REGRESYON DENKLEMİNİN HESAPLANMASI Basit Doğrusal Regresyon Basit doğrusal regresyon modeli: .. + n gözlem için matris gösterimi,. olarak verilir.

Ebat: px
Şu sayfadan göstermeyi başlat:

Download "REGRESYON DENKLEMİNİN HESAPLANMASI Basit Doğrusal Regresyon Basit doğrusal regresyon modeli: .. + n gözlem için matris gösterimi,. olarak verilir."

Transkript

1 Bahar REGRESYON DENKLEMİNİN HESAPLANMASI Basit Doğrusal Regresyo Basit doğrusal regresyo modeli: y i = β 0 + β x i + ε i Modeli matris gösterimi, y i = [ x i ] β 0 β + ε i şeklidedir. x y 2 gözlem içi matris gösterimi,. x = y x y β 0 β + ε ε. 2 olarak verilir.. ε Kısaca Y = Xβ + ε şeklide gösterilir. Öreklem kestirim deklemi Y = Xβ ile taımlaır. Bua göre regresyo katsayıları, β = (X X) X Y formülü ile elde edilir. Örek : Başarı (Y) Tutum (X) Basit doğrusal regresyo aalizi ile tutum pualarıı başarıyı,04 5,43 yordama derecesi icelediğide; 4,36 5,4 5,4 4,4 6,64 6,60 Başarı: Bağımlı değişke (Y) 4,73 8,22 Tutum: Bağımsız değişke (X) 3,6 0,5 4,78 6,49 7,56 9,48 0,25 0,3 2,06 3,40 5,43 5,4 4,4 6,60 X = 8,22 0,5 6,49 9,48 0,3 3,40 Y =,04 4,36 5,4 6,64 4,73 3,6 4,78 7,56 0,25 2,06 Y = [,04 4,36 5,4 6,64 4,73 3,6 4,78 7,56 0,25 2,06]

2 Bahar Y Y = 33 veya Y 2 Y = i= y i = 33 formülü ile hesaplaabilir. X = 5,43 5,4 4,4 6,60 8,22 0,5 6,49 9,48 0,3 3, X X = veya X X = i= x i 2 formülü ile hesaplaabilir. i= x i x i i= (X X) 0,4 0,06 = 0,06 0,0 veya (X X) = KT x i= x i 2 / x x formülü ile hesaplaabilir. 50 X Y = 300, yardımı ile regresyo deklemie ilişki katsayılar; β = (X X) X 0,4 0,06 Y β = 0,06 0,0 50 =,9 olarak hesaplaır. 300, 0,62 Bua göre b 0 =,9 ve b =0,62 dir. Burada; y i =,9 + 0,62x i olarak yazılır. Regresyo hesaplamasıa ilişki Excel dosyası içi tıklayı. LİSREL SONUÇLARI Lisrel kullaılarak doğrusal regresyo aalizi soucuda da regresyo katsayılarıı bezerlik gösterdiği görülmüştür (Şekil ). Şekil. Basit doğrusal regresyo Lisrel souçları 2

3 Bahar Çoklu Doğrusal Regresyo Çoklu doğrusal regresyo modeli: y i = β 0 + β x i + β x i2. β x i + ε i Modeli matris gösterimi, y i = [ x i x i2 x ip] β 0 β + ε i şeklidedir. gözlem içi matris gösterimi, y y 2.. y = x x 2 x p x 2 x 22 x 2p x x 2 x p ε β ε β. ε olarak verilir. Kısaca Y = Xβ + ε şeklide gösterilir. Öreklem kestirim deklemi Y = Xβ ile taımlaır. Bua göre regresyo katsayıları, β = (X X) X Y formülü ile elde edilir. Örek: Başarı (Y) Tutum (X ) Özyeterlik (X 2 ) Özerklik (X 3 ) Motivasyo (X 4 ),04 5,43, 8,89 0,77 4,36 5,4 0,86 5,08 3,7 5,4 4,4 6,65 4,4 5,92 6,64 6,60 4,9 7,48 6,59 4,73 8,22 3,03 3,39 2,64 3,6 0,5 4,73,74 3,97 4,78 6,49 7,33 5,00 5,09 7,56 9,48,33 8,56 7,6 0,25 0,3 5,34-0,68 4,76 2,06 3,40 5,42 6,2-0,60 Çoklu doğrusal regresyo aalizi ile tutum, özyeterlik, özerklik ve motivasyo pualarıı başarıyı yordama derecesi iceleirse; Başarı: Bağımlı değişke (Y) Tutum: Bağımsız değişke (X ) Özyeterlik: Bağımsız değişke (X 2 ) Özerklik: Bağımsız değişke (X 3 ) Motivasyo: Bağımsız değişke (X 4 ) X = 5,43, 8,89 0,77 5,4 0,86 5,08 3,7 4,4 6,65 4,4 5,92 6,60 4,9 7,48 6,59 8,22 3,03 3,39 2,64 0,5 4,73,74 3,97 6,49 7,33 5,00 5,09 9,48,33 8,56 7,6 0,3 5,34 0,68 4,76 3,40 5,42 6,2 0,60 Y =,04 4,36 5,4 6,64 4,73 3,6 4,78 7,56 0,25 2,06 Y = [,04 4,36 5,4 6,64 4,73 3,6 4,78 7,56 0,25 2,06] 3

4 Bahar Y Y = 33 veya Y 2 Y = i= y i = 33 formülü ile hesaplaabilir. 5,43 X =, 8,89 0,77 5,4 0,86 5,08 3,7 4,4 6,65 4,4 5,92 6,60 4,9 7,48 6,59 8,22 3,03 3,39 2,64 0,5 4,73,74 3,97 6,49 7,33 5,00 5,09 9,48,33 8,56 7,6 0,3 5,34 0,68 4,76 3,40 5,42 6,2 0, ,8 306,36 270,56 X X = , ,04 285, ,36 260, , ,56 285,59 285,66 33 veya i= x i i= x i2 X X = 2 i= x i x i2 formülü ile hesaplaabilir. Sim. i= x i 2 x i2 i= ,8 306,36 270,56 (X X) = , ,04 285, ,36 260, , ,56 285,59 285,66 33 X Y = , 277,7 36,48 34,274 yardımı ile regresyo deklemie ilişki katsayılar; β = (X X) X Y ,8 306,36 270,56 300, β = , ,04 285, ,36 260, , ,56 285,59 285, ,7 36,48 34,274 =,405 0,234 0,32 0,427 0,488 Bua göre b 0 =-,405, b =0,234, b 2 =0,32, b 3 =0,427 ve b 4 =0,488 dir. Burada; olarak hesaplaır. y i =, ,234 Tutum + 0,32 Özyeterlik + 0,427 Özerklik + 0,488 Motivasyo olarak yazılır. Regresyo hesaplamasıa ilişki Excel dosyası içi tıklayıız. 4

5 Bahar LİSREL SONUÇLARI Lisrel kullaılarak doğrusal regresyo aalizi soucuda da regresyo katsayılarıı bezerlik gösterdiği görülmüştür (Şekil 2). Şekil 2. Çoklu doğrusal regresyo Lisrel souçları MATRİS KAVRAMLARI VE TANIMLARI Kare Matris Eğer satır sayısı sütu sayısıa eşitse (=p), A matrisie, p ici mertebede kare matris deir. Ayrıca bu matrisi i=j ola elemalarıa da esas köşege elemaları deir Öreği; A = 5 7 B = Not: Acak bir kare matrisi determiatı hesaplaabilir. Kare olmaya bir matrisi determiatıı hesaplaması söz kousu değildir. Üçge Matris Bir kare matriste asal köşegei üstüde ya da altıda kala tüm elemalar sıfır ise bu matrise üçge matris deir. Bir başka deyişle bir kare matrisi asal köşegei altıda kala tüm elemaları sıfır ise bu matrise üst-üçge matris; bir kare matrisi asal köşegei üstüde kala tüm elemaları sıfır ise bu matrise alt-üçge matris deir. 5

6 Bahar a. Üst-Üçge (Triagular) Matris i>j olduğuda a ij = 0 ise, köşegei altıdaki elemalar sıfır olacaktır Öreği; A = 0 7 matrisi 3x3 türüde bir üst üçge matristir b. Alt-Üçge (Triagular) Matris i<j olduğuda a ij = 0 ise, köşegei üstüdeki elemalar sıfır olacaktır. 0 0 Öreği; A = matrisi 3x3 türüde bir alt üçge matristir İdempotet (dekgüçlü) Matris A, x boyutlu bir matris ike A 2 =A özelliğii alıyorsa A matrisie idempotet (dekgüçlü) matris deir. A tam raklı ve idempotet bir matris ise A birim matristir (A=I) dır. İdempotet matrisi rakı, izie eşittir. İdempotet bir matrisi özdeğerleri ya sıfır ya da birdir. B= x matrisi idempotet ve rak(b)< ise B pozitif yarı taımlı bir matristir. B= x ve rak(b)=p olsu; o B idempotet ise B sıfırda farklı p tae özdeğere sahiptir ve buları her biri +'e eşittir. o B simetrik ise B 'i idempotet olması içi gerek ve yeter koşul B 'i her biri sıfırda farklı p tae özdeğerii olmasıdır. A= x tipide (simetrik) idempotet bir matris olsu; o A' (simetrik) idempotettir. o P ortogoal ise P'AP (simetrik) idempotettir. o P regüler ise PAP - idempotettir. o I - A simetrik idempotettir. o AA' = A'A ise A'A ve AA' matrisleri simetrik ve idempotettirler. Öreği; A = 5 5 2/4 2/4 B = 4 4 2/4 2/4 A ve B matrisleri idempotet matrislerdir. Bu bağlamda öreği; 2/4 2/4 2/4 2/4 2/4 2/4 BB = = = B olur. 2/4 2/4 2/4 2/4 2/4 2/4 6

7 Bahar Not: Birim matris bir idempotet matristir I = = Bir Matrisi İzi x boyutlu bir A matrisii (kare matrisi) izi, köşege elemalarıı toplamıa eşittir ve tr(a) ya da iz(a) ile gösterilir. tr(a) = a + a a = a ii i= Öreği; A = 8 9 ise, tr(a) = = 24 dür. KORELASYON MATRİSİ - FAKTÖR ANALİZİ Başarı Tutum Özyeterlik Özerklik Motivasyo Başarı, tutum, özyeterlik,,04 5,43, 8,89 0,77 özerklik ve motivasyo puaları 4,36 5,4 0,86 5,08 3,7 faktör aalizie tabi tutulursa; 5,4 4,4 6,65 4,4 5,92 6,64 6,60 4,9 7,48 6,59 4,73 8,22 3,03 3,39 2,64 3,6 0,5 4,73,74 3,97 4,78 6,49 7,33 5,00 5,09 7,56 9,48,33 8,56 7,6 0,25 0,3 5,34-0,68 4,76 2,06 3,40 5,42 6,2-0,60 0,686 0,3354 0,8207 0,7935 0,686 0,274 0,6958 0,2539 Korelasyo matrisi, K = 0,3354 0,274 0,24 0,4394 0,8207 0,6958 0,24 0,4402 0,7935 0,2539 0,4394 0,4402 7

8 Bahar Compoet Matrix a Compoet 2 Basari 0,737 0,664 Tutum 0,968-0,95 Ozyeterlik -0,9 0,289 Ozerklik 0,940 0,072 Motivasyo -0,09 0,970 Extractio Method: Pricipal Compoet Aalysis. a. 2 compoets extracted. Compoet matrisi traspozu; C = 0,737 0,664 0,968 0,95 0,9 0,289 0,940 0,072 0,09 0,970 0,984 0,584 0,479 0,740 0,564 0,584 0,974 0,938 0,895 0,295 CC = 0,479 0,938 0,93 0,835 0,379 0,740 0,895 0,835 0,889 0,032 0,564 0,295 0,379 0,032 0,953 Compoet matrisi traspozuyla çarpımı soucu elde edile matrisi köşege elemalarıı faktör aaliziyle elde edile ortak varyas (commuality) değerlerie eşit olduğu görülmektedir. Faktörlerde elde edile korelasyo matrisie ise yeide üretilmiş korelasyo matrisi (reproduced correlatio matrix) adı verilir. Bu faktörü köşege elemaları köşege elemaları yei ortak faktör varyaslarıı verir. Ortak varyas (commuality) bir değişkedeki varyası söz kousu faktörle paylaştığı varyas miktarıdır. Öreği; aşağıdaki tabloda 0,984 değeri, değişkedeki varyası % 98 oraıda belirlee faktörle açıklaabileceğii gösterir. Commualities Iitial Extractio BASARI 0,984 TUTUM 0,974 OZYETER 0,93 OZERK 0,889 MOTIV 0,953 Extractio Method: Pricipal Compoet Aalysis. 8

9 Bahar Bezer biçimde, ayı işlem Rotated Compoet Matrisle de yapıldığıda bezer souçları elde edildiği görülmektedir. Rotated Compoet Matrix a Compoet 2 Basari 0,646 0,753 Tutum 0,985-0,070 Ozyeterlik -0,940 0,70 Ozerklik 0,923 0,9 Motivasyo -0,232 0,949 Extractio Method: Pricipal Compoet Aalysis. Rotatio Method: Varimax with Kaiser Normalizatio. Rotated compoet matrisi traspozu; R = 0,646 0,753 0,985 0,070 0,940 0,70 0,923 0,9 0,232 0,949 0,984 0,584 0,479 0,740 0,564 0,584 0,974 0,938 0,895 0,295 RR = 0,479 0,938 0,93 0,835 0,379 0,740 0,895 0,835 0,889 0,032 0,564 0,295 0,379 0,032 0,953 Commualities Iitial Extractio BASARI 0,984 TUTUM 0,974 OZYETER 0,93 OZERK 0,889 MOTIV 0,953 Extractio Method: Pricipal Compoet Aalysis. 9

18.06 Professor Strang FİNAL 16 Mayıs 2005

18.06 Professor Strang FİNAL 16 Mayıs 2005 8.6 Professor Strag FİNAL 6 Mayıs 25 ( Pua) P,..., P R deki oktalar olsu. ( ai, ai2,..., a i) P i i koordiatlarıdır. Bütü P i oktasıı içere bir cx +... + cx = hiperdüzlemi bulmak istiyoruz. a) Bu hiperdüzlemi

Detaylı

1. GRUPLAR. 2) Aşağıdaki kümelerin verilen işlem altında bir grup olup olmadığını belirleyiniz.

1. GRUPLAR. 2) Aşağıdaki kümelerin verilen işlem altında bir grup olup olmadığını belirleyiniz. Sorular ve Çözümleri 1. GRUPLAR 1) G bir grup olmak üzere aşağıdaki eşitlikleri gösteriiz. i) e G birim elema olmak üzere e 1 = e. ii) a G olmak üzere (a 1 ) 1 = a. iii) a 1, a 2,, a G içi (a 1 a 2 a )

Detaylı

Veri nedir? p Veri nedir? p Veri kalitesi p Veri önişleme. n Geometrik bir bakış açısı. n Olasılıksal bir bakış açısı

Veri nedir? p Veri nedir? p Veri kalitesi p Veri önişleme. n Geometrik bir bakış açısı. n Olasılıksal bir bakış açısı Veri edir? p Veri edir? Geometrik bir bakış açısı p Bezerlik Olasılıksal bir bakış açısı p Yoğuluk p Veri kalitesi p Veri öişleme Birleştirme Öreklem Veri küçültme p Temel bileşe aalizi (Pricipal Compoet

Detaylı

6. BÖLÜM VEKTÖR UZAYI VEKTÖR UZAYI VEKTÖR UZAYLARI

6. BÖLÜM VEKTÖR UZAYI VEKTÖR UZAYI VEKTÖR UZAYLARI 6. BÖLÜM VEKTÖR LARI -BOYUTLU (ÖKLİT) I Taım: Eğer pozitif bir tam sayı ise sıralı -sayı, gerçel sayılar kümesideki adet sayıı (a 1, a 2,, a ) bir dizisidir. Tüm sıralı -sayılarıı kümesi -boyutlu uzay

Detaylı

v = ise v ye spacelike vektör,

v = ise v ye spacelike vektör, D.P.Ü. Fe Bilimleri Estitüsü 1. ayı Mayıs 6 emi-pozitif Ortogoal Matrisler içi Alteratif İi Yötem WO ALERNAIVE MEHOD FOR EMI-POIIVE OROGONAL MARICE B. BÜKCÜ* *Gaziosmapaşa Üiversitesi, Fe-Edebiyat Faültesi,

Detaylı

İDEAL ÇARPIMLARI (IDEAL PRODUCTS)

İDEAL ÇARPIMLARI (IDEAL PRODUCTS) T.C. ÇANAKKALE ONSEKİZ MART ÜNİVERSİTESİ FEN EDEBİYAT FAKÜLTESİ MATEMATİK BÖLÜMÜ (IDEAL PRODUCTS) 070216013 TUĞBA ÖZMEN 080216038 AYŞE MUTLU 080216064 SEVİLAY HOROZ Nil ehri, Düyaı e uzu ehridir (6.650

Detaylı

4/16/2013. Ders 9: Kitle Ortalaması ve Varyansı için Tahmin

4/16/2013. Ders 9: Kitle Ortalaması ve Varyansı için Tahmin 4/16/013 Ders 9: Kitle Ortalaması ve Varyası içi Tahmi Kitle ve Öreklem Öreklem Dağılımı Nokta Tahmii Tahmi Edicileri Özellikleri Kitle ortalaması içi Aralık Tahmii Kitle Stadart Sapması içi Aralık Tahmii

Detaylı

n, 1 den büyük bir sayma sayısı olmak üzere,

n, 1 den büyük bir sayma sayısı olmak üzere, KÖKLÜ SAYILAR, de üyük ir sayma sayısı olmak üzere, x = α deklemii sağlaya x sayısıa α ı yici derecede kökü deir. x m = x m O halde tersi düşüülürse, ir üslü sayıı üssü kesirli ise, o sayı köklü sayı içimide

Detaylı

ISF404 SERMAYE PİYASALARI VE MENKUL KIYMETYÖNETİMİ

ISF404 SERMAYE PİYASALARI VE MENKUL KIYMETYÖNETİMİ 8. HAFTA ISF404 SERMAYE PİYASALARI VE MENKUL KIYMETYÖNETİMİ PORTFÖY YÖNETİMİ II Doç.Dr. Murat YILDIRIM muratyildirim@karabuk.edu.tr Geleeksel Portföy Yaklaşımı, Bu yaklaşıma göre portföy bir bilim değil,

Detaylı

6. BÖLÜM VEKTÖR UZAYLARI

6. BÖLÜM VEKTÖR UZAYLARI 6. BÖLÜM VEKTÖR UZAYLARI -BOYUTLU (ÖKLİT) UZAYI Taım: Eğer pozitif bir tam sayı ise sıralı -sayı, gerçel sayılar kümesideki adet sayıı (a, a,, a ) bir dizisidir. Tüm sıralı -sayılarıı kümesi -boyutlu uzay

Detaylı

İleri Diferansiyel Denklemler

İleri Diferansiyel Denklemler MIT AçıkDersSistemi http://ocw.mit.edu 18.034 İleri Diferasiyel Deklemler 2009 Bahar Bu bilgilere atıfta bulumak veya kullaım koşulları hakkıda bilgi içi http://ocw.mit.edu/terms web sitesii ziyaret ediiz.

Detaylı

LİNEER CEBİR DERS NOTLARI. Ayten KOÇ

LİNEER CEBİR DERS NOTLARI. Ayten KOÇ LİNEER CEBİR DERS NOTLARI Aye KOÇ I MATRİSLER I.1. Taım F bir cisim olmak üzere her i = 1,2,..., m, j = 1,2,..., içi aij F ike a11 a12... a1 a21 a22... a 2 M M... M am1 am2... am (1) şeklide dikdörgesel

Detaylı

8. HAFTA BLM323 SAYISAL ANALİZ. Okt. Yasin ORTAKCI.

8. HAFTA BLM323 SAYISAL ANALİZ. Okt. Yasin ORTAKCI. 8. HAFTA BLM323 SAYISAL ANALİZ Okt. Yasin ORTAKCI yasinortakci@karabuk.edu.tr Karabük Üniversitesi Uzaktan Eğitim Uygulama ve Araştırma Merkezi 2 MATRİSLER Matris veya dizey, dikdörtgen bir sayılar tablosu

Detaylı

BÖLÜM 3 YER ÖLÇÜLERİ. Doç.Dr. Suat ŞAHİNLER

BÖLÜM 3 YER ÖLÇÜLERİ. Doç.Dr. Suat ŞAHİNLER BÖLÜM 3 YER ÖLÇÜLERİ İkici bölümde verileri frekas tablolarıı hazırlaması ve grafikleri çizilmesideki esas amaç; gözlemleri doğal olarak ait oldukları populasyo dağılışıı belirlemek ve dağılışı geel özelliklerii

Detaylı

POLİNOMLAR. reel sayılar ve n doğal sayı olmak üzere. n n. + polinomu kısaca ( ) 2 3 n. ifadeleri polinomun terimleri,

POLİNOMLAR. reel sayılar ve n doğal sayı olmak üzere. n n. + polinomu kısaca ( ) 2 3 n. ifadeleri polinomun terimleri, POLİNOMLAR Taım : a0, a, a,..., a, a reel sayılar ve doğal sayı olmak üzere P x = a x + a x +... + a x + a x + a biçimideki ifadelere x e bağlı reel katsayılı poliom (çok terimli) deir. 0 a 0 ax + a x

Detaylı

BAĞINTI VE FONKSİYON

BAĞINTI VE FONKSİYON BAĞINTI VE FONKSİYON SIRALI N-Lİ x, x, x,..., x tae elema olsu. ( x, x, x,..., x ) yazılışıda elemaları sırası öemli ise x, x, x,..., x ) e sıralı -li deir. x, x, x,..., x ) de ( x (, x, x ( x, ) sıralı

Detaylı

TAHMİNLEYİCİLERİN ÖZELLİKLERİ Sapmasızlık 3.2. Tutarlılık 3.3. Etkinlik minimum varyans 3.4. Aralık tahmini (güven aralığı)

TAHMİNLEYİCİLERİN ÖZELLİKLERİ Sapmasızlık 3.2. Tutarlılık 3.3. Etkinlik minimum varyans 3.4. Aralık tahmini (güven aralığı) 3 TAHMİNLEYİCİLERİN ÖZELLİKLERİ 3.1. Sapmasızlık 3.. Tutarlılık 3.3. Etkilik miimum varyas 3.4. Aralık tahmii (güve aralığı) İyi bir tahmi edici dağılımı tahmi edilecek populasyo parametresie yakı civarda

Detaylı

Öğr. Elemanı: Dr. Mustafa Cumhur AKBULUT

Öğr. Elemanı: Dr. Mustafa Cumhur AKBULUT Ünite 10: Regresyon Analizi Öğr. Elemanı: Dr. Mustafa Cumhur AKBULUT 10.Ünite Regresyon Analizi 2 Ünitede Ele Alınan Konular 10. Regresyon Analizi 10.1. Basit Doğrusal regresyon 10.2. Regresyon denklemi

Detaylı

m=n şeklindeki matrislere kare matris adı verilir. şeklindeki matrislere ise sütun matrisi denir. şeklindeki A matrisi bir kare matristir.

m=n şeklindeki matrislere kare matris adı verilir. şeklindeki matrislere ise sütun matrisi denir. şeklindeki A matrisi bir kare matristir. Matrisler Satır ve sütunlar halinde düzenlenmiş tabloya matris denir. m satırı, n ise sütunu gösterir. a!! a!" a!! a!" a!! a!! a!! a!! a!" m=n şeklindeki matrislere kare matris adı verilir. [2 3 1] şeklinde,

Detaylı

İÇİNDEKİLER. Ön Söz Polinomlar II. ve III. Dereceden Denklemler Parabol II. Dereceden Eşitsizlikler...

İÇİNDEKİLER. Ön Söz Polinomlar II. ve III. Dereceden Denklemler Parabol II. Dereceden Eşitsizlikler... İÇİNDEKİLER Ö Söz... Poliomlar... II. ve III. Derecede Deklemler... Parabol... 9 II. Derecede Eşitsizlikler... 8 Trigoometri... 8 Logaritma... 59 Toplam ve Çarpım Sembolü... 7 Diziler... 79 Özel Taımlı

Detaylı

3. BÖLÜM MATRİSLER 1

3. BÖLÜM MATRİSLER 1 3. BÖLÜM MATRİSLER 1 2 11 21 1 m1 a a a v 12 22 2 m2 a a a v 1 2 n n n mn a a a v gibi n tane vektörün oluşturduğu, şeklindeki sıralanışına matris denir. 1 2 n A v v v Matris A a a a a a a a a a 11 12

Detaylı

4. BÖLÜM DOĞRUSAL DENKLEM SİSTEMLERİ

4. BÖLÜM DOĞRUSAL DENKLEM SİSTEMLERİ 4. BÖLÜM DOĞRUSAL DENKLEM SİSTEMLERİ Doğrusal Denklem Sistemi x 1,x 2,,x n ler bilinmeyenler olmak üzere, doğrusal denklemlerin oluşturduğu; a x a x a x b 11 1 12 2 1n n 1 a x a x a x b 21 1 22 2 2n n

Detaylı

5 İKİNCİ MERTEBEDEN LİNEER DİF. DENKLEMLERİN SERİ ÇÖZÜMLERİ

5 İKİNCİ MERTEBEDEN LİNEER DİF. DENKLEMLERİN SERİ ÇÖZÜMLERİ 5 İKİNCİ MERTEBEDEN LİNEER DİF. DENKLEMLERİN SERİ ÇÖZÜMLERİ Bir lieer deklemi geel çözümüü bulmak homoje kısmı temel çözümlerii belirlemesie bağlıdır. Sabit katsayılı diferasiyel deklemleri temel çözümlerii

Detaylı

Lineer Cebir. Doç. Dr. Niyazi ŞAHİN TOBB. İçerik: 1.1. Lineer Denklemlerin Tanımı 1.2. Lineer Denklem Sistemleri 1.3. Matrisler

Lineer Cebir. Doç. Dr. Niyazi ŞAHİN TOBB. İçerik: 1.1. Lineer Denklemlerin Tanımı 1.2. Lineer Denklem Sistemleri 1.3. Matrisler Lineer Cebir Doç. Dr. Niyazi ŞAHİN TOBB İçerik: 1.1. Lineer Denklemlerin Tanımı 1.2. Lineer Denklem Sistemleri 1.3. Matrisler Bölüm 1 - Lineer Eşitlikler 1.1. Lineer Eşitliklerin Tanımı x 1, x 2,..., x

Detaylı

4/4/2013. Ders 8: Verilerin Düzenlenmesi ve Analizi. Betimsel İstatistik Merkezsel Eğilim Ölçüleri Dağılım Ölçüleri Grafiksel Gösterimler

4/4/2013. Ders 8: Verilerin Düzenlenmesi ve Analizi. Betimsel İstatistik Merkezsel Eğilim Ölçüleri Dağılım Ölçüleri Grafiksel Gösterimler Ders 8: Verileri Düzelemesi ve Aalizi Betimsel İstatistik Merkezsel Eğilim Ölçüleri Dağılım Ölçüleri Grafiksel Gösterimler Bir kitlei tamamıı, ya da kitlede alıa bir öreklemi özetlemekle (betimlemekle)

Detaylı

BÖLÜM 3. ile gösterilir. m-boyutlu öklit kümesini tanımlayan m adet kümenin kartezyen (Catesian) çarpımı,

BÖLÜM 3. ile gösterilir. m-boyutlu öklit kümesini tanımlayan m adet kümenin kartezyen (Catesian) çarpımı, BÖLÜM 3 3. ÇOK DEĞİŞKENLİ REGRESYON İÇİN VEKTÖR VE MATRİS CEBRİ Bölüm de, doğrusal regresyo tek değişkeli basit model olarak ele alıarak açıklamıştı. Bölüm 4 de ise çok değişkeli (k değişkeli) model içi

Detaylı

değerine bu matrisin bir girdisi(elemanı,bileşeni) denir. Bir sütundan (satırdan) oluşan bir matrise bir sütun (satır) matrisi denir.

değerine bu matrisin bir girdisi(elemanı,bileşeni) denir. Bir sütundan (satırdan) oluşan bir matrise bir sütun (satır) matrisi denir. Bölüm 2 Matrsler aım 2.1 F br csm, m, brer doğal sayı olsu. a F ( 1,.., m; j 1,..., ) olmak üzere, a11... a1 fadese m satır sütuda oluşa (veya m tpde) br F matrs der. am 1... a m Böyle br matrs daha sade

Detaylı

POLİNOMLARDA İNDİRGENEBİLİRLİK. Derleyen Osman EKİZ Eskişehir Fatih Fen Lisesi 1. GİRİŞ

POLİNOMLARDA İNDİRGENEBİLİRLİK. Derleyen Osman EKİZ Eskişehir Fatih Fen Lisesi 1. GİRİŞ POLİNOMLARDA İNDİRGENEBİLİRLİK Derleye Osma EKİZ Eskişehir Fatih Fe Lisesi. GİRİŞ Poliomları idirgeebilmesi poliomları sıfırlarıı bulmada oldukça öemlidir. Şimdi poliomları idirgeebilmesi ile ilgili bazı

Detaylı

SAÜ. Mühendislik Fakültesi Endüstri Mühendisliği Bölümü DİFERENSİYEL DENKLEMLER Dönemi Karma Eğitim Ders Notları. Doç. Dr.

SAÜ. Mühendislik Fakültesi Endüstri Mühendisliği Bölümü DİFERENSİYEL DENKLEMLER Dönemi Karma Eğitim Ders Notları. Doç. Dr. SAÜ. Mühedislik Fakültesi Edüstri Mühedisliği Bölümü DİFERENSİYEL DENKLEMLER 9- Döemi Karma Eğitim Ders Notları Doç. Dr. Cemaletti KUBAT .Çok Değişkeli Foksiolarda Talor-McLauri Açılımları, Ekstremum Noktalar..Talor-McLauri

Detaylı

SAÜ. Mühendislik Fakültesi Endüstri Mühendisliği Bölümü DİFERENSİYEL DENKLEMLER Dönemi Ders Notları. Prof. Dr.

SAÜ. Mühendislik Fakültesi Endüstri Mühendisliği Bölümü DİFERENSİYEL DENKLEMLER Dönemi Ders Notları. Prof. Dr. SAÜ. Mühedislik Fakültesi Edüstri Mühedisliği Bölümü DİFERENSİYEL DENKLEMLER - Döemi Ders Notları Pro. Dr. Cemaletti KUBAT .Çok Değişkeli Foksiolarda Talor-McLauri Açılımları, Ekstremum Noktalar..Talor-McLauri

Detaylı

İstatistik Nedir? Sistem-Model Kavramı

İstatistik Nedir? Sistem-Model Kavramı İstatistik Nedir? İstatistik rasgelelik içere olaylar, süreçler, sistemler hakkıda modeller kurmada, gözlemlere dayaarak bu modelleri geçerliğii sıamada ve bu modellerde souç çıkarmada gerekli bazı bilgi

Detaylı

Örnek. Aşağıdaki veri setlerindeki X ve Y veri çiftlerini kullanarak herbir durumda X=1,5 için Y nin hangi değerleri alacağını hesaplayınız.

Örnek. Aşağıdaki veri setlerindeki X ve Y veri çiftlerini kullanarak herbir durumda X=1,5 için Y nin hangi değerleri alacağını hesaplayınız. Örnek Aşağıdaki veri setlerindeki X ve Y veri çiftlerini kullanarak herbir durumda X=1,5 için Y nin hangi değerleri alacağını hesaplayınız. i. ii. X 1 2 3 4 1 2 3 4 Y 2 3 4 5 4 3 2 1 Örnek Aşağıdaki veri

Detaylı

Bir Rasgele Değişkenin Fonksiyonunun Olasılık Dağılımı

Bir Rasgele Değişkenin Fonksiyonunun Olasılık Dağılımı 5.Ders Döüşümler Bir Rasgele Değişkei Foksiyouu Olasılık Dağılımı Bu kısımda olasılık dağılımı bilie bir rasgele değişkei foksiyoları ola rasgele değişkeleri olasılık dağılımlarıı buluması ile ilgileeceğiz.

Detaylı

Doç. Dr. M. Mete DOĞANAY Prof. Dr. Ramazan AKTAŞ

Doç. Dr. M. Mete DOĞANAY Prof. Dr. Ramazan AKTAŞ TAHVİL DEĞERLEMESİ Doç. Dr. M. Mee DOĞANAY Prof. Dr. Ramaza AKTAŞ 1 İçerik Tahvil ve Özellikleri Faiz Oraı ve Tahvil Değeri Arasıdaki İlişki Tahvili Geiri Oraı ve Vadeye Kadar Geirisi Faiz Oraı Riski Verim

Detaylı

TĐCARĐ MATEMATĐK - 5.2 Bileşik Faiz

TĐCARĐ MATEMATĐK - 5.2 Bileşik Faiz TĐCARĐ MATEMATĐK - 5 Bileşik 57ÇÖZÜMLÜ ÖRNEKLER: Örek 57: 0000 YTL yıllık %40 faiz oraıyla yıl bileşik faiz ile bakaya yatırılmıştır Bu paraı yılı souda ulaşacağı değer edir? IYol: PV = 0000 YTL = PV (

Detaylı

7. BÖLÜM DOĞRUSAL DÖNÜŞÜMLER

7. BÖLÜM DOĞRUSAL DÖNÜŞÜMLER 7. BÖLÜM DOĞRUSAL DÖNÜŞÜMLER DOĞRUSAL DÖNÜŞÜMLER Bir V ektör uzayıı bir başka W ektör uzayıa döüştüre foksiyolar şu şekilde gösterilir: : V W Burada kullaıla termioloji foksiyolarla ayıdır. Öreği, V ektör

Detaylı

Tümevarım_toplam_Çarpım_Dizi_Seri. n c = nc i= 1 n ca i. k 1. i= r n. Σ sembolü ile bilinmesi gerekli bazı formüller : 1) k =1+ 2 + 3+...

Tümevarım_toplam_Çarpım_Dizi_Seri. n c = nc i= 1 n ca i. k 1. i= r n. Σ sembolü ile bilinmesi gerekli bazı formüller : 1) k =1+ 2 + 3+... MC formülüü doğruluğuu tümevarım ilkesi ile gösterelim. www.matematikclub.com, 00 Cebir Notları Gökha DEMĐR, gdemir@yahoo.com.tr Tümevarım_toplam_Çarpım_Dizi_Seri Tümevarım Metodu : Matematikte kulladığımız

Detaylı

6. DOĞRUSAL REGRESYON MODELİNE MATRİS YAKLAŞIMI

6. DOĞRUSAL REGRESYON MODELİNE MATRİS YAKLAŞIMI 6. DOĞRUSAL REGRESYON MODELİNE MATRİS YAKLAŞIMI Y i β + β X i + β X i + + β k X ki + i (i,,, gibi çok çıklyıcı değişkee ship bir model, şğıdki gibi bir eşlı deklem modelii göstermektedir. Y β + β X + β

Detaylı

Matris Cebiriyle Çoklu Regresyon Modeli

Matris Cebiriyle Çoklu Regresyon Modeli Matris Cebiriyle Çoklu Regresyon Modeli Hüseyin Taştan Mart 00 Klasik Regresyon Modeli k açıklayıcı değişkenden oluşan regresyon modelini her gözlem i için aşağıdaki gibi yazabiliriz: y i β + β x i + β

Detaylı

İstatistik ve Olasılık

İstatistik ve Olasılık İstatistik ve Olasılık KORELASYON ve REGRESYON ANALİZİ Doç. Dr. İrfan KAYMAZ Tanım Bir değişkenin değerinin diğer değişkendeki veya değişkenlerdeki değişimlere bağlı olarak nasıl etkilendiğinin istatistiksel

Detaylı

ALTERNATİF SİSTEMLERİN KARŞILAŞTIRILMASI

ALTERNATİF SİSTEMLERİN KARŞILAŞTIRILMASI ALTERNATİF SİSTEMLERİN KARŞILAŞTIRILMASI Bezetimi e öemli faydalarıda birisi, uygulamaya koymada öce alteratifleri karşılaştırmaı mümkü olmasıdır. Alteratifler; Fabrika yerleşim tasarımları Alteratif üretim

Detaylı

Regresyon ve Korelasyon Analizi. Regresyon Analizi

Regresyon ve Korelasyon Analizi. Regresyon Analizi Regresyo ve Korelasyo Aalz Regresyo Aalz Regresyo Aalz Regresyo aalz, aralarıda sebep-souç lşks bulua k veya daha fazla değşke arasıdak lşky belrlemek ve bu lşky kullaarak o kou le lgl tahmler (estmato)

Detaylı

x 1,x 2,,x n ler bilinmeyenler olmak üzere, doğrusal denklemlerin oluşturduğu;

x 1,x 2,,x n ler bilinmeyenler olmak üzere, doğrusal denklemlerin oluşturduğu; 4. BÖLÜM DOĞRUSAL DENKLEM SİSTEMLERİ Doğrusal Denklem Sistemi x,x,,x n ler bilinmeyenler olmak üzere, doğrusal denklemlerin oluşturduğu; a x + a x + L + a x = b n n a x + a x + L + a x = b n n a x + a

Detaylı

BİYOİSTATİSTİK İstatistiksel Tahminleme ve Hipotez Testlerine Giriş Dr. Öğr. Üyesi Aslı SUNER KARAKÜLAH

BİYOİSTATİSTİK İstatistiksel Tahminleme ve Hipotez Testlerine Giriş Dr. Öğr. Üyesi Aslı SUNER KARAKÜLAH BİYOİSTATİSTİK İstatistiksel Tahmileme ve Hipotez Testlerie Giriş Dr. Öğr. Üyesi Aslı SUNER KARAKÜLAH Ege Üiversitesi, Tıp Fakültesi, Biyoistatistik ve Tıbbi Bilişim AD. Web: www.biyoistatistik.med.ege.edu.tr

Detaylı

Tahmin Edici Elde Etme Yöntemleri

Tahmin Edici Elde Etme Yöntemleri 6. Ders Tahmi Edici Elde Etme Yötemleri Öceki derslerde ve ödevlerde U(0; ) ; = (0; ) da¼g l m da, da¼g l m üst s r ola parametresi içi tahmi edici olarak : s ra istatisti¼gi ve öreklem ortalamas heme

Detaylı

İşlenmemiş veri: Sayılabilen yada ölçülebilen niceliklerin gözlemler sonucu elde edildiği hali ile derlendiği bilgiler.

İşlenmemiş veri: Sayılabilen yada ölçülebilen niceliklerin gözlemler sonucu elde edildiği hali ile derlendiği bilgiler. OLASILIK VE İSTATİSTİK DERSLERİ ÖZET NOTLARI İstatistik: verileri toplaması, aalizi, suulması ve yorumlaması ile ilgili ilkeleri ve yötemleri içere ve bu işlemleri souçlarıı probabilite ilkelerie göre

Detaylı

Ki- kare Bağımsızlık Testi

Ki- kare Bağımsızlık Testi PARAMETRİK OLMAYAN İSTATİSTİKSEL TEKNİKLER Prof. Dr. Ali ŞEN Ki- kare Bağımsızlık Testi Daha öceki bölümlerde ölçümler arasıdaki ilişkileri asıl iceleeceğii gördük. Acak sıklıkla ilgileile veriler ölçüm

Detaylı

sorusu akla gelebilir. Örneğin, O noktasından A noktasına hareket, OA sembolü ile gösterilir

sorusu akla gelebilir. Örneğin, O noktasından A noktasına hareket, OA sembolü ile gösterilir BÖLÜM 1: VEKTÖRLER Vektörleri taımlamak içi iki yol vardır: uzayda oktalara karşılık gele bir koordiat sistemideki oktalar veya büyüklük ve yöü ola eseler. Bu kısımda, ede iki vektör taımıı buluduğu açıklaacak

Detaylı

Bağımsızlık özelliğinden hareketle Ortak olasılık fonksiyonu (sürekli ise

Bağımsızlık özelliğinden hareketle Ortak olasılık fonksiyonu (sürekli ise YTÜ-İktisat İstatistik II Örekleme ve Öreklem Dağılımları BASİT RASSAL ÖRNEKLEME N tae ese arasıda taelik bir öreklem seçilmesii istediğii düşüelim. eseli olaaklı her öreklemi seçilme şasıı eşit kıla seçim

Detaylı

BASAMAK ATLAYARAK VEYA FARKLI ZIPLAYARAK İLERLEME DURUMLARININ SAYISI

BASAMAK ATLAYARAK VEYA FARKLI ZIPLAYARAK İLERLEME DURUMLARININ SAYISI Projesii Kousu: Bir çekirgei metre, metre veya 3 metre zıplayarak uzuluğu verile bir yolu kaç farklı şekilde gidebileceği ya da bir kişii veya (veya 3) basamak atlayarak basamak sayısı verile bir merdivei

Detaylı

Korelasyon, Korelasyon Türleri ve Regresyon

Korelasyon, Korelasyon Türleri ve Regresyon Korelasyon, Korelasyon Türleri ve Regresyon İçerik Korelasyon Korelasyon Türleri Korelasyon Katsayısı Regresyon KORELASYON Korelasyon iki ya da daha fazla değişken arasındaki doğrusal ilişkiyi gösterir.

Detaylı

ALTERNATİF SİSTEMLERİN KARŞILAŞTIRILMASI

ALTERNATİF SİSTEMLERİN KARŞILAŞTIRILMASI µ µ içi Güve Aralığı ALTERNATİF İTEMLERİN KARŞILAŞTIRILMAI Bezetimi e öemli faydalarıda birisi, uygulamaya koymada öce alteratifleri karşılaştırmaı mümkü olmasıdır. Alteratifler; Fabrika yerleşim tasarımları

Detaylı

ORTALAMA EŞĐTSĐZLĐKLERĐNE GĐRĐŞ

ORTALAMA EŞĐTSĐZLĐKLERĐNE GĐRĐŞ ORTALAMA EŞĐTSĐZLĐKLERĐNE GĐRĐŞ Lokma Gökçe Olimpiyat problemlerii çözümüde eşitsizlik teorisi öemli bir yer tutar. Baze bir maksimum miimum değer problemide, baze bir geometrik eşitsizlik kaıtıda, baze

Detaylı

IV. DERS D FERENS YELLENEB L R MAN FOLDLAR

IV. DERS D FERENS YELLENEB L R MAN FOLDLAR Bölüm 1 IV. DERS D FERENS YELLENEB L R MAN FOLDLAR Bir öceki bölümde bir yüzeyi oktalar yeterice küçük kom³uluklaryla ilgileebildik. Bu prosesi soyut realizasyou içi, souçta bizi diferesiyelleebilir maifold

Detaylı

H.Ü. Bilgi ve Belge Yönetimi Bölümü BBY 208 Sosyal Bilimlerde Araştırma Yöntemleri II (Bahar 2012) SPSS Ders Notları II (19 Nisan 2012)

H.Ü. Bilgi ve Belge Yönetimi Bölümü BBY 208 Sosyal Bilimlerde Araştırma Yöntemleri II (Bahar 2012) SPSS Ders Notları II (19 Nisan 2012) H.Ü. Bilgi ve Belge Yönetimi Bölümü BBY 208 Sosyal Bilimlerde Araştırma Yöntemleri II (Bahar 2012) SPSS Ders Notları II (19 Nisan 2012) Aşağıdaki analizlerde lise öğrencileri veri dosyası kullanılmıştır.

Detaylı

Örnek 2.1 YÖNEYLEM ARAŞTIRMASI III. Markov Süreçleri Ders 7. Koşulsuz Durum Olasılıkları. Örnek 2.1

Örnek 2.1 YÖNEYLEM ARAŞTIRMASI III. Markov Süreçleri Ders 7. Koşulsuz Durum Olasılıkları. Örnek 2.1 Örek.1 YÖNEYLEM ARAŞTIRMASI III Markov Süreçleri Ders 7 Yrd. Doç. Dr. Beyazıt Ocakta Web site: ocakta.bau.edu.tr E-mail: bocakta@gmail.com Reault marka otomobil sahilerii bir soraki otomobillerii de Reault

Detaylı

Ders 2: Küme Teorisi, Örnek Uzay, Permütasyonlar ve Kombinasyonlar

Ders 2: Küme Teorisi, Örnek Uzay, Permütasyonlar ve Kombinasyonlar Ders 2: üme Teorisi, Örek Uzay, Permütasyolar ve ombiasyolar üme avramı üme İşlemleri Deey, Örek Uzay, Örek Nokta ve Olay avramları Örek Noktaları Sayma Permütasyolar ombiasyolar Parçalamalar (Partitio)

Detaylı

ÖRNEKLEME TEORİSİ VE TAHMİN TEORİSİ

ÖRNEKLEME TEORİSİ VE TAHMİN TEORİSİ İSTATİSTİKSEL TAHMİNLEME VE İSTATİSTİKSEL YORUMLAMA TAHMİNLEME SÜRECİ VE YORUMLAMA SÜRECİ ÖRNEKLEME TEORİSİ VE TAHMİN TEORİSİ ÖRNEKLEME VE ÖRNEKLEME ÖRNEKLEME DAĞILIMLARI VE ÖRNEKLEME DAĞILIMLARI Yorumlama

Detaylı

İstatistik ve Olasılık

İstatistik ve Olasılık İstatistik ve Olasılık Ders 3: MERKEZİ EĞİLİM VE DAĞILMA ÖLÇÜLERİ Prof. Dr. İrfa KAYMAZ Taım Araştırma souçlarıı açıklamasıda frekas tablosu ve poligou isteile bilgiyi her zama sağlamayabilir. Verileri

Detaylı

Normal Dağılımlı Bir Yığın a İlişkin İstatistiksel Çıkarım

Normal Dağılımlı Bir Yığın a İlişkin İstatistiksel Çıkarım Normal Dağılımlı Bir Yığı a İlişi İstatistisel Çıarım Bir üretici edi ürüleride, piyasadai 3,5 cm li vidalarda yalıca boyları 3,4 cm ile 3,7 cm aralığıda olaları ullaabilmetedir. Üretici, piyasadai bu

Detaylı

İSTATİSTİKSEL TAHMİNLEME VE HİPOTEZ TESTİ

İSTATİSTİKSEL TAHMİNLEME VE HİPOTEZ TESTİ İSTATİSTİKSEL TAHMİNLEME VE HİPOTEZ TESTİ Bu bölümdeki yötemler, bilimeye POPULASYON PARAMETRE değeri hakkıda; TAHMİN yapmaya yöelik ve, KARAR vermekle ilgili, olmak üzere iki grupta icelemektedir. Parametre

Detaylı

POLĐNOMLAR YILLAR ÖYS

POLĐNOMLAR YILLAR ÖYS YILLAR 4 5 6 7 8 9 ÖSS - - - - - - ÖYS POLĐNOMLAR a,a,a,..., a P () = a + a +... + a R ve N olmak üzere; ifadesie Reel katsayılı.ci derecede bir değişkeli poliom deir. P()= a sabit poliom, (a ) P()= sıfır

Detaylı

NOT: BU DERS NOTLARI TEMEL EKONOMETRİ-GUJARATİ KİTABINDAN DERLENMİŞTİR. HAFTA 1 İST 418 EKONOMETRİ

NOT: BU DERS NOTLARI TEMEL EKONOMETRİ-GUJARATİ KİTABINDAN DERLENMİŞTİR. HAFTA 1 İST 418 EKONOMETRİ NOT: BU DERS NOTLARI TEMEL EKONOMETRİ-GUJARATİ KİTABINDAN DERLENMİŞTİR. KULLANILAN ŞEKİLLERİN VE NOTLARIN TELİF HAKKI KİTABIN YAZARI VE BASIM EVİNE AİTTİR. HAFTA 1 İST 418 EKONOMETRİ Ekoometri: Sözcük

Detaylı

DETERMINANTLAR. 1. Permütasyon. 1. Permütasyon ) permütasyonundaki ters dönüşüm. 1. Permütasyon 2. BÖLÜM ( )

DETERMINANTLAR. 1. Permütasyon. 1. Permütasyon ) permütasyonundaki ters dönüşüm. 1. Permütasyon 2. BÖLÜM ( ) . BÖÜM. Permütsyo Tım: Bir tm syılr {,,, } kümesideki elemlrı tekrr olmksızı frklı DETERMINNTR sırlmlrıı düzelemesie permütsyo deir. Örek: {,, 3} tm syılr kümesii ltı frklı permütsyou vrdır: (,, 3), (,,

Detaylı

4. Ders Fisher informasyonu s f rdan büyük ve sonlu, yani 0 < I() < 1; R f(x; )dx (kesikli da¼g l mlarda R yerine P.

4. Ders Fisher informasyonu s f rdan büyük ve sonlu, yani 0 < I() < 1; R f(x; )dx (kesikli da¼g l mlarda R yerine P. 4. Ders tkilik Küçük varyasl olmak, tahmi edicileri vazgeçilmez bir özelli¼gidir. Bir tahmi edicii, yal veya yas z, küçük varyasl olmas isteir. Parametrei kedisi () veya bir foksiyou (g()) ile ilgili tahmi

Detaylı

GEO182 Lineer Cebir. Matrisler. Matrisler. Dersi Veren: Dr. İlke Deniz Derse Devam: %70. Vize Sayısı: 1

GEO182 Lineer Cebir. Matrisler. Matrisler. Dersi Veren: Dr. İlke Deniz Derse Devam: %70. Vize Sayısı: 1 GEO182 Lineer Cebir Dersi Veren: Dr. İlke Deniz 2018 GEO182 Lineer Cebir Derse Devam: %70 Vize Sayısı: 1 Başarı Notu: Yıl içi Başarı Notu %40 + Final Sınavı Notu %60 GEO182 Lineer Cebir GEO182 Lineer Cebir

Detaylı

Yrd. Doç. Dr. A. Burak İNNER

Yrd. Doç. Dr. A. Burak İNNER Yrd. Doç. Dr. A. Burak İNNER Kocaeli Üniversitesi Bilgisayar Mühendisliği Yapay Zeka ve Benzetim Sistemleri Ar-Ge Lab. http://yapbenzet.kocaeli.edu.tr Ders Adı : Bilgisayar Mühendisliğinde Matematik Uygulamaları

Detaylı

BÖLÜM DETERMINANTLAR SD 1

BÖLÜM DETERMINANTLAR SD 1 SD 1 2. BÖLÜM DETERMINANTLAR 2 1 2 22 21 1 12 11 2 1 2 22 21 1 12 11 2 1 2 22 21 1 12 11 2 1 2 22 21 1 12 11 1. Permütsyo Tım: Bir tm syılr {1, 2,, } kümesideki elemlrı tekrr olmksızı frklı sırlmlrıı düzelemesie

Detaylı

Yatırım Analizi ve Portföy Yönetimi 6. Hafta

Yatırım Analizi ve Portföy Yönetimi 6. Hafta Yatırım Analizi ve Portföy Yönetimi 6. Hafta Dr. Mevlüt CAMGÖZ 1 Dr. Mevlüt CAMGÖZ İçerik Karakteristik Doğru ve Beta Katsayısı Karakteristik Doğrunun Tahmini Beta Katsayısının Hesaplanması Agresif ve

Detaylı

5. Ders Yeterlilik. f(x 1 ; x 2 ; :::; x n ; ) = g (T (x 1 ; x 2 ; :::; x n ); ) h(x 1 ; x 2 ; :::; x n )

5. Ders Yeterlilik. f(x 1 ; x 2 ; :::; x n ; ) = g (T (x 1 ; x 2 ; :::; x n ); ) h(x 1 ; x 2 ; :::; x n ) 5. Ders Yeterlilik Yeterlilik Ilkesi: Bir T(X ; X ; :::; X ) istatisti¼gi, hakk da yeterli bir istatistik olacaksa hakk da herhagi bir souç ç kar m T arac l ¼g ile (X ; X,...,X ) öreklemie ba¼gl olmal

Detaylı

Matrisler Matris Tanımı m satır ve n sütundan oluşan tablosuna matris adı verilir.

Matrisler Matris Tanımı m satır ve n sütundan oluşan tablosuna matris adı verilir. MATRIS Matrisler Matris Tanımı m satır ve n sütundan oluşan tablosuna matris adı verilir. Matristeki her bir sayıya eleman denir. Yukarıdaki matriste m n tane eleman vardır. Matrisin yatay bir doğru boyunca

Detaylı

BEKLENEN DEĞER VE VARYANS

BEKLENEN DEĞER VE VARYANS BEKLEE DEĞER VE VARYAS.1. İadel ve adesz öreklemede tüm mümkü örekler.. Beklee değer.3. Varyas.4. İk değşke ortak dağılımı.5. İstatstksel bağımsızlık.6. Tesadüf değşkeler doğrusal kombasyolarıı beklee

Detaylı

Diziler ve Seriler ÜNİTE. Amaçlar. İçindekiler. Yazar Prof.Dr. Vakıf CAFEROV

Diziler ve Seriler ÜNİTE. Amaçlar. İçindekiler. Yazar Prof.Dr. Vakıf CAFEROV Diziler ve Seriler Yazar Prof.Dr. Vakıf CAFEROV ÜNİTE 7 Amaçlar Bu üiteyi çalıştıkta sora; dizi kavramıı taıyacak, dizileri yakısaklığıı araştırabilecek, sosuz toplamı alamıı bilecek, serileri yakısaklığıı

Detaylı

LİNEER OLMAYAN DENKLEMLERİN SAYISAL ÇÖZÜM YÖNTEMLERİ-2

LİNEER OLMAYAN DENKLEMLERİN SAYISAL ÇÖZÜM YÖNTEMLERİ-2 LİNEER OLMAYAN DENKLEMLERİN SAYISAL ÇÖZÜM YÖNTEMLERİ SABİT NOKTA İTERASYONU YÖNTEMİ Bu yötemde çözüme gitmek içi f( olarak verile deklem =g( şeklie getirilir. Bir başlagıç değeri seçilir ve g ( ardışık

Detaylı

TÜME VARIM Bu bölümde öce,kısaca tümevarım yötemii, sorada ÖYS de karşılamakta olduğumuz sembolüü ve sembolüü ele alacağız. A. TÜME VARIM YÖNTEMİ Tümevarım yötemii ifade etmede öce, öerme ve doğruluk kümesi

Detaylı

18.034 İleri Diferansiyel Denklemler

18.034 İleri Diferansiyel Denklemler MIT AçıkDersSistemi http://ocw.mit.edu 18.034 İleri Diferansiyel Denklemler 2009 Bahar Bu bilgilere atıfta bulunmak veya kullanım koşulları hakkında bilgi için http://ocw.mit.edu/terms web sitesini ziyaret

Detaylı

PARAMETRİK TESTLER. Tek Örneklem t-testi. 200 öğrencinin matematik dersinden aldıkları notların ortalamasının 70 e eşit olup olmadığını test ediniz.

PARAMETRİK TESTLER. Tek Örneklem t-testi. 200 öğrencinin matematik dersinden aldıkları notların ortalamasının 70 e eşit olup olmadığını test ediniz. PARAMETRİK TESTLER Tek Örneklem t-testi 200 öğrencinin matematik dersinden aldıkları notların ortalamasının 70 e eşit olup olmadığını test ediniz. H0 (boş hipotez): 200 öğrencinin matematik dersinden aldıkları

Detaylı

Örneklemden elde edilen parametreler üzerinden kitle parametreleri tahmin edilmek istenmektedir.

Örneklemden elde edilen parametreler üzerinden kitle parametreleri tahmin edilmek istenmektedir. ÇIKARSAMALI İSTATİSTİKLER Çıkarsamalı istatistikler, örneklemden elde edilen değerler üzerinde kitleyi tanımlamak için uygulanan istatistiksel yöntemlerdir. Çıkarsamalı istatistikler; Tahmin Hipotez Testleri

Detaylı

( 1) ( ) işleminde etkisiz eleman e, tersi olmayan eleman t ise te kaçtır? a) 4/3 b) 3/4 c) -3 d) 4 e) Hiçbiri

( 1) ( ) işleminde etkisiz eleman e, tersi olmayan eleman t ise te kaçtır? a) 4/3 b) 3/4 c) -3 d) 4 e) Hiçbiri V MERSİN MATEMATİK OLİMPİYATI (ÜNV ÖĞR) I AŞAMA SINAV SORULARI ( Nisa 8) de ye taımlı, birebir ve örte f ve g foksiyoları her bir içi koşuluu sağlası g( a ) = ve f ( ) ( ) ( ) f = g a 4 = a ise a sayısı

Detaylı

Bağıntı YILLAR ) AxB BxA. 2) Ax(BxC) = (AxB)xC. 4) s(axb) = s(bxa) = s(a).s(b)

Bağıntı YILLAR ) AxB BxA. 2) Ax(BxC) = (AxB)xC. 4) s(axb) = s(bxa) = s(a).s(b) Bağıtı YILLAR 00 00 00 005 006 007 008 009 00 0 ÖSS-YGS - - - - - - - - - BAĞINTI ÖZELLĐKLER: SIRALI ĐKĐLĐ: (a,) şeklideki ifadeye ir sıralı ikili yada kısaca ikili deir (a,) sıralı ikiliside a ya irici

Detaylı

Mühendislik Fakültesi Endüstri Mühendisliği Bölümü. Doç. Dr. Nil ARAS ENM411 Tesis Planlaması Güz Dönemi

Mühendislik Fakültesi Endüstri Mühendisliği Bölümü. Doç. Dr. Nil ARAS ENM411 Tesis Planlaması Güz Dönemi Mühedislik Fakültesi Edüstri Mühedisliği Bölümü Doç. Dr. Nil ARAS ENM4 Tesis Plalaması 6-7 Güz Döemi 3 Sisteme ekleecek tesis sayısı birde fazladır. Yei tesisler birbirleri ile etkileşim halide olabilirler

Detaylı

A= {1,2,3}, B={1,3,5,7}kümeleri veriliyor. A dan B ye tanımlanan aşağıdaki bağıntılardan hangisi fonksiyon değildir?

A= {1,2,3}, B={1,3,5,7}kümeleri veriliyor. A dan B ye tanımlanan aşağıdaki bağıntılardan hangisi fonksiyon değildir? ÖRNEK 1 : A= {1,,}, B={1,,5,7}kümeleri veriliyor. A da B ye taımlaa aşağıdaki bağıtılarda hagisi foksiyo değildir? A) {(1,), (,5), (,7)} B) {(1,), (1,5), (,1)} C) {(1,1), (,1), (,1)} D) {(1,5), (,1), (,7)}

Detaylı

3. TAHMİN En Küçük Kareler (EKK) Yöntemi 1

3. TAHMİN En Küçük Kareler (EKK) Yöntemi 1 3. TAHMİN 3.1. En Küçük Kareler (EKK) Yöntemi 1 En Küçük Kareler (EKK) yöntemi, regresyon çözümlemesinde en yaygın olarak kullanılan, daha sonra ele alınacak bazı varsayımlar altında çok aranan istatistiki

Detaylı

Matrisler ve matris işlemleri

Matrisler ve matris işlemleri 2.Konu Matrisler ve matris işlemleri Kaynaklar: 1.Uygulamalı lineer cebir. 7.baskıdan çeviri.bernhard Kollman, David R.Hill/çev.Ed. Ömer Akın, Palma Yayıncılık, 2002 2.Lineer Cebir. Feyzi Başar.Surat Universite

Detaylı

7. Ders. Bazı Kesikli Olasılık Dağılımları

7. Ders. Bazı Kesikli Olasılık Dağılımları Hatırlatma: ( Ω, U, P) bir olasılık uzayı ve 7. Ders Bazı Kesikli Olasılık Dağılımları : Ω ω R ( ω) foksiyou Borel ölçülebilir, yai B B içi { ω Ω : ( ω) B } U oluyorsa foksiyoua bir Rasgele Değişke deir.

Detaylı

ÖZDEĞERLER- ÖZVEKTÖRLER

ÖZDEĞERLER- ÖZVEKTÖRLER ÖZDEĞERLER- ÖZVEKTÖRLER GİRİŞ Özdeğerler, bir matrisin orijinal yapısını görmek için kullanılan alternatif bir yoldur. Özdeğer kavramını açıklamak için öncelikle özvektör kavramı ele alınsın. Bazı vektörler

Detaylı

DİZİLER - SERİLER Test -1

DİZİLER - SERİLER Test -1 DİZİLER - SERİLER Test -. a,,,,, dizisii altıcı terimi. Geel terimi, a ola dizii kaçıcı terimi dir? 6. Geel terimi, a! ola dizii dördücü terimi 8 8 6. Geel terimi, a k k ola dizii dördücü terimi 6 0 6

Detaylı

PROJE ADI: Bir Koniğin Üzerindeki Veya Dışındaki Bir Noktadan Çizilen Teğetlerin Denklemlerini Matrisler Yardımıyla Bulma

PROJE ADI: Bir Koniğin Üzerindeki Veya Dışındaki Bir Noktadan Çizilen Teğetlerin Denklemlerini Matrisler Yardımıyla Bulma PROJE ADI: Bir Koniğin Üzerindeki Veya Dışındaki Bir oktadan Çizilen Teğetlerin Denklemlerini Matrisler Yardımıyla Bulma PROJEİ AMACI: Bu projede herhangi bir koniğin üzerindeki veya dışındaki bir noktadan

Detaylı

AKIŞKAN BORUSU ve VANTİLATÖR DENEYİ

AKIŞKAN BORUSU ve VANTİLATÖR DENEYİ AKIŞKA BORUSU ve ATİLATÖR DEEYİ. DEEYİ AMACI a) Lüle ile debi ölçmek, b) Dairesel kesitli bir borudaki türbülaslı akış şartlarıda hız profili ve eerji kayıplarıı deeysel olarak belirlemek ve literatürde

Detaylı

( KÜME LİSTE, ORTAK ÖZELLİK, ŞEMA YÖNTEMİ ELEMAN SAYISI BOŞ, SONLU, SONSUZ KÜME ALT KÜME VE ÖZELLİKLERİ ) ... BOŞ KÜME. w w w. m a t b a z.

( KÜME LİSTE, ORTAK ÖZELLİK, ŞEMA YÖNTEMİ ELEMAN SAYISI BOŞ, SONLU, SONSUZ KÜME ALT KÜME VE ÖZELLİKLERİ ) ... BOŞ KÜME. w w w. m a t b a z. KÜME KAVRAMI Küme matematiği taımsız bir kavramıdır. Acak kümeyi, iyi taımlamış kavram veya eseler topluluğu diye tarif edebiliriz. Kümeler A, B, X, K,... gibi büyük harflerle Bir kümeyi oluştura eseleri

Detaylı

Dr. AKIN PALA. Damızlık Değeri, genotipik değer, allel frekansları. Damızlık değeri hesabı. Damızlık değeri hesabı. Damızlık değeri hesabı

Dr. AKIN PALA. Damızlık Değeri, genotipik değer, allel frekansları. Damızlık değeri hesabı. Damızlık değeri hesabı. Damızlık değeri hesabı Damızlık Değeri, geotipik değer, allel frekasları Aki Pala, aki@comu.edu.tr ttp://members.comu.edu.tr/aki/ Damızlık değeri esabı µ Ökkeş =800 gr gülük calı ağırlık Sürü A Sürü µ Döller µ 500gr 700 DD esabı

Detaylı

Minör nedir? Genel olarak, n. mertebeden bir kare matris olan A matrisinin, a ij öğesinin minörünü şöyle gösterebiliriz:

Minör nedir? Genel olarak, n. mertebeden bir kare matris olan A matrisinin, a ij öğesinin minörünü şöyle gösterebiliriz: Minör nedir? A = (a ij ) nxn kare matrisinde, bir a ij (1 i, 1 j n) öğesinin bulunduğu i. Satır ile j. sütunun çıkarılmasıyla elde edilen (n-1). mertebeden alt kare matrisin determinantına, A matrisinin

Detaylı

Bir özvektörün sıfırdan farklı herhangi bri sabitle çarpımı yine bir özvektördür.

Bir özvektörün sıfırdan farklı herhangi bri sabitle çarpımı yine bir özvektördür. ÖZDEĞER VE ÖZVEKTÖRLER A n n tipinde bir matris olsun. AX = λx (1.1) olmak üzere n 1 tipinde bileşenleri sıfırdan farklı bir X matrisi için λ sayıları için bu denklemi sağlayan bileşenleri sıfırdan farklı

Detaylı

Şayet bir lineer sistemin en az bir çözümü varsa tutarlı denir.

Şayet bir lineer sistemin en az bir çözümü varsa tutarlı denir. GAZI UNIVERSITY ENGINEERING FACULTY INDUSTRIAL ENGINEERING DEPARTMENT ENM 205 LINEAR ALGEBRA COURSE ENGLISH-TURKISH GLOSSARY Linear equation: a 1, a 2, a 3,.,a n ; b sabitler ve x 1, x 2,...x n ler değişkenler

Detaylı

KORELASYON VE REGRESYON ANALİZİ. Doç. Dr. Bahar TAŞDELEN

KORELASYON VE REGRESYON ANALİZİ. Doç. Dr. Bahar TAŞDELEN KORELASYON VE REGRESYON ANALİZİ Doç. Dr. Bahar TAŞDELEN Günlük hayattan birkaç örnek Gelişim dönemindeki bir çocuğun boyu ile kilosu arasındaki ilişki Bir ailenin tükettiği günlük ekmek sayısı ile ailenin

Detaylı

İSTATİSTİK DERS NOTLARI

İSTATİSTİK DERS NOTLARI Balıkesir Üiversitesi İşaat Mühedisliği Bölümü umutokka@balikesir.edu.tr İSTATİSTİK DERS NOTLARI Yrd. Doç. Dr. Umut OKKAN idrolik Aabilim Dalı Balıkesir Üiversitesi İşaat Mühedisliği Bölümü Bölüm 5 Örekleme

Detaylı

3. Ders Parametre Tahmini Tahmin Edicilerde Aranan Özellikler

3. Ders Parametre Tahmini Tahmin Edicilerde Aranan Özellikler 3. Ders Parametre Tahmii Tahmi Edicilerde Araa Özellikler Gerçek düyada rasgelelik olgusu içere bir özellik ile ilgili ölçme işlemie karş l k gele X rasgele de¼gişkeii olas l k (yo¼guluk) foksiyou, F ff(;

Detaylı

YENĐ BĐR ADAPTĐF FĐLTRELEME YÖNTEMĐ: HĐBRĐD GS-NLMS ALGORĐTMASI

YENĐ BĐR ADAPTĐF FĐLTRELEME YÖNTEMĐ: HĐBRĐD GS-NLMS ALGORĐTMASI Uludağ Üiversitesi ühedislik-imarlık Fakültesi Dergisi, Cilt 3, Sayı, 008 YENĐ BĐR ADAPĐF FĐLRELEE YÖNEĐ: HĐBRĐD GS-NLS ALGORĐASI Sedat ĐRYAKĐ * eti HAUN ** Osma Hilmi KOÇAL ** Özet: Bu makalede, adaptif

Detaylı

YER ÖLÇÜLERİ. Yer ölçüleri, verilerin merkezini veya yığılma noktasını belirleyen istatistiklerdir.

YER ÖLÇÜLERİ. Yer ölçüleri, verilerin merkezini veya yığılma noktasını belirleyen istatistiklerdir. YER ÖLÇÜLERİ Yer ölçüler, verler merkez veya yığılma oktasıı belrleye statstklerdr. Grafkler bze verler yığılma oktaları hakkıda ö blg vermede yardımcı olurlar. Acak bu değerler gerçek değerler değldr,

Detaylı

2. REGRESYON ANALİZİNİN TEMEL KAVRAMLARI Tanım

2. REGRESYON ANALİZİNİN TEMEL KAVRAMLARI Tanım 2. REGRESYON ANALİZİNİN TEMEL KAVRAMLARI 2.1. Tanım Regresyon analizi, bir değişkenin başka bir veya daha fazla değişkene olan bağımlılığını inceler. Amaç, bağımlı değişkenin kitle ortalamasını, açıklayıcı

Detaylı