleriyle gönderilir. 8

9 Cells butonu tıklanınca açılan ekranda Percentages kısmında Row işaretlenir. Devam (Continue) butonuna basılır. 9

10 TUTUMORT Yapacağımız hesaplamayı buraya yazacagız. (Tutum1+Tutum2+Tutum3+Tutum4+Tutum5)/5 Yaptığınız hesaplama verdiğiniz isimle en son sütunda yerini alacak. 10

11 H0 = Kız ve erkek öğrencilerin matematik dersinden aldıkları notlar arasında anlamlı bir fark yoktur. Independent Samples Test tablosunun Sig. (Anlamlılık) sütunundaki değerin 0,029 olduğu görülmektedir. Söz konusu değer 0,05 den küçük olduğu için, cinsiyet ile matematik dersi başarısı arasındaki ilişkinin p < 0,05 düzeyinde istatistiksel olarak anlamlı olduğunu söyleyebiliriz. 11

12 Örneğimizde t-testi sonuçları ve gruplara ait ortamlalar birlikte değerlendirildiğinde, H0 hipotezi reddedilmiş ve kız öğrencilerin matematik dersinde erkelerden daha başarılı olduğu sonucuna ulaşılmıştır. Oneway ANOVA Analysis of Variance Varyans analizi (ANOVA), 3 ya da daha çok grup arasında, belirli bir değişkenin ortalamalarında anlamlı bir farklılık olup olmadığını belirlemek amacıyla kullanılır Örnek Alt, orta ve üst sosyo-ekonomik düzeylerdeki kişilerin depresyon düzeyleri birbirinden farklı mıdır? 12

13 Options seçilerek ilerlenir Sonuçta OK e basılır ve çıktı incelenebilir Veri Between Groups Within Groups Total ANOVA Sum of Squares df Mean Square F Sig. 6000, ,000 9,000, , , , Asıl varyans analizi tablosu ANOVA tablosudur. ANOVA tablosunda en sonraki sig. değeri 0,05 ten küçükse karşılaştırılan grupların ortalamaları arasında anlamlı bir fark olduğuna karar verilir

14 Bağımlı değişken ile bağımsız değişken arasındaki ilişkiyi inceler. Ör: Tutum Satın Alma Niyeti Tutum (Bağımsız Değişken) Satın Alma Niyeti (Bağımlı Değişken) Bağımlı ve bağımsız değişkenler aralıklı ölçek olmak zorundadır. 14

15 15

16 SPSS Analizleri ile elde edilen tablolar yorumlanırken; Araştırmanın amacına uygun olan noktalar (en önemli bulgular) vurgulanır. Tablodaki bütün veriler tek tek açıklanmaz. 16

Hipotezlerin test edilip onaylanması için çeşitli istatistiksel testler kullanılmaktadır. Fakat...

Hipotezlerin test edilip onaylanması için çeşitli istatistiksel testler kullanılmaktadır. Fakat... Hipotezlerin test edilip onaylanması için çeşitli istatistiksel testler kullanılmaktadır. Fakat... Her istatistik teknik her tür analize elverişli değildir. Modele veya hipoteze uygun test istatistiği

Detaylı

Çalıştığı kurumun prestij kaynağı olup olmaması KIZ 2,85 ERKEK 4,18

Çalıştığı kurumun prestij kaynağı olup olmaması KIZ 2,85 ERKEK 4,18 1 * BAĞIMSIZ T TESTİ (Independent Samples t test) ÖRNEK: Yapılan bir anket çalışmasında katılımcılardan, çalıştıkları kurumun kendileri için bir prestij kaynağı olup olmadığını belirtmeleri istenmiş. 30

Detaylı

SPSS (Statistical Package for Social Sciences)

SPSS (Statistical Package for Social Sciences) SPSS (Statistical Package for Social Sciences) SPSS Data Editor: Microsoft Excel formatına benzer satır ve sütunlardan oluşan çalışma sayfası (*sav) Data Editör iki arayüzden oluşur. 1. Data View 2. Variable

Detaylı

BÖLÜM 8 BİLGİSAYAR UYGULAMALARI - 2

BÖLÜM 8 BİLGİSAYAR UYGULAMALARI - 2 1 BÖLÜM 8 BİLGİSAYAR UYGULAMALARI - 2 Bu bölümde bir veri seti üzerinde betimsel istatistiklerin kestiriminde SPSS paket programının kullanımı açıklanmaktadır. Açıklamalar bir örnek üzerinde hareketle

Detaylı

SPSS UYGULAMALARI-II Dr. Seher Yalçın 1

SPSS UYGULAMALARI-II Dr. Seher Yalçın 1 SPSS UYGULAMALARI-II 27.12.2016 Dr. Seher Yalçın 1 Normal Dağılım Varsayımının İncelenmesi Çarpıklık ve Basıklık Katsayısının İncelenmesi Analyze Descriptive Statistics Descriptives tıklanır. Açılan pencerede,

Detaylı

SPSS E GİRİŞ SPSS TE TEMEL İŞLEMLER. Abdullah Can

SPSS E GİRİŞ SPSS TE TEMEL İŞLEMLER. Abdullah Can SPSS E GİRİŞ SPSS TE TEMEL İŞLEMLER SPSS in üzerinde işlem yapılabilecek iki ana ekran görünümü vardır. DATA VIEW (VERİ görünümü) VARIABLE VIEW (DEĞİŞKEN görünümü) 1 DATA VIEW (VERİ görünümü) İstatistiksel

Detaylı

UYGULAMA 2 TABLO YAPIMI

UYGULAMA 2 TABLO YAPIMI 1 UYGULAMA 2 TABLO YAPIMI Amaç: SPSS 10 istatistiksel paket programında veri girişi ve tablo yapımı. SPSS 10 istatistiksel paket programı ilk açıldığında ekrana gelen görüntü aşağıdaki gibidir. Bu pencere

Detaylı

Pazarlama Araştırması Grup Projeleri

Pazarlama Araştırması Grup Projeleri Pazarlama Araştırması Grup Projeleri Projeler kapsamında öğrencilerden derlediğiniz 'Teknoloji Kullanım Anketi' verilerini kullanarak aşağıda istenilen testleri SPSS programını kullanarak gerçekleştiriniz.

Detaylı

SPSS (Statistical Package for Social Sciences)

SPSS (Statistical Package for Social Sciences) SPSS (Statistical Package for Social Sciences) SPSS Data Editor: Microsoft Excel formatına benzer satır ve sütunlardan oluşan çalışma sayfası (*sav) SPSS Data Editör iki arayüzden oluşur. 1. Data View

Detaylı

H.Ü. Bilgi ve Belge Yönetimi Bölümü BBY 208 Sosyal Bilimlerde Araştırma Yöntemleri II (Bahar 2012) SPSS DERS NOTLARI I 5 Nisan 2012

H.Ü. Bilgi ve Belge Yönetimi Bölümü BBY 208 Sosyal Bilimlerde Araştırma Yöntemleri II (Bahar 2012) SPSS DERS NOTLARI I 5 Nisan 2012 H.Ü. Bilgi ve Belge Yönetimi Bölümü BBY 208 Sosyal Bilimlerde Araştırma Yöntemleri II (Bahar 2012) SPSS DERS NOTLARI I 5 Nisan 2012 Aşağıdaki analizlerde http://yunus.hacettepe.edu.tr/~tonta/courses/spring2010/bby208/bby208

Detaylı

H.Ü. Bilgi ve Belge Yönetimi Bölümü BBY 208 Sosyal Bilimlerde Araştırma Yöntemleri II (Bahar 2012) SPSS Ders Notları III (3 Mayıs 2012)

H.Ü. Bilgi ve Belge Yönetimi Bölümü BBY 208 Sosyal Bilimlerde Araştırma Yöntemleri II (Bahar 2012) SPSS Ders Notları III (3 Mayıs 2012) H.Ü. Bilgi ve Belge Yönetimi Bölümü BBY 208 Sosyal Bilimlerde Araştırma Yöntemleri II (Bahar 2012) Parametrik Olmayan Testler Binom Testi SPSS Ders Notları III (3 Mayıs 2012) Soru 1: Öğrencilerin okul

Detaylı

UYGULAMA 4 TANIMLAYICI İSTATİSTİK DEĞERLERİNİN HESAPLANMASI

UYGULAMA 4 TANIMLAYICI İSTATİSTİK DEĞERLERİNİN HESAPLANMASI 1 UYGULAMA 4 TANIMLAYICI İSTATİSTİK DEĞERLERİNİN HESAPLANMASI Örnek 1: Ders Kitabı 3. konuda verilen 100 tane yaş değeri için; a. Aritmetik ortalama, b. Ortanca değer, c. Tepe değeri, d. En küçük ve en

Detaylı

PARAMETRİK TESTLER. Tek Örneklem t-testi. 200 öğrencinin matematik dersinden aldıkları notların ortalamasının 70 e eşit olup olmadığını test ediniz.

PARAMETRİK TESTLER. Tek Örneklem t-testi. 200 öğrencinin matematik dersinden aldıkları notların ortalamasının 70 e eşit olup olmadığını test ediniz. PARAMETRİK TESTLER Tek Örneklem t-testi 200 öğrencinin matematik dersinden aldıkları notların ortalamasının 70 e eşit olup olmadığını test ediniz. H0 (boş hipotez): 200 öğrencinin matematik dersinden aldıkları

Detaylı

PARAMETRİK ve PARAMETRİK OLMAYAN (NON PARAMETRİK) ANALİZ YÖNTEMLERİ.

PARAMETRİK ve PARAMETRİK OLMAYAN (NON PARAMETRİK) ANALİZ YÖNTEMLERİ. AED 310 İSTATİSTİK PARAMETRİK ve PARAMETRİK OLMAYAN (NON PARAMETRİK) ANALİZ YÖNTEMLERİ. Standart Sapma S = 2 ( X X ) (n -1) =square root =sum (sigma) X=score for each point in data _ X=mean of scores

Detaylı

Varyans Analizi (ANOVA) Kruskal-Wallis H Testi. Doç. Dr. Ertuğrul ÇOLAK. Eskişehir Osmangazi Üniversitesi Tıp Fakültesi Biyoistatistik Anabilim Dalı

Varyans Analizi (ANOVA) Kruskal-Wallis H Testi. Doç. Dr. Ertuğrul ÇOLAK. Eskişehir Osmangazi Üniversitesi Tıp Fakültesi Biyoistatistik Anabilim Dalı Varyans Analizi (ANOVA) Kruskal-Wallis H Testi Doç. Dr. Ertuğrul ÇOLAK Eskişehir Osmangazi Üniversitesi Tıp Fakültesi Biyoistatistik Anabilim Dalı Konu Başlıkları Tek Yönlü Varyans Analizi SPSS de Tek

Detaylı

STRATEJİK PLANLAMANIN KIRSAL KALKINMAYA ETKİSİ VE GAZİANTEP ÖRNEĞİ ANKET RAPORU

STRATEJİK PLANLAMANIN KIRSAL KALKINMAYA ETKİSİ VE GAZİANTEP ÖRNEĞİ ANKET RAPORU STRATEJİK PLANLAMANIN KIRSAL KALKINMAYA ETKİSİ VE GAZİANTEP ÖRNEĞİ ANKET RAPORU Şubat 10 2012 Yener YÜKSEL Mülkiye Başmüfettişi 0 İÇERİK Araştırmanın Amacı:... 3 Anket Ölçeklerinin Oluşturulması:... 3

Detaylı

3.SUNUM. Yrd. Doç. Dr. Sedat Şen

3.SUNUM. Yrd. Doç. Dr. Sedat Şen 3.SUNUM 1 Daha önce gösterdiğimiz gibi SPSS e manual olarak (elle) veri girişi yapabildiğimiz gibi daha önce başka bir dosyaya girilmiş olan bir veriyi de SPSS e file>open >data seçeneklerini kullanarak

Detaylı

Bağımsız Örneklemler İçin Tek Faktörlü ANOVA

Bağımsız Örneklemler İçin Tek Faktörlü ANOVA Bağımsız Örneklemler İçin Tek Faktörlü ANOVA ANOVA (Varyans Analizi) birden çok t-testinin uygulanması gerektiği durumlarda hata varyansını azaltmak amacıyla öncelikle bir F istatistiği hesaplanır bu F

Detaylı

Sıklık Tablosu Oluşturma. BBY606 Araştırma Yöntemleri Güleda Doğan

Sıklık Tablosu Oluşturma. BBY606 Araştırma Yöntemleri Güleda Doğan Sıklık Tablosu Oluşturma BBY606 Araştırma Yöntemleri Güleda Doğan Ders İçeriği Tek değişken için sıklık tablosu Excel, R Commander, SPSS, PSPP İki değişken için sıklık tablosu Excel, R Commander, SPSS,

Detaylı

BİYOİSTATİSTİK PARAMETRİK TESTLER

BİYOİSTATİSTİK PARAMETRİK TESTLER BİYOİSTATİSTİK PARAMETRİK TESTLER Doç. Dr. Mahmut AKBOLAT *Bir testin kullanılabilmesi için belirli şartların sağlanması gerekir. *Bir testin, uygulanabilmesi için gerekli şartlar; ne kadar çok veya güçlü

Detaylı

Tek Yönlü Varyans Analizi (ANOVA) Kruskal Wallis H Testi

Tek Yönlü Varyans Analizi (ANOVA) Kruskal Wallis H Testi Tek Yönlü Varyans Analizi (ANOVA) Kruskal Wallis H Testi Dr. Eren Can Aybek erencan@aybek.net www.olcme.net IBM SPSS Statistics ile Hangi Durumda Kullanılır? Bağımsız gruplar t testi, iki grubun ortalamasını

Detaylı

İnsan Bilgisayar Etkileşiminde İstatistiksel Analizler

İnsan Bilgisayar Etkileşiminde İstatistiksel Analizler İnsan Bilgisayar Etkileşiminde İstatistiksel Analizler Research Methods in Human-Computer Interaction, 2nd Edition Harry Hochheiser, Jinjuan Heidi Feng, Jonathan Lazar İstatistiksel Analizler -I HCI da

Detaylı

BÖLÜM 6 MERKEZDEN DAĞILMA ÖLÇÜLERİ

BÖLÜM 6 MERKEZDEN DAĞILMA ÖLÇÜLERİ 1 BÖLÜM 6 MERKEZDEN DAĞILMA ÖLÇÜLERİ Gözlenen belli bir özelliği, bu özelliğe ilişkin ölçme sonuçlarını yani verileri kullanarak betimleme, istatistiksel işlemlerin bir boyutunu oluşturmaktadır. Temel

Detaylı

SPSS-Tarihsel Gelişimi

SPSS-Tarihsel Gelişimi SPSS -Giriş SPSS-Tarihsel Gelişimi ilk sürümü Norman H. Nie, C. Hadlai Hull ve Dale H. Bent tarafından geliştirilmiş ve 1968 yılında piyasaya çıkmış istatistiksel analize yönelik bir bilgisayar programıdır.

Detaylı

Ki-Kare Bağımsızlık Analizi

Ki-Kare Bağımsızlık Analizi Ki-Kare Bağımsızlık Analizi Dr. Ertuğrul ÇOLAK Eskişehir Osmangazi Üniversitesi Tıp Fakültesi Biyoistatistik Anabilim Dalı Ki-Kare Bağımsızlık Analizi Kikare bağımsızlık analizi, isimsel ya da sıralı ölçekli

Detaylı

5.HAFTA. Yrd. Doç. Dr. Sedat ŞEN Harran Üniversitesi

5.HAFTA. Yrd. Doç. Dr. Sedat ŞEN Harran Üniversitesi 5.HAFTA Yrd. Doç. Dr. Sedat ŞEN Harran Üniversitesi Bu sunumda kullanılan verimizde bulunan değişkenler: İsim CİNSİYET KİTAP YAŞ VİZE VİZE2 FİNAL DÖNEMSONUNOTU Bu dersimizde daha önce hesapladığımız basit

Detaylı

Ders İçi Uygulama Rehberi. 1- Uygulama

Ders İçi Uygulama Rehberi. 1- Uygulama Ders İçi Uygulama Rehberi Diuyg8- Betimsel istatistik uygulamaları Süre: Kullanılacak dosyalar: 30 dakika diuyg8.sav Hatırlayalım Betimsel istatistik, araştırmacıların topladığı verilerin düzenlenmesi

Detaylı

ALIŞTIRMA 2 GSYİH. Toplamsal Ayrıştırma Yöntemi

ALIŞTIRMA 2 GSYİH. Toplamsal Ayrıştırma Yöntemi ALIŞTIRMA 2 GSYİH Bu çalışmamızda GSYİH serisinin toplamsal ve çarpımsal ayrıştırma yöntemine göre modellenip modellenemeyeceği incelenecektir. Seri ilk olarak toplamsal ayrıştırma yöntemine göre analiz

Detaylı

BÖLÜM 5 MERKEZİ EĞİLİM ÖLÇÜLERİ

BÖLÜM 5 MERKEZİ EĞİLİM ÖLÇÜLERİ 1 BÖLÜM 5 MERKEZİ EĞİLİM ÖLÇÜLERİ Gözlenen belli bir özelliği, bu özelliğe ilişkin ölçme sonuçlarını yani verileri kullanarak betimleme, istatistiksel işlemlerin bir boyutunu oluşturmaktadır. Temel sayma

Detaylı

H.Ü. Bilgi ve Belge Yönetimi Bölümü BBY 208 Sosyal Bilimlerde Araştırma Yöntemleri II (Bahar 2012) SPSS Ders Notları II (19 Nisan 2012)

H.Ü. Bilgi ve Belge Yönetimi Bölümü BBY 208 Sosyal Bilimlerde Araştırma Yöntemleri II (Bahar 2012) SPSS Ders Notları II (19 Nisan 2012) H.Ü. Bilgi ve Belge Yönetimi Bölümü BBY 208 Sosyal Bilimlerde Araştırma Yöntemleri II (Bahar 2012) SPSS Ders Notları II (19 Nisan 2012) Aşağıdaki analizlerde lise öğrencileri veri dosyası kullanılmıştır.

Detaylı

Excel dosyasından verileri aktarmak için Proc/Import/Read Text-Lotus-Excel menüsüne tıklanır.

Excel dosyasından verileri aktarmak için Proc/Import/Read Text-Lotus-Excel menüsüne tıklanır. ZAMAN SERİSİ MODEL Aşağıdaki anlatım sadece lisans düzeyindeki temel ekonometri bilgisine göre hazırlanmıştır. Bir akademik çalışmanın gerektirdiği birçok ön ve son testi içermemektedir. Bu dosyalar ilk

Detaylı

Beklenti Anketi ne İlişkin Yöntemsel Açıklama

Beklenti Anketi ne İlişkin Yöntemsel Açıklama Beklenti Anketi ne İlişkin Yöntemsel Açıklama İstatistik Genel Müdürlüğü Reel Sektör Verileri Müdürlüğü İçindekiler I- Amaç... 3 II- Kapsam... 3 III- Yöntem... 3 IV- Tanımlar ve Hesaplamalar... 3 V- Yayımlama...

Detaylı

Daha önce yaptığımız işlem tüm sınıfın bir değişkene ait ortalamasını hesaplamaktı. Eğer sınıfta KIZ-ERKEK gibi 2 grup varsa bu iki grubun başarısını

Daha önce yaptığımız işlem tüm sınıfın bir değişkene ait ortalamasını hesaplamaktı. Eğer sınıfta KIZ-ERKEK gibi 2 grup varsa bu iki grubun başarısını 5.SUNUM Daha önce yaptığımız işlem tüm sınıfın bir değişkene ait ortalamasını hesaplamaktı. Eğer sınıfta KIZ-ERKEK gibi 2 grup varsa bu iki grubun başarısını karşılaştırmak isteyebiliriz. Bu durumda iki

Detaylı

Data View ve Variable View

Data View ve Variable View SPSS i çalıştırma 0 SPSS İlk Açılışı 1 Data View ve Variable View 2 Değişken Tanımlama - 1 3 Değişken Tanımlama - 2 4 Boş Veri Sayfası 5 Veri Girişi - 1 6 Veri Girişi - 2 7 Dosya Kaydetme 1 2 3 8 File

Detaylı

TEK YÖNLÜ VARYANS ANALİZİ

TEK YÖNLÜ VARYANS ANALİZİ 1 İkiden fazla grubun ortalamalarını karşılaştırma TEK YÖNLÜ VARYANS ANALİZİ ve ardından yapılan ÇOKLU KARŞILAŞTIRMA TESTLERİ Parametrik test koşulları sağlanmadığında İkiden fazla bağımsız grubun ortalamalarını

Detaylı

Merkezi Eğilim ve Dağılım Ölçüleri

Merkezi Eğilim ve Dağılım Ölçüleri Merkezi Eğilim ve Dağılım Ölçüleri Soru Öğrencilerin derse katılım düzeylerini ölçmek amacıyla geliştirilen 16 soruluk bir test için öğrencilerin ilk 8 ve son 8 soruluk yarılardan aldıkları puanlar arasındaki

Detaylı

SPSS de Tanımlayıcı İstatistikler

SPSS de Tanımlayıcı İstatistikler SPSS de Tanımlayıcı İstatistikler Doç. Dr. Ertuğrul ÇOLAK Eskişehir Osmangazi Üniversitesi Tıp Fakültesi Biyoistatistik Anabilim Dalı SPSS programında belirtici istatistikler 4 farklı menüden yararlanılarak

Detaylı

İki Ortalama Arasındaki Farkın Önemlilik Testi (Student s t Test) Ankara Üniversitesi Tıp Fakültesi Biyoistatistik Anabilim Dalı

İki Ortalama Arasındaki Farkın Önemlilik Testi (Student s t Test) Ankara Üniversitesi Tıp Fakültesi Biyoistatistik Anabilim Dalı İki Ortalama Arasındaki Farkın Önemlilik Testi (Student s t Test) Ankara Üniversitesi Tıp Fakültesi Biyoistatistik Anabilim Dalı İki Ortalama Arasındaki Farkın Önemlilik Testi (Student s t test) Ölçümle

Detaylı

BİR ÖRNEKLEM İÇİN T TESTİ İLİŞKİSİZ ÖRNEKLEMLER İÇİN T-TESTİ MANN-WHITNEY U TESTİ

BİR ÖRNEKLEM İÇİN T TESTİ İLİŞKİSİZ ÖRNEKLEMLER İÇİN T-TESTİ MANN-WHITNEY U TESTİ 1 BİR ÖRNEKLEM İÇİN T TESTİ İLİŞKİSİZ ÖRNEKLEMLER İÇİN T-TESTİ MANN-WHITNEY U TESTİ 2 BİR ÖRNEKLEM İÇİN T TESTİ 3 Ölçüm ortalamasını bir norm değer ile karşılaştırma (BİR ÖRNEKLEM İÇİN T TESTİ) Bir çocuk

Detaylı

ÖLÇME VE DEĞERLENDİRME. Antrenörlük Eğitimi 4. Sınıf. Ölçme ve Değerlendirme - Yrd. Doç. Dr. Yetkin Utku KAMUK

ÖLÇME VE DEĞERLENDİRME. Antrenörlük Eğitimi 4. Sınıf. Ölçme ve Değerlendirme - Yrd. Doç. Dr. Yetkin Utku KAMUK ÖLÇME VE DEĞERLENDİRME Antrenörlük Eğitimi 4. Sınıf ÖLÇME VE DEĞERLENDİRME Merkezi Eğilim Ölçütleri Mod En çok görülen puandır ve hesaplanma yöntemi yoktur. İnceleme yolu ile bulunur. Terminal istatistiktir.

Detaylı

UYGULAMA 1 SPSS E GİRİŞ. SPSS; File, Edit, View, Data, Transform, Analyze, Graphs, Utilities, Window, Help adlı 10 adet program menüsü içermektedir.

UYGULAMA 1 SPSS E GİRİŞ. SPSS; File, Edit, View, Data, Transform, Analyze, Graphs, Utilities, Window, Help adlı 10 adet program menüsü içermektedir. 1 UYGULAMA 1 SPSS E GİRİŞ SPSS; File, Edit, View, Data, Transform, Analyze, Graphs, Utilities, Window, Help adlı 10 adet program menüsü içermektedir. Bu menülerin işlevleri ve alt menüleri ile komutları

Detaylı

DAĞILIM (DEĞİŞKENLİK) ÖLÇÜLERİ (MEASURES OF DISPERSION)

DAĞILIM (DEĞİŞKENLİK) ÖLÇÜLERİ (MEASURES OF DISPERSION) BİYOİSTATİSTİK DAĞILIM (DEĞİŞKENLİK) ÖLÇÜLERİ (MEASURES OF DISPERSION) B Doç. Dr. Mahmut AKBOLAT *Bazı serilerin ortalamaları eşit olmakla birlikte dağılımları (değişkenlikleri) farklı olabilir. *Örneğin,

Detaylı

K-S Testi hipotezde ileri sürülen dağılımla örnek yığılmalı dağılım fonksiyonunun karşılaştırılması ile yapılır.

K-S Testi hipotezde ileri sürülen dağılımla örnek yığılmalı dağılım fonksiyonunun karşılaştırılması ile yapılır. İstatistiksel güven aralıkları uygulamalarında normallik (normal dağılıma uygunluk) oldukça önemlidir. Kullanılan parametrik istatistiksel tekniklerin geçerli olabilmesi için populasyon şans değişkeninin

Detaylı

İSTATİSTİK SPSS UYGULAMA

İSTATİSTİK SPSS UYGULAMA İSTATİSTİK SPSS UYGULAMA Yrd. Doç. Dr. H. İbrahim CEBECİ SPSS UYGULAMA Bu bölümde SPSS veri girişi, Basit grafik hazırlama, örneklem çekimi ve tanımlayıcı istatistiksel analizler hakkında SPSS uygulamaları

Detaylı

KRUSKAL WALLIS VARYANS ANALİZİ. Ankara Üniversitesi Tıp Fakültesi Biyoistatistik Anabilim Dalı

KRUSKAL WALLIS VARYANS ANALİZİ. Ankara Üniversitesi Tıp Fakültesi Biyoistatistik Anabilim Dalı KRUSKAL WALLIS VARYANS ANALİZİ Ankara Üniversitesi Tıp Fakültesi Biyoistatistik Anabilim Dalı ükruskal Wallis varyans analizi, tek yönlü varyans analizinin parametrik olmayan karşılığıdır. üveriler ölçümle

Detaylı

Şekil 1: İşlev Kitaplığı (Function Library) komut kümesi, Tüm İşlevler (More functions) simgesi, İstatistiksel (Statistical) fonksiyonlar.

Şekil 1: İşlev Kitaplığı (Function Library) komut kümesi, Tüm İşlevler (More functions) simgesi, İstatistiksel (Statistical) fonksiyonlar. EXCEL DE İSTATİSTİKSEL FONKSİYONLAR Excel in istatistiksel yönlerinin anlaşılması için istatistiksel fonksiyonlar ve veri analizi araçları önemli bir yere sahiptir. Çalışma sayfası fonksiyonları, Excel

Detaylı

Mann-Whitney U ve Wilcoxon T Testleri

Mann-Whitney U ve Wilcoxon T Testleri Mann-Whitney U ve Wilcoxon T Testleri Doç. Dr. Ertuğrul ÇOLAK Eskişehir Osmangazi Üniversitesi Tıp Fakültesi Biyoistatistik Anabilim Dalı Konu Başlıkları Parametrik olmayan yöntem Mann-Whitney U testinin

Detaylı

BÖLÜM 14 BİLGİSAYAR UYGULAMALARI - 3 (ORTALAMALARIN KARŞILAŞTIRILMASI)

BÖLÜM 14 BİLGİSAYAR UYGULAMALARI - 3 (ORTALAMALARIN KARŞILAŞTIRILMASI) 1 BÖLÜM 14 BİLGİSAYAR UYGULAMALARI - 3 (ORTALAMALARIN KARŞILAŞTIRILMASI) Hipotez testi konusunda görüldüğü üzere temel betimleme, sayma ve sınıflama işlemlerine dayalı yöntemlerin ötesinde normal dağılım

Detaylı

Student t Testi. Doç. Dr. Ertuğrul ÇOLAK. Eskişehir Osmangazi Üniversitesi Tıp Fakültesi Biyoistatistik Anabilim Dalı

Student t Testi. Doç. Dr. Ertuğrul ÇOLAK. Eskişehir Osmangazi Üniversitesi Tıp Fakültesi Biyoistatistik Anabilim Dalı Student t Testi Doç. Dr. Ertuğrul ÇOLAK Eskişehir Osmangazi Üniversitesi Tıp Fakültesi Biyoistatistik Anabilim Dalı Konu Başlıkları Tek örnek t testi SPSS de tek örnek t testi uygulaması Bağımsız iki örnek

Detaylı

Sınavlı ve Sınavsız Geçiş İçin Akademik Bir Karşılaştırma

Sınavlı ve Sınavsız Geçiş İçin Akademik Bir Karşılaştırma Sınavlı ve Sınavsız Geçiş İçin Akademik Bir Karşılaştırma Öğr. Gör. Kenan KARAGÜL, Öğr. Gör. Nigar KARAGÜL, Murat DOĞAN 3 Pamukkale Üniversitesi, Honaz Meslek Yüksek Okulu, Lojistik Programı, kkaragul@pau.edu.tr

Detaylı

Adım Adım SPSS. 1- Data Girişi ve Düzenlemesi 2- Hızlı Menü. Y. Doç. Dr. İbrahim Turan Nisan 2011

Adım Adım SPSS. 1- Data Girişi ve Düzenlemesi 2- Hızlı Menü. Y. Doç. Dr. İbrahim Turan Nisan 2011 Adım Adım SPSS 1- Data Girişi ve Düzenlemesi 2- Hızlı Menü Y. Doç. Dr. İbrahim Turan Nisan 2011 File (Dosya) Menüsü Excel dosyalarını SPSS e aktarma Variable View (Değişken Görünümü 1- Name (İsim - Kod)

Detaylı

Sık kullanılan istatistiksel yöntemler ve yorumlama. Doç. Dr. Seval KUL Gaziantep Üniversitesi Tıp Fakültesi

Sık kullanılan istatistiksel yöntemler ve yorumlama. Doç. Dr. Seval KUL Gaziantep Üniversitesi Tıp Fakültesi Sık kullanılan istatistiksel yöntemler ve yorumlama Doç. Dr. Seval KUL Gaziantep Üniversitesi Tıp Fakültesi Biyoistatistik AD Bşk. 1 Hakkımda 2 Hedef: Katılımcılar modülün sonunda temel istatistiksel yöntemler

Detaylı

IİSTATIİSTIİK. Mustafa Sezer PEHLI VAN

IİSTATIİSTIİK. Mustafa Sezer PEHLI VAN IİSTATIİSTIİK Mustafa Sezer PEHLI VAN İstatistik nedir? İstatistik, veri anlamına gelir, İstatistik, sayılarla uğraşan bir bilim dalıdır, İstatistik, eksik bilgiler kullanarak doğru sonuçlara ulaştıran

Detaylı

DÖNEM II ÜROGENİTAL SİSTEM VE HASTALIKLARIN BİYOLOJİK TEMELLERİ DERS KURULU. Yrd.Doç.Dr.İsmail YILDIZ BİYOİSTATİSTİK AD DERS NOTLARI

DÖNEM II ÜROGENİTAL SİSTEM VE HASTALIKLARIN BİYOLOJİK TEMELLERİ DERS KURULU. Yrd.Doç.Dr.İsmail YILDIZ BİYOİSTATİSTİK AD DERS NOTLARI DÖNEM II ÜROGENİTAL SİSTEM VE HASTALIKLARIN BİYOLOJİK TEMELLERİ DERS KURULU Yrd.Doç.Dr.İsmail YILDIZ BİYOİSTATİSTİK AD DERS NOTLARI 05.05.2014 Pazartesi, Saat:11.30-12.20;Korelasyon ve Regresyon Uygulaması

Detaylı

Tekrarlı Ölçümler ANOVA

Tekrarlı Ölçümler ANOVA Tekrarlı Ölçümler ANOVA Repeated Measures ANOVA Aynı veya ilişkili örneklemlerin tekrarlı ölçümlerinin ortalamalarının aynı olup olmadığını test eder. Farklı zamanlardaki ölçümlerde aynı (ilişkili) kişiler

Detaylı

İLKÖĞRETİM ÖĞRENCİLERİNİN MÜZİK DERSİNE İLİŞKİN TUTUMLARI

İLKÖĞRETİM ÖĞRENCİLERİNİN MÜZİK DERSİNE İLİŞKİN TUTUMLARI www.muzikegitimcileri.net Ulusal Müzik Eğitimi Sempozyumu Bildirisi, 26-28 Nisan 2006, Pamukkale Ünv. Eğt. Fak. Denizli GİRİŞ İLKÖĞRETİM ÖĞRENCİLERİNİN MÜZİK DERSİNE İLİŞKİN TUTUMLARI Arş. Gör. Zeki NACAKCI

Detaylı

Eğer Veri Çözümleme paketi Araçlar menüsünde görünmüyor ise yüklenmesi gerekir.

Eğer Veri Çözümleme paketi Araçlar menüsünde görünmüyor ise yüklenmesi gerekir. Bölüm BİLGİSAYAR DESTEKLİ İSTATİSTİK EXCEL DESTEKLİ İSTATİSTİK Excel de istatistik hesaplar; Genel Yöntem ve Excel Ġçerikli Çözümler olmak üzere iki esasa dayanabilir. Genel Yöntem; Excel in matematiksel

Detaylı

İstatistik Nedir? İstatistiğin Önemi Nedir? Tanımlayıcı ve Çıkarımcı İstatistik ttitik Tanımlayıcı İstatistik Türleri Çıkarımcı İstatistiğin i iği

İstatistik Nedir? İstatistiğin Önemi Nedir? Tanımlayıcı ve Çıkarımcı İstatistik ttitik Tanımlayıcı İstatistik Türleri Çıkarımcı İstatistiğin i iği İSTATİSTİK E GİRİŞ TEMEL KAVRAMLAR İstatistik Nedir? İstatistiğin Önemi Nedir? Tanımlayıcı ve Çıkarımcı İstatistik ttitik Tanımlayıcı İstatistik Türleri Çıkarımcı İstatistiğin i iği Elemanlarıl AMAÇ İstatistiğe

Detaylı

VERĠ ANALĠZĠ 05.05.2011 NĠCEL VERĠ ANALĠZĠ ĠSTATĠSTĠK? ĠSTATĠSTĠK. ĠSTATĠSTĠK ÇEġĠTLERĠ. Betimsel İstatistik Kestirimsel Ġstatistik

VERĠ ANALĠZĠ 05.05.2011 NĠCEL VERĠ ANALĠZĠ ĠSTATĠSTĠK? ĠSTATĠSTĠK. ĠSTATĠSTĠK ÇEġĠTLERĠ. Betimsel İstatistik Kestirimsel Ġstatistik 5.5.11 VERĠ ANALĠZĠ NĠCEL VERĠ ANALĠZĠ Nicel Veri Analizi Betimsel Ġstatistik Kestirimsel Ġstatistik Nitel Veri Analizi Betimsel Analiz Ġçerik Analizi Betimsel İstatistik Kestirimsel Ġstatistik ĠSTATĠSTĠK?

Detaylı

A t a b e y M e s l e k Y ü k s e k O k u l u İstatistik Sunum 4 Öğr.Gör. Şükrü L/O/G/O KAYA www.sukrukaya.org www.themegallery.com 1 Yer Ölçüleri Yer ölçüleri, verilerin merkezini veya yığılma noktasını

Detaylı

Araştırma Yöntemleri. Çıkarımsal İstatistikler: Parametrik Testler I. Giriş

Araştırma Yöntemleri. Çıkarımsal İstatistikler: Parametrik Testler I. Giriş Araştırma Yöntemleri Çıkarımsal İstatistikler: Parametrik Testler I Giriş Bir önceki derste örneklem seçme mantığını işledik Evren ve örneklemden elde edilen değerleri tanımlamayı öğrendik Standart normal

Detaylı

LİKERT TİPİ ÖLÇEKLERE FARKLI BİR YAKLAŞIM Kelime Tabanlı Ölçekler ile Gülenyüz Ölçeklerin Karşılaştırılması

LİKERT TİPİ ÖLÇEKLERE FARKLI BİR YAKLAŞIM Kelime Tabanlı Ölçekler ile Gülenyüz Ölçeklerin Karşılaştırılması LİKERT TİPİ ÖLÇEKLERE FARKLI BİR YAKLAŞIM Kelime Tabanlı Ölçekler ile Gülenyüz Ölçeklerin Karşılaştırılması Kemal KURŞUN Dr. Hakan BAYRAMLIK Orhan ÇİMENCİ Hacettepe Üniversitesi Kara Harp Okulu Kara Harp

Detaylı

H.Ü. Bilgi ve Belge Yönetimi Bölümü BBY 606 Araştırma Yöntemleri (Bahar 2014) 3 Nisan 2014

H.Ü. Bilgi ve Belge Yönetimi Bölümü BBY 606 Araştırma Yöntemleri (Bahar 2014) 3 Nisan 2014 H.Ü. Bilgi ve Belge Yönetimi Bölümü BBY 606 Araştırma Yöntemleri (Bahar 2014) 3 Nisan 2014 t testleri: Tek örneklem t testi, Bağımsız iki örneklem t testi, Bağımlı iki örneklem t testi Aşağıdaki analizlerde

Detaylı

Merkezi Yığılma ve Dağılım Ölçüleri

Merkezi Yığılma ve Dağılım Ölçüleri 1.11.013 Merkezi Yığılma ve Dağılım Ölçüleri 4.-5. hafta Merkezi eğilim ölçüleri, belli bir özelliğe ya da değişkene ilişkin ölçme sonuçlarının, hangi değer etrafında toplandığını gösteren ve veri grubunu

Detaylı

Nokta Vuruşlu Yazıcı için Form Tasarımı

Nokta Vuruşlu Yazıcı için Form Tasarımı Nokta Vuruşlu Yazıcı için Form Tasarımı jguar'da yer alan formların (ya da raporların) nokta vuruşlu yazıcılardan yazdırılabilmesi sağlanmıştır. Nokta vuruşlu yazıcılardan çıktı alınmadan önce Form Tasarımında

Detaylı

ÇND BİYOİSTATİSTİK EĞİTİMİ

ÇND BİYOİSTATİSTİK EĞİTİMİ ÇND BİYOİSTATİSTİK EĞİTİMİ Yrd.Doç.Dr.Gökmen ZARARSIZ Erciyes Üniversitesi, Tıp Fakültesi, Biyoistatistik Anabilim Dalı, Kayseri Turcosa Analitik Çözümlemeler Ltd Şti, Kayseri gokmenzararsiz@hotmail.com

Detaylı

İSTATİSTİK PAKET PROGRAMLARI - SPSS

İSTATİSTİK PAKET PROGRAMLARI - SPSS BİLGİSAYAR DESTEKLİ İSTATİSTİK İstatistik, hayatın karışık olaylarını ve sorunlarını çözümlemeye çalışan bir bilim dalıdır. Son yıllara kadar oldukça karmaşık matematik işlemler bütünüymüş gibi görünen

Detaylı

D.Ü.TIP FAKÜLTESİ BİYOİSTATİSTİK AD. DÖNEM I (BİYOİSTATİSTİK, HALK SAĞLIĞI VE RUH SAĞLIĞI DERS KURULU)

D.Ü.TIP FAKÜLTESİ BİYOİSTATİSTİK AD. DÖNEM I (BİYOİSTATİSTİK, HALK SAĞLIĞI VE RUH SAĞLIĞI DERS KURULU) DÖNEM I (BİYOİSTATİSTİK, HALK SAĞLIĞI VE RUH SAĞLIĞI DERS KURULU) TOPLAM KALİTE YÖNETİMİ BİLİNÇLENDİRME EĞİTİMİ NONPARAMETRİK KÜKRER GIDA TESTLER (Mann Whitney U ve Wilcoxon Testleri) Yrd.Doç.Dr. İsmail

Detaylı

SPPS. Verileri Düzenleme ve Değiştirme 3 - Data Menüsü. Y. Doç. Dr. İbrahim Turan Nisan 2011

SPPS. Verileri Düzenleme ve Değiştirme 3 - Data Menüsü. Y. Doç. Dr. İbrahim Turan Nisan 2011 SPPS Verileri Düzenleme ve Değiştirme 3 - Data Menüsü Y. Doç. Dr. İbrahim Turan Nisan 2011 Data Menüsü 1- Define Variable 1- Properties (Değişken Özelliklerini Tanımlama) Değişken özelliklerini tanımlamak

Detaylı

Okulöncesi Öğretmen Adaylarının Bilgisayar Destekli Eğitim Yapmaya İlişkin Tutumlarının İncelenmesi

Okulöncesi Öğretmen Adaylarının Bilgisayar Destekli Eğitim Yapmaya İlişkin Tutumlarının İncelenmesi Trakya Üniversitesi Eğitim Fakültesi Dergisi 2015, Cilt 5, Sayı 1, 44-50 Trakya University Journal of Education 2015, Volume 5, Issue 1, 44-50 Okulöncesi Öğretmen Adaylarının Bilgisayar Destekli Eğitim

Detaylı

NÜTRİSYON TAKİBİ. Nütrisyon takip formu; «Hemşire Fizik Değerlendirme ve Gözlem» ekranından veya order uygulama aşamasında otomatik açılır.

NÜTRİSYON TAKİBİ. Nütrisyon takip formu; «Hemşire Fizik Değerlendirme ve Gözlem» ekranından veya order uygulama aşamasında otomatik açılır. NÜTRİSYON TAKİBİ Nütrisyon takibi; Erişkin ve Çocuk hastalarda belirlenmiş olan sistem sorgularının kayıt edildiği, çocuk hastalar için oluşturulmuş formülasyona göre; erişkin hastalar için değerlendirme

Detaylı

İstatistik ve Olasılığa Giriş. İstatistik ve Olasılığa Giriş. Ders 3 Verileri Sayısal Ölçütlerle İfade Etme. Verileri Sayısal Ölçütlerle İfade Etme

İstatistik ve Olasılığa Giriş. İstatistik ve Olasılığa Giriş. Ders 3 Verileri Sayısal Ölçütlerle İfade Etme. Verileri Sayısal Ölçütlerle İfade Etme İstatistik ve Olasılığa Giriş Robert J. Beaver Barbara M. Beaver William Mendenhall Presentation designed and written by: Barbara M. Beaver İstatistik ve Olasılığa Giriş Ders 3 Verileri Sayısal Ölçütlerle

Detaylı

Örneklemden elde edilen parametreler üzerinden kitle parametreleri tahmin edilmek istenmektedir.

Örneklemden elde edilen parametreler üzerinden kitle parametreleri tahmin edilmek istenmektedir. ÇIKARSAMALI İSTATİSTİKLER Çıkarsamalı istatistikler, örneklemden elde edilen değerler üzerinde kitleyi tanımlamak için uygulanan istatistiksel yöntemlerdir. Çıkarsamalı istatistikler; Tahmin Hipotez Testleri

Detaylı

BİR ÖRNEKLEM İÇİN T TESTİ İLİŞKİSİZ ÖRNEKLEMLER İÇİN T-TESTİ

BİR ÖRNEKLEM İÇİN T TESTİ İLİŞKİSİZ ÖRNEKLEMLER İÇİN T-TESTİ 1 BİR ÖRNEKLEM İÇİN T TESTİ İLİŞKİSİZ ÖRNEKLEMLER İÇİN T-TESTİ 2 BİR ÖRNEKLEM İÇİN T TESTİ 3 Ölçüm ortalamasını bir norm değer ile karşılaştırma (BİR ÖRNEKLEM İÇİN T TESTİ) Bir çocuk bakımevinde barındırılan

Detaylı

İSTATİSTİK MHN3120 Malzeme Mühendisliği

İSTATİSTİK MHN3120 Malzeme Mühendisliği İSTATİSTİK MHN3120 Malzeme Mühendisliği CBÜ - Malzeme Mühendisliği Bölümü Ofis: Mühendislik Fakültesi A Blok Ofis no:311 Tel: 0 236 2012404 E-posta :emre.yalamac@cbu.edu.tr YARDIMCI KAYNAKLAR Mühendiler

Detaylı

Çalışma Soruları 1 - Cevaplar

Çalışma Soruları 1 - Cevaplar Çalışma Soruları 1 - Cevaplar BBY252 Araştırma Yöntemleri 2015-2016 Bahar Dönemi Soru 1: Öğrencilerin geçme notlarının hesaplanmasında ara sınav %40, final sınavı %60 etkilidir. Bu bilgiye göre geçme notlarını

Detaylı

7.Sunum. Yrd. Doç. Dr. Sedat ŞEN 1

7.Sunum. Yrd. Doç. Dr. Sedat ŞEN 1 7.Sunum Yrd. Doç. Dr. Sedat ŞEN 1 Bağımlı Değ. Bağımsız Değ. Analiz Sürekli İki kategorili t-testi, Wilcoxon testi Sürekli Kategorik ANOVA, linear regresyon Sürekli Sürekli Korelasyon, doğrusal regresyon

Detaylı

FEN BİLGİSİ ÖĞRETMEN ADAYLARININ FEN BRANŞLARINA KARŞI TUTUMLARININ İNCELENMESİ

FEN BİLGİSİ ÖĞRETMEN ADAYLARININ FEN BRANŞLARINA KARŞI TUTUMLARININ İNCELENMESİ FEN BİLGİSİ ÖĞRETMEN ADAYLARININ FEN BRANŞLARINA KARŞI TUTUMLARININ İNCELENMESİ Sibel AÇIŞLI 1 Ali KOLOMUÇ 1 1 Artvin Çoruh Üniversitesi, Eğitim Fakültesi, İlköğretim Bölümü Özet: Araştırmada fen bilgisi

Detaylı

ÖĞRETİM PLANI Yeni Öğretim Planı Tanımlama Tanımlanan Öğretim Planına Ders Ekleme Tanımlanan Öğretim Planına Seçmeli Havuz

ÖĞRETİM PLANI Yeni Öğretim Planı Tanımlama Tanımlanan Öğretim Planına Ders Ekleme Tanımlanan Öğretim Planına Seçmeli Havuz ÖĞRETİM PLANI... 2 1. Yeni Öğretim Planı Tanımlama... 2 2. Tanımlanan Öğretim Planına Ders Ekleme... 3 3. Tanımlanan Öğretim Planına Seçmeli Havuz Dersi Ekleme... 4 4. Ders İşlemleri... 6 4.1.Düzenleme...

Detaylı

BÖLÜM 13 HİPOTEZ TESTİ

BÖLÜM 13 HİPOTEZ TESTİ 1 BÖLÜM 13 HİPOTEZ TESTİ Bilimsel yöntem aşamalarıyla tanımlanmış sistematik bir bilgi üretme biçimidir. Bilimsel yöntemin aşamaları aşağıdaki gibi sıralanabilmektedir (Karasar, 2012): 1. Bir problemin

Detaylı

Beden eğitimi ve spor eğitimi veren yükseköğretim kurumlarının istihdam durumlarına yönelik. öğrenci görüşleri

Beden eğitimi ve spor eğitimi veren yükseköğretim kurumlarının istihdam durumlarına yönelik. öğrenci görüşleri Cilt:5 Sayı:1 Yıl:2008 Beden eğitimi ve spor eğitimi veren yükseköğretim kurumlarının istihdam durumlarına yönelik öğrenci görüşleri Süleyman Murat YILDIZ* Selçuk ÖZDAĞ** Özet Beden eğitimi ve spor eğitimi

Detaylı

BİLİŞİM TEKNOLOJİLERİ İÇİN İŞLETME İSTATİSTİĞİ

BİLİŞİM TEKNOLOJİLERİ İÇİN İŞLETME İSTATİSTİĞİ SAKARYA ÜNİVERSİTESİ BİLİŞİM TEKNOLOJİLERİ İÇİN İŞLETME İSTATİSTİĞİ Hafta 11 Yrd. Doç. Dr. Halil İbrahim CEBECİ Bu ders içeriğinin basım, yayım ve satış hakları Sakarya Üniversitesi ne aittir. "Uzaktan

Detaylı

ÖRNEK BULGULAR. Tablo 1: Tanımlayıcı özelliklerin dağılımı

ÖRNEK BULGULAR. Tablo 1: Tanımlayıcı özelliklerin dağılımı BULGULAR Çalışma tarihleri arasında Hastanesi Kliniği nde toplam 512 olgu ile gerçekleştirilmiştir. Olguların yaşları 18 ile 28 arasında değişmekte olup ortalama 21,10±1,61 yıldır. Olguların %66,4 ü (n=340)

Detaylı

BÖLÜM-1.BİLİM NEDİR? Tanımı...1 Bilimselliğin Ölçütleri...2 Bilimin İşlevleri...3

BÖLÜM-1.BİLİM NEDİR? Tanımı...1 Bilimselliğin Ölçütleri...2 Bilimin İşlevleri...3 KİTABIN İÇİNDEKİLER BÖLÜM-1.BİLİM NEDİR? Tanımı...1 Bilimselliğin Ölçütleri...2 Bilimin İşlevleri...3 BÖLÜM-2.BİLİMSEL ARAŞTIRMA Belgesel Araştırmalar...7 Görgül Araştırmalar Tarama Tipi Araştırma...8

Detaylı

1.2.ANONİM ŞİRKETLERİNDE TESCİL İŞLEMLERİ.. 17 1.3. KOOPERATİF ŞİRKETLERİNDE TESCİL İŞLEMLERİ... 32 1.4.LİMİTED ŞİRKETLERİNDE TESCİL İŞLEMLERİ...

1.2.ANONİM ŞİRKETLERİNDE TESCİL İŞLEMLERİ.. 17 1.3. KOOPERATİF ŞİRKETLERİNDE TESCİL İŞLEMLERİ... 32 1.4.LİMİTED ŞİRKETLERİNDE TESCİL İŞLEMLERİ... 1.FİRMA TESCİL İŞLEMLERİ.2 1.1.ŞAHIS ŞİRKETLERİNDE TESCİL İŞLEMLERİ........4 1.2.ANONİM ŞİRKETLERİNDE TESCİL İŞLEMLERİ.. 17 1.3. KOOPERATİF ŞİRKETLERİNDE TESCİL İŞLEMLERİ... 32 1.4.LİMİTED ŞİRKETLERİNDE

Detaylı

İstatistik 1 BÖLÜM 3 VERİ SETLERİNİN ÖZETLENMESİNDE KULLANILAN SAYISAL YÖNTEMLER

İstatistik 1 BÖLÜM 3 VERİ SETLERİNİN ÖZETLENMESİNDE KULLANILAN SAYISAL YÖNTEMLER İstatistik 1 BÖLÜM 3 VERİ SETLERİNİN ÖZETLENMESİNDE KULLANILAN SAYISAL YÖNTEMLER 2017-2018 Ankara Üniversitesi, SBF SBF Onur Onur Özsoy 1 İşlenecek Konular Merkezi Eğilim Ölçüleri Ortalama, medyan, mod,

Detaylı

BİYOİSTATİSTİK TABLO VE FRAFİK YAPIMI

BİYOİSTATİSTİK TABLO VE FRAFİK YAPIMI BİYOİSTATİSTİK TABLO VE FRAFİK YAPIMI B Doç. Dr. Mahmut AKBOLAT *Tablo, araştırma sonucunda elde edilen bilgilerin sayısal olarak *anlaşılabilir bir nitelikte sunulmasını sağlayan bir araçtır. *Tabloda

Detaylı

The International New Issues In SOcial Sciences

The International New Issues In SOcial Sciences Number: 4 pp: 89-95 Winter 2017 SINIRSIZ İYİLEŞMENİN ÖRGÜT PERFORMANSINA ETKİSİ: BİR UYGULAMA Okan AY 1 Giyesiddin NUROV 2 ÖZET Sınırsız iyileşme örgütsel süreçlerin hiç durmaksızın örgüt içi ve örgüt

Detaylı

Tanımlayıcı İstatistikler. Yrd. Doç. Dr. Emre ATILGAN

Tanımlayıcı İstatistikler. Yrd. Doç. Dr. Emre ATILGAN Tanımlayıcı İstatistikler Yrd. Doç. Dr. Emre ATILGAN 1 Tanımlayıcı İstatistikler Yer Gösteren Ölçüler Yaygınlık Ölçüleri Merkezi Eğilim Ölçüleri Konum Ölçüleri 2 3 Aritmetik Ortalama Aritmetik ortalama,

Detaylı

Ortalamaların karşılaştırılması

Ortalamaların karşılaştırılması Parametrik ve Parametrik Olmayan Testler Ortalamaların karşılaştırılması t testleri, ANOVA Mann-Whitney U Testi Wilcoxon İşaretli Sıra Testi Kruskal Wallis Testi BBY606 Araştırma Yöntemleri Güleda Doğan

Detaylı

ORTALAMA ÖLÇÜLERİ. Ünite 6. Öğr. Gör. Ali Onur CERRAH

ORTALAMA ÖLÇÜLERİ. Ünite 6. Öğr. Gör. Ali Onur CERRAH ORTALAMA ÖLÇÜLERİ Ünite 6 Öğr. Gör. Ali Onur CERRAH Araştırma sonucunda elde edilen nitelik değişkenler hakkında tablo ve grafikle bilgi sahibi olunurken, sayısal değişkenler hakkında bilgi sahibi olmanın

Detaylı

Örnek...4 : İlk iki sınavında 75 ve 82 alan bir öğrencinin bu dersin ortalamasını 5 yapabilmek için son sınavdan kaç alması gerekmektedir?

Örnek...4 : İlk iki sınavında 75 ve 82 alan bir öğrencinin bu dersin ortalamasını 5 yapabilmek için son sınavdan kaç alması gerekmektedir? İSTATİSTİK Bir sonuç çıkarmak ya da çözüme ulaşabilmek için gözlem, deney, araştırma gibi yöntemlerle toplanan bilgiye veri adı verilir. Örnek...4 : İlk iki sınavında 75 ve 82 alan bir öğrencinin bu dersin

Detaylı

3 KESİKLİ RASSAL DEĞİŞKENLER VE OLASILIK DAĞILIMLARI

3 KESİKLİ RASSAL DEĞİŞKENLER VE OLASILIK DAĞILIMLARI ÖNSÖZ İÇİNDEKİLER III Bölüm 1 İSTATİSTİK ve SAYISAL BİLGİ 11 1.1 İstatistik ve Önemi 12 1.2 İstatistikte Temel Kavramlar 14 1.3 İstatistiğin Amacı 15 1.4 Veri Türleri 15 1.5 Veri Ölçüm Düzeyleri 16 1.6

Detaylı

Örnek 4.1: Tablo 2 de verilen ham verilerin aritmetik ortalamasını hesaplayınız.

Örnek 4.1: Tablo 2 de verilen ham verilerin aritmetik ortalamasını hesaplayınız. .4. Merkezi Eğilim ve Dağılım Ölçüleri Merkezi eğilim ölçüleri kitleye ilişkin bir değişkenin bütün farklı değerlerinin çevresinde toplandığı merkezi bir değeri gösterirler. Dağılım ölçüleri ise değişkenin

Detaylı

Örnek. Aşağıdaki veri setlerindeki X ve Y veri çiftlerini kullanarak herbir durumda X=1,5 için Y nin hangi değerleri alacağını hesaplayınız.

Örnek. Aşağıdaki veri setlerindeki X ve Y veri çiftlerini kullanarak herbir durumda X=1,5 için Y nin hangi değerleri alacağını hesaplayınız. Örnek Aşağıdaki veri setlerindeki X ve Y veri çiftlerini kullanarak herbir durumda X=1,5 için Y nin hangi değerleri alacağını hesaplayınız. i. ii. X 1 2 3 4 1 2 3 4 Y 2 3 4 5 4 3 2 1 Örnek Aşağıdaki veri

Detaylı

İÇİNDEKİLER. BÖLÜM 1 Değişkenler ve Grafikler 1. BÖLÜM 2 Frekans Dağılımları 37

İÇİNDEKİLER. BÖLÜM 1 Değişkenler ve Grafikler 1. BÖLÜM 2 Frekans Dağılımları 37 İÇİNDEKİLER BÖLÜM 1 Değişkenler ve Grafikler 1 İstatistik 1 Yığın ve Örnek; Tümevarımcı ve Betimleyici İstatistik 1 Değişkenler: Kesikli ve Sürekli 1 Verilerin Yuvarlanması Bilimsel Gösterim Anlamlı Rakamlar

Detaylı

Yürürlük Tarihi: 12/09/2014 - Kodu: 97298233.ED.1.24.1 - Rev. No/Tarihi: 00 1 / 22

Yürürlük Tarihi: 12/09/2014 - Kodu: 97298233.ED.1.24.1 - Rev. No/Tarihi: 00 1 / 22 Başvuru Fişleri ekranında talep edilen işlem için başvuru oluşturulurken, (Ekle) butonuna basılır, Başvuran Adı-Soyadı bölümüne ilgili mahkeme kararı yazılır. Başvuruya Ait Taşınmaz Mal (Zemin Tanım) kısmında

Detaylı

ENM 5210 İSTATİSTİK VE YAZILIMLA UYGULAMALARI. Ders 2 Merkezi Eğilim Ölçüleri

ENM 5210 İSTATİSTİK VE YAZILIMLA UYGULAMALARI. Ders 2 Merkezi Eğilim Ölçüleri ENM 5210 İSTATİSTİK VE YAZILIMLA UYGULAMALARI Ders 2 Merkezi Eğilim Ölçüleri Basit Seriler Elde edilecek ham verilerin küçükten büyüğe doğru sıralanması ile elde edilen serilere basit seri denir ÖRNEK:

Detaylı

DERS AÇMA İŞLEMLERİ DERS AÇMA EKRAN KULLANIMI Ders Bilgileri Yeni ders açma işlemi nasıl yapılır?

DERS AÇMA İŞLEMLERİ DERS AÇMA EKRAN KULLANIMI Ders Bilgileri Yeni ders açma işlemi nasıl yapılır? DERS AÇMA İŞLEMLERİ... 2 1.DERS AÇMA EKRAN KULLANIMI... 3 1.1.Ders Bilgileri... 5 1.1.1.Yeni ders açma işlemi nasıl yapılır?... 6 1.2.Ders Öğrenci Listeleri... 13 DERS AÇMA İŞLEMLERİ Ders açma işlemleri

Detaylı

Bağımlı Değ. Bağımsız Değ. Analiz

Bağımlı Değ. Bağımsız Değ. Analiz 6.SUNUM Bağımlı Değ. Bağımsız Değ. Analiz Sürekli İki kategorili t-testi, Wilcoxon testi Sürekli Kategorik ANOVA, linear regresyon Sürekli Sürekli Korelasyon, doğrusal regresyon İki kategorili Sürekli

Detaylı