FONKSĐYONLAR MATEMATĐK ĐM. Fonksiyonlar YILLAR

Ebat: px
Şu sayfadan göstermeyi başlat:

Download "FONKSĐYONLAR MATEMATĐK ĐM. Fonksiyonlar YILLAR 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011"

Transkript

1 YILLAR ÖSS-YGS LYS FONKSĐYONLAR A ve B oşn frklı iki küme olsun A dn B ye tnımlı f fonksiyonu f : A B ile gösterilir A y tnım kümesi, B ye de değer kümesi denir A nın elemnlrının B de eşleştiği elemnlrın kümesine de A nın görüntü kümesi denir ve f(a) ile gösterilir UYARI-: A dn B ye tnımlnn f ğıntısının fonksiyon olmsı için; ) A d çıkt elemn olmmlı, B de çıkt elemn olilir ) A dki ir elemnın B de iki yd dh fzl elemnl eşleşmemesi gerekir ÖRNEK() f : R R tnımlı + f : {(,y) y= } ğıntısı ir fonksiyon mudur? ÖRNEK() A={,0,,} ve B={,0,,,8,6} kümeleri veriliyor A dn B ye f fonksiyonu f :{(, y) y= } olsun f () = olur = için y =, = 0 için y = 0 = için y =, = için y = 6 olur Burd F(A)={0,,6} dır y= + ğıntısının ir fonksiyon olmsı için tnım rlığınd ifdeyi tnımsız ypn ir değerin ulunmmsı gerekir Bu ğıntının tnım rlığı Reel syılrdır Ve u ğıntıyı tnımsız ypn ; ² - = 0 = - ve = değerleri irer reel syıdır Yni ifdeyi tnımsız ypn değerler tnım kümesinin ir elemnıdır u yüzden u ğıntı ir fonksiyon olmz ÖRNEK() f:r R tnımlı f : {(,y) y= + ) ğıntısı ir fonksiyon mudur? ÖRNEK() A={,,0,,} ve B={0,,,} kümeleri veriliyor A dn B ye f fonksiyonu f :{(, y)i y= } olsun f () = olur = için y=, = için y=, =0 için y=0, = için y= olur urd F(A)={0,,} dır y= + ğıntısı tnım rlığındki hiçir değer için tnımsız olmz çünkü + ifdesini 0(sıfır) ypk hiçir reel syı yoktur Bu yüzden u ğıntı ir fonksiyondur wwwgloldersom 98

2 NOT : Grfiği verilen ir ğıntının fonksiyon olup olmdığını nlmk için ğıntının tnım kümesinin her noktsındn OX eksenine dikmeler çizilir ) Tüm dikmeler grfiği kesiyors, ) Dikmelerin her iri grfiği ir noktd kesiyors, ğıntı ir fonksiyondur FONKSĐYON ÇEŞĐTLERĐ f: A B ir fonksiyon olsun A;tnım kümesi, B;değer kümesi olmk üzere; ) ĐÇĐNE FONKSĐYON: f: A B fonksiyonu için B de en z ir oşt elemn klıyors yni, f(a) B ise f ir içine fonksiyondur f(a) B f:r R için f(a)={,5} ve f(a) B yukrıd grfiği verilen ğıntı ir fonksiyon değil F: R R için ) ÖRTEN FONKSĐYON: f:a B fonksiyonu için s(a) s(b) olmk üzere f(a)=b yni B de çıkt elemn klmıyors f ye örten fonksiyon denir Bğıntısı ir fonksiyondur f:[,5) R için ) BĐREBĐR FONKSĐYON: f:a B fonksiyonu için s(a) s(b) olmk üzere A nın her elemnının B deki görüntüsü frklı ise f, ireirdir Verilen rlıkt ğıntı ir fonksiyondur y=f() ireir fonksiyonu için; i) f () f ( ) ii) f () = f ( ) = dir wwwgloldersom 99

3 NOT : y=f() şeklindeki ir fonksiyonun değer kümesinin her noktsındn OY eksenine dikmeler çizilir, i) Grfiği kesmeyen dikme vrs f, içine fonksiyondur ii) Grfiği kesmeyen dikme yoks f, örten fonksiyondur iii) Grfiği kesen dikmelerin her iri grfiği sdee ir noktd kesiyors f, ireirdir ) SABĐT FONKSĐYON: f: A B ir fonksiyon olsun A nın her elemnının B deki görüntüsü ynı ise f, sit ir fonksiyondur A için f()= ve B f()=, g()=/ gii SABĐT FONKSĐYONUN GRAFĐĞĐ + UYARI-: f () = fonksiyonu sit + d fonksiyon ise = olmlıdır d ÖRNEK(5) ( ) f: R ± R, f()= fonksiyonu ir sit fonksiyon ise =? yol: Bu ir sit fonksiyon ise in tüm değerleri için ynı sonuç çıkmlıdır O hlde iz de e 0 ve değerlerini verir, ulduğumuz sonuçlrı eşitleyerek yı uliliriz( e 0 ve den frklı değerler de vereilirsiniz Biz koly olsun diye 0 ve i seçtik) = 0 için = için ( )0 ( ) = 0 = = = - = ulunur 5) BĐRĐM FONKSĐYON: f:a A, kurlı ile verilen f()= fonksiyonun irim fonksiyon denir(i()= ) ÖRNEK(6) f:r R de tnımlı f irim fonksiyonu, f()=( ) +(+) ( ) ise ++=? f () = ( ) + + ( ) = 0 0 = 0 + = = 0 = + = (-) = 0 = - - = 0 = - = - yol: ynı dereeli terimlerin ktsyılrı ornı sit olğındn ; = + = = - = - = olur wwwgloldersom = + (-) + (-) = - ulunur EŞĐT FONKSĐYONLAR: f: A B ve g:a B iki fonksiyon olsun A için f() = g() oluyors f ve g fonksiyonlrın eşit fonksiyonlr denir ve f = g şeklinde gösterilir

4 ÖRNEK(7) A={0,}, B={0,} kümeleri veriliyor f:a B, f()= ve g:a B, g()= ise f = g midir? Eşitliği isptlmk için tnım kümelerinden lınn elemnlrı fonksiyonlrd,işleyip sonuçlrın eşit olup olmdığın krız A={0,} kümesi için; = 0 için f(0) = 0² = 0 ve g(0) = 0 = 0 = için f() = ² = ve g() = = görüldüğü gii tnım kümesinin ynı elmnlrı ynı sonuçlrı verdi o hlde f = g dir NOT : s(a)=n ve s(b)=m olmk üzere; ) A B ye tnımlı fonksiyon syısı; m n dir ) A B ye tnımlı - fonksiyon syısı; m! P(m,n)=, (m n) dir (m n) ) A A y tnımlı - örten fonksiyon syısı; n! P (n, n) = = n! dir (n n)! ) A d tnımlnn - örten olmyn fonksiyon syısı; n n n! dir 5) A B ye tnımlı sit fonksiyon syısı; m dir 6) A B ye tnımlı fonksiyon olmyn ğıntı syısı; mn m n dir TEK VE ÇĐFT FONKSĐYON: f:r R tnımlı ir fonksiyon için i) R için f( ) = f() ise f, çift, ii) R için f( ) = f() ise f, tek tir Aşğıdki fonksiyonlrı ineleyin ) f() = + f(-) = (-) - = - - = -( +) = -f() tek ) f() = + f(-) = (-) + = ²+ = f(), çift ) f() = + f(-) = (-) +(-) = ²-- f() -f() ne tek ne çift UYARI-: i) A(,y) noktsının y eksenine göre simetriği A(,y) noktsı olduğundn çift fonksiyonlrın grfiği y eksenine göre simetriktir ii) A(,y) noktsının orjine göre simetriği A(, y) noktsı olduğundn tek fonksiyonlrın grfiği orjine göre simetriktir ÖRNEK(8) A={,,}, B={,,,} olmk üzere; s(a)= ve s(b)= ) A B tnımlı ğıntılrdn =6 tnesi fonksiyondur ) A B tnımlı : fonksiyon syısı! P(,)= = tür ( )! ) A A tnımlı : ve örten fonksiyon syısı! P(,) = =! = 6 dır ( )! d) A d tnımlnn : ve örten olmyn fonksiyon syısı!=7-6= dır e) A B tnımlı sit fonksiyon syısı tür f) A B tnımlı fonksiyon olmyn ğıntı syısı = 6 9 = 59 dır FONKSĐYONLARDA DÖRT ĐŞLEM : f: A R ve g:b R fonk verilsin (A B φ) ) f+g : A B R ; (f+g)()=f()+g() ) f g : A B R ; (f g)()=f() g() ) fg : A B R ; (fg)()=f()g() ) f/g : A B R ; (f/g)()=f()/g(), (g() 0) 5) R olmk üzere f : A R, (f)()=f() wwwgloldersom 0

5 f() = + ve g() = için f+g = ++ = + f g = + + = +5 fg = (+)( ) = ² 6 f={(,),(, ),(,6),(6,)} g={(0,),(,),(5, 6),(6,)} ise f ve g nin tnım kümelerinin kesişimi:{,6} f+g = {(, +),(6,+)} = {(,),(6,)} f g = {(, ),(6, )} = {(, 6),(6, )} f g = {(,( ) ),(6, )} = {(, 8),(6, )} g+ = {(0,+),(,+),(5, 6+),(6,+)} = {(0,6),(,7),(5, ),(6,6)} SIRA SĐZDE: Grfik sorulrınd ilk öne koordintı elli oln noktlrı elirleyip fonksiyonunu yzmk işinizi kolylştırktır f() = f(0) = f(-) = 0 f(-) = - f() = ise f () = olur f(-) = - ise f ( ) = olur Şimdi ulunn değerleri sorud yzlım; ÖRNEK(9) f:{(,5),(,7),(5,9)}ve g:{(,),(5,),(7,)} fonksiyonlrı veriliyor ) f()+g(5)=? C:9 ) f+g fonksiyonunu ulun C: f+g:{(,8),(5,0)} BĐR FONKSĐYONUN GRAFĐĞĐ : f ( ) + f (0) + = = = f () + f ( ) ulunur ÖRNEK() Fonksiyonu gerçekleyen (,y) ikililerinin Anlitik düzlemde elirttiği noktlr kümesine denir ÖRNEK(0) Şekle göre f [f( )]=5 eşitliğini sğlyn iririnden frklı değerlerinin çrpımı kçtır? Dh öne de dediğimiz gii koordintı elli oln noktlrı tespit edelim f ( ) + f (0) Yukrıdki grfiğe göre; =? f () + f ( ) wwwgloldersom 0

6 f(0) = 5 = { = { fofofof fofof (f ) (fof )(f (0)) 0 = f (f { ()) = f (5) = 8 ulunur 5 F(-) = 0 f() = 0 f(5) = 0 f(0) = 5 ise f [f ( )] = 5 urdn ; 0 f(-) = 0, f() = 0, f(5) = 0 ise f ( ) = 0 olur Burdn ; = -, = 0, - = 5 = - = = 6 = - = ½ = ÖRNEK() lerin çrpımı : = olur BĐR FONKSĐYONUN TERSĐ: f:a B tnımlı - ve örten ir fonksiyon olsun f:a B, f() = y ise f :B A, f (y)= olur Burd, f fonksiyonun f in ters fonksiyonu denir y = f() = f (y) TEMEL KURAL: Fonksiyon y ye eşitlenip çekilir Fonksiyonun tersi lındığınd tnım ve değer kümeleri yer değiştirdiğinden dh sonrd yerine y = f (), y yerine de yzılrk fonksiyonun tersi elde edilir ÖRNEK() f()=+ ise f ()=? öne fonksiyonu y ye eşitleyelim ve i urdn çekelim Yukrıdki şekle göre (fofofof)( )=? Yine koordintı elli oln noktlrı yzmkl şlylım f(0) = f() = 5 f(5) = 8 + = y = y y = y y= o hlde fonksiyonunu tersi f ()= olur PRATĐK KURAL: f(-) = 0 tnımlı değil wwwgloldersom 0 f:r R, f()=+ f ()= f:r R, f()= + + f d+ ()= d

7 y=f() in grfiği ile y=f () in grfiği y= doğrusun göre simetriktir f ()= f()= dır + 5 f () = f 7 f () = f + 7 () = + 5 () = ÖRNEK() f() = - fonksiyonu veriliyor Bun göre f (7) kçtır? Đkini dereeden fonksiyonlrın tersini lmk için tmkreden fydlnırız f() = ++ = y ++ = y (+)² = y ( + ) ² = y + = y + = m y = m y y f () = m yol öne fonksiyonun tersini ullım (prtik yol kullnılırs) ( ) + f = ve 7+ 9 f (7) = = = ulunur yol + ÖRNEK(7) R {} de tnımlı f()= fonksiyonu : ve örten ise değer kümesi nedir? Bir fonksiyon : ve örten ise tersi de ir fonksiyondur y = f() = f (y) olduğundn ters fonksiyon 7 ye eşitlenir f()= + f () = + + f() = - = 7 = 7+=9 = ulunur ÖRNEK(5) f() = ²+ fonksiyonu veriliyor f () in negtif değeri kçtır? f () in fonksiyon olilmesi için ifdeyi tnımsız ypn değer olmmlıdır Burdn f () in tnım kümesi R {-} olmlıdır(-, pydyı sıfır ypr) f () in tnım kümesi f() in değer kümesi olduğundn evp : R {-} olur Yukrıdki sorud kullnıln yolu kullnırsk; f() = ²+ = ² = - ² = 8 ² = =m olur Negtif değer istendiğinden evp dir ÖRNEK(6) f() = ++ ise f () =? (*tm kre den fyd) wwwgloldersom 0 + UYARI-: f()= fonksiyonu + d R {pydnın kökü} R{limit} için - ve örtendir(bir fonksiyonun tersinin olilmesi için - ve örten olmsı gerekir) ÖRNEK(8) f:r {} R {} de tnımlı + f () = için =?

8 { } { } R pydnın kökü R limit -=0 lim + = = = = ve = =6 urdn = 6= olur BĐLEŞKE FONKSĐYON: f:a B ve g:b C olmk üzere gof:a C, (gof)()=g(f()) içiminde tnımlnn gof fonksiyonun f ile g nin ileşke fonksiyonu denir ÖRNEK(9) f:r R, f()= ve g:r R, g()=+5 ise fog ve gof u ulun (fog)() = f(g())=f(+5)=(+5) =6+5 = 6 + (gof)() = g(f())=g( ) = ( )+5 = 6 +5 = 6 + ulunur NOT : Bileşke işlemlerinde sğdn sol doğru işlem ypılır BĐLEŞKE ĐŞLEMĐNĐN ÖZELLĐKLERĐ: ) fog gof ) fo(goh) = (fog)oh ) fof = f of = I, ( I()= irim fonksiyon) ) (f ) = f 5) f ve g fonksiyonlrı - ve örten ise; (fog) = g of 6) foi = Iof = f dir + ÖRNEK(0) f()=, g()= ise (gof)(), (fog)(), (fof)() değerlerini ulunuz Değer istenen sorulrd ileşke fonksiyon lınmdn d işlem ypılilir (gof)() = g(f()) = g + =g(9) g(9) = 9² - = 78 (gof)() = 78 (fog)()=f(g())=f(² - ) f()= + = 5 (fog)() = (fof)() = f(f())= f = f ( 5) ( 5) + f ( 5) = = 5 (fof)() = olur ÖRNEK() f()= ve (gof)()=5+ ise g()=? (gof)() = 5+ g(f()) = 5 + g( ) =5 + şimdi (-) ün tersini lıp son elde edilen ifdede gördüğümüz yere yzlım ( ) + = + + g = g() = 5+ g() = olur (yptığımız işlem,gof fonksiyonun sğdn f fonksiyonunun işlemekten irettir (gof)o f = g(fo f ) = goi = g wwwgloldersom 05

9 ÖRNEK() f (+) = +7 ve g( )= +5 ise (fog)(5)=? f (+) = +7 ise f(+7) = + (iç ve dış yer değiştirine fonksiyon tersine döner) (fog)(5) = f(g(5)) = f(9) = olur (C: (fog)()=6 6 ve (gof)()=6+9 ) ÖRNEK(5) f()=5, g()= + ise (gof)(), (fog)(), (fof)() değerlerini ulunuz g( ) = g(5) = + 5= + 5= 9 = == { f ( +7 ) = f (9) = + = + = + = == { PERMÜTASYON FONKSĐYON: (C: 9,,) ÖRNEK() f()= +, (fog)()= +6+8 olduğun göre g() şğıdkilerden hngisi olilir? A) + B) C) + D) E) + (fog)()= +6+8 f(g()) = +6+8 (f de yerine g() yzlım) (g()) +g()= +6+8 (her trf ekleyelim) (g()) +g() += (g()+)² = (+)² ( + ) = ( + ) g( ) + = + g ² ² g()+ = + ve g()+ = - - g() = + g() = - - o hlde evp E şıkkıdır SIRA SĐZDE : ÖRNEK() f:r R, f()=+ ve g:r R, g()= 5 ise fog ve gof u ulun A sonlu ir küme olsun A A y tnımlı - ve örten her fonksiyon A nın ir permütsyonu denir A={,,} kümesinde tnımlı f={(,),(,),(,)} fonksiyonu - ve örten olduğundn A nın ir permütsyonudur ve f = şeklinde gösterilir NOT 5 : i) Permütsyon fonksiyond üst stır tnım kümesi, lt stır d değer kümesidir ii) fog işlemi ypılırken g den f ye gidilir ÖRNEK(6) A={,,,d} f = d d g= permütsyonlrı veriliyor un göre; kümesinde d d ) fog =? ) gof =? )foh = g eşitliğini sğlyn h permütsyonunu ulunuz wwwgloldersom 06

10 ) (fog)() = f(g()) = f() = (fog)() = f(g()) = f() = (fog)() = f(g()) = f() = (fog)(d) = f(g(d)) = f(d) = d o hlde ) fog = (gof)() = g(f()) = g() = (gof)() = g(f()) = g() = (gof)() = g(f()) = g() = (gof)(d) = g(f(d)) = g(d) = d o hlde ) gof = d d d d foh = g ifdesinde her iki trf soldn f işleyelim f o(foh) = f o g ( f of)oh = f o g Ioh = h = şimdi ize f o g f o g d f = d f fonksiyonu lzım f = f = f = f = d f = f = f = d f d = d f d = d h = ( f og)() = h = ( f og)() = h = ( f og)() = h = ( f og)(d) = o hlde f (g()) = f (g()) = f (g()) = f (g(d)) = d h = olur d ÖRNEK(7) A={,,,d} f = d d g= f () = f () = f () = f (d) = d permütsyonlrı veriliyor un göre; kümesinde d d ) fog =? ) gof =? ) foh = g eşitliğini sğlyn h permütsyonunu ulunuz d ) fog = d d ) gof = d d ) h = d f d d = f = d d d d f og= o d d wwwgloldersom 07

11 GENEL ÖRNEKLER: ÖRNEK(8) Bir f fonksiyonu, f()=f(+) ğıntısını sğlmktdır f()=5 ise f()=? yol = için f()=f() 5 = f() f() = 9 = için f()=f() 9 = f() f()= Bulunur yol = için f()=f() = için + f()=f() (f() ler gider) f() = f() 8 5 = f() 8 f() = ulunur (u yol örneğin f() verilip f(0) gii üyük değer sorulun dh prtiktir) ÖRNEK(9) g()= ve (fog)()= ise f ( 5)=? Öne istenen fonksiyon ulunur f(+) = + Burdn çekilir f(+) = + =f(+) f + = { f () f(+) = f²() ulunur ÖRNEK() R R ye f()=+, + g() = fonksiyonlrı veriliyor 6 (gof)()= ise +=? (gof)()= ise gof fonksiyonu irim fonksiyondur (I() = olduğunu htırlyın) fog = I ise fof = I olduğundn g fonksiyonu f nin tersi olmlıdır yni g =f dir g () = 6 = f() = + urdn = 6 ve = - çıkr O hlde + = 6+( ) = olur ÖRNEK() (fog)()= f(g()) = f(-) = - f ( - { ) = f ( 5) = = ( ) = 5 = 5 = = ulunur Grfik R R [5,7) de tnımlı f fonksiyonun ittir f (0)+f(0)+f()=? ÖRNEK(0) f()= olduğun göre, f(+) nin f() türünden eşiti nedir? wwwgloldersom 08

12 Öne koordintlrı elli oln noktlr klım f(0) = f() = 7 f(-) = 0 g fonksiyonund 0 < olduğundn kullnılır g(0) = 0 = - tür f fonksiyonund olduğundn kullnılır f(-) = 6 (-) = 6 ve = - ulunur f(-) = 0 ise f (0) = - tür f (0)+f(0)+f() = = 8 olur ÖRNEK() R R de tnımlı f()=+ ve g()= fonksiyonlrı veriliyor (fog)()=9 denklemini sğlyn değerlerinden iri AHngisidir? A) B) C) D) E) (fog)()=9 f(g()) = 9 f(²-) = 9 ²-+ = 9 ( )² = ² = = ve = - = 5 = - evp C şıkkıdır ÖRNEK() +, > ise f () = ve, ise, ise g () = fonksiyonlrı, < ise veriliyor (fog)(0)=6 ise =? (fog)(0)=6 ise f g 0 = 6 f(-) = 6 { wwwgloldersom 09 ÖRNEK(5) Birini dereeden f() fonksiyonu için f(f())=f()+ olduğun göre f()=? f f = f + f() = += eder f() = dersek { { ÖRNEK(6) Tnımlı olduğu değerler için f() = +, (g of)() = + ise g() şğıdkilerden hngisidir? A) B) + D) E) C) + + f() = + f( ) = (g of)() = + g(+) = f() ( iç dış ) g( +) = + ( ) + g( + ) = g() = ulunur

13 ÖRNEK(7) f()+f( ) = +6 ise f()=? Toplm irini dereeden olduğundn f() de irini dereedendir f() = + olsun f()+f( ) = +6 (+) +[(-)+] = = +6 + = +6 = ve = 6 = = 6 = 0 = 5 o hlde f() = +5 olur ÖRNEK(8) f(y)=f() f(y), üzere f()=5 ise f(7)=? f(7)=f(9) = f( 9 ) f { ( ) f () = f ()f () = f()f()f() = 555 = 5 olur ( y) olmk ÖRNEK(0) f(+)=f() ve f()= ise f(9)=? f(+)=f() = için f(+)= f() f()= f() = için f(+)= f() f()= f() = için f(+)= f() f()= f() =8 için f(8+)= f() f(9)= 8f(8) lt lt çrptığımızd f(9) = f() 8 f(),f() f(8) gider f(9) = 8! ulunur ÖRNEK() f( ++7)= ise f( ++7)= ise f = f ()=? f + = (+ ) + (+ ) + 7 f = f 0 = + + ulunur ÖRNEK(9) f()=, g()= ve (fog)()= ise +=? (fog)()= ise fog fonksiyonu irim fonksiyondur Bu durumd f, g nin tersidir f =g f ( ) = ve g() = + = + = = ve - = + = = = - 6 o hlde + = + ( 6) = = ulunur wwwgloldersom 0 ÖRNEK() ise g()=? fog fog = g of = gof (go f )() = + g ( f ()) = + g + = + g() = (-)+ = + g() = ulunur () = + ve f()= f () = +

14 ÖRNEK() f:r {} R {} ve f () = ise ve f nin tersi vrs (,)=? yol UYARI- gereği f() in pydsının kökü ve f() in limiti olmlıdır = 0 = 0 = 6 limf() = = = 9 o hlde (,) = (9,6) olur yol f() = f() (-f()) = f() f () = f () son olrk in f() insinden değerini f(-) de yzrız; f () f () + f () f () f () f ( ) = = f () f () f () f () f () f () f ( ) = f () f () f () f ( ) = elde edilir f () ÖRNEK(5) (limit ilmeyenler için) f() in pydsını sıfır ypn dir f () in pydsını sıfır ypn tür = 0 = 0 = 6 f () = olduğundn ; = 0 = 0 = 9 urdn (,) = (9,6) ulunur ÖRNEK() f () = ise f( ) in f() + türünden değeri nedir? (95 öss) Öne f(-) i ullım f fonksiyonund yerine - yzrsk f ( ) = = + Verilen grfikte g()= ise f( )+f()=? =-, = noktlrın krşılık gelen y değerleri her iki fonksiyond d ynıdır Yni f(-) = g(-), f() = g() dır (,0) noktsı g fonksiyonunun üzerinde olduğundn denklemini sğlr (,0) g()= =0 = olur O hlde g() = - dir f(-) = g(-) = = ve zten f() = 0 dır sonuç : f( )+f()= -+0 = - olur şimdi f fonksiyonund i çekeriz f () = f()+f() = + wwwgloldersom

15 ÖRNEK(6) f( + )= +6 5 ise f()=? (*dönüşüm uyg) f( + )= +6 5 f ( + ) = ( + ) t f(t) = t (t yzrsk) f() = ulunur NOT 6 : f(t)=t ise f()= tir ÖRNEK(7) t f () = veriliyor = - için f ( ) = = = = = 0 için f (0) = 0 0 = 0 = = için f () = = = = 0 o hlde f( )+f(0)+f() = ++0 = olur ÖRNEK(9) f ( 7) f (5) Yukrıdki grfiğe göre; =? f ( ) + f ( ) f( ) = y olsun = için y= 7 dır f( )= 7 f( 5)= 7 ise f ( 7)= 5 = için y=5 tir f( )=5 f()=5 ise f (5)= dir =0 için y= dir f(0 )= f( )= = için y=0 dır f( )=0 f( )=0 f ( 7) f (5) 5 Sonuç: = = ulunur f ( ) + f ( ) + 0 ÖRNEK(8) f () = olduğun göre f( )+f(0)+f() toplmı kçtır? (ÖSS 00) Yukrdki şekilde f() fonksiyonu ile g()= fonksiyonunun grfiği verilmiştir Bun göre; (fog of)(0)=? (ÖSS-000) (fog of)(0) = f g f( 0) { 8 = f g ( 8) = f() = 0 ulunur g() g = ( { ) = g (8) = 8 = dir HAZIRLAYAN ĐBRAHĐM HALĐL BABAOĞLU Mtemtik Öğretmeni wwwgloldersom e-mil: irhimhlil@mynetom wwwgloldersom

Mustafa YAĞCI, yagcimustafa@yahoo.com Parabolün Tepe Noktası

Mustafa YAĞCI, yagcimustafa@yahoo.com Parabolün Tepe Noktası Mustf YĞCI www.mustfgci.com.tr, 11 Ceir Notlrı Mustf YĞCI, gcimustf@hoo.com Prolün Tepe Noktsı Ö nce ir prolün tepe noktsı neresidir, onu htırltlım. Kc, prolün rtmktn zlm ve zlmktn rtm geçtiği nokt dieiliriz.

Detaylı

ÜNİTE - 7 POLİNOMLAR

ÜNİTE - 7 POLİNOMLAR ÜNİTE - 7 BÖLÜM Polinomlr (Temel Kvrmlr) -. p() = 3 + n 6 ifdesi bir polinom belirttiğine göre n en z 5. p( + ) = + 4 + Test - olduğun göre, p() polinomunun ktsyılr toplmı p() polinomund terimlerin kuvvetleri

Detaylı

c) Bire bir fonksiyon: eğer fonksiyonun görüntü kümesindeki her elemanının tanım kümesinde yalnız bir karşılığı varsa bu fonksiyonlara denir.

c) Bire bir fonksiyon: eğer fonksiyonun görüntü kümesindeki her elemanının tanım kümesinde yalnız bir karşılığı varsa bu fonksiyonlara denir. FONKSİYONLAR Boş kümeden frklı oln A ve B kümeleri verildiğinde, A kümesindeki her elemnı B kümesindeki ir elemn krşı getiren ğıntıy A dn B ye fonksiyon denir. y=f(x) ile gösterilir. Bir diğer ifdeyle

Detaylı

RASYONEL SAYILAR KESİR ÇEŞİTLERİ. www.unkapani.com.tr. 1. Basit Kesir. olduğuna göre, a, b tamsayı ve b 0 olmak üzere, a şeklindeki ifadelere

RASYONEL SAYILAR KESİR ÇEŞİTLERİ. www.unkapani.com.tr. 1. Basit Kesir. olduğuna göre, a, b tamsayı ve b 0 olmak üzere, a şeklindeki ifadelere RASYONEL SAYILAR, tmsyı ve 0 olmk üzere, şeklindeki ifdelere kesir denir. y kesrin pyı, ye kesrin pydsı denir. Örneğin,,,, kesirdir. kesrinde, py kesir çizgisi pyd, 0, 0 ise 0 0 dır.,, 0, syılrı irer 0

Detaylı

LYS LİMİT VE SÜREKLİLİK KONU ÖZETLİ ÇÖZÜMLÜ SORU BANKASI

LYS LİMİT VE SÜREKLİLİK KONU ÖZETLİ ÇÖZÜMLÜ SORU BANKASI LYS LİMİT VE SÜREKLİLİK KONU ÖETLİ ÇÖÜMLÜ SORU BANKASI ANKARA İÇİNDEKİLER Limit Kvrmı ve Grfik Sorulrı... Limitle İlgili Bzı Özellikler...7 Genişletilmiş Reel Sılrd Limit... Bileşke Fonksionun Limiti...

Detaylı

DENKLEM ÇÖZME DENKLEM ÇÖZME. Birinci dereceden İki bilinmeyenli. 2x 2 + 5x + 2 = 0. 3x x 2 + 1 = 0. 5x + 3 = 0. x + 17 = 24.

DENKLEM ÇÖZME DENKLEM ÇÖZME. Birinci dereceden İki bilinmeyenli. 2x 2 + 5x + 2 = 0. 3x x 2 + 1 = 0. 5x + 3 = 0. x + 17 = 24. DENKLEM ÇÖZME + + = 0 + = 0 + = 0 + y = 0 İkinci dereceden ir ilinmeyenli denklemdir. İkinci dereceden ir ilinmeyenli denklemdir. Birinci dereceden ir ilinmeyenli denklemdir. Birinci dereceden İki ilinmeyenli

Detaylı

VEKTÖRLER ÜNİTE 5. ÜNİTE 5. ÜNİTE 5. ÜNİTE 5. ÜNİT

VEKTÖRLER ÜNİTE 5. ÜNİTE 5. ÜNİTE 5. ÜNİTE 5. ÜNİT VKTÖRLR ÜNİT 5. ÜNİT 5. ÜNİT 5. ÜNİT 5. ÜNİT VKTÖRLR 1. Kznım : Vektör kvrmını çıklr.. Kznım : İki vektörün toplmını ve vektörün ir gerçek syıyl çrpımını ceirsel ve geometrik olrk gösterir. VKTÖRLR 1.

Detaylı

5. 6 x = 3 x + 3 x x = f(x) = 2 x + 1

5. 6 x = 3 x + 3 x x = f(x) = 2 x + 1 Üstlü Sılrd İşlemler, Üstel Fonksion BÖLÜM 0 Test 0. 7 7 denkleminin çözüm kümesi şğıdkilerden hngisidir?. 6 olduğun göre, ifdesinin değeri kçtır? A) B) C) D) E) 6 9 6 A) {, } B) {, } C) {, } D) {, } E)

Detaylı

İÇİNDEKİLER. Ön Söz...2. Matris Cebiri...3. Elementer İşlemler Determinantlar Lineer Denklem Sistemleri Vektör Uzayları...

İÇİNDEKİLER. Ön Söz...2. Matris Cebiri...3. Elementer İşlemler Determinantlar Lineer Denklem Sistemleri Vektör Uzayları... İÇİNDEKİLER Ön Söz... Mtris Cebiri... Elementer İşlemler... Determinntlr...7 Lineer Denklem Sistemleri...8 Vektör Uzylrı...6 Lineer Dönüşümler...48 Özdeğerler - Özvektörler ve Köşegenleştirme...55 Genel

Detaylı

Tek ve Çift Fonksiyonlar. Özel Tanýmlý Fonksiyonlar. Bir Fonksiyonun En Geniþ Taným Kümesi. 1. Parçalý Fonksiyonlar. 2. Mutlak Deðer Fonksiyonu

Tek ve Çift Fonksiyonlar. Özel Tanýmlý Fonksiyonlar. Bir Fonksiyonun En Geniþ Taným Kümesi. 1. Parçalý Fonksiyonlar. 2. Mutlak Deðer Fonksiyonu Fonksionlr Konu Özeti. Köklü fonksionlrın en geniş tnım kümesi: f( f( n f( g( fonksionun en geniş tnım kümesi, g( koşulunu sğln noktlr kümesidir. f( f( n f( g( tüm reel sılrd tnımlıdır. fonksionu g( in

Detaylı

ASAL SAYILAR. Asal Sayılar YILLAR MATEMATĐK ĐM

ASAL SAYILAR. Asal Sayılar YILLAR MATEMATĐK ĐM YILLAR 00 003 004 00 006 007 008 009 00 0 ÖSS-YGS - - - - - - - ASAL SAYILAR ve kendisinden bşk pozitif böleni olmyn den büyük tmsyılr sl syı denir Negtif ve ondlıklı syılr sl olmz Asl syılrı veren bir

Detaylı

SAYILARIN ÇÖZÜMLENMESĐ ve BASAMAK KAVRAMI

SAYILARIN ÇÖZÜMLENMESĐ ve BASAMAK KAVRAMI YILLAR 00 00 004 00 006 007 008 009 010 011 ÖSS-YGS - 1 - - 1-1 1 SAYILARIN ÇÖZÜMLENMESĐ ve BASAMAK KAVRAMI,b,c,d birer rkm olmk üzere ( 0) b = 10 + b bc = 100+10+b bc = 100+10b+c bcd =1000+100b+10c+d

Detaylı

YILLAR ÖSS-YGS /LYS /1 0/1 ÇÖZÜM: 1) xοy A ise ο işlemi A da kapalıdır.

YILLAR ÖSS-YGS /LYS /1 0/1 ÇÖZÜM: 1) xοy A ise ο işlemi A da kapalıdır. YILLAR 00 00 00 005 006 007 008 009 00 0 ÖSS-YGS /LYS - - - 0/ 0/ ĐŞLEM ( ) ( ) (+ ) ( ) 7 6 76+ bulunur ve e bğlı bütün tnımlı fonksionlr bir işlem belirtir i göstermek için +,,*, gibi işretler kullnılır

Detaylı

İKİNCİ DERECEDEN DENKLEMLER

İKİNCİ DERECEDEN DENKLEMLER İKİNCİ DERECEDEN DENKLEMLER İKİNCİ DERECEDEN BİR BİLİNMEYENLİ DENKLEMLER TANIMLAR :, b, R ve 0 olmk üzere denklem denir. b = 0 denklemine, ikini dereeden bir bilinmeyenli Bu denklemde, b, gerçel syılrın

Detaylı

TEOG. Tam Sayılar ve Mutlak Değer ÇÖZÜM ÖRNEK ÇÖZÜM ÖRNEK TAMSAYILAR MUTLAK DEĞER

TEOG. Tam Sayılar ve Mutlak Değer ÇÖZÜM ÖRNEK ÇÖZÜM ÖRNEK TAMSAYILAR MUTLAK DEĞER TEOG Tm Syılr ve Mutlk Değer TAMSAYILAR Eksi sonsuzdn gelip, rtı sonsuz giden syılr tm syılr denir ve tm syılr kümesi Z ile gösterilir. Z = {...,,, 1,0,1,,,... } Tmsyılr kümesi ikiye yrılır: ) Negtif Tmsyılr:

Detaylı

LOGARİTMA. Örnek: çizelim. Çözüm: f (x) a biçiminde tanımlanan fonksiyona üstel. aşağıda verilmiştir.

LOGARİTMA. Örnek: çizelim. Çözüm: f (x) a biçiminde tanımlanan fonksiyona üstel. aşağıda verilmiştir. LOGARİTMA I. Üstl Fonksiyonlr v Logritmik Fonksiyonlr şitliğini sğlyn dğrini bulmk için ypıln işlm üs lm işlmi dnir. ( =... = 8) y şitliğini sğlyn y dğrini bulmk için ypıln işlm üslü dnklmi çözm dnir.

Detaylı

b göz önünde tutularak, a,

b göz önünde tutularak, a, 3.ALT GRUPLAR Tnım 3.. bir grup ve G, nin boş olmyn bir lt kümesi olsun. Eğer ( ise ye G nin bir lt grubu denir ve G ile gösterilir. ) bir grup Not 3.. ) grubunun lt grubu olsun. nin birimi ve nin birimi

Detaylı

YILLAR 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 ÖSS-YGS

YILLAR 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 ÖSS-YGS Rsonel Sılr YILLAR 00 00 00 00 00 00 00 00 00 0 ÖSS-YGS RASYONEL SAYILAR KESĐR: Z ve 0 olmk üzere şeklindeki ifdelere kesir denir p pd kesirçizgisi KESĐR ÇEŞĐTLERĐ: kesri için i) < ise kesir sit kesirdir

Detaylı

MUTLAK DEĞER. Sayı doğrusu üzerinde x sayısının sıfıra olan uzaklığına x in mutlak değeri denir ve x ile. gösterilir. x x. = a olarak tanımlanır.

MUTLAK DEĞER. Sayı doğrusu üzerinde x sayısının sıfıra olan uzaklığına x in mutlak değeri denir ve x ile. gösterilir. x x. = a olarak tanımlanır. gösterilir. MUTLAK DEĞER Syı doğrusu üzerinde syısının sıfır oln uzklığın in mutlk değeri denir ve ile B O A 0 OA = OB =, 0 =, < 0 olrk tnımlnır. < 0 < y için y = y işleminin eşitini bulunuz. < 0 için

Detaylı

0;09 0;00018. 5 3 + 3 2 : 1 3 + 2 3 4 5 1 2 işleminin sonucu kaçtır? A) 136 87 0;36 0;09. 10. a = 0,39 b = 9,9 c = 1,8 d = 3,7.

0;09 0;00018. 5 3 + 3 2 : 1 3 + 2 3 4 5 1 2 işleminin sonucu kaçtır? A) 136 87 0;36 0;09. 10. a = 0,39 b = 9,9 c = 1,8 d = 3,7. MC. + + +.. Rsyonel Syılr TEST I sonsuz kesrinin eşiti kçtır? A) B) C) D) E) 4 www.mtemtikclu.com, 006 Ceir Notlrı. 8. Gökhn DEMĐR, gdemir@yhoo.com.tr 0;0 0;0008 = 0; x ise x kçtır? A) 0,0 B) 0,000 C)

Detaylı

LYS Matemat k Deneme Sınavı

LYS Matemat k Deneme Sınavı LYS Mtemtk Deneme Sınvı. İki bsmklı bir sının rkmlrı toplmı dir. Rkmlrı er değiştirdiğinde elde edilen sı, ilk sının sinden fzldır.. Birbirinden frklı tne pozitif tmsının OKEK i olduğun göre, en çok kçtır?

Detaylı

YÜZDE VE FAĐZ PROBLEMLERĐ

YÜZDE VE FAĐZ PROBLEMLERĐ YILLAR 00 003 00 00 006 007 008 009 010 011 ÖSS-YGS 3 1 1 1 3 YÜZDE VE FAĐZ PROBLEMLERĐ YÜZDE: Bir syının yüzde sı= dır ÖRNEK(1) % i 0 oln syıyı bullım syımız olsun 1 = 0 = 0 ÖRNEK() 800 ün % ini bullım

Detaylı

YÜKSEKÖĞRETİM KURUMLARI SINAVI MATEMATİK SORU BANKASI ANKARA

YÜKSEKÖĞRETİM KURUMLARI SINAVI MATEMATİK SORU BANKASI ANKARA YÜKSEKÖĞRETİM KURUMLARI SINAVI MATEMATİK SORU ANKASI ANKARA İÇİNDEKİLER Fonksionlr... Polinomlr... II. Dereceden Denklemler... 7 II. Dereceden Fonksionlrın Grfiği (Prbol)... 7 Krmşık Sılr... 9 Mntık...

Detaylı

a üstel fonksiyonunun temel özellikleri şunlardır:

a üstel fonksiyonunun temel özellikleri şunlardır: 1 Üstel Fonksiyon: >o, 1 ve herhngi bir reel syı olmk üzere f: fonksiyon denir. R fonksiyonun üstel R, f()= 1 2, f()= ve f()= f()= gibi tbnı sbit syı (pozitif ve 1 den frklı) ve üssü 4 değişken oln bu

Detaylı

LYS Matemat k Deneme Sınavı

LYS Matemat k Deneme Sınavı LYS Mtemtk Deneme Sınvı 8. sısının pozitif tek tmsı bölenlerinin sısı kçtır? 8. olmk üzere; kesrinin değeri şğıdkilerden hngisi olmz?. (8!) sısının sondn kç bsmğı sıfırdır? 8. ifdesinin sonucu kçtır? (

Detaylı

DENKLEM ve EŞİTSİZLİKLER ÜNİTE 2. ÜNİTE 2. ÜNİTE 2. ÜNİTE 2. ÜNİT

DENKLEM ve EŞİTSİZLİKLER ÜNİTE 2. ÜNİTE 2. ÜNİTE 2. ÜNİTE 2. ÜNİT DENKLEM ve EŞİTSİZLİKLER ÜNİTE. ÜNİTE. ÜNİTE. ÜNİTE. ÜNİT BİRİNCİ DERECEDEN DENKLEM ve EŞİTSİZLİKLER. Kznım : Gerçek syılr kümesinde birinci dereceden eşitsizliğin özelliklerini belirtir.. Kznım : Gerçek

Detaylı

ÇOKGENLER Çokgenler çokgen Dışbükey (Konveks) ve İçbükey (Konkav) Çokgenler dış- bükey (konveks) çokgen içbükey (konkav) çokgen

ÇOKGENLER Çokgenler çokgen Dışbükey (Konveks) ve İçbükey (Konkav) Çokgenler dış- bükey (konveks) çokgen içbükey (konkav) çokgen ÇONLR Çokgenler rdışık en z üç noktsı doğrusl olmyn, düzlemsel şekillere çokgen denir. Çokgenler kenr syılrın göre isimlendirilirler. Üçgen, dörtgen, beşgen gibi. ışbükey (onveks) ve İçbükey (onkv) Çokgenler

Detaylı

MUTLAK DEĞER. a ε R olmak üzere; Mutlak Değer MATEMATĐK ĐM YILLAR 2002 203 2004 2005 2006 2007 2008 2009 2010 2011 14) GENEL ÖRNEKLER.

MUTLAK DEĞER. a ε R olmak üzere; Mutlak Değer MATEMATĐK ĐM YILLAR 2002 203 2004 2005 2006 2007 2008 2009 2010 2011 14) GENEL ÖRNEKLER. Mutlk Değer YILLAR 4 6 8 9 1 11 ÖSS-YGS - - - 1 - - 1 - - 1/1 MUTLAK DEĞER ε R olmk üzere;, -, ise < ise ve b reel syı olmk üzere; 1) dır Eğer ise dır ) 14) + n n Z olmk üzere dır 1) f ( ) > g( ) f ( )

Detaylı

LOGARİTMA KONU UYGULAMA - 01

LOGARİTMA KONU UYGULAMA - 01 LOGARİTMA KONU UYGULAMA - 0. f() = fonksiyonunun ters fonksiyonunu 6. 7 f() = log ( ) fonksiyonunun tnım bulunuz? rlığı nedir?. + f() = fonksiyonunun ters fonksiyonunu bulunuz? 6 log? 8 = 7.. f() = log

Detaylı

LOGARİTMA Test -1. olduğuna göre, x kaçtır? olduğuna göre, x aşağıdakilerden hangisidir? A) 3 B) 9 C) 16 D) 64 E) 81.

LOGARİTMA Test -1. olduğuna göre, x kaçtır? olduğuna göre, x aşağıdakilerden hangisidir? A) 3 B) 9 C) 16 D) 64 E) 81. LOGARİTMA Test -. olduğun göre, şğıdkilerden log log log. log olduğun göre, kçtır? 6 6 8. olduğun göre, şğıdkilerden 6. logm olduğun göre, m kçtır? log log log 6 log 6. olduğun göre, şğıdkilerden log log

Detaylı

RASYONEL SAYILAR. ÖRNEK: a<0<b<c koşulunu sağlayan a, b, c reel sayıları. tan ımsız. belirsiz. basit kesir

RASYONEL SAYILAR. ÖRNEK: a<0<b<c koşulunu sağlayan a, b, c reel sayıları. tan ımsız. belirsiz. basit kesir RASYONEL SAYILAR 0 ve, Z olmk üzere şeklindeki syılr rsyonel syı denir. 0 0 tn ımsız 0 0 elirsiz 0 sit kesir ileşik kesir Genişletilerek vey sdeleştirilerek elde edilen kesirlere denk kesirler denir. Sıfır

Detaylı

İstatistik I Bazı Matematik Kavramlarının Gözden

İstatistik I Bazı Matematik Kavramlarının Gözden İsttistik I Bzı Mtemtik Kvrmlrının Gözden Geçirilmesi Hüseyin Tştn Ağustos 13, 2006 İçindekiler 1 Toplm İşlemcisi 2 2 Çrpım İşlemcisi 6 3 Türev 7 3.1 Türev Kurllrı.......................... 8 3.1.1 Sbit

Detaylı

1988 ÖYS. 1. Toplamları 242 olan gerçel iki sayıdan büyüğü küçüğüne bölündüğünde bölüm 4, kalan 22 dir. Küçük sayı kaçtır?

1988 ÖYS. 1. Toplamları 242 olan gerçel iki sayıdan büyüğü küçüğüne bölündüğünde bölüm 4, kalan 22 dir. Küçük sayı kaçtır? 988 ÖYS. Toplmlrı 4 oln gerçel iki syıdn üyüğü küçüğüne ölündüğünde ölüm 4, kln dir. Küçük syı kçtır? A) 56 B) 5 C) 48 D) 44 E) 40. 0,5 6 devirli (peryodik) ondlık syısı şğıdkilerden hngisine eşittir?

Detaylı

2005 ÖSS BASIN KOPYASI SAYISAL BÖLÜM BU BÖLÜMDE CEVAPLAYACAĞINIZ TOPLAM SORU SAYISI 90 DIR. Matematiksel İlişkilerden Yararlanma Gücü,

2005 ÖSS BASIN KOPYASI SAYISAL BÖLÜM BU BÖLÜMDE CEVAPLAYACAĞINIZ TOPLAM SORU SAYISI 90 DIR. Matematiksel İlişkilerden Yararlanma Gücü, 005 ÖSS SIN KPYSI SYISL ÖLÜM İKKT! U ÖLÜME EVPLYĞINIZ TPLM SRU SYISI 90 IR. İlk 45 Soru Son 45 Soru Mtemtiksel İlişkilerden Yrrlnm Gücü, Fen ilimlerindeki Temel Kvrm ve İlkelerle üşünme Gücü ile ilgilidir.

Detaylı

İntegral Uygulamaları

İntegral Uygulamaları İntegrl Uygulmlrı Yzr Prof.Dr. Vkıf CAFEROV ÜNİTE Amçlr Bu üniteyi çlıştıktn sonr; düzlemsel ln ve dönel cisimlerin cimlerinin elirli integrl yrdımı ile esplnileceğini, küre, koni ve kesik koninin cim

Detaylı

1993 ÖYS. 1. Rakamları birbirinden farklı olan üç basamaklı en büyük tek sayı aşağıdakilerden hangisine kalansız bölünebilir?

1993 ÖYS. 1. Rakamları birbirinden farklı olan üç basamaklı en büyük tek sayı aşağıdakilerden hangisine kalansız bölünebilir? ÖYS. Rkmlrı birbirinden frklı oln üç bsmklı en büyük tek syı şğıdkilerden hngisine klnsız bölünebilir? D) 8 E) 7. +b= b olduğun göre, b kçtır? D) 8 E). İki bsmklı, birbirinden frklı pozitif tmsyının toplmı

Detaylı

1990 ÖYS 1. 7 A) 91 B) 84 C) 72 D) 60 E) 52 A) 52 B) 54 C) 55 D) 56 E) 57

1990 ÖYS 1. 7 A) 91 B) 84 C) 72 D) 60 E) 52 A) 52 B) 54 C) 55 D) 56 E) 57 99 ÖYS. si oln si kçtır? A) 9 B) 8 C) D) 6 E) 5 6. Bir nın yşı, iki çocuğunun yşlrı toplmındn üyüktür. yıl sonr nın yşı, çocuklrının yşlrı toplmının ktı olcğın göre ugün kç yşınddır? A) 5 B) 5 C) 55 D)

Detaylı

MATEMATİK TESTİ. 5. a, b birer gerçek sayı ve a + b < 3tür. Bu sayıların sayı doğrusunda gösterilişi aşağıdakilerden hangisindeki gibi olabilir?

MATEMATİK TESTİ. 5. a, b birer gerçek sayı ve a + b < 3tür. Bu sayıların sayı doğrusunda gösterilişi aşağıdakilerden hangisindeki gibi olabilir? MTEMTİK TESTİ 1 1 1 1 1. + 4 4 1 ) 0 ) 4 işleminin sonucu kçtır? ) 1 ) 1., irer gerçek syı ve + < 3tür. u syılrın syı doğrusund gösterilişi şğıdkilerden hngisindeki gii olilir? ) -3 - -1 0 1 3 ) -3 - -1

Detaylı

BİREYSEL YARIŞMA SORULARI. IV. BAHATTİN TATIŞ MATEMATİK YARIŞMASI Bu test 30 sorudan oluşmaktadır. 2 D) a = olduğuna göre, a 1 1. 4 2 3 + 1 4.

BİREYSEL YARIŞMA SORULARI. IV. BAHATTİN TATIŞ MATEMATİK YARIŞMASI Bu test 30 sorudan oluşmaktadır. 2 D) a = olduğuna göre, a 1 1. 4 2 3 + 1 4. IV. HTTİN TTIŞ MTEMTİK YRIŞMSI u test 30 sorudn oluşmktdır. İREYSEL YRIŞM SORULRI 1. 4 3 + 1 4. 3 3 + = + 1 + 1 denkleminin çözüm kümesi şğıdkilerden hngisidir? ) 5 3 ) ) 3 D) 13 3 ) { 0 } ) { 1} ) { }

Detaylı

ek tremum LYS-1 MATEMATİK MATEMATİK TESTİ 1. Bu testte Matematik Alanına ait toplam 80 soru vardır.

ek tremum LYS-1 MATEMATİK MATEMATİK TESTİ 1. Bu testte Matematik Alanına ait toplam 80 soru vardır. LYS- MTEMTİK MTEMTİK TESTİ. u testte Mtemtik lnın it toplm 0 soru vrdır.. evplrınızı, cevp kâğıdının Mtemtik Testi için yrıln kısmın işretleyiniz.. = 5! +! olduğun göre,! syısının türünden eşiti şğıdkilerden

Detaylı

Bu ürünün bütün hakları. ÇÖZÜM DERGİSİ YAYINCILIK SAN. TİC. LTD. ŞTİ. ne aittir. Tamamının ya da bir kısmının ürünü yayımlayan şirketin

Bu ürünün bütün hakları. ÇÖZÜM DERGİSİ YAYINCILIK SAN. TİC. LTD. ŞTİ. ne aittir. Tamamının ya da bir kısmının ürünü yayımlayan şirketin Bu ürünün ütün hklrı ÇÖZÜM DERGİSİ YAYINCILIK SAN. TİC. LTD. ŞTİ. ne ittir. Tmmının y d ir kısmının ürünü yyımlyn şirketin önceden izni olmksızın fotokopi y d elektronik, meknik herhngi ir kyıt sistemiyle

Detaylı

DENKLEM ve EŞİTSİZLİKLER

DENKLEM ve EŞİTSİZLİKLER DENKLEM ve EŞİTSİZLİKLER Sf No..................................................... - 7 Denklem ve Eşitsizlikler Konu Özeti............................................. Konu Testleri ( 0)..........................................................

Detaylı

Cebirsel ifadeler ve Özdeslik Föyü

Cebirsel ifadeler ve Özdeslik Föyü 6 Ceirsel ifdeler ve Özdeslik Föyü KAZANIMLAR Bsit ceirsel ifdeleri nlr ve frklı içimlerde yzr. Ceirsel ifdelerin çrpımını ypr. Özdeslikleri modellerle çıklr. 06 8. SINIF CEBiRSEL ifadeler VE ÖZDESLiK

Detaylı

c

c Mtemt ık Ol ımp ıytı Çlışm Sorulrı c www.sbelin.wordpress.com sbelinwordpress@gmil.com Bu çlışm kğıdınd mtemtik olimpiytlrı sınvlrın hzırlnn öğrenciler ve öğretmenler için hzırlnmış sorulr bulunmktdır.

Detaylı

İkinci Dereceden Denklemler

İkinci Dereceden Denklemler İkini Dereeden Denkleler İKİNCİ DERECEDEN BİR BİLİNMEYENLİ DENKLEMLER TANIMLAR :,, R ve olk üzere + + denkleine, ikini dereeden ir ilineyenli denkle denir Bu denkledeki,, gerçel syılrın ktsyılr, e ilineyen

Detaylı

a 4 b a Cevap : A Cevap : E Cevap : C

a 4 b a Cevap : A Cevap : E Cevap : C TYT / TETİK Deneme - 8., 8 - - - - 8-8 - & - - $ c- m + 5 5 0 0 -. 5 5 $ 75. 5 75 89 5 75 5-9 ^5-9h$ ^5 + 9h 5 ^5-9h$ ^5+ 9h $ 7 evp : 5.. 00 + 0 + 00 + 0 + + 00 + 0 + ( + + ) 55 - - 0 & - 0 & olmlıdır.

Detaylı

Taşkın, Çetin, Abdullayeva

Taşkın, Çetin, Abdullayeva 1 BÖLÜM 1 KÜMELER VE SAYILAR 1.1 KÜMELER 1.1.1. TEMEL TANIMLAR Kesi ir tımı ypılmmkl erer,sezgisel olrk,kümeye iyi tımlmış iri iride frklı eseler topluluğudur diyeiliriz. Kümeyi meyd getire eselere kümei

Detaylı

LYS LİMİT. x in 2 ye soldan yaklaşması hangisi ile ifade edilir? şeklinde gösterilir. lim. şeklinde gösterilir. f(x) lim f(x) ise lim f(x) yoktur.

LYS LİMİT. x in 2 ye soldan yaklaşması hangisi ile ifade edilir? şeklinde gösterilir. lim. şeklinde gösterilir. f(x) lim f(x) ise lim f(x) yoktur. Mtemtik SAĞDAN VE SOLDAN YAKLAŞMA Yndki tblod bir değişkeninin 4 sısın sğdn ve soldn klşımı ifde edilmiştir. u durumu genellemek gerekirse; değişkeni re el s ı sın, dn kü çük de ğer ler le k l şı or s,

Detaylı

1. x 1 x. Çözüm : (x 1 x. (x 1 x )2 = 3 2 x 2 2x = 1 x + 1 x2 = 9. x x2 = 9 x2 + 1 x2. 2. x + 1 x = 8 ise x 1 x

1. x 1 x. Çözüm : (x 1 x. (x 1 x )2 = 3 2 x 2 2x = 1 x + 1 x2 = 9. x x2 = 9 x2 + 1 x2. 2. x + 1 x = 8 ise x 1 x MC www.mtemtikclub.com, 006 Cebir Notlrı Çrpnlr Ayırm Gökhn DEMĐR, gdemir3@yhoo.com.tr Đki ifdenin çrpımı ypılırken, sonuc çbuk ulşmk için, bzı özel çrpımlrın eşitini klımızd tutr ve bundn yrrlnırız. Bu

Detaylı

Örnek...1 : a, b ve c birbirlerinden farklı birer rakamdır. a.b+9.b c en çok kaçtır?

Örnek...1 : a, b ve c birbirlerinden farklı birer rakamdır. a.b+9.b c en çok kaçtır? RAKAM Syılrı ifde etmek için kullndığımız 0,,2,3,4,5,6,7,8,9 sembollerine rkm denir. Örnek... :, b ve c birbirlerinden frklı birer rkmdır..b+9.b c en çok kçtır? DOĞAL SAYILAR N={0,,2,3...,n,...} kümesine

Detaylı

ESKİŞEHİR OSMANGAZİ ÜNİVERSİTESİ

ESKİŞEHİR OSMANGAZİ ÜNİVERSİTESİ ESKİŞEHİR OSMNGZİ ÜNİVERSİESİ Müendislik Mimrlık Fkültesi İnşt Müendisliği Bölümü E-Post: ogu.met.topu@gmil.om We: ttp://mmf.ogu.edu.tr/topu Bilgisyr Destekli Nümerik nliz Ders notlrı met OPÇU n>m 8 8..

Detaylı

LYS 1 / MATEMATİK DENEME ÇÖZÜMLERİ

LYS 1 / MATEMATİK DENEME ÇÖZÜMLERİ LYS / MATEMATİK DENEME ÇÖZÜMLERİ Deneme -. A) - - + B) - 7 - + C) 5-5 - 5 +. + m ; + me + > H + D) - 5 - + E) 7- - + Sılrın plrı eşit olduğun göre, pdsı en üük oln sı en küçüktür. Bun göre A seçeneğindeki

Detaylı

DRC üst taban, 6 alt taban olmak üzere 12 mavi kare vardır. 4. Sekiz basamaklı herhangi bir özel sayı x = abcdefgh olsun. Deneme - 2 / Mat.

DRC üst taban, 6 alt taban olmak üzere 12 mavi kare vardır. 4. Sekiz basamaklı herhangi bir özel sayı x = abcdefgh olsun. Deneme - 2 / Mat. Deneme - / Mt MATEMATİK DENEMESİ. 6 üst tn, 6 lt tn olmk üzere mvi kre vrdır. Ypının tüm yüzeyi kreden oluştuğun göre, 6 7. 0,.., f -, 0, p. 0,. c- m.,,. ^- h.. 7. ^- h 7 - ulunur. +. c m olur. ( ) 9 c

Detaylı

B - GERĐLĐM TRAFOLARI:

B - GERĐLĐM TRAFOLARI: ve Seg.Korum_Hldun üyükdor onrım süresinin dh uzun olmsı yrıc rnın izole edilmesini gerektirmesi; rızlnmsı hlinde r tdiltını d gerektireilmesi, v. nedenlerle, özel durumlr dışınd tercih edilmezler. - GERĐLĐM

Detaylı

6 ise. = b = c = d. olsun. x 3 = 0. x = 3 için Q(3 + 2) = 6. ve sayılarının sayısına uzaklığı sayısı kadar ise c a = d. Q(5) = 6 dır.

6 ise. = b = c = d. olsun. x 3 = 0. x = 3 için Q(3 + 2) = 6. ve sayılarının sayısına uzaklığı sayısı kadar ise c a = d. Q(5) = 6 dır. TYT / MTEMTİ eneme - 9. 7 + + + = + 9 = + = + = = bulunur. 0 evp : ^ + h. ^+ h = ^+ h $ ^+ h & ^+ h = & ^+ h = $ ^+ h = ^ h $ ^+ h & ^+ h = 6 ^+ h@ = ^ + h urdn = bulunur. evp :. 0,, ^ h + 0, $ ^0, h,,

Detaylı

Ö.Y.S. 1998. MATEMATĐK SORULARI ve ÇÖZÜMLERĐ

Ö.Y.S. 1998. MATEMATĐK SORULARI ve ÇÖZÜMLERĐ Ö.Y.S. 998 MATEMATĐK SORULARI ve ÇÖZÜMLERĐ. Üç bsmklı bir doğl syısının ktı, iki bsmklı bir y doğl syısın eşittir. 7 Bun göre, y doğl syısı en z kç olbilir? A) B) C) 8 D) E) Çözüm y 7 7y (, en küçük bsmklı,

Detaylı

LOGARİTMA. çözüm. için. Tanım kümesindeki 1 elemanını değer kümesindeki herhangi. çözüm. çözüm

LOGARİTMA. çözüm. için. Tanım kümesindeki 1 elemanını değer kümesindeki herhangi. çözüm. çözüm LOGARİTMA Üstel Fonksion >0 ve olmk üzere f:r R +, f() = şeklindeki fonksionlr üstel fonksion denir. Üstel fonksionlr birebir ve örtendir. f:r R +, f()=( ) bğıntısının üstel fonksion olup olmdığını inceleiniz.

Detaylı

İKİNCİ BÖLÜM REEL SAYI DİZİLERİ

İKİNCİ BÖLÜM REEL SAYI DİZİLERİ Prof.Dr.Hüseyi ÇAKALLI İKİNCİ BÖLÜM REEL SAYI DİZİLERİ Bu ölümde dizileri, yi tım kümesi doğl syılr kümesi, değer kümesi, reel syılr kümesii ir lt kümesi ol foksiyolrı iceleyeceğiz... Ykısk Diziler. Öce

Detaylı

Terimler: Sabit Terim: Katsayılar: ÖR: 3x 2-4x cebirsel ifadesine göre aşağıdaki. Terimler: Sabit Terim: Katsayılar: Terimler: Sabit Terim:

Terimler: Sabit Terim: Katsayılar: ÖR: 3x 2-4x cebirsel ifadesine göre aşağıdaki. Terimler: Sabit Terim: Katsayılar: Terimler: Sabit Terim: 08 8. SINIF CEBiRSEL ifade VE ÖZDESLiK Ceirsel İfde:En z ir ilinmeyen ve ir işlem içeren ifdelere ceirsel ifdeler denir. Terim ÖR: x 2 -y+5 ceirsel ifdesine göre şğıdki sorulrı cevplyınız.. 2x + 3y - 5

Detaylı

Vektörler ÜNİTE. Amaçlar. İçindekiler. Yazar Yrd.Doç.Dr.Nevin MAHİR

Vektörler ÜNİTE. Amaçlar. İçindekiler. Yazar Yrd.Doç.Dr.Nevin MAHİR Vektörler zr rd.doç.dr.nevin MAHİR ÜNİTE 3 Amçlr Bu üniteyi çlıştıktn sonr; Düzlemde vektör kvrmını öğrenecek, İki vektörün eşitliği, toplmı, doğrusl bğımlılığı ile bir vektörün bir gerçel syı ile çrpımı,

Detaylı

3.4 İşlem. 3.4.1 İşlem Kavramı. Etkinlik 3.53. Etkinlik 3.52

3.4 İşlem. 3.4.1 İşlem Kavramı. Etkinlik 3.53. Etkinlik 3.52 . İşlm.. İşlm Kvrmı Etkinlik.5 A,,, B,, v C,,5, kümlri vriliyor.. AxB kümsini yzınız.. AxB n C y f ğıntısı f x, y x il y n, küçük olmynı içimin tnımlnıyor. AxB f C f ğıntısını ynki gii ir Vnn şmsı il göstriniz.

Detaylı

Komisyon DGS TAMAMI ÇÖZÜMLÜ 10 DENEME SINAVI ISBN 978-605-364-027-1. Kitapta yer alan bölümlerin tüm sorumluluğu yazarına aittir.

Komisyon DGS TAMAMI ÇÖZÜMLÜ 10 DENEME SINAVI ISBN 978-605-364-027-1. Kitapta yer alan bölümlerin tüm sorumluluğu yazarına aittir. Komisyon DGS TAMAMI ÇÖZÜMLÜ 0 DENEME SINAVI ISBN 97-0--07- Kitpt yer ln ölümlerin tüm sorumluluğu yzrın ittir. Pegem Akdemi Bu kitın sım, yyın ve stış hklrı Pegem Akdemi Yy. Eğt. Dn. Hizm. Tic. Ltd. Şti

Detaylı

POLİNOMLAR. Örnek: 4, 2, 7 polinomun katsayılarıdırlar. 5x, derecesi en büyük olan terim olduğundan. ifadelerine polinomun. der tür.

POLİNOMLAR. Örnek: 4, 2, 7 polinomun katsayılarıdırlar. 5x, derecesi en büyük olan terim olduğundan. ifadelerine polinomun. der tür. OLİNOMLAR o,,,... n, n birer reel syı, n bir doğl syı ve belirsiz bir elemn olmk üzere, o.. n n... n. n. biçimindeki ifdelere e göre düzenlenmiş reel ktsyılı ve bir belirsizli polinom denir. in bir polinomu,,r,t,k

Detaylı

LYS Matemat k Deneme Sınavı

LYS Matemat k Deneme Sınavı LYS Mtemtk Deneme Sınvı.,, z rdışık pozitif tmsılr ve z olmk üzere; z olduğun göre, kçtır? C). olduğun göre, ifdesinin değeri şğıdkilerden hngisidir? C) 8 6., b, c Z olmk üzere; b c bc c b olduğun göre,,

Detaylı

1997 ÖYS A) 30 B) 35 C) 40 D) 45 E) 50. olduğuna göre, k kaçtır? A) 1 B) 2 C) 3 D) 4 E) 5

1997 ÖYS A) 30 B) 35 C) 40 D) 45 E) 50. olduğuna göre, k kaçtır? A) 1 B) 2 C) 3 D) 4 E) 5 7 ÖYS. 0,00 0,00 k 0,00 olduğun göre, k kçtır? 6. Bir ust günde çift ykkbı, bir klf ise günde çift ykkbı ypmktdır. İkisi birlikte, 8 çift ykkbıyı kç günde yprlr? 0 C) 0 D) 0 C) D). (0 ) ( 0) işleminin

Detaylı

1983 ÖYS A) 410 B) 400 C) 380 D) 370 E) işleminin sonucu kaçtır. 7. a, b, c birer pozitif tam sayıdır. a= 2 A) 9 B) 3 C) 2 E) 8 D) 4

1983 ÖYS A) 410 B) 400 C) 380 D) 370 E) işleminin sonucu kaçtır. 7. a, b, c birer pozitif tam sayıdır. a= 2 A) 9 B) 3 C) 2 E) 8 D) 4 98 ÖYS. işleminin sonucu kçtır. 6. Bir stıcı ir mlı üzde 0 krl strken, stış fitı üzerinden üzde 0 indirim prk 8 lir stıor. Bu mlın mlieti kç lirdır? A) 0 B) 00 C) 80 D) 70 E) 60 7.,, c irer pozitif tm

Detaylı

Lisans Yerleştirme Sınavı 1 (Lys 1) / 19 Haziran Matematik Soruları ve Çözümleri

Lisans Yerleştirme Sınavı 1 (Lys 1) / 19 Haziran Matematik Soruları ve Çözümleri Lisns Yerleştirme Sınvı (Lys ) / 9 Hzirn Mtemtik Sorulrı ve Çözümleri. (x )(x + ) + (x )(x ) eşitliğini sğlyn x gerçel syılrının toplmı kçtır? A) B) C) 5 D) 6 5 E) 6 7 Çözüm (x )(x + ) + (x )(x ) (x ).[(x

Detaylı

Kesir Örnek Çözüm. 1. Yandaki şekilde bir TEST - 1. 1. Taralı alanı gösteren. bütün 8 eş parçaya bölünmüş ve bu parçalardan 3 tanesi

Kesir Örnek Çözüm. 1. Yandaki şekilde bir TEST - 1. 1. Taralı alanı gösteren. bütün 8 eş parçaya bölünmüş ve bu parçalardan 3 tanesi Kesir.. Trlı lnı gösteren kesri bulunuz. kesrini ile genişlettiğimizde elde edilecek kesri bulunuz.. Yndki şekilde bir bütün 8 eş prçy bölünmüş ve bu prçlrdn tnesi trnmıştır. Trlı lnı gösteren kesir syısı

Detaylı

TEST. Rasyonel Sayılar. 1. Aşağıdaki bilgilerden hangisi yanlıştır? 2. Aşağıda verilen, 3. Aşağıdaki sayılardan hangisi hem tam sayı,

TEST. Rasyonel Sayılar. 1. Aşağıdaki bilgilerden hangisi yanlıştır? 2. Aşağıda verilen, 3. Aşağıdaki sayılardan hangisi hem tam sayı, Rsyonel Syılr. Sınıf Mtemtik Soru Bnksı TEST. Aşğıdki bilgilerden hngisi ynlıştır? A) Rsyonel syılr Q sembolü ile gösterilir. B) Her tm syı bir rsyonel syıdır. şeklinde yzıln bütün syılr rsyoneldir. b

Detaylı

DRC. 4. Sekiz basamaklı herhangi bir özel sayı x = abcdefgh olsun. Deneme - 2 / Mat. c m. m m. y Cevap A. Cevap D 21, 25, = = =. 21.

DRC. 4. Sekiz basamaklı herhangi bir özel sayı x = abcdefgh olsun. Deneme - 2 / Mat. c m. m m. y Cevap A. Cevap D 21, 25, = = =. 21. Deneme - / Mt MATMATİK DNMSİ. - + -. 0,.., f -, 0, p. 0,. c- m.,,. ^- h.. 7. ^- h 7 - ulunur. +. c m olur.. + + ulunur. ( ) c m + c m. cc m m. c m.. ulunur. evp evp. Sekiz smklı herhngi ir özel syı cdefgh

Detaylı

11. BÖLÜM. Paralelkenar ve Eşkenar Dörtgen A. PARALELKENAR B. PARALELKENARIN ÖZEL LİKLERİ ÇÖZÜM ÖRNEK ÇÖZÜM ÖRNEK

11. BÖLÜM. Paralelkenar ve Eşkenar Dörtgen A. PARALELKENAR B. PARALELKENARIN ÖZEL LİKLERİ ÇÖZÜM ÖRNEK ÇÖZÜM ÖRNEK G O M T R İ www.kdemivizyon.com.tr. ÖÜM Prlelkenr ve şkenr örtgen. PRNR rşılıklı kenrlrı prlel oln dörtgenlere prlelkenr denir. [] // [] [] // [] = =. PRNRIN ÖZ İRİ. rşılıklı çılr eş ve rdışık çılr ütünlerdir.

Detaylı

MATEMATİK BÖLME BÖLÜNE BİLME RASYONEL VE ONDALIK SAYI BÖLÜNEBİ LME KURA LLARI 4 İ LE BÖLÜNE Bİ LME 5 İ LE BÖLÜNEBİ LME ÖRNEK ÇÖZÜM ÖRNEK ÖRNEK ÖRNEK

MATEMATİK BÖLME BÖLÜNE BİLME RASYONEL VE ONDALIK SAYI BÖLÜNEBİ LME KURA LLARI 4 İ LE BÖLÜNE Bİ LME 5 İ LE BÖLÜNEBİ LME ÖRNEK ÇÖZÜM ÖRNEK ÖRNEK ÖRNEK MATEMATİK BÖLME BÖLÜNE BİLME RASYONEL VE ONDALIK SAYI BÖLÜNEBİ LME KURA LLARI İ LE BÖ LÜNEBİ LME Syımızın irler smğı çift (son rkmı 0) ise syımız iki ile tm ölünür. 0 0 v. iki ile ölünür. syısı iki ile

Detaylı

VEKTÖRLER ÜNİTE 5. ÜNİTE 5. ÜNİTE 5. ÜNİTE 5. ÜNİT

VEKTÖRLER ÜNİTE 5. ÜNİTE 5. ÜNİTE 5. ÜNİTE 5. ÜNİT VEKTÖRLER ÜNİTE 5. ÜNİTE 5. ÜNİTE 5. ÜNİTE 5. ÜNİT VEKTÖRLER. Kznım : Vektör kvrmını çıklr.. Kznım : İki vektörün toplmını ve vektörün ir gerçek syıyl çrpımını ceirsel ve geometrik olrk gösterir. YÖNLÜ

Detaylı

ÜÇGENDE AÇI-KENAR BAĞINTILARI

ÜÇGENDE AÇI-KENAR BAĞINTILARI ÜÇGN ÇI-NR ĞINTILRI ir üçgende üük çı krşısınd üük kenr, küçük çı krşısınd küçük kenr ulunur. 3 Şekildeki verilere göre, en uzun kenr şğıdkilerden hngisidir? 3 3 üçgeninde, kenrlr rsınd > > ğıntısı vrs,

Detaylı

HİPERBOL. Merkezi O noktası olan hiperbole merkezil hiperbol denir. F ve F' noktalarına hiperbolün odakları denir.

HİPERBOL. Merkezi O noktası olan hiperbole merkezil hiperbol denir. F ve F' noktalarına hiperbolün odakları denir. Merkezi Hiperoll HİPERBL Merkezi noktsı oln hiperole merkezil hiperol denir. F ve F' noktlrın hiperolün odklrı denir. dklr rsı uzklık FF' dir. odklr rsı uzklık e sl eksen uzunluğu değerine hiperolün dış

Detaylı

CEBİR KONU ANLATIMLI ÇÖZÜMLÜ SORU BANKASI

CEBİR KONU ANLATIMLI ÇÖZÜMLÜ SORU BANKASI ÖABT CEBİR KONU ANLATIMLI ÇÖZÜMLÜ SORU BANKASI Ysin ŞAHİN ÖABT CEBİR KONU ANLATIMLI ÇÖZÜMLÜ SORU BANKASI Her hkkı sklıdır. Bu kitbın tmmı y d bir kısmı, yzrın izni olmksızın, elektronik, meknik, fotokopi

Detaylı

Mtemtik Öğretmeni: Mhmut BAĞMANCI www.zevklimtemtik.com LOGARİTMA ÇALIŞMA SORULARI.) Aşğıdkı ifdelerde x i veren ifdeyi yzınız x ) x b) 7 x c) 0 7 d) +x.) 7 7 7 ise x... ise x... ise x... ise x....) Aşğıdki

Detaylı

TYT / MATEMATİK Deneme - 2

TYT / MATEMATİK Deneme - 2 TYT / MTMTİK eneme -. 7 ^7h ^h $ bulunur. evp : 6. b b c 6 c 6, b ve c nin ritmetik ortlmsı O b c 6 bulunur.. y z y z ^ h $ bulunur. evp : 7. y çift ne olurs olsun çift syı olduğundn in yd çift olduğundn

Detaylı

( ) ( ) ( ) Üslü Sayılar (32) 2. ( ) ( 2 (2) 3. ( ) ( ) 3 4. ( 4 9 ) eşitliğini sağlayan a değeri kaçtır? (0) 0,6 0,4 : 4,9 =?

( ) ( ) ( ) Üslü Sayılar (32) 2. ( ) ( 2 (2) 3. ( ) ( ) 3 4. ( 4 9 ) eşitliğini sağlayan a değeri kaçtır? (0) 0,6 0,4 : 4,9 =? Üslü Sılr. +.4 8 (8) 4. ( ) (. ). ( ) 4 6 ( ) :( ) () + + 5..4. ( ) ( ) () 4. 5 5 ( 4 9 ) 5. 9 + + 9 = + eşitliğini sğln değeri kçtır (0) 6. ( ) ( ) ( ) 0,6 0,4 : 4,9 (-6) 4 8.. c 7. 4.. c ( c ) 8. 6 8

Detaylı

11. SINIF GEOMETRİ. A, B ve C noktaları O merkezli çember üzerinde. Buna göre, BE uzunluğu kaç cm dir? B) 7 3 C) 8 3 A) 5 2 E) 9 5 D) 7 5 (2008 - ÖSS)

11. SINIF GEOMETRİ. A, B ve C noktaları O merkezli çember üzerinde. Buna göre, BE uzunluğu kaç cm dir? B) 7 3 C) 8 3 A) 5 2 E) 9 5 D) 7 5 (2008 - ÖSS) ÇMR ÖSS SRULRI 1., ve noktlrı merkezli çember üzerinde m( ) = m( ) =. ir dik üçgeni için, = cm ve = 4 cm olrk veriliyor. Merkezi, yrıçpı [] oln bir çember, üçgenin kenrını ve noktlrınd kesiyor. un göre,

Detaylı

Ö.S.S MATEMATĐK I SORULARI ve ÇÖZÜMLERĐ

Ö.S.S MATEMATĐK I SORULARI ve ÇÖZÜMLERĐ Ö.S.S. 007 MATEMATĐK I SORULARI ve ÇÖZÜMLERĐ.. 7 işleminin sonucu kçtır? A) B) 9 C) D) E) Çözüm. 7..9.. + işleminin sonucu kçtır? 8 A) 8 B) 8 C) 8 D) E) Çözüm + 8 8 + 8 8. ( ).( ) (+ ).(+ ) işleminin sonucu

Detaylı

ÖZEL EGE LİSESİ OKULLAR ARASI 19. MATEMATİK YARIŞMASI 8. SINIF TEST SORULARI

ÖZEL EGE LİSESİ OKULLAR ARASI 19. MATEMATİK YARIŞMASI 8. SINIF TEST SORULARI OKULLAR ARASI 9. MATEMATİK YARIŞMASI. 700 doğl syısı için şğıdkilerden kç tnesi doğrudur? I. Asl çrpnı tnedir. II. Asl çrpnlrının çrpımı 0 dir. III. Tmsyı bölenlerinin toplmı 0 dır. IV. Asl çrpnlrının

Detaylı

TYT / MATEMATİK Deneme - 6

TYT / MATEMATİK Deneme - 6 . Herbir hücrenin sol üst köşesinde kreler içine yzıln syılrın işlemin sonucunu verdiğine dikkt ederek syılrı yerleştirmeliyiz. 7 6 T N M 5 6 T X. ^ h ^ h bulur. M N. 0 6 6 6 0 5 5 5 6 6 5 5 ^5h ^5h ^h

Detaylı

A= {1,2,3}, B={1,3,5,7}kümeleri veriliyor. A dan B ye tanımlanan aşağıdaki bağıntılardan hangisi fonksiyon değildir?

A= {1,2,3}, B={1,3,5,7}kümeleri veriliyor. A dan B ye tanımlanan aşağıdaki bağıntılardan hangisi fonksiyon değildir? ÖRNEK 1 : A= {1,,}, B={1,,5,7}kümeleri veriliyor. A da B ye taımlaa aşağıdaki bağıtılarda hagisi foksiyo değildir? A) {(1,), (,5), (,7)} B) {(1,), (1,5), (,1)} C) {(1,1), (,1), (,1)} D) {(1,5), (,1), (,7)}

Detaylı

Üslü İfadelerde İşlemler (Temel Kurallar) - Çalışma Kağıdı Ortaokul Matematik Kafası $ = k) 81 $ 243 = Kerim Hoca. p) 125 $ 625 = w) 3

Üslü İfadelerde İşlemler (Temel Kurallar) - Çalışma Kağıdı Ortaokul Matematik Kafası $ = k) 81 $ 243 = Kerim Hoca. p) 125 $ 625 = w) 3 .Sınıf Mtemtik ÜSLÜ İFADELER Yyın No : / Kznım :... + Üssün Üssü ve Sırlm Bir üslü ifdenin üssü lındığınd üsler çrpılır.. Alıştırmlr Aşğıdki işlemlerin sonuçlrını üslü biçimde yzınız. y ^ h y ) ^ h b)

Detaylı

MATRİSLER. r r r A = v v v 3. BÖLÜM. a a L a. v r. a = M a. Matris L L L L. elemanları a ( i = 1,2,..., m ; j = 1,2,... n) cinsinden kısaca A = [ ]

MATRİSLER. r r r A = v v v 3. BÖLÜM. a a L a. v r. a = M a. Matris L L L L. elemanları a ( i = 1,2,..., m ; j = 1,2,... n) cinsinden kısaca A = [ ] 3. BÖLÜM 2 v r = M m v r 2 2 = 22 M m2 v r n n 2n = M mn MTRİSLER gibi n tne vektörün oluşturduğu, r r r = v v v [ L ] 2 n şeklindeki sırlnışın mtris denir. 2 nlitik Geometriden Biliyoruz ki : Mtris 2

Detaylı

SAYILAR DERS NOTLARI Bölüm 2 / 3

SAYILAR DERS NOTLARI Bölüm 2 / 3 Örnek : 4 10 tbnindki (3 + 3 + 3 + 3) syisinin üç tbnindki yzilisi sgidkilerden hngisidir? A)10110 B)10001 C)1001 D)100011 E) 1100 4 (3 + 3 + 3 4 + 3) = 1 3 + 3 3 1 0 + 0 3 + 1 3 + 1 3 + 0 3 Burdn ( 10110)

Detaylı

1986 ÖSS. olduğuna göre, aşağıdakilerden hangisi doğrudur?

1986 ÖSS. olduğuna göre, aşağıdakilerden hangisi doğrudur? 986 ÖSS. (0,78+0,8).(0,3+0,7) Yukrıdki işlemin sonucu nedir? B) C) 0, D) 0, E) 0,0. doğl syısı 4 ile bölünebildiğine göre şğıdkilerden hngisi tek syı olbilir? Yukrıdki çrpm işleminde her nokt bir rkmın

Detaylı

Trigonometri - I. Isınma Hareketleri. 1 Aşağıda verilenleri inceleyiniz. 2 Uygun eşleştirmeleri yapınız. 3 Uygun eşleştirmeleri yapınız.

Trigonometri - I. Isınma Hareketleri. 1 Aşağıda verilenleri inceleyiniz. 2 Uygun eşleştirmeleri yapınız. 3 Uygun eşleştirmeleri yapınız. Isınm Hreketleri şğıd verilenleri inceleyiniz. Yönlü çı: Trigonometrik irim Çember: Merkezi orjin, yrıçpı br oln çemberdir. O + yön éo Pozitif yönlü (Stin tersi) O yön éo Negtif yönlü (St yönü) O y x Denklemi:

Detaylı

SAYILAR TEMEL KAVRAMLAR

SAYILAR TEMEL KAVRAMLAR YILLAR 00 00 004 00 006 007 008 009 010 011 ÖSS-YGS - 1 - - - 1-1 - 1 Pozitif tmsyılr,negtif tmsyılr ve 0 ın ererce oluşturduğu kümeye Tmsyılr kümesi denir Z ile gösterilir SAYILAR TEMEL KAVRAMLAR Temel

Detaylı

ÜÇGENDE ALAN. Alan(ABC)= 1 2. (taban x yükseklik)

ÜÇGENDE ALAN. Alan(ABC)= 1 2. (taban x yükseklik) ÜÇGN LN Üçgende ln Şekilde verilen üçgeninde,, üçgenin köşeleri, [], [], [] üçgenin kenrlrıdır. c b üçgeninin kenrlrı dlndırılırken, her kenr krşısınd bulunn köşenin hrfi ile isimlendirilir. üçgeninin

Detaylı

Ankara Üniversitesi Mühendislik Fakültesi, Fizik Mühendisliği Bölümü FZM207. Temel Elektronik-I. Doç. Dr. Hüseyin Sarı

Ankara Üniversitesi Mühendislik Fakültesi, Fizik Mühendisliği Bölümü FZM207. Temel Elektronik-I. Doç. Dr. Hüseyin Sarı Ankr Üniversitesi Mühendislik Fkültesi, Fizik Mühendisliği Bölümü FZM207 Temel ElektronikI Doç. Dr. Hüseyin Srı 2. Bölüm: Dirençli Devreler İçerik Temel Yslrın Doğrudn Uygulnışı Kynk Gösterimi ve Dönüşümü

Detaylı

Tanım : Merkezi orijin ve yarıçapı 1 birim olan çembere trigonometrik çember veya birim çember denir. y B(0,1) C(1,0)

Tanım : Merkezi orijin ve yarıçapı 1 birim olan çembere trigonometrik çember veya birim çember denir. y B(0,1) C(1,0) BÖLÜM TRİGONOMETRİ.. TRİGONOMETRİK BAĞINTILAR... BİRİM ÇEMBER Tnım : Merkezi orijin ve yrıçpı birim oln çembere trigonometrik çember vey birim çember denir. Trigonometrik çemberin denklemi + y dir.yni

Detaylı

LYS 2016 MATEMATİK ÇÖZÜMLERİ

LYS 2016 MATEMATİK ÇÖZÜMLERİ LYS 06 MATEMATİK ÇÖZÜMLERİ 6.. 5. 5. ( ) 8 6 65 buluruz. 5. 5 5 Doğru Cevp: C Şıkkı 8 7 ()... 9 buluruz. Doğru Cevp : D Şıkkı 9 8 8 9 8 9 8 9 9 9 9 9 8 buluruz. 8 8 8 8 8 Doğru Cevp : A Şıkkı (n )! (n

Detaylı

Ünite 5 ÜSTEL VE LOGARİTMİK FONKSİYONLAR. 5.1. Üstel Fonksiyon. 5.2. Logaritma Fonksiyonu. 5.3. Üstel ve Logaritmik Denklem ve Eşitsizlikler

Ünite 5 ÜSTEL VE LOGARİTMİK FONKSİYONLAR. 5.1. Üstel Fonksiyon. 5.2. Logaritma Fonksiyonu. 5.3. Üstel ve Logaritmik Denklem ve Eşitsizlikler Ünite ÜSTEL VE LOGARİTMİK FONKSİYONLAR f() g() log.. Üstel Fonksion / / / /.. Logritm Fonksionu.. Üstel ve Logritmik Denklem ve Eşitsizlikler . ÜNİTE: ÜSTEL ve LOGARİTMİK FONKSİYONLAR KAZANIM ve İÇERİK.

Detaylı

MATEMATİK 1 TESTİ (Mat 1)

MATEMATİK 1 TESTİ (Mat 1) ÖSS MT-1 / 008 MTMTİK 1 TSTİ (Mt 1) 1. u testte 0 soru vrdır.. evplrınızı, cevp kâğıdının Mtemtik 1 Testi için yrıln kısmın işretleyiniz. 1. 1 + 4 1 ( ) 4. syısı b 0 ) b syısının kç ktıdır? ) b ) b işleminin

Detaylı

Öğrenci Seçme Sınavı (Öss) / 17 Haziran Matematik I Soruları ve Çözümleri

Öğrenci Seçme Sınavı (Öss) / 17 Haziran Matematik I Soruları ve Çözümleri Öğrenci Seçme Sınvı (Öss) / 7 Hzirn 007 Mtemtik I Sorulrı ve Çözümleri.. 7 işleminin sonucu kçtır? A) B) 9 C) D) E) Çözüm. 7..9.. + işleminin sonucu kçtır? 4 8 A) 8 B) 8 C) 8 D) 4 E) 4 Çözüm + 4 8 8 4+

Detaylı

MATEMATİK.

MATEMATİK. MTEMTİK www.e-ershne.iz. s( \ ) = 6, s( \ ) = 8 tür. kümesinin lt küme syısı ise, kümesinin elemn syısı kçtır?... D. 7 Ynıt:. s( ) =? s( ) = = s( ) = 6 8 s( ) = 6 + + 8 =. Rkmlrı frklı üç smklı üç oğl

Detaylı

(THE REARRANGEMENT INEQUALITY ) DERS NOTLARI

(THE REARRANGEMENT INEQUALITY ) DERS NOTLARI YENİDEN DÜZENLEME EŞİTSİZLİĞİ (THE REARRANGEMENT INEQUALITY ) DERS NOTLARI www.selin.wordpress.om 7 Şut 009 Bu ders notund re-rrngement inequlity konusu ele lınrk olimpiyt sınvınd çıkmış zı eşitsizlik

Detaylı

DENEY 3: EŞDEĞER DİRENÇ, VOLTAJ VE AKIM ÖLÇÜMÜ

DENEY 3: EŞDEĞER DİRENÇ, VOLTAJ VE AKIM ÖLÇÜMÜ A. DENEYĠN AMACI : Direnç devrelerinde eşdeğer direnç ölçümü ypmk. Multimetre ile voltj ve kım ölçümü ypmk. Ohm knununu sit ve prtik devrelerde nlmy çlışmk. B. KULLANILACAK AAÇ VE MALZEMELE : 1. DC güç

Detaylı