Matrisler Elementer Satır İşlemleri Gauss Eliminasyon

Ebat: px
Şu sayfadan göstermeyi başlat:

Download "Matrisler Elementer Satır İşlemleri Gauss Eliminasyon"

Transkript

1 Mtrisler Elementer Stır İşlemleri Guss Eliminson

2 Mtrisler ve Stır İşlemleri Bir mtris dikdörtgen sılr tblosudur. Alt indisler girdilerin erini belirler. stır mn stır A m m m n n n mn Mtrisler boutlrı ile tnımlnır.

3

4 Stır ve sütun sılrı nı oln mtrislere kre mtris denir. A

5 7 7 A Amç: Bir lineer denklem sisteminin çöümünü bulmk Ktsı Mtrisi

6 7 Ktsı mtrisine sistemin sğ trfındki sbitlerin eklenmesi ile elde edilen mtrise ilveli (rttırılmış) mtris denir. 7 A İlveli Mtris

7 . İki stırın erlerini değiştirme. Bir stırı sıfırdn frklı bir sbit ile çrpm. Bir stırın sbit bir ktını diğer bir stır ekleme

8 Smbol R i kr j R i (r i kr j r i ) kr i (kr i ) R i R j (r i r j ) Tnım Bir stırın sbit bir ktını diğer bir stır ekleme Bir stırı sıfırdn frklı bir sbit ile çrpm İki stırın erlerini değiştirme

9 Elementer stır işlemleri kullnrk, ilveli mtrisi şğıdki gibi bir mtris formun getirebiliri. işreti sdece sılrı ifde etmektedir --- Ne olduğunun bir önemi oktur. Mtrisi, ukrdki form getirdikten sonr, değişkenleri erine rk, ve gerie erine kom metodu ile sistem çöülür.

10 Stır işlemlerini kullnrk eşelon formu elde etme: İlveli mtris Zten Stır i lıp, sıfır elde etmek için, - ile çrpıp ikinci stır ile toplcğı. Bunun için notson: r r -> r

11 r r r 6 r Şimdi,.stır ı - ile çrpıp. stır eklenirse, sıfır elde edilmiş olur. r r r r 6 7 Birinci sütun için mc ulşılmıştır.

12 r r r r r li stır i kullnrk, in ltını sıfır () pmk için, ikinci stırı - ile çrpıp. stır ile topllım. Şimdi ikinci sütun ilerleerek ukrıd belirtilen mç mtrisini bulcğı. İkinci stırd e ihticımı olduğundn, - ile çrpılır. Şimdi ikinci sütun, mçlndığı gibidir.

13 column column column. Sütun istediğimi formd olduğundn, elementer stır işlemlerini durdurup, gerie erine kom metodu ile çöüme geçilir. ( ) ( ) işreti ( ) İkinci denklemde - ılrk, bulunur. Birinci denklemde ve - ılrk, bulunur. Solution is: (,, )

14 Solution is: (,, ) 7 6 Sistemin tek çöümü budur. Sonucu doğrulmk için sistemde erine lım. ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) 7 6 Hepsi doğru! Geometrik olrk, üç dülemin bir noktd kesiştiğini gösterir.

15 Bu metod gerie erine kom metodu gerektirme. Sdece değişkenler erine ılrk çöüm bulunur. Stırc indirgenmiş eşelon formu elde etmek için, elementer stır işlemlerine şğıdki mtris formu buln kdr devm edilir.

16 Eşelon Formlr Stırc eşelon formu Stırc indirgenmiş eşelon form 6 İlk 'ler rdışık stırlrd sğ kdırılmıştır. İlk 'lerin ltındki ve üstündekiler dır.

17 Önceki örnekteki sistemi stırc indirgenmiş eşelon form kullnrk plım: 7 6 r r r r r r,,

18 İlveli mtrisi, eşelon form getirmek için tnımldığımı bu metod (ve lgoritm) Guss Eliminson (ok etme) denir. İlveli mtrisi, stırc indirgenmiş eşelon form getirmek için tnımldığımı metod (ve lgoritm) Guss-Jordn Yöntemi denir.

19 Örnek: 7 6 İlveli mtris: 7 6 r r r r r r 6 8 6

20 7 6 /r r r Olm! Eğer değişkenleri erine rsk, 9 çelişkisine ulşılır! TUTARSIZ SİSTEM ÇÖZÜM YOK!!!

21 6 6 Bir örnek dh : r r r r r r /r r r Son stır hep sıfır.

22 İkinci sütund, in ukrısındki elemnı sıfır pmk için, bir dım dh gidelim. r r herhngi bir reel sı ise, sonsu çöüm!!! üerinde bir kısıtlm ok. & için çö

23 herhngi bir reel sı ise, sonsu çöüm. 6 Bunun nlmı, için herhngi bir değer lınıp, ve, cinsinden bulunbilir. Sonsu çöüm. burd serbest değişken. için ve ( ) ( ) ( ) ( ) ( ) ( ) 6 için ve ( ) ( ) ( ) ( ) ( ) ( ) 6 The solution cn be written: (,, )

24 Örnek: denklem sistemini Guss-Jordn ok etme metodu (stırc indirgenmiş eşelon form) ile çöünü.

25 Arttırılmış mtris formu - R R R - R R R

26 Önce - R R sonr R - R R ve R - R R Önce R R ve sonr (/6) R R Son olrk, - R R R

27 Bölece krşılık gelen sistem, ve serbest değişkenler olup, sonsu çöüm

28 Homojen Lineer Sistemler Homojen lineer bir denklem sistemi formunddır.

29 Her homojen lineer denklem sistemi tutrlıdır çünkü bölesi sistemler çöümüne shiptir. Bun şikr çöüm denir. Eğer bundn bşk çöüm vrs, şikr olmn çöüm vrdır, denir. Bu durumd sonsu çöüm vrdır. Geometrik olrk,

30 Örnek: homojen denklem sistemini Guss-Jordn ok etme metodu (stırc indirgenmiş eşelon form) ile çöünü.

31 Homojen sistemin rttırılmış mtris formu Anı elementer stır işlemleri ugulnırs

32 Bölece krşılık gelen sistem, ve serbest değişkenler olup, sonsu çöüm NOT: r s t için şikr çöüm elde edilir.

33 More Emples -Sstem with No Solution Solve the sstem. We trnsform the sstem into row-echelon form.

34 R R R R R R 8 R R R R 8 8 The lst mtri is in row-echelon form. So, we cn stop the Gussin elimintion process.

35 Now, if we trnslte this lst row bck into eqution form, we get, or, which is flse. No mtter wht vlues we pick for,, nd, the lst eqution will never be true sttement. This mens the sstem hs no solution.

36 Emple - Sstem with Infinitel Mn Solutions Find the complete solution of the sstem. 6 7 We trnsform the sstem into reduced row-echelon form.

37 6 R R R R R R R R R R R 6 7 RR R

38 7 The third row corresponds to the eqution. This eqution is lws true, no mtter wht vlues re used for,, nd. Since the eqution dds no new informtion bout the vribles, we cn drop it from the sstem.

39 So, the lst mtri corresponds to the sstem 7 Now, we solve for the leding vribles nd in terms of the nonleding vrible : 7

40 To obtin the complete solution, we let t represent n rel number, nd we epress,, nd in terms of t: 7t t t We cn lso write the solution s the ordered triple (7t, t, t), where t is n rel number.

41 In this emple, to get specific solutions we give specific vlue to t. For emple, if t, then 7() ()

42 Here re some other solutions of the sstem obtined b substituting other vlues for the prmeter t.

43 Emple -Sstem with Infinitel Mn Solutions Find the complete solution of the sstem. w w 6 8w We trnsform the sstem into reduced row-echelon form.

44 R R R R R R 6 8 R R R RR R Since the lst row represents the eqution, we m discrd it.

45 So, the lst mtri corresponds to the sstem w To obtin the complete solution, we solve for the leding vribles nd in terms of the nonleding vribles nd w, nd we let nd w be n rel numbers.

46 Thus, the complete solution is: s t s w t where s nd t re n rel numbers. We cn lso epress the nswer s the ordered qudruple (s t,, s, t).

47 Note tht s nd t do not hve to be the sme rel number in the solution for Emple. We cn choose rbitrr vlues for ech if we wish to construct specific solution to the sstem.

Metropol Yayınları YÖS 2009 Metropol Publications

Metropol Yayınları YÖS 2009 Metropol Publications > > etropol Yınlrı YÖS 009 etropol Pulictions. ve. sorulrd, gruptki kümelerin şekilleri irer rkml gösterilerek I gruptki sılr elde edilmiştir. Soru işretile elirtilen kümenin hngi sıl gösterildiğini ulunuz.

Detaylı

İÇİNDEKİLER. Ön Söz...2. Matris Cebiri...3. Elementer İşlemler Determinantlar Lineer Denklem Sistemleri Vektör Uzayları...

İÇİNDEKİLER. Ön Söz...2. Matris Cebiri...3. Elementer İşlemler Determinantlar Lineer Denklem Sistemleri Vektör Uzayları... İÇİNDEKİLER Ön Söz... Mtris Cebiri... Elementer İşlemler... Determinntlr...7 Lineer Denklem Sistemleri...8 Vektör Uzylrı...6 Lineer Dönüşümler...48 Özdeğerler - Özvektörler ve Köşegenleştirme...55 Genel

Detaylı

LİNEER CEBİR MATRİSLER: şeklindeki tablosuna mxn tipinde bir matris denir. [a ij ] mxn şeklinde gösterilir. m satır, n sütun sayısıdır.

LİNEER CEBİR MATRİSLER: şeklindeki tablosuna mxn tipinde bir matris denir. [a ij ] mxn şeklinde gösterilir. m satır, n sütun sayısıdır. LİNEER CEBİR MTRİSLER: i,,,...,m ve j,,,..., n için ij sılrının. m m...... n n mn şeklindeki tblosun mn tipinde bir mtris denir. [ ij ] mn şeklinde gösterilir. m stır, n sütun sısıdır. 5 mtrisi için ;

Detaylı

Bu durumda ya cozum yoktur veya sonsuz cozum vardir. KIsaca cozum tek degildir. Veya cozumler birbirine lineer bagimlidir.

Bu durumda ya cozum yoktur veya sonsuz cozum vardir. KIsaca cozum tek degildir. Veya cozumler birbirine lineer bagimlidir. Vektorlerin lineer bagimsiligi Ornek, Denklem Takimini Coun > - Ikinci denklemde erine ko (-) -) Sonuc: > - sartini saglaan butun ve ler her iki denklemi de coer. (, ), (, ), (, ),... Denklem takiminin

Detaylı

YILLAR ÖSS-YGS /LYS /1 0/1 ÇÖZÜM: 1) xοy A ise ο işlemi A da kapalıdır.

YILLAR ÖSS-YGS /LYS /1 0/1 ÇÖZÜM: 1) xοy A ise ο işlemi A da kapalıdır. YILLAR 00 00 00 005 006 007 008 009 00 0 ÖSS-YGS /LYS - - - 0/ 0/ ĐŞLEM ( ) ( ) (+ ) ( ) 7 6 76+ bulunur ve e bğlı bütün tnımlı fonksionlr bir işlem belirtir i göstermek için +,,*, gibi işretler kullnılır

Detaylı

MATRİSLER. r r r A = v v v 3. BÖLÜM. a a L a. v r. a = M a. Matris L L L L. elemanları a ( i = 1,2,..., m ; j = 1,2,... n) cinsinden kısaca A = [ ]

MATRİSLER. r r r A = v v v 3. BÖLÜM. a a L a. v r. a = M a. Matris L L L L. elemanları a ( i = 1,2,..., m ; j = 1,2,... n) cinsinden kısaca A = [ ] 3. BÖLÜM 2 v r = M m v r 2 2 = 22 M m2 v r n n 2n = M mn MTRİSLER gibi n tne vektörün oluşturduğu, r r r = v v v [ L ] 2 n şeklindeki sırlnışın mtris denir. 2 nlitik Geometriden Biliyoruz ki : Mtris 2

Detaylı

A, A, A ) vektör bileşenleri

A, A, A ) vektör bileşenleri Elektromnetik Teori hr 006-007 Dönemi VEKTÖR VE SKLER KVRMI Mühendislik, fiik ve geometri ugulmlrınd iki türlü büüklük kullnılır: skler ve vektör. Skler, sdece büüklüğü oln niceliklerdir. elli bir ölçeği

Detaylı

9. HAFTA BLM323 SAYISAL ANALİZ. Okt. Yasin ORTAKCI.

9. HAFTA BLM323 SAYISAL ANALİZ. Okt. Yasin ORTAKCI. 9. HAFTA SAYISAL ANALİZ Okt. Ysin ORTAKCI ysinortkci@krbuk.edu.tr Krbük Üniversitesi Uzktn Eğitim Uygulm ve Arştırm Merkezi LİNEER DENKLEM SİSTEMLERİ Birinci dereceden denklem sistemleri eleminsyon ve

Detaylı

Mustafa YAĞCI, yagcimustafa@yahoo.com Parabolün Tepe Noktası

Mustafa YAĞCI, yagcimustafa@yahoo.com Parabolün Tepe Noktası Mustf YĞCI www.mustfgci.com.tr, 11 Ceir Notlrı Mustf YĞCI, gcimustf@hoo.com Prolün Tepe Noktsı Ö nce ir prolün tepe noktsı neresidir, onu htırltlım. Kc, prolün rtmktn zlm ve zlmktn rtm geçtiği nokt dieiliriz.

Detaylı

Lisans Yerleştirme Sınavı 1 (Lys 1) / 16 Haziran Matematik Sorularının Çözümleri. sayısının 2 sayı tabanında yazılışı =?

Lisans Yerleştirme Sınavı 1 (Lys 1) / 16 Haziran Matematik Sorularının Çözümleri. sayısının 2 sayı tabanında yazılışı =? Lisns Yerleştirme Sınvı (Ls ) 6 Hirn Mtemtik Sorulrının Çöümleri 8 sı tnınd verilen ( ) 8 sısının sı tnınd ılışı? Bu durumd ( ) 8 sısı önce tnın çevrilir Sonr tnınd ılır ( ) 8 8 8 8 Bun göre ( ) 8 ( )

Detaylı

2005 ÖSS BASIN KOPYASI SAYISAL BÖLÜM BU BÖLÜMDE CEVAPLAYACAĞINIZ TOPLAM SORU SAYISI 90 DIR. Matematiksel İlişkilerden Yararlanma Gücü,

2005 ÖSS BASIN KOPYASI SAYISAL BÖLÜM BU BÖLÜMDE CEVAPLAYACAĞINIZ TOPLAM SORU SAYISI 90 DIR. Matematiksel İlişkilerden Yararlanma Gücü, 005 ÖSS SIN KPYSI SYISL ÖLÜM İKKT! U ÖLÜME EVPLYĞINIZ TPLM SRU SYISI 90 IR. İlk 45 Soru Son 45 Soru Mtemtiksel İlişkilerden Yrrlnm Gücü, Fen ilimlerindeki Temel Kvrm ve İlkelerle üşünme Gücü ile ilgilidir.

Detaylı

II. DERECEDEN DENKLEMLER

II. DERECEDEN DENKLEMLER ünite DEEEDE DEKEME Dereceden Denklemler TEST 0 x x + = 0 denkleminin kökleri x ve x dir 6 x + x + x işleminin sonucu kçtır? ) B) ) D) E) x + bx + = 0 x - denkleminin reel syılrdki çözüm kümesi bir elemnlı

Detaylı

LYS LİMİT VE SÜREKLİLİK KONU ÖZETLİ ÇÖZÜMLÜ SORU BANKASI

LYS LİMİT VE SÜREKLİLİK KONU ÖZETLİ ÇÖZÜMLÜ SORU BANKASI LYS LİMİT VE SÜREKLİLİK KONU ÖETLİ ÇÖÜMLÜ SORU BANKASI ANKARA İÇİNDEKİLER Limit Kvrmı ve Grfik Sorulrı... Limitle İlgili Bzı Özellikler...7 Genişletilmiş Reel Sılrd Limit... Bileşke Fonksionun Limiti...

Detaylı

İstatistik I Bazı Matematik Kavramlarının Gözden

İstatistik I Bazı Matematik Kavramlarının Gözden İsttistik I Bzı Mtemtik Kvrmlrının Gözden Geçirilmesi Hüseyin Tştn Ağustos 13, 2006 İçindekiler 1 Toplm İşlemcisi 2 2 Çrpım İşlemcisi 6 3 Türev 7 3.1 Türev Kurllrı.......................... 8 3.1.1 Sbit

Detaylı

LYS Matemat k Deneme Sınavı

LYS Matemat k Deneme Sınavı LYS Mtemtk Deneme Sınvı 8. sısının pozitif tek tmsı bölenlerinin sısı kçtır? 8. olmk üzere; kesrinin değeri şğıdkilerden hngisi olmz?. (8!) sısının sondn kç bsmğı sıfırdır? 8. ifdesinin sonucu kçtır? (

Detaylı

b göz önünde tutularak, a,

b göz önünde tutularak, a, 3.ALT GRUPLAR Tnım 3.. bir grup ve G, nin boş olmyn bir lt kümesi olsun. Eğer ( ise ye G nin bir lt grubu denir ve G ile gösterilir. ) bir grup Not 3.. ) grubunun lt grubu olsun. nin birimi ve nin birimi

Detaylı

Basic Mathematics. Sezgin Sezer. Neil Course. Temel Matematik

Basic Mathematics. Sezgin Sezer. Neil Course. Temel Matematik Bsic Mthemtics Neil Course Sezgin Sezer Temel Mtemtik 07 8 www.neilcourse.co.uk/mth5.html Wednesd nd November, 07 ii Contents Pge I Numbers nd Functions Numbers Sılr Crtesin Coordintes Krtezen Koordintlr

Detaylı

Basic Mathematics. Neil Course. Temel Matematik. Sezgin Sezer

Basic Mathematics. Neil Course. Temel Matematik. Sezgin Sezer Bsic Mthemtics 08 9 Neil Course Temel Mtemtik Sezgin Sezer MATH5 Bsic Mthemtics Dr Neil Course neil.course@okn.edu.tr www.neilcourse.co.uk/mth5.html MAT5 Temel Mtemtik Dr. Asumn Özer sumn.ozer@okn.edu.tr

Detaylı

CEBİR KONU ANLATIMLI ÇÖZÜMLÜ SORU BANKASI

CEBİR KONU ANLATIMLI ÇÖZÜMLÜ SORU BANKASI ÖABT CEBİR KONU ANLATIMLI ÇÖZÜMLÜ SORU BANKASI Ysin ŞAHİN ÖABT CEBİR KONU ANLATIMLI ÇÖZÜMLÜ SORU BANKASI Her hkkı sklıdır. Bu kitbın tmmı y d bir kısmı, yzrın izni olmksızın, elektronik, meknik, fotokopi

Detaylı

ÜNİTE - 7 POLİNOMLAR

ÜNİTE - 7 POLİNOMLAR ÜNİTE - 7 BÖLÜM Polinomlr (Temel Kvrmlr) -. p() = 3 + n 6 ifdesi bir polinom belirttiğine göre n en z 5. p( + ) = + 4 + Test - olduğun göre, p() polinomunun ktsyılr toplmı p() polinomund terimlerin kuvvetleri

Detaylı

SAYILAR DERS NOTLARI Bölüm 2 / 3

SAYILAR DERS NOTLARI Bölüm 2 / 3 Örnek : 4 10 tbnindki (3 + 3 + 3 + 3) syisinin üç tbnindki yzilisi sgidkilerden hngisidir? A)10110 B)10001 C)1001 D)100011 E) 1100 4 (3 + 3 + 3 4 + 3) = 1 3 + 3 3 1 0 + 0 3 + 1 3 + 1 3 + 0 3 Burdn ( 10110)

Detaylı

İKİNCİ DERECEDEN DENKLEMLER

İKİNCİ DERECEDEN DENKLEMLER İKİNCİ DERECEDEN DENKLEMLER İKİNCİ DERECEDEN BİR BİLİNMEYENLİ DENKLEMLER TANIMLAR :, b, R ve 0 olmk üzere denklem denir. b = 0 denklemine, ikini dereeden bir bilinmeyenli Bu denklemde, b, gerçel syılrın

Detaylı

Örnek...1 : a, b ve c birbirlerinden farklı birer rakamdır. a.b+9.b c en çok kaçtır?

Örnek...1 : a, b ve c birbirlerinden farklı birer rakamdır. a.b+9.b c en çok kaçtır? RAKAM Syılrı ifde etmek için kullndığımız 0,,2,3,4,5,6,7,8,9 sembollerine rkm denir. Örnek... :, b ve c birbirlerinden frklı birer rkmdır..b+9.b c en çok kçtır? DOĞAL SAYILAR N={0,,2,3...,n,...} kümesine

Detaylı

TEOG. Tam Sayılar ve Mutlak Değer ÇÖZÜM ÖRNEK ÇÖZÜM ÖRNEK TAMSAYILAR MUTLAK DEĞER

TEOG. Tam Sayılar ve Mutlak Değer ÇÖZÜM ÖRNEK ÇÖZÜM ÖRNEK TAMSAYILAR MUTLAK DEĞER TEOG Tm Syılr ve Mutlk Değer TAMSAYILAR Eksi sonsuzdn gelip, rtı sonsuz giden syılr tm syılr denir ve tm syılr kümesi Z ile gösterilir. Z = {...,,, 1,0,1,,,... } Tmsyılr kümesi ikiye yrılır: ) Negtif Tmsyılr:

Detaylı

Üslü Sayılar MATEMATİK. 5.Hafta. Hedefler. Öğr.Gör. Esrin PALAS BOZKURT Öğr.Gör. Muhsin ÇELİK. Bu üniteyi çalıştıktan sonra;

Üslü Sayılar MATEMATİK. 5.Hafta. Hedefler. Öğr.Gör. Esrin PALAS BOZKURT Öğr.Gör. Muhsin ÇELİK. Bu üniteyi çalıştıktan sonra; MATEMATİK Üslü Syılr Öğr.Gör. Esrin PALAS BOZKURT Öğr.Gör. Muhsin ÇELİK 5.Hft Hedefler Bu üniteyi çlıştıktn sonr; Gerçel syılrd üslü işlemler ypbilecek, Üslü denklem ve üslü eşitsizlikleri çözebileceksiniz.

Detaylı

SAYILARIN ÇÖZÜMLENMESĐ ve BASAMAK KAVRAMI

SAYILARIN ÇÖZÜMLENMESĐ ve BASAMAK KAVRAMI YILLAR 00 00 004 00 006 007 008 009 010 011 ÖSS-YGS - 1 - - 1-1 1 SAYILARIN ÇÖZÜMLENMESĐ ve BASAMAK KAVRAMI,b,c,d birer rkm olmk üzere ( 0) b = 10 + b bc = 100+10+b bc = 100+10b+c bcd =1000+100b+10c+d

Detaylı

çizilen doğru boyunca birim vektörü göstermektedir. q kaynak yükünün konum vektörü r ve Q deneme E( r) = 1 q

çizilen doğru boyunca birim vektörü göstermektedir. q kaynak yükünün konum vektörü r ve Q deneme E( r) = 1 q Elektrosttik(Özet) Coulomb Yssı Noktsl bir q yükünün kendisinden r kdr uzktki bir Q yüküne uyguldığı kuvvet, şğıdki Coulomb yssı ile ifde edilir: F = 1 qq ˆr (1) r2 burd boşluğun elektriksel geçirgenlik

Detaylı

RASYONEL SAYILAR KESİR ÇEŞİTLERİ. www.unkapani.com.tr. 1. Basit Kesir. olduğuna göre, a, b tamsayı ve b 0 olmak üzere, a şeklindeki ifadelere

RASYONEL SAYILAR KESİR ÇEŞİTLERİ. www.unkapani.com.tr. 1. Basit Kesir. olduğuna göre, a, b tamsayı ve b 0 olmak üzere, a şeklindeki ifadelere RASYONEL SAYILAR, tmsyı ve 0 olmk üzere, şeklindeki ifdelere kesir denir. y kesrin pyı, ye kesrin pydsı denir. Örneğin,,,, kesirdir. kesrinde, py kesir çizgisi pyd, 0, 0 ise 0 0 dır.,, 0, syılrı irer 0

Detaylı

ESKİŞEHİR OSMANGAZİ ÜNİVERSİTESİ

ESKİŞEHİR OSMANGAZİ ÜNİVERSİTESİ ESKİŞEHİR OSMANGAZİ ÜNİVERSİTESİ Mühendislik Mimrlık Fkültesi İnşt Mühendisliği Bölümü E-Post: ogu.hmet.topcu@gmil.com Web: http://mmf2.ogu.edu.tr/topcu Bilgisyr Destekli Nümerik Anliz Ders notlrı 204

Detaylı

ASAL SAYILAR. Asal Sayılar YILLAR MATEMATĐK ĐM

ASAL SAYILAR. Asal Sayılar YILLAR MATEMATĐK ĐM YILLAR 00 003 004 00 006 007 008 009 00 0 ÖSS-YGS - - - - - - - ASAL SAYILAR ve kendisinden bşk pozitif böleni olmyn den büyük tmsyılr sl syı denir Negtif ve ondlıklı syılr sl olmz Asl syılrı veren bir

Detaylı

LOGARİTMA. çözüm. için. Tanım kümesindeki 1 elemanını değer kümesindeki herhangi. çözüm. çözüm

LOGARİTMA. çözüm. için. Tanım kümesindeki 1 elemanını değer kümesindeki herhangi. çözüm. çözüm LOGARİTMA Üstel Fonksion >0 ve olmk üzere f:r R +, f() = şeklindeki fonksionlr üstel fonksion denir. Üstel fonksionlr birebir ve örtendir. f:r R +, f()=( ) bğıntısının üstel fonksion olup olmdığını inceleiniz.

Detaylı

BÖLÜM 3 : RASLANTI DEĞİŞKENLERİ

BÖLÜM 3 : RASLANTI DEĞİŞKENLERİ BÖLÜM : RASLANTI DEĞİŞKENLERİ (Rndom Vribles Giriş: Bölüm de olsılık fonksionu, denein örneklem uzını oluşurn sonuçlrın erimleri ile belirleniordu. Örneğin; iki zr ıldığınd, P gelen 6 olsı sırlı ikilinin

Detaylı

DENKLEM ve EŞİTSİZLİKLER

DENKLEM ve EŞİTSİZLİKLER DENKLEM ve EŞİTSİZLİKLER Sf No..................................................... - 7 Denklem ve Eşitsizlikler Konu Özeti............................................. Konu Testleri ( 0)..........................................................

Detaylı

MUTLAK DEĞER. Sayı doğrusu üzerinde x sayısının sıfıra olan uzaklığına x in mutlak değeri denir ve x ile. gösterilir. x x. = a olarak tanımlanır.

MUTLAK DEĞER. Sayı doğrusu üzerinde x sayısının sıfıra olan uzaklığına x in mutlak değeri denir ve x ile. gösterilir. x x. = a olarak tanımlanır. gösterilir. MUTLAK DEĞER Syı doğrusu üzerinde syısının sıfır oln uzklığın in mutlk değeri denir ve ile B O A 0 OA = OB =, 0 =, < 0 olrk tnımlnır. < 0 < y için y = y işleminin eşitini bulunuz. < 0 için

Detaylı

LYS LİMİT. x in 2 ye soldan yaklaşması hangisi ile ifade edilir? şeklinde gösterilir. lim. şeklinde gösterilir. f(x) lim f(x) ise lim f(x) yoktur.

LYS LİMİT. x in 2 ye soldan yaklaşması hangisi ile ifade edilir? şeklinde gösterilir. lim. şeklinde gösterilir. f(x) lim f(x) ise lim f(x) yoktur. Mtemtik SAĞDAN VE SOLDAN YAKLAŞMA Yndki tblod bir değişkeninin 4 sısın sğdn ve soldn klşımı ifde edilmiştir. u durumu genellemek gerekirse; değişkeni re el s ı sın, dn kü çük de ğer ler le k l şı or s,

Detaylı

2.I. MATRİSLER ve TEMEL İŞLEMLER

2.I. MATRİSLER ve TEMEL İŞLEMLER Nzım K. Ekinci Mtemtiksel İktist Notlrı.I. MTRİSLER ve TEMEL İŞLEMLER Tnım.. Mtris. şğıdki gibi stırlr ve sütunlr biçiminde sırlnmış reel syı tblolrın mtris denir............. n n n... mtrisinin n stırı

Detaylı

SAYISAL ANALİZ. Matris ve Determinant

SAYISAL ANALİZ. Matris ve Determinant SAYISAL ANALİZ Mtris ve Determinnt Syısl Anliz MATLAB ile Temel Mtris İşlemleri Genel Mtris Oluşturm Özel Mtris Oluşturm zeros komutu ile sıfırlr mtrisi ones komutu ile birler mtrisi eye komutu ile birim

Detaylı

SAYI ÖRÜNTÜLERİ VE CEBİRSEL İFADELER

SAYI ÖRÜNTÜLERİ VE CEBİRSEL İFADELER ÖRÜNTÜLER VE İLİŞKİLER Belirli bir kurl göre düzenli bir şekilde tekrr eden şekil vey syı dizisine örüntü denir. ÖRNEK: Aşğıdki syı dizilerinin kurlını bulunuz. 9, 16, 23, 30, 37 5, 10, 15, 20 bir syı

Detaylı

Sayı Kümeleri ve Koordinatlar

Sayı Kümeleri ve Koordinatlar DERS 1 Sı Kümeleri ve Koordintlr 1.1 Kümeler. Mtemtiğin temel kvrmlrındn biri küme kvrmıdır. Okuucunun küme kvrmın bncı olmıp kümelerle ilgili temel işlemleri bildiğini kbul edioruz. Bununl berber kümelerle

Detaylı

DERS 3. Matrislerde İşlemler, Ters Matris

DERS 3. Matrislerde İşlemler, Ters Matris DES Mrislerde İşleler, Ters Mris Mrisler Mrislerle ilgili eel ılrııı ıslı e sır ve e süu oluşurk içide diiliş e sıı oluşurduğu lo ir ris deir ir ris geellikle şğıdki gii göserilir ve [ ij ], i ; j risii

Detaylı

T I M U R K A R A Ç AY, H AY D A R E Ş, O R H A N Ö Z E R K A L K U L Ü S N O B E L

T I M U R K A R A Ç AY, H AY D A R E Ş, O R H A N Ö Z E R K A L K U L Ü S N O B E L T I M U R K A R A Ç AY, H AY D A R E Ş, O R H A N Ö Z E R K A L K U L Ü S N O B E L Contents 0.1 Determinntlr.......................... 7 0.2 Determinnt Nedir?....................... 7 0.2.1 1 1 Mtrislerin

Detaylı

a üstel fonksiyonunun temel özellikleri şunlardır:

a üstel fonksiyonunun temel özellikleri şunlardır: 1 Üstel Fonksiyon: >o, 1 ve herhngi bir reel syı olmk üzere f: fonksiyon denir. R fonksiyonun üstel R, f()= 1 2, f()= ve f()= f()= gibi tbnı sbit syı (pozitif ve 1 den frklı) ve üssü 4 değişken oln bu

Detaylı

İkinci Türevi Preinveks Olan Fonksiyonlar İçin Hermite-Hadamard Tipli İntegral Eşitsizlikleri

İkinci Türevi Preinveks Olan Fonksiyonlar İçin Hermite-Hadamard Tipli İntegral Eşitsizlikleri İkinci Türevi Preinveks Oln Fonksiyonlr İçin Hermite-Hdmrd Tili İntegrl Eşitsizlikleri İmdt İŞCAN*, Selim NUMAN*, Kerim BEKAR* *Giresun Üniversitesi, Fen Edeiyt Fkültesi, Mtemtik Bölümü, Giresun, TÜRKİYE

Detaylı

LYS Matemat k Deneme Sınavı

LYS Matemat k Deneme Sınavı LYS Mtemtk Deneme Sınvı. İki bsmklı bir sının rkmlrı toplmı dir. Rkmlrı er değiştirdiğinde elde edilen sı, ilk sının sinden fzldır.. Birbirinden frklı tne pozitif tmsının OKEK i olduğun göre, en çok kçtır?

Detaylı

LYS Matemat k Deneme Sınavı

LYS Matemat k Deneme Sınavı LYS Mtemtk Deneme Sınvı., b olduğun göre, b. b ifdesinin değeri şğıdkilerden hngisidir?,,,9 8... b b ifdesinin eşiti şğıdkilerden hngisidir?.. Bun göre, verilior. ifdesinin değeri kçtır? 8. b b c 8 c d

Detaylı

VEKTÖRLER ÜNİTE 5. ÜNİTE 5. ÜNİTE 5. ÜNİTE 5. ÜNİT

VEKTÖRLER ÜNİTE 5. ÜNİTE 5. ÜNİTE 5. ÜNİTE 5. ÜNİT VKTÖRLR ÜNİT 5. ÜNİT 5. ÜNİT 5. ÜNİT 5. ÜNİT VKTÖRLR 1. Kznım : Vektör kvrmını çıklr.. Kznım : İki vektörün toplmını ve vektörün ir gerçek syıyl çrpımını ceirsel ve geometrik olrk gösterir. VKTÖRLR 1.

Detaylı

DENKLEM ve EŞİTSİZLİKLER ÜNİTE 2. ÜNİTE 2. ÜNİTE 2. ÜNİTE 2. ÜNİT

DENKLEM ve EŞİTSİZLİKLER ÜNİTE 2. ÜNİTE 2. ÜNİTE 2. ÜNİTE 2. ÜNİT DENKLEM ve EŞİTSİZLİKLER ÜNİTE. ÜNİTE. ÜNİTE. ÜNİTE. ÜNİT BİRİNCİ DERECEDEN DENKLEM ve EŞİTSİZLİKLER. Kznım : Gerçek syılr kümesinde birinci dereceden eşitsizliğin özelliklerini belirtir.. Kznım : Gerçek

Detaylı

2011 RASYONEL SAYILAR

2011 RASYONEL SAYILAR 011 RASYONEL SAYILAR AKDENİZ ÜNİVERSİTESİ 06.01.011 A.Tnım 3 B.Kesir 3 C.Kesir çeşitleri 3 1.Bsit kesirler 3.Birleşik kesirler 3 3. Tm syılr 3 D.Rsyonel syılrı sırlm 4 E.Rsyonel syılrd işlemler 5 1.Rsyonel

Detaylı

Lineer Cebir. Doç. Dr. Niyazi ŞAHİN TOBB. İçerik: 1.1. Lineer Denklemlerin Tanımı 1.2. Lineer Denklem Sistemleri 1.3. Matrisler

Lineer Cebir. Doç. Dr. Niyazi ŞAHİN TOBB. İçerik: 1.1. Lineer Denklemlerin Tanımı 1.2. Lineer Denklem Sistemleri 1.3. Matrisler Lineer Cebir Doç. Dr. Niyazi ŞAHİN TOBB İçerik: 1.1. Lineer Denklemlerin Tanımı 1.2. Lineer Denklem Sistemleri 1.3. Matrisler Bölüm 1 - Lineer Eşitlikler 1.1. Lineer Eşitliklerin Tanımı x 1, x 2,..., x

Detaylı

BÖLÜM 5. MATRİS ve DETERMİNANTLAR 5.1. MATRİSLER. Taşkın, Çetin, Abdullayeva. reel sayılardan oluşan. olmak üzere tüm a.

BÖLÜM 5. MATRİS ve DETERMİNANTLAR 5.1. MATRİSLER. Taşkın, Çetin, Abdullayeva. reel sayılardan oluşan. olmak üzere tüm a. MTEMTİK BÖLÜM 5 Tşkın, Çetin, bdullyev MTRİS ve DETERMİNNTLR 5 MTRİSLER Tnım : mni,,, j + olmk üzere tüm ij reel syılrdn oluşn m m n n mn tblosun m x n tipinde bir mtrisi denir ve kısc şeklinde gösterilir

Detaylı

Pr[ ] 1 Pr[ ] 1 ( ) 1 ( ) What if not known?

Pr[ ] 1 Pr[ ] 1 ( ) 1 ( ) What if not known? 1 Mrkov ve Chebychev Eşitsizlikleri Pr [ ] = 1 Pr [ < ] = 1 f ( ) dx = 1 () x dx F Pr[ ] 1 Pr[ ] 1 ( ) 1 ( ) Wht if ot kow? bilimiyor olbilir r.d. i sdece ortlmsıı ve vrysıı bildiğimizi vrsylım. Ortlm

Detaylı

ÇOKGENLER Çokgenler çokgen Dışbükey (Konveks) ve İçbükey (Konkav) Çokgenler dış- bükey (konveks) çokgen içbükey (konkav) çokgen

ÇOKGENLER Çokgenler çokgen Dışbükey (Konveks) ve İçbükey (Konkav) Çokgenler dış- bükey (konveks) çokgen içbükey (konkav) çokgen ÇONLR Çokgenler rdışık en z üç noktsı doğrusl olmyn, düzlemsel şekillere çokgen denir. Çokgenler kenr syılrın göre isimlendirilirler. Üçgen, dörtgen, beşgen gibi. ışbükey (onveks) ve İçbükey (onkv) Çokgenler

Detaylı

Şayet bir lineer sistemin en az bir çözümü varsa tutarlı denir.

Şayet bir lineer sistemin en az bir çözümü varsa tutarlı denir. GAZI UNIVERSITY ENGINEERING FACULTY INDUSTRIAL ENGINEERING DEPARTMENT ENM 205 LINEAR ALGEBRA COURSE ENGLISH-TURKISH GLOSSARY Linear equation: a 1, a 2, a 3,.,a n ; b sabitler ve x 1, x 2,...x n ler değişkenler

Detaylı

Limit. Kapak Konusu: Gerçel Say lar V: Süreklilik ve Limit

Limit. Kapak Konusu: Gerçel Say lar V: Süreklilik ve Limit Kpk Konusu: Gerçel S lr V: Süreklilik Limit Limit v = ƒ() Bir bflk örne e bkl m. < c < b olsun. ƒ: [, b] \ {c}, grfi i fl dki gibi oln bir fonksion olsun. Fonksion c nokts nd tn mlnmm fl. Os fonksion c

Detaylı

( ) ( ) ( ) Üslü Sayılar (32) 2. ( ) ( 2 (2) 3. ( ) ( ) 3 4. ( 4 9 ) eşitliğini sağlayan a değeri kaçtır? (0) 0,6 0,4 : 4,9 =?

( ) ( ) ( ) Üslü Sayılar (32) 2. ( ) ( 2 (2) 3. ( ) ( ) 3 4. ( 4 9 ) eşitliğini sağlayan a değeri kaçtır? (0) 0,6 0,4 : 4,9 =? Üslü Sılr. +.4 8 (8) 4. ( ) (. ). ( ) 4 6 ( ) :( ) () + + 5..4. ( ) ( ) () 4. 5 5 ( 4 9 ) 5. 9 + + 9 = + eşitliğini sğln değeri kçtır (0) 6. ( ) ( ) ( ) 0,6 0,4 : 4,9 (-6) 4 8.. c 7. 4.. c ( c ) 8. 6 8

Detaylı

1982 ÖSS =3p olduğuna göre p kaçtır? A) 79 B) 119 C) 237 E) A) 60 B) 90 C) 120 D) 150 E) 160

1982 ÖSS =3p olduğuna göre p kaçtır? A) 79 B) 119 C) 237 E) A) 60 B) 90 C) 120 D) 150 E) 160 8 ÖSS. Bir çiftlikte 800 koun 00 inek ve 600 mnd vrdır. Bu hvnlrın tümü bir dire grfikle gösterilirse ineklerle ilgili dilimin merkez çısı kç derece olur? A) 60 B) 0 C) 0 D) 0 E) 60 6. 0 - =p olduğun göre

Detaylı

Cebirsel ifadeler ve Özdeslik Föyü

Cebirsel ifadeler ve Özdeslik Föyü 6 Ceirsel ifdeler ve Özdeslik Föyü KAZANIMLAR Bsit ceirsel ifdeleri nlr ve frklı içimlerde yzr. Ceirsel ifdelerin çrpımını ypr. Özdeslikleri modellerle çıklr. 06 8. SINIF CEBiRSEL ifadeler VE ÖZDESLiK

Detaylı

GEO182 Lineer Cebir. Matrisler. Matrisler. Dersi Veren: Dr. İlke Deniz Derse Devam: %70. Vize Sayısı: 1

GEO182 Lineer Cebir. Matrisler. Matrisler. Dersi Veren: Dr. İlke Deniz Derse Devam: %70. Vize Sayısı: 1 GEO182 Lineer Cebir Dersi Veren: Dr. İlke Deniz 2018 GEO182 Lineer Cebir Derse Devam: %70 Vize Sayısı: 1 Başarı Notu: Yıl içi Başarı Notu %40 + Final Sınavı Notu %60 GEO182 Lineer Cebir GEO182 Lineer Cebir

Detaylı

RASYONEL SAYILAR. ÖRNEK: a<0<b<c koşulunu sağlayan a, b, c reel sayıları. tan ımsız. belirsiz. basit kesir

RASYONEL SAYILAR. ÖRNEK: a<0<b<c koşulunu sağlayan a, b, c reel sayıları. tan ımsız. belirsiz. basit kesir RASYONEL SAYILAR 0 ve, Z olmk üzere şeklindeki syılr rsyonel syı denir. 0 0 tn ımsız 0 0 elirsiz 0 sit kesir ileşik kesir Genişletilerek vey sdeleştirilerek elde edilen kesirlere denk kesirler denir. Sıfır

Detaylı

c) Bire bir fonksiyon: eğer fonksiyonun görüntü kümesindeki her elemanının tanım kümesinde yalnız bir karşılığı varsa bu fonksiyonlara denir.

c) Bire bir fonksiyon: eğer fonksiyonun görüntü kümesindeki her elemanının tanım kümesinde yalnız bir karşılığı varsa bu fonksiyonlara denir. FONKSİYONLAR Boş kümeden frklı oln A ve B kümeleri verildiğinde, A kümesindeki her elemnı B kümesindeki ir elemn krşı getiren ğıntıy A dn B ye fonksiyon denir. y=f(x) ile gösterilir. Bir diğer ifdeyle

Detaylı

Tek ve Çift Fonksiyonlar. Özel Tanýmlý Fonksiyonlar. Bir Fonksiyonun En Geniþ Taným Kümesi. 1. Parçalý Fonksiyonlar. 2. Mutlak Deðer Fonksiyonu

Tek ve Çift Fonksiyonlar. Özel Tanýmlý Fonksiyonlar. Bir Fonksiyonun En Geniþ Taným Kümesi. 1. Parçalý Fonksiyonlar. 2. Mutlak Deðer Fonksiyonu Fonksionlr Konu Özeti. Köklü fonksionlrın en geniş tnım kümesi: f( f( n f( g( fonksionun en geniş tnım kümesi, g( koşulunu sğln noktlr kümesidir. f( f( n f( g( tüm reel sılrd tnımlıdır. fonksionu g( in

Detaylı

2. Geriye doğru Yerine Koyma (Back Substitution): Bu adımda, son denklemden başlayarak herbir bilinmeyen bulunur.

2. Geriye doğru Yerine Koyma (Back Substitution): Bu adımda, son denklemden başlayarak herbir bilinmeyen bulunur. Guss Elimisyou Lieer deklem sistemlerii çözmede kullıl e popüler tekiklerde birisi Guss Elimisyou yötemidir. Bu yötem geel bir deklemli ve bilimeyeli lieer sistemi çözümüe bir yklşım getirmektedir....

Detaylı

Lineer Denklem Sistemleri Kısa Bilgiler ve Alıştırmalar

Lineer Denklem Sistemleri Kısa Bilgiler ve Alıştırmalar Lineer Denklem Sistemleri Kısa Bilgiler ve Alıştırmalar Bir Matrisin Rankı A m n matrisinin determinantı sıfırdan farklı olan alt kare matrislerinin boyutlarının en büyüğüne A matrisinin rankı denir. rank(a)

Detaylı

ISSN: 1306-3111/1308-7231 Received: October 2014 NWSA ID: 2015.10.1.1A0356 Accepted: January 2015 E-Journal of New World Sciences Academy

ISSN: 1306-3111/1308-7231 Received: October 2014 NWSA ID: 2015.10.1.1A0356 Accepted: January 2015 E-Journal of New World Sciences Academy NWSA-Engineering Sciences Sttus : Originl Stud ISSN: 1306-3111/1308-7231 Received: October 2014 NWSA ID: 2015.10.1.1A0356 Accepted: Jnur 2015 E-Journl of New World Sciences Acdem Mustf Hlûk Srçoğlu Dumlupınr

Detaylı

0;09 0;00018. 5 3 + 3 2 : 1 3 + 2 3 4 5 1 2 işleminin sonucu kaçtır? A) 136 87 0;36 0;09. 10. a = 0,39 b = 9,9 c = 1,8 d = 3,7.

0;09 0;00018. 5 3 + 3 2 : 1 3 + 2 3 4 5 1 2 işleminin sonucu kaçtır? A) 136 87 0;36 0;09. 10. a = 0,39 b = 9,9 c = 1,8 d = 3,7. MC. + + +.. Rsyonel Syılr TEST I sonsuz kesrinin eşiti kçtır? A) B) C) D) E) 4 www.mtemtikclu.com, 006 Ceir Notlrı. 8. Gökhn DEMĐR, gdemir@yhoo.com.tr 0;0 0;0008 = 0; x ise x kçtır? A) 0,0 B) 0,000 C)

Detaylı

2009 Soruları. c

2009 Soruları. c Hırvt ıstn Ulusl Mtemt ık Ol ımp ıytı Tkım Seçme Sınvı Geometr ı 2009 Sorulrı c www.sbelin.wordpress.com sbelinwordpress@gmil.com Hırvtistn d ypıln 2009 yılı TST yni Tkım Seçme Sınvın it geometri sorulrı

Detaylı

LYS Matemat k Deneme Sınavı

LYS Matemat k Deneme Sınavı LYS Mtemtk Deneme Sınvı.,, z rdışık pozitif tmsılr ve z olmk üzere; z olduğun göre, kçtır? C). olduğun göre, ifdesinin değeri şğıdkilerden hngisidir? C) 8 6., b, c Z olmk üzere; b c bc c b olduğun göre,,

Detaylı

Kelime (Text) İşleme Algoritmaları

Kelime (Text) İşleme Algoritmaları Kelime (Text) İşleme Algoritmlrı Doç.Dr.Bnu Diri Trie Ağcı Sonek Ağcı (Suffix Tree) Longest Common String (LCS) Minimum Edit Distnce 1 Ağçlrın Bğlı Ypısı Düğüm (node), çeşitli ilgiler ile ifde edilen ir

Detaylı

DERS 2. Çok Değişkenli Doğrusal Denklem Sistemleri. Gauss-Jordan Yoketme Yöntemi

DERS 2. Çok Değişkenli Doğrusal Denklem Sistemleri. Gauss-Jordan Yoketme Yöntemi DES Çok Değişkenli Doğrusl Denklem Sisemleri Guss-Jordn Yokeme Yönemi.. Çok Değişkenli Doğrusl Denklem Sisemleri. Dh önce de beliriğimiz üzere, iki değişkenli iki denklemden oluşn denklem sisemleri düşünebileceğimiz

Detaylı

DETERMINANTLAR. 1. Permütasyon. 1. Permütasyon ) permütasyonundaki ters dönüşüm. 1. Permütasyon 2. BÖLÜM ( )

DETERMINANTLAR. 1. Permütasyon. 1. Permütasyon ) permütasyonundaki ters dönüşüm. 1. Permütasyon 2. BÖLÜM ( ) . BÖÜM. Permütsyo Tım: Bir tm syılr {,,, } kümesideki elemlrı tekrr olmksızı frklı DETERMINNTR sırlmlrıı düzelemesie permütsyo deir. Örek: {,, 3} tm syılr kümesii ltı frklı permütsyou vrdır: (,, 3), (,,

Detaylı

1990 ÖYS 1. 7 A) 91 B) 84 C) 72 D) 60 E) 52 A) 52 B) 54 C) 55 D) 56 E) 57

1990 ÖYS 1. 7 A) 91 B) 84 C) 72 D) 60 E) 52 A) 52 B) 54 C) 55 D) 56 E) 57 99 ÖYS. si oln si kçtır? A) 9 B) 8 C) D) 6 E) 5 6. Bir nın yşı, iki çocuğunun yşlrı toplmındn üyüktür. yıl sonr nın yşı, çocuklrının yşlrı toplmının ktı olcğın göre ugün kç yşınddır? A) 5 B) 5 C) 55 D)

Detaylı

İKİNCİ TÜREVİ PREQUASİİNVEKS OLAN FONKSİYONLAR İÇİN HERMITE-HADAMARD TİPLİ İNTEGRAL EŞİTSİZLİKLERİ

İKİNCİ TÜREVİ PREQUASİİNVEKS OLAN FONKSİYONLAR İÇİN HERMITE-HADAMARD TİPLİ İNTEGRAL EŞİTSİZLİKLERİ Ordu Üniv. Bil. Tek. Derg.,Cilt:,Syı:,,3-4/Ordu Univ. J. Sci. Tech.,Vol:,No:,,3-4 İKİNCİ TÜREVİ PREQUASİİNVEKS OLAN FONKSİYONLAR İÇİN HERMITE-HADAMARD TİPLİ İNTEGRAL EŞİTSİZLİKLERİ İmdt İŞCAN *, Selim

Detaylı

DERS 3. Doğrusal Fonksiyonlar, Quadratic Fonksiyonlar, Polinomlar

DERS 3. Doğrusal Fonksiyonlar, Quadratic Fonksiyonlar, Polinomlar DERS 3 Doğrusl Fonksionlr Qudrtic Fonksionlr Polinomlr 3. Bir Fonksionun Koordint Kesişimleri(Intercepts). Bir fonksionun grfiğinin koordint eksenlerini kestiği noktlr o fonksionun koordint kesişimleri

Detaylı

(THE REARRANGEMENT INEQUALITY ) DERS NOTLARI

(THE REARRANGEMENT INEQUALITY ) DERS NOTLARI YENİDEN DÜZENLEME EŞİTSİZLİĞİ (THE REARRANGEMENT INEQUALITY ) DERS NOTLARI www.selin.wordpress.om 7 Şut 009 Bu ders notund re-rrngement inequlity konusu ele lınrk olimpiyt sınvınd çıkmış zı eşitsizlik

Detaylı

1986 ÖSS. olduğuna göre, aşağıdakilerden hangisi doğrudur?

1986 ÖSS. olduğuna göre, aşağıdakilerden hangisi doğrudur? 986 ÖSS. (0,78+0,8).(0,3+0,7) Yukrıdki işlemin sonucu nedir? B) C) 0, D) 0, E) 0,0. doğl syısı 4 ile bölünebildiğine göre şğıdkilerden hngisi tek syı olbilir? Yukrıdki çrpm işleminde her nokt bir rkmın

Detaylı

MATEMATİK 2 TESTİ (Mat 2)

MATEMATİK 2 TESTİ (Mat 2) 009 - ÖSS / MT- MTEMTİK TESTİ (Mt ). u testte sırsıl, Mtemtik ( 8) Geometri (9 7) nlitik Geometri (8 0) lnlrın it 0 soru vrdır.. evplrınızı, cevp kâğıdının Mtemtik Testi için rıln kısmın işretleiniz..

Detaylı

YILLAR 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 ÖSS-YGS

YILLAR 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 ÖSS-YGS Rsonel Sılr YILLAR 00 00 00 00 00 00 00 00 00 0 ÖSS-YGS RASYONEL SAYILAR KESĐR: Z ve 0 olmk üzere şeklindeki ifdelere kesir denir p pd kesirçizgisi KESĐR ÇEŞĐTLERĐ: kesri için i) < ise kesir sit kesirdir

Detaylı

FONKSĐYONLAR MATEMATĐK ĐM. Fonksiyonlar YILLAR 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011

FONKSĐYONLAR MATEMATĐK ĐM. Fonksiyonlar YILLAR 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 YILLAR 00 00 00 005 006 007 008 009 00 0 ÖSS-YGS - - - - - - LYS - - - - - - - - FONKSĐYONLAR A ve B oşn frklı iki küme olsun A dn B ye tnımlı f fonksiyonu f : A B ile gösterilir A y tnım kümesi, B ye

Detaylı

c

c Mtemt ık Ol ımp ıytı Çlışm Sorulrı c www.sbelin.wordpress.com sbelinwordpress@gmil.com Bu çlışm kğıdınd mtemtik olimpiytlrı sınvlrın hzırlnn öğrenciler ve öğretmenler için hzırlnmış sorulr bulunmktdır.

Detaylı

LİMİT ve SÜREKLİLİK LİMİT 12. BÖLÜM. Fonksiyonun Grafiğinden Yararlanarak Limit Bulma ve Sağdan- soldan Limit. Örneğin Şekildeki f(x) fonksiyonun

LİMİT ve SÜREKLİLİK LİMİT 12. BÖLÜM. Fonksiyonun Grafiğinden Yararlanarak Limit Bulma ve Sağdan- soldan Limit. Örneğin Şekildeki f(x) fonksiyonun . BÖLÜM LİMİT ve SÜREKLİLİK LİMİT Acip muhbbet bi konu. Limit bir klşm olıdır. Bir sğdn klşıorsunuz. Bir de soldn. Eğer klştığınız şe(değer) nı ise problem ok. Am sğdn ve soldn klşırken hedef şşmış ve

Detaylı

Bilgisayar Destekli Tasarım/İmalat Sistemlerinde Kullanılan Modelleme Yöntemleri: Bézier ve Tiriz Eğrileri ve İmalat Uygulamaları

Bilgisayar Destekli Tasarım/İmalat Sistemlerinde Kullanılan Modelleme Yöntemleri: Bézier ve Tiriz Eğrileri ve İmalat Uygulamaları Bilgisr Destekli Tsrım/İmlt Sistemlerinde Kllnıln Modelleme Yöntemleri: Béier ve Tiri Eğrileri ve İmlt Uglmlrı Bilimsel Hesplm II Dönem Projesi Hmdi Ndir Trl İçerik. Giriş. Bilgisrlı Destekli Tsrım (CAD

Detaylı

YÜZDE VE FAĐZ PROBLEMLERĐ

YÜZDE VE FAĐZ PROBLEMLERĐ YILLAR 00 003 00 00 006 007 008 009 010 011 ÖSS-YGS 3 1 1 1 3 YÜZDE VE FAĐZ PROBLEMLERĐ YÜZDE: Bir syının yüzde sı= dır ÖRNEK(1) % i 0 oln syıyı bullım syımız olsun 1 = 0 = 0 ÖRNEK() 800 ün % ini bullım

Detaylı

İKİNCİ BÖLÜM REEL SAYI DİZİLERİ

İKİNCİ BÖLÜM REEL SAYI DİZİLERİ Prof.Dr.Hüseyi ÇAKALLI İKİNCİ BÖLÜM REEL SAYI DİZİLERİ Bu ölümde dizileri, yi tım kümesi doğl syılr kümesi, değer kümesi, reel syılr kümesii ir lt kümesi ol foksiyolrı iceleyeceğiz... Ykısk Diziler. Öce

Detaylı

TYT / MATEMATİK Deneme - 2

TYT / MATEMATİK Deneme - 2 TYT / MTMTİK eneme -. 7 ^7h ^h $ bulunur. evp : 6. b b c 6 c 6, b ve c nin ritmetik ortlmsı O b c 6 bulunur.. y z y z ^ h $ bulunur. evp : 7. y çift ne olurs olsun çift syı olduğundn in yd çift olduğundn

Detaylı

5. 6 x = 3 x + 3 x x = f(x) = 2 x + 1

5. 6 x = 3 x + 3 x x = f(x) = 2 x + 1 Üstlü Sılrd İşlemler, Üstel Fonksion BÖLÜM 0 Test 0. 7 7 denkleminin çözüm kümesi şğıdkilerden hngisidir?. 6 olduğun göre, ifdesinin değeri kçtır? A) B) C) D) E) 6 9 6 A) {, } B) {, } C) {, } D) {, } E)

Detaylı

SAYISAL ÇÖZÜMLEME. Sayısal Çözümleme

SAYISAL ÇÖZÜMLEME. Sayısal Çözümleme SYISL ÇÖZÜMLEME Syısl Çözümleme SYISL ÇÖZÜMLEME Hft SYISL ÇÖZÜMLEMEDE HT KVRMI Syısl Çözümleme GİRİŞ Syısl nliz, mtemtik problemlerinin bilgisyr yrdımı ile çözümlenme tekniğidir Genellikle nlitik olrk

Detaylı

yasaktır. Öğrenci İmza:

yasaktır. Öğrenci İmza: YTÜ Fizik ölümü 08-09 hr Dönemi Sınv Trihi: 9.0.09 Sınv Süresi: 90 dk. FIZ00 FİZİK-.rsınv YÖK ün 47 sılı Öğrenci Disiplin Yönetmeliğinin 9. Soru Kitpçığı d-sod Öğrenci No Grup No ölümü Sınv Slonu Öğretim

Detaylı

TĐCARĐ MATEMATĐK - 1.3. Oranlı Bölme ve = orantıları veriliyor. Buna göre a+b=? 15 bulunur.

TĐCARĐ MATEMATĐK - 1.3. Oranlı Bölme ve = orantıları veriliyor. Buna göre a+b=? 15 bulunur. Örnek.0.: 6 TĐCARĐ MATEMATĐK -.. Ornlı Bölme 8 ve ornılrı verilior. Bun göre +? Çöüm: Yine ornının. öelliği rı ir şekilde iki ornı d ugulnırs;.6. 0..8 0 0 Bun göre; ++0 Örnek.0.: ornısındn, 6 ornısı elde

Detaylı

1981 ÜYS Soruları. 1. Bir top kumaşın önce i, sonra da kalanın ü. satılıyor. Geriye 26 m kumaş kaldığına göre, kumaşın tümü kaç metredir?

1981 ÜYS Soruları. 1. Bir top kumaşın önce i, sonra da kalanın ü. satılıyor. Geriye 26 m kumaş kaldığına göre, kumaşın tümü kaç metredir? 98 ÜYS Sorulrı. r top kumşın önce, sonr d klnın ü 5 stılıor. Gere 6 m kumş kldığın göre, kumşın tümü kç metredr? ) 7 ) 65 ) 6 ) 55 ) 5 4. r şekln, u brm uzunluğun göre ln ölçüsü, v brm uzunluğun göre ln

Detaylı

Ankara Üniversitesi Mühendislik Fakültesi, Fizik Mühendisliği Bölümü FZM207. Temel Elektronik-I. Doç. Dr. Hüseyin Sarı

Ankara Üniversitesi Mühendislik Fakültesi, Fizik Mühendisliği Bölümü FZM207. Temel Elektronik-I. Doç. Dr. Hüseyin Sarı Ankr Üniversitesi Mühendislik Fkültesi, Fizik Mühendisliği Bölümü FZM207 Temel ElektronikI Doç. Dr. Hüseyin Srı 2. Bölüm: Dirençli Devreler İçerik Temel Yslrın Doğrudn Uygulnışı Kynk Gösterimi ve Dönüşümü

Detaylı

1 (c) herhangi iki kompleks sayı olmak üzere

1 (c) herhangi iki kompleks sayı olmak üzere KOMPLEKS FONKSİYONLAR TEORİSİ UYGULAMA SORULARI- Problem. Aşağıdaki (a) ve (b) de olmak üere (a) olduklarını gösterini. (b) (c) Imi Re Çöüm (a) i olsun. i i (b) i olsun. i i i i i i i i i i Im i Re i (c)

Detaylı

www.ortokulmtemtik.org BİR BİLİNMEYENLİ DENKLEMLER İçerisinde en z bir bilinmeyen bulunn eşitliklere denklem denir. Denklemde semboller y d hrfler ile gösterilen değişkenlere bilinmeyen denir. Denklemde

Detaylı

4. BÖLÜM DOĞRUSAL DENKLEM SİSTEMLERİ

4. BÖLÜM DOĞRUSAL DENKLEM SİSTEMLERİ 4. BÖLÜM DOĞRUSAL DENKLEM SİSTEMLERİ Doğrusal Denklem Sistemi x 1,x 2,,x n ler bilinmeyenler olmak üzere, doğrusal denklemlerin oluşturduğu; a x a x a x b 11 1 12 2 1n n 1 a x a x a x b 21 1 22 2 2n n

Detaylı

BÖLÜM DETERMINANTLAR SD 1

BÖLÜM DETERMINANTLAR SD 1 SD 1 2. BÖLÜM DETERMINANTLAR 2 1 2 22 21 1 12 11 2 1 2 22 21 1 12 11 2 1 2 22 21 1 12 11 2 1 2 22 21 1 12 11 1. Permütsyo Tım: Bir tm syılr {1, 2,, } kümesideki elemlrı tekrr olmksızı frklı sırlmlrıı düzelemesie

Detaylı

İKİ DEĞİŞKENLİ ARİTMETİK FONKSİYONLAR. Funda ÇETİN YÜKSEK LİSANS TEZİ MATEMATİK GAZİ ÜNİVERSİTESİ FEN BİLİMLERİ ENSTİTÜSÜ HAZİRAN 2007 ANKARA

İKİ DEĞİŞKENLİ ARİTMETİK FONKSİYONLAR. Funda ÇETİN YÜKSEK LİSANS TEZİ MATEMATİK GAZİ ÜNİVERSİTESİ FEN BİLİMLERİ ENSTİTÜSÜ HAZİRAN 2007 ANKARA İKİ DEĞİŞKENLİ ARİTMETİK FONKSİYONLAR Fund ÇETİN YÜKSEK LİSANS TEZİ MATEMATİK GAZİ ÜNİVERSİTESİ FEN BİLİMLERİ ENSTİTÜSÜ HAZİRAN 2007 ANKARA iv İKİ DEĞİŞKENLİ ARİTMETİK FONKSİYONLAR (Yüksek Lisns Tezi)

Detaylı

Ünite 5 ÜSTEL VE LOGARİTMİK FONKSİYONLAR. 5.1. Üstel Fonksiyon. 5.2. Logaritma Fonksiyonu. 5.3. Üstel ve Logaritmik Denklem ve Eşitsizlikler

Ünite 5 ÜSTEL VE LOGARİTMİK FONKSİYONLAR. 5.1. Üstel Fonksiyon. 5.2. Logaritma Fonksiyonu. 5.3. Üstel ve Logaritmik Denklem ve Eşitsizlikler Ünite ÜSTEL VE LOGARİTMİK FONKSİYONLAR f() g() log.. Üstel Fonksion / / / /.. Logritm Fonksionu.. Üstel ve Logritmik Denklem ve Eşitsizlikler . ÜNİTE: ÜSTEL ve LOGARİTMİK FONKSİYONLAR KAZANIM ve İÇERİK.

Detaylı

B - GERĐLĐM TRAFOLARI:

B - GERĐLĐM TRAFOLARI: ve Seg.Korum_Hldun üyükdor onrım süresinin dh uzun olmsı yrıc rnın izole edilmesini gerektirmesi; rızlnmsı hlinde r tdiltını d gerektireilmesi, v. nedenlerle, özel durumlr dışınd tercih edilmezler. - GERĐLĐM

Detaylı

ÜNİTE 5. ÜNİTE 5. ÜNİTE 5. ÜNİTE 5. ÜNİT

ÜNİTE 5. ÜNİTE 5. ÜNİTE 5. ÜNİTE 5. ÜNİT MAİ, DEEMİNAN ve DOUAL DENKLEM İEMLEİ ÜNİE. ÜNİE. ÜNİE. ÜNİE. ÜNİ Mtrisler. Kznım : Mtrisi örneklerle çıklr, verilen ir mtrisin türünü elirtir ve istenilen stırı, sütunu ve elemnı gösterir.. Kznım : Kre

Detaylı

POLİNOMLARIN ÇARPANLARA AYRILMASI

POLİNOMLARIN ÇARPANLARA AYRILMASI POLİNOMLARIN ÇARPANLARA AYRILMASI Tnım: P ( ) polinomu Q ( ) polinomun bölündüğünde bölüm B ( ), Kln ( ) 0 durumd, P ( ) = Q( ). B( ) yzılır. K = olsun. Bu Q ( ) ve B ( ) polinomlrın P ( ) polinomunun

Detaylı

İkinci Dereceden Denklemler

İkinci Dereceden Denklemler İkini Dereeden Denkleler İKİNCİ DERECEDEN BİR BİLİNMEYENLİ DENKLEMLER TANIMLAR :,, R ve olk üzere + + denkleine, ikini dereeden ir ilineyenli denkle denir Bu denkledeki,, gerçel syılrın ktsyılr, e ilineyen

Detaylı