PROJE RAPORU TANJANT Q_MATR S
|
|
|
- Eser Terzi
- 8 yıl önce
- İzleme sayısı:
Transkript
1 PROJE RAPORU TANJANT Q_MATR S 1
2 Ç NDEK LER Ç NDEK LER çindekiler 1 G R Projenin Amac YÖNTEM 3.1 Fibonacci Saylar Altn Oran ve Altn Matris Genelle³tirilmi³ Fibonacci Saylar ve Pell Denklemleri BULGULAR tan(nα) Açlmnn Genelle³tirilmi³ Fibonacci Denklemlerine Benzetilmesi tan(nα) için Q_Matris Destekleyici Örnekler SONUÇ VE TARTI MA 8 5 ÖNER LER 8 6 KAYNAKÇA 8
3 YÖNTEM 1 G R Matematikte trigonometriyle oldukça fazla kar³la³maktayz. Alan hesaplamalar, e im, türev, limit, integral gibi konular akla ilk gelenler. Mühendisli in uygulama alanlarnda fazlaca kar³la³lan matemati in mihenk ta³larndan olan trigonometri ö rencilerin oldukça zorland konularnda ba³nda gelmektedir. Bu kadar fazla kar³mza çkmasna ra men trigonometride sadece bilinen özel açlarn de erleri ile hesap yaplabilmekte bunun d³na pek çklmamaktadr. Trigonometrideki tanjant fonksiyonu özellikle e im hesaplamalarnda kullanlan bir fonksiyondur. Ancak çok fazla formül içeren trigonometride tanjant fonksiyonu yeterince karma³k ve bazen zor olabilecek formüller içermektedir. Buna kar³lk gene matemati in bir konusu olan ve trigonometriye göre daha kolay i³lem yaplan matrisler üzerinde i³lem yapmak trigonometrik i³lemlere göre daha kolaydr. Bu do rultuda Tanjant fonksiyonunun bonacci dizisinin özel bir geni³lemesi olan pell denklemlerine benzetilerek bonacci dizilerinde ki altn matris veya Q Matris olarak bilinen matris formatna dönü³türülmesi amaçlanm³ ve tanjant fonksiyonunun daha kolay i³lemler ile hesaplanabilece i gösterilmek istenmi³tir. 1.1 Projenin Amac Pell denklemlerinin genelle³tirilmi³ bir formuna dönü³türülen tan(nx) açlm, bonaccinin altn matrisi veya di er adyla Q matris olarak bilinen matrisin özel bir formu elde edilerek matris kuvvetlerinin hesaplanmas gibi daha kolay bir yol ile tan(x) in kuvvetlerinin toplamlar ³eklinde yazlabile i gösterilmi³tir. YÖNTEM.1 Fibonacci Saylar talyan Matematikçi Leonardo de Pisa M.S. yakla³k 1175 tarihinde Pisa ³ehrinde do du. [1] Bu bilim adam Filius Bonacci'nin (Bonaccinin o lu) ksaltlm³ ³ekli olan Fibonacci olarak bilinir. Fibonacci e itimini berberi müslümanlardan alm³tr. Bu nedenle arap say sistemi ile e itim alan Fibonacci bu say sitemine kafa yormu³ 13. yüzyln ba³larnda talya'ya dönerek Liber Abaci adl kitabn yaynlam³tr. Bu kitabnda arap say sistemini Avrupa'ya tantan bonacci Fibonacci dizisinin temeli olan tav³an problemini anlatyordu. Ancak 19. yüzyln sonlarna do ru Edouard Lucas Fibonacci dizisini yeniden ke³fetmi³ ve Fibonacci dizisi büyük bir ivme kazanm³tr. Fibonacci'nin kitabndaki tav³an problemi ³öyledir: Bir çift yeti³kin tav³an her ay yeni bir çift tav³an yavrulamaktadr. Bu yavrular, bir ayn sonunda eri³kin hale gelmekte ve sonraki her ay yeni bir çift yavru yapmaktadr. Herhangi bir ay sonunda yavrularn ve yeti³kin tav³anlarn saysn bulunuz. Bu süre zarfnda tav³anlarn hiçbirinin ölmedi i var saylacaktr. Bu problem matematiksel olarak ³öyle ifade edilmektedir. Ba³langçtan itibaren kaçnc ay oldu u n tamsays ile gösterilmek üzere n. aydaki tav³an saysn F n belirtsin. Bu durumda { F 1 1, F 1 ve n 3 olmak üzere F n F n 1 + F n 3
4 . Altn Oran ve Altn Matris 3 BULGULAR. Altn Oran ve Altn Matris Fibonacci dizisinin bir terimi öncekine bölündü ünde n için bölümün altn oran denen ve irrasyonel bir say olan (1 + 5)/ 1, saysna yaknsad görülmektedir. Bu say oyun kartlarnn biçiminden Msr'daki piramitlere kadar birçok yapnn matematiksel temelini olu³turmaktadr. [] Fibonacci saylar üzerine yaplan çal³malardan biri olan ve literatürde Fibonacci Q-matrisi veya Altn Matris olarak bilinen [ ] 1 1 Q 1 0 matrisi ile klasik bonacci say dizisi {F n } n 0 arasnda [ ] Q n Fn+1 F n F n F n 1 (1) ³eklinde bir ili³ki sunulmakta ve daha sonra matris metodlarnn kullanlmas ile de Fibonacci saylar için çe³itli özde³likler verilmektedir. [3].3 Genelle³tirilmi³ Fibonacci Saylar ve Pell Denklemleri G 1 a, G b ve n 3 olmak üzere G n ag n 1 +bg n ³eklinde tanmlanm³ diziye Genelle³tirilmi³ Fibonacci say dizisi denir. [] Bu say dizisinin elemanlar a, b, a + b, a + b, a + 3b, 3a + 5b,... ³eklindedir. Burada a ve b'nin katsaylarnn Fibonacci saylar oldu u görülür. P 0 0, P 1 1 ve n için P n P n 1 + P n ³eklinde tanmlanm³ {P n } n 0 say dizisine Pell say dizisi denir. Bu say dizisinin elemanlarna, Pell saylar denir. [3] Dikkat edildi i üzere Pell say dizisi Genelle³tirilmi³ Fibonacci dizisinde G 1 a ve G b 1 olarak alnd nda elde edilen özel bir Fibonacci say dizisidir. Dolaysyla Pell say dizisi Genelle³tirilmi³ Fibonacci dizisinin bütün özelliklerine sahiptir. 3 BULGULAR 3.1 tan(nα) Açlmnn Genelle³tirilmi³ Fibonacci Denklemlerine Benzetilmesi Lise Ders kitaplarndan da bildi imiz üzere [4] ve tan(α + β) tan(α) tan(α) + tan(β) 1 tan(α)tan(β) tan(α) 1 tan (α) dr. 3 e³itli inde tan(α) x dönü³ümü yaplrsa tan(α) () (3) x 1 x (4) 4
5 3.1 tan(nα) Açlmnn Genelle³tirilmi³ Fibonacci Denklemlerine 3 BULGULAR Benzetilmesi e³itli i elde edilir. Burada bir genelle³tirme yaplrsa n pozitif bir tam say olmak üzere; tan(nα) S n(x) (5) C n (x) e³itli i elde edilebilir. 5 e³itli inde geçen S n (x) ve C n (x) ifadeleri x e ba l birer polinomdur. tan(3α) tan(α + α) 3tan(α) tan3 (α) 1 3tan (6) (α) denklemini ve 45 denklemlerini göz önünde bulundurursak; ve S 1 (x) x, S (x) x, S 3 (x) 3x x 3,... (7) C 1 (x) 1, C (x) 1 x, C 3 (x) 1 3x,... (8) e³itlikleri elde edilebilir. 5 denklemi kullanlarak ve tan(α) x dönü³ümü göz önüne alnarak tan ((n + 1)α) tan(nα + α) S n (x) C n (x) + x 1 x S n(x) C n (x) S n(x) + xc n (x) C n (x) xs n (x) (9) e³itli i elde edilebilir. Yine 5 e³itli inden biliyoruz ki tan ((n + 1)α) S n+1(x) C n+1 (x) (10) yazlabilir. 9 ve 10 deki denklemleri göz önüne ald mzda, ve e³itliklerini yazabiliriz. 11 denklemini kullanarak S n+1 (x) S n (x) + xc n (x) (11) C n+1 (x) C n (x) xs n (x) (1) S n+1 (x) S n (x) + xc n (x) S n (x) S n 1 (x) + xc n 1 (x) (13) e³itliklerini elde ederiz. 13 de ki iki e³itli i taraf tarafa çkarrsak S n+1 (x) S n (x) S n (x) S n 1 (x) + x (C n (x) C n 1 (x)) (14) elde edilir. Benzer ³ekilde 1 denklemi kullanlarak C n+1 (x) C n (x) xs n (x) C n (x) C n 1 (x) xs n 1 (x) (15) e³itliklerini elde ederiz. 15 e³itliklerini taraf tarafa çkard mzda C n+1 (x) C n (x) C n (x) C n 1 (x) x (S n (x) S n 1 (x)) (16) 5
6 3. tan(nα) için Q_Matris 3 BULGULAR elde edilir.14 ve 16 de 11 ve 1 da ki e³itlikleri kullanrsak; S n+1 (x) S n (x) S n (x) S n 1 (x) x S n 1 (x) S n+1 (x) S n (x) S n 1 (x) x S n 1 (x) + S n (x) S n (x) S n 1 (x) (1 + x )S n (x) (17) ve C n+1 (x) C n (x) C n (x) C n 1 (x) x C n 1 (x) C n+1 (x) C n (x) C n 1 (x) x C n 1 (x) + C n (x) C n (x) C n 1 (x) (1 + x )C n 1 (x) (18) e³itlikleri elde edilir. 17 ve 18 e³itliklerinde elde edilen denklemler genelle³tirilmi³ birer Pell denklemleridir. Dolaysyla her iki denklem de bire Genelle³tirilmi³ Fibonacci denklemidir ve Genelle³tirilmi³ Fibonacci denlemlerinin bütün özelliklerini sa lar. Buradan sonra aklmza gelen ilk soru ise genelle³tirilmi³ Fibonacci dizilerinin özelliklerini sa layan 17 ve 18 denklemleri için bir Altn matris veya Q matrisi bulunabilir mi? 3. tan(nα) için Q_Matris 11 ve 1 e³itliklerini toparlarsak, tan(α) x olmak üzere; S n+1 S n + xc n C n+1 C n x.s n (19) denklem sistemini elde ederiz. Bu denklem sisteminin matris çözümü ; [ ] [ ] [ ] Sn+1 1 x Sn x 1 C n+1 C n (0) denklemi elde edilir. 0 denkleminden 19 de ki denklemler için bir altn matris veya Q matris tanmlam³ oluruz ki bu Q matris [ ] 1 x (1) x 1 dir. Q matrisi 19 denklemleri Genelle³tirilmi³ Fibonacci dizileri oldu undan Fibonacci dzilerinin Altn matrisinin özelli ini sa lamaldr. Bundan dolay [ ] [ ] n [ ] Sn+1 1 x S1 () x 1 C n+1 ³eklinde hasaplanabilir. e³itli inde 7 ve 8 daki e³itlikleri kullanarak düzenleme yapld nda ise [ ] [ ] n [ ] Sn+1 1 x x (3) x 1 1 C n+1 matris e³itli i elde edilir. 5 e³itli ini matris denklem sisteminden çözdü ümüzde ise tan(nα) nn hesaplanabilmesi için sadece tan(α) türünden iki polinomun birbirine bölümü yeterli olacaktr. C 1 6
7 3.3 Destekleyici Örnekler 3 BULGULAR 3.3 Destekleyici Örnekler Örnek 1. tan(5α) fonksiyonunu buldu umuz yöntem ile tan(α) türünden yazalm. tan(5α) S 5(x) C 5 (x) ³eklinde yazlabilir. 3 e³itli inden; [ S5 C 5 ], elde edilir. Buradan ise; e³itli i elde edilir. [ 4 [ ] 1 x x [ ] [ x ] [ 1] 1 ] [ [ ] 1 x 1 x 1 x 1 x x x [ 1 x 1] [ x 1 x ] 1] [ ] 1 1 x x 1 x x x x[ 1 x x ] [ 1 x] 1 1 x x 3x x 3 x [ 1 x 1 ] 3x x 5 10x 3 + 5x 1 + 5x 4 10x tan(5α) tan5 (α) 10tan 3 (α) + 5tan(α) 1 + 5tan 4 (α) 10tan (α) Örnek. tan(6α) fonksiyonunu buldu umuz yöntem ile tan(α) türünden yazalm. tan(6α) S 6(x) C 6 (x) ³eklinde yazlabilir. 3 e³itli inden; [ S6 C 6 ] elde edilir. Buradan ise; e³itli i elde edilir. [ ] 5 [ ] 1 x x [ ] [ ] [ x 1 ] [ 1 ] [ [ ] 1 x 1 x 1 x 1 x 1 x x x [ 1 x 1 ] [ x 1 x ] 1 [ x 1] [ ] 1 1 x x 1 x x 1 x x x [ 1 x x 1 x ] [ x 1] ] 1 1 6x + x 4 4x 4x 3 x 4x 3 [ 4x 1 6x + x 4 ] 1 x 6x 0x 3 + 6x 5 15x 4 15x x tan(6α) 6tan5 (α) 0tan 3 (α) + 6tan(α) tan 4 (α) 15tan (α) tan 6 (α) 7
8 KAYNAKLAR 4 SONUÇ VE TARTI MA 1. tan(nα) fonksiyonu iki tane Genelle³tirilmi³ Fibonacci dizisi ³eklinde tanmlanarak Fibonacci dizisinin özelliklerini sa layabilece i görülmü³tür.. Altn matris veya Q matris denilen Fibonacci dizileri için tanmlanm³ özel bir matrisin genelle³tirilmi³ bir formülü tan(nα) de eri için elde edilmi³tir. 3. tan(nα) fonksiyonu tanmlanm³ olan Q matrisi yardm ile tan(α) cinsinden iki polinomun bölümü ³eklinde daha kolay bir ³ekilde yazlabilece i gösterilmi³tir. 4. Bulunan formül örneklerle desteklenerek geçerlili inin sa lanmas amaçlanm³tr. 5 ÖNER LER 1. tan(nα) için bulunan Q matrisi benzer yöntemler kullanlarak trigonometrinin geneline yaygnla³trlabilir.. Bulunan denklem sistemi olimpiyat sorular hazrlanmasnda ve bunlarn çözümlenmesinde kullanlabilir. 3. E im hesaplamalarnda tek bir aç üzerinden bütün de erler rahatlkla hesaplanarak karma³k i³lemler daha da basite indirgenebilir. 6 KAYNAKÇA Kaynaklar [1] A. Dunlap, Richard; Altn Oran ve Fibonacci Saylar; Tübitak Popüler Bilim Kitaplar; 011 [] Toy, Memnune; Fibonacci ve Lucas Saylarnn Bölünebilme Özellikleri; Selçuk Üniversitesi Fen Bilimleri Enstitüsü; Yüksek Lisans Tezi; 009 [3] Civciv, Hac; Fibonacci ve Lucas Matris Dizileri ve Özellikleri; Selçuk Üniversitesi Fen Bilimleri Enstitüsü; Doktora Tezi; 009 [4] ALTUNTAS, A., (015). LYS Matematik Konu Anlatml Soru Bankas; Birey Yaynlar [5] ASMA,N., BIYIK, H.; (015). LYS Matematik Konu Anlatml; EsenYaynlar [6] []Güleç,Hasan Hüseyin; Fibonacci Dizileri ve Fibonacci Matrislerinin Determinantlar, Normlar Üzerine Bir Çal³ma; Selçuk Üniversitesi Fen Bilimleri Enstitüsü; Yüksek Lisans Tezi; 007 [7] Ku³aksz, Zi³an; Euclid Algoritmas ve Pell Saylar Üzerine; Gazi Üniversitesi Fen Bilimleri Enstitüsü; Yüksek Lisans Tezi; 014 8
ndrgemel Dzler Ders Notlar
ndrgemel Dzler Ders Notlar c wwww.sbelian.wordpress.com Bu ders notunda diziler konusunun bir alt konusu olan First Order Recursions ve Second Order Recursions konular anlatlm³ ve bu konularla alakal örnekler
PERGEL YAYINLARI LYS 1 DENEME-6 KONU ANALİZİ SORU NO LYS 1 MATEMATİK TESTİ KAZANIM NO KAZANIMLAR
2013-2014 PERGEL YAYINLARI LYS 1 DENEME-6 KONU ANALİZİ SORU NO LYS 1 MATEMATİK TESTİ A B KAZANIM NO KAZANIMLAR 1 1 / 31 12 32173 Üslü İfadeler 2 13 42016 Rasyonel ifade kavramını örneklerle açıklar ve
BÖLÜM 1. stanbul Kültür Üniversitesi. Fonksiyonlar - Özellikleri ve Limit Kavram. ³eklinde tanmlanan fonksiyona Dirichlet fonksiyonu ad verilir.
BÖLÜM 1 0, Q 1. f() = 1, R/Q, Fonksiyonlar - Özellikleri ve Limit Kavram ³eklinde tanmlanan fonksiyona Dirichlet fonksiyonu ad verilir. Buna göre a³a da verilen tanm bölgeleri altnda görüntü cümlelerini
28/04/2014 tarihli LYS-1 Matematik-Geometri Testi konu analizi SORU NO LYS 1 MATEMATİK TESTİ KAZANIM NO KAZANIMLAR 1 / 31
SORU NO LYS 1 MATEMATİK TESTİ A B KAZANIM NO KAZANIMLAR 1 1 / 31 11 32159 Rasyonel sayı kavramını açıklar. 2 12 32151 İki ya da daha çok doğal sayının en büyük ortak bölenini ve en küçük ortak katını bulur.
MC 311/ANAL Z III ARA SINAV I ÇÖZÜMLER
MC 311/ANAL Z III ARA SINAV I ÇÖZÜMLER (1) A³a daki her bir önermenin do ru mu yanl³ m oldu unu belirleyiniz. Do ruysa, gerekçe gösteriniz; yanl³sa, bir kar³-örnek veriniz. (a) (a n ) n N dizisi yaknsak
KİTAP İNCELEMESİ. Matematiksel Kavram Yanılgıları ve Çözüm Önerileri. Tamer KUTLUCA 1. Editörler. Mehmet Fatih ÖZMANTAR Erhan BİNGÖLBALİ Hatice AKKOÇ
Dicle Üniversitesi Ziya Gökalp Eğitim Fakültesi Dergisi, 18 (2012) 287-291 287 KİTAP İNCELEMESİ Matematiksel Kavram Yanılgıları ve Çözüm Önerileri Editörler Mehmet Fatih ÖZMANTAR Erhan BİNGÖLBALİ Hatice
YAPI ve DEPREM MÜHENDİSLİĞİNDE MATRİS YÖNTEMLER. Prof. Dr. Hikmet Hüseyin ÇATAL. Prof. Dr. Hikmet Hüseyin ÇATAL. (III. Baskı)
DOKUZ EYLÜL ÜNİVERSİTESİ MÜHENDİSLİK FAKÜLTESİ YAYINLARI NO:294 YAPI ve DEPREM MÜHENDİSLİĞİNDE MATRİS YÖNTEMLER YAPI ve DEPREM MÜHENDİSLİĞİNDE MATRİS YÖNTEMLER (III. Baskı) Prof. Dr. Hikmet Hüseyin ÇATAL
XIV. Ulusal Antalya Matematk Olmpyat Brnc A³ama Snav Sorular -2009
XIV. Ulusal ntalya Matematk Olmpyat rnc ³ama Snav Sorular -009 c www.sbelian.wordpress.com [email protected] Soru 1. dar açl üçgeninde m() = 45 'dir. 'dan 'ye indirilmi³ dikmenin aya E ve 'den
ARA SINAV II. (1) (x k ) k N, R n içinde yaknsak ve limiti x olan bir dizi olsun. {x} = oldu unu gösteriniz.
MC 411/ANAL Z IV ARA SINAV II ÇÖZÜMLER 1 x k k N, R n içinde yaknsak iti x olan bir dizi olsun. {x} = {x m m k} k=1 Çözüm. Her k N için A k := {x m m k} olsun. x k k N dizisinin iti x oldu undan, A k =
19.8. PROBLEMLER 0.1 PROBLEMLER 0.1. PROBLEMLER a herhangi bir nicelik says ise
0.1. PROBLEMLER 1 19.8. PROBLEMLER // 0.1 PROBLEMLER // 1. a herhangi bir nicelik says ise (i) a + 0 = a, a0 = 0, a 0 = 1 oldu unu gösteriniz. A³a daki kümelerin e³güçlülü ünden nicelik saylar için istenen
18.702 Cebir II 2008 Bahar
MIT Açk Ders Malzemeleri http://ocw.mit.edu 18.702 Cebir II 2008 Bahar Bu materyallerden alnt yapmak veya Kullanm artlar hakknda bilgi almak için http://ocw.mit.edu/terms ve http://tuba.acikders.org.tr
BİR SAYININ ÖZÜ VE DÖRT İŞLEM
ÖZEL EGE LİSESİ BİR SAYININ ÖZÜ VE DÖRT İŞLEM HAZIRLAYAN ÖĞRENCİ: Sıla Avar DANIŞMAN ÖĞRETMEN: Gizem Günel İZMİR 2012 İÇİNDEKİLER 1. PROJENİN AMACI.. 3 2. GİRİŞ... 3 3. YÖNTEM. 3 4. ÖN BİLGİLER... 3 5.
A = i IA i = i I A = A = i IA i = {x α((α I) (x A α ))} (7.7) A = (α,β I) (α β) A α A β = (7.8) A A
Bölüm 7 KÜME A LELER 7.1 DAMGALANMI KÜMELER E er inceledi imiz kümelerin says, alfabenin harerinden daha çok de ilse, onlara,b,...,w gibi harerle temsil edebiliriz. E er elimizde albenin harerinden daha
DO U ÜN VERS TES 9.Liseleraras Matematik Yar³mas Sorular. (n + 1) n n n + 1 = n(n + 1)
DO U ÜN VERS TES 9.Liseleraras Matematik Yar³mas Sorular 1 1) a n = (n + 1) n + n n + 1 olmak üzere, a 1 + a + a 3 +... + a 99 toplamn bulunuz. 9 evap: 10 a n = (n + 1) n n n + 1 n(n + 1) n (n + 1) oldu
x = [x] = [x] β = {y (x,y) β} (8.5) X = {x x X}. x,y X [(x = y) (x y = )]. b(b [x]) b [y] [x] [y] (8.8)
Bölüm 8 DENKL K BA INTILARI 8.1 DENKL K BA INTISI 8.1.1 E³itlik Kavramnn Genelle³mesi Matematikte ve ba³ka bilim dallarnda, birbirlerine e³it olmayan, ama e³itli e benzer niteliklere sahip nesnelerle sk
İÇİNDEKİLER. Bölüm 2 CEBİR 43
İÇİNDEKİLER ÖNSÖZ III Bölüm 1 SAYILAR 13 1.1 Doğal Sayılar 15 1.1.1. Tek ve Çift Sayılar 15 1.1.2. Asal Sayılar 15 1.1.3 Doğal Sayıların Özellikleri 15 1.1.4 Doğal Sayılarda Özel Toplamlar 16 1.1.5. Faktöriyel
Ç NDEK LER. Bölüm 4: Üslü Say lar...44 Üslü fadeler...44 Al t rmalar...47 Test Sorular...49
Ç NDEK LER Bölüm1: Say Sistemleri...1 Say Sistemi...2 Desimal (Onluk) Say Sistemi...2 Say Basamaklar ve Taban...4 Binary ( kilik) Say Sistemi...4 Oktal (Sekizlik) Say Sistemi...7 Heksadesimal (Onalt l
POL NOMLAR. Polinomlar
POL NOMLAR ÜN TE 1. ÜN TE 1. ÜN TE 1. ÜN TE 1. ÜN T POL NOMLAR Polinomlar 1. Kazan m: Gerçek kat say l ve tek de i kenli polinom kavram n örneklerle aç klar, polinomun derecesini, ba kat say s n, sabit
kili ve Çoklu Kar³la³trmalar
kili ve Çoklu Kar³la³trmalar Birdal eno lu ükrü Acta³ çindekiler 1 Giri³ 2 3 4 5 6 7 Bu bölümde, (2.1) modelinde, H 0 : µ 1 = µ 2 = = µ a = µ (1) ³eklinde ifade edilen sfr hipotezinin reddedilmesi durumunda,
Ossmat.com Matematik-Fizik-Kimya-Biyoloji Hakkında Herşey (ana sayfaya git)
Facebook Fun Sayfamız Twitter Sayfamız Ossmat.com Matematik-Fizik-Kimya-Biyoloji Hakkında Herşey (ana sayfaya git) (adsbygoogle = window.adsbygoogle []).push({}); Çıkmış Soru Çözümlerİ Çözümleri Matematik
BÖLÜM 7 BİLGİSAYAR UYGULAMALARI - 1
1 BÖLÜM 7 BİLGİSAYAR UYGULAMALARI - 1 Belli bir özelliğe yönelik yapılandırılmış gözlemlerle elde edilen ölçme sonuçları üzerinde bir çok istatistiksel işlem yapılabilmektedir. Bu işlemlerin bir kısmı
LYS MATEMATİK DENEME - 1
LYS MATEMATİK DENEME - BU SORULAR FİNAL EĞİTİM KURUMLARI TARAFINDAN SAĞLANMIŞTIR. İZİNSİZ KOPYALANMASI VE ÇOĞALTILMASI YASAKTIR, YAPILDIĞI TAKDİRDE CEZAİ İŞLEM UYGULANACAKTIR. LYS MATEMATİK TESTİ. Bu testte
1.Temel Kavramlar 2. ÆÍlemler
1.Temel Kavramlar Abaküs Nedir... 7 Abaküsün Tarihçesi... 9 Abaküsün Faydaları... 12 Abaküsü Tanıyalım... 13 Abaküste Rakamların Gösterili i... 18 Abaküste Parmak Hareketlerinin Gösterili i... 19 2. lemler
DOKUZ EYLÜL ÜNİVERSİTESİ MÜHENDİSLİK FAKÜLTESİ YAYINLARI NO:89 MATEMATİK I (12. BASKI) Prof. Dr. A. Nihat BADEM Yrd. Doç. Dr.
MATEMATİK I (12. BASKI) Prof. Dr. A. Nihat BADEM Yrd. Doç. Dr. Ali Tekin TİN MATEMATİK I DOKUZ EYLÜL ÜNİVERSİTESİ MÜHENDİSLİK FAKÜLTESİ YAYINLARI NO:89 Prof. Dr. A. Nihat BADEM Yrd. Doç. Dr. Ali Tekin
2013-2014 EĞİTİM VE ÖĞRETİM YILI TED KDZ EREĞLİ KOLEJİ ORTAOKULU MATEMATİK 8.SINIF ÜNİTELENDİRİLMİŞ YILLIK PLANDIR.
EYLÜL 2013-201 EĞİTİM VE ÖĞRETİM YILI TED KDZ EREĞLİ KOLEJİ ORTAOKULU MATEMATİK 8.SINIF ÜNİTELENDİRİLMİŞ YILLIK PLANDIR. 9-13 Örüntü ve Süslemeler Dönüşüm Geometrisi 1. Doğru, çokgen ve çember modellerinden
LYS Matemat k Deneme Sınavı
LYS Matematk Deneme Sınavı. ve birer tamsaı olmak üzere; 7 olduğuna göre, farkının alabileceği en büük değer ile en küçük değerin farkı aşağıdakilerden hangisidir? 0 8 8. 0 olmak üzere; ifadesinin eşiti
Örnek...3 : Aşağıdaki ifadelerden hangileri bir dizinin genel terim i olabilir? Örnek...4 : Genel terimi w n. Örnek...1 : Örnek...5 : Genel terimi r n
DİZİLER Tanım kümesi pozitif tam sayılar kümesi olan her fonksiyona dizi denir. Örneğin f : Z + R, f (n )=n 2 ifadesi bir dizi belirtir. Diziler değer kümelerine göre adlandırılırlar. Dizinin değer kümesi
Içindekiler. Karşk Örnekler 87. TÜBITAK SORULARI (Fonksiyonlar) 55 ULUSAL ANTALYA MATEMATIK OLIMPIYATI SORULARI 64
Içindekiler BIRINCI BÖLÜM Fonksiyonlar Bagnt Fonksiyon 2 Fonksiyonel Denklemlere Giriş 4 Fonksiyonun Gragi 7 Fonksiyon Çeşitleri 8 Bir Fonksiyonun Tersi 20 Bileşke Fonksiyon 23 Tek ve Çift Fonksiyon 25
Bu dedi im yaln zca 0,9 say s için de il, 0 la 1 aras ndaki herhangi bir say için geçerlidir:
Yak nsamak B u yaz da, ilerde s k s k kullanaca m z bir olguyu tan mlayaca z ve matemati in en önemli kavramlar ndan birine (limit kavram na) de inece iz. Asl nda okur anlataca m kavram sezgisel olarak
B A. A = B [(A B) (B A)] (2)
Bölüm 5 KÜMELER CEB R Do a olaylarnn ya da sosyal olaylarn açklanmas için, bazan, matematiksel modelleme yaplr. Bunu yapmak demek, incelenecek olaya etki eden etmenleri içine alan matematiksel formülleri
ÜN TE II L M T. Limit Sa dan ve Soldan Limit Özel Fonksiyonlarda Limit Limit Teoremleri Belirsizlik Durumlar Örnekler
ÜN TE II L M T Limit Sa dan ve Soldan Limit Özel Fonksiyonlarda Limit Limit Teoremleri Belirsizlik Durumlar Örnekler MATEMAT K 5 BU BÖLÜM NELER AMAÇLIYOR? Bu bölümü çal flt n zda (bitirdi inizde), *Bir
Projenin Adı: Metalik Oranlar ve Karmaşık Sayı Uygulamaları
Projenin Adı: Metalik Oranlar ve Karmaşık Sayı Uygulamaları Projenin Amacı: Metalik Oranların elde edildiği ikinci dereceden denklemin diskriminantını ele alarak karmaşık sayılarla uygulama yapmak ve elde
MATEMATİK ÖĞRETMENLİK ALAN BİLGİSİ - DENEME SINAVI DENEME. Diğer sayfaya geçiniz.
MATEMATİK. DENEME ÖĞRETMENLİK ALAN BİLGİSİ - DENEME SINAVI. f : X tanımlı y = f() fonksiyonu için lim f ( ) = L ise aşağıdaki önermelerden kaç tanesi kesinlikle doğrudur? 0 I. X dir. 0 II. f() fonksiyonu
ANT TÜREV VE NTEGRAL HESAPLAMA YÖNTEMLER
ANT TÜREV VE NTEGRAL HESAPLAMA YÖNTEMLER 1 TEMEL YÖNTEM VE DE KEN DE T RME Bir kapal aralkta tanmlanm³ olan f ve F fonksiyonlar için e er bu aralkta F () f() ko³ulu sa lanyorsa F fonksiyonu, f fonksiyonunun
İÇİNDEKİLER ÖNSÖZ Bölüm 1 SAYILAR 11 Bölüm 2 KÜMELER 31 Bölüm 3 FONKSİYONLAR
İÇİNDEKİLER ÖNSÖZ III Bölüm 1 SAYILAR 11 1.1. Sayı Kümeleri 12 1.1.1.Doğal Sayılar Kümesi 12 1.1.2.Tam Sayılar Kümesi 13 1.1.3.Rasyonel Sayılar Kümesi 14 1.1.4. İrrasyonel Sayılar Kümesi 16 1.1.5. Gerçel
Içindekiler. Bölünebilme ve Bölme Algoritmas Bölme Algoritmas 12 Bölünebilme Kurallar 15 Bölünebilme Problemlerinde En Çok Kullanlan Yöntemler 22
Içindekiler BIRINCI BÖLÜM Bölünebilme ve Bölme Algoritmas Bölme Algoritmas 12 Bölünebilme Kurallar 15 Bölünebilme Problemlerinde En Çok Kullanlan Yöntemler 22 Çözümlü Test 25 Çözümler 28 Problemler (Bölünebilme)
NÜMER IK ANAL IZ. Nuri ÖZALP. Sabit Nokta ve Fonksiyonel Yineleme. Bilimsel Hesaplama Matemati¼gi
NÜMER IK ANAL IZ Bilimsel Hesaplama Matemati¼gi Nuri ÖZALP Sabit Nokta ve Fonksiyonel Yineleme Nuri ÖZALP (Ankara Üni.) NÜMER IK ANAL IZ BÖLÜM 3 7! Sabit Nokta ve Fonksiyonel Yineleme 1 / 23 Sabit Nokta
ANABİLİM EĞİTİM KURUMLARI 7. Sınıf Türkçe Ders Değerlendirme Formu
7. Sınıf Türkçe Ders Değerlendirme Formu Dersin Öğretmeni: Nergiz İLİMEN, Ayben TATLICI, Gülşah YILMAZ İletişim Bilgileri: 0 216 415 00 00/ 1213 [email protected], [email protected],
Örnek...3 : Aşağıdaki ifadelerden hangileri bir dizinin genel terim i olabilir?
DİZİLER Tanım kümesi pozitif tam sayılar kümesi olan her fonksiyona dizi denir. Örneğin f : Z + R, f (n )=n 2 ifadesi bir dizi belirtir. Diziler, değer kümelerine göre adlandırı - lırlar. Dizinin değer
ÖZEL EGE LİSESİ FİBONACCİ DİZİLERİ YARDIMIYLA DEĞERİNİ HESAPLAYAN BİR FORMÜL
ÖZEL EGE LİSESİ FİBONACCİ DİZİLERİ YARDIMIYLA DEĞERİNİ HESAPLAYAN BİR FORMÜL HAZIRLAYAN ÖĞRENCİ: Tilbe GÖKÇEL DANIŞMAN ÖĞRETMEN: Emel ERGÖNÜL İZMİR 2013 İÇİNDEKİLER 1. PROJENİN AMACI... 3 2. GİRİŞ... 3
Bir özvektörün sıfırdan farklı herhangi bri sabitle çarpımı yine bir özvektördür.
ÖZDEĞER VE ÖZVEKTÖRLER A n n tipinde bir matris olsun. AX = λx (1.1) olmak üzere n 1 tipinde bileşenleri sıfırdan farklı bir X matrisi için λ sayıları için bu denklemi sağlayan bileşenleri sıfırdan farklı
DİKKAT! SORU KİTAPÇIĞINIZIN TÜRÜNÜ "A" OLARAK CEVAP KÂĞIDINA İŞARETLEMEYİ UNUTMAYINIZ. SAYISAL BÖLÜM SAYISAL-2 TESTİ
ALES İlkbahar 007 SAY DİKKAT! SORU KİTAPÇIĞINIZIN TÜRÜNÜ "A" OLARAK CEVAP KÂĞIDINA İŞARETLEMEYİ UNUTMAYINIZ. SAYISAL BÖLÜM SAYISAL- TESTİ Sınavın bu testinden alacağınız standart puan, Sayısal Ağırlıklı
T.C. ÇANAKKALE ONSEK Z MART ÜN VERS TES
T.C. ÇANAKKALE ONSEK Z MART ÜN VERS TES 1 2 Çanakkale Onsekiz Mart Üniversitesi Strateji Geli tirme Daire Ba kanl Tel: (286) 218452 Faks: (286) 218451 E-posta: [email protected] http://strateji.comu.edu.tr/
MAT223 AYRIK MATEMATİK
MAT223 AYRIK MATEMATİK Çizgeler 7. Bölüm Emrah Akyar Anadolu Üniversitesi Fen Fakültesi Matematik Bölümü, ESKİŞEHİR 2014 2015 Öğretim Yılı Çift ve Tek Dereceler Çizgeler Çift ve Tek Dereceler Soru 51 kişinin
Bir-Yönlü ANOVA (Tamamen Rasgele Tasarm)
Bir-Yönlü ANOVA (Tamamen Rasgele Tasarm) Birdal eno lu ükrü Acta³ çindekiler 1 Giri³ Giri³ 2 3 4 LS Tahmin Edicilerinin Özellikleri 5 Genel Kareler Toplamnn Parçalan³ ndirgenmi³ Model-Tam Model Yakla³m
2014 LYS MATEMATİK. P(x) x 2 x 3 polinomunda. 2b a ifade- x lü terimin. olduğuna göre, katsayısı kaçtır? değeri kaçtır? ifadesinin değeri kaçtır? 4.
04 LYS MATEMATİK. a b b a ifade- ab olduğuna göre, sinin değeri kaçtır? 5. P() polinomunda katsayısı kaçtır? 4 lü terimin. ifadesinin değeri kaçtır? 4. yy y 4y y olduğuna göre, + y toplamının değeri kaçtır?
MAK 210 SAYISAL ANALİZ
MAK 210 SAYISAL ANALİZ BÖLÜM 7- SAYISAL TÜREV Doç. Dr. Ali Rıza YILDIZ 1 GİRİŞ İntegral işlemi gibi türev işlemi de mühendislikte çok fazla kullanılan bir işlemdir. Basit olarak bir fonksiyonun bir noktadaki
Soyut Matematik Test A
1 Soyut Matematik Test A 1. A³a dakilerden hangisi do rudur? (a) * A B C(C B) A C) (b) A B C(C B) A C) (c) A B C(B C) A C) (d) A B C(B C) A C) (e) A B C(B C) (A C) 2. Her hangi bir A kümeler ailesi üzerinde
13.Konu Reel sayılar
13.Konu Reel sayılar 1. Temel dizi 2. Temel dizilerde toplama ve çarpma 3. Reel sayılar kümesi 4. Reel sayılar kümesinde toplama ve çarpma 5. Reel sayılar kümesinde sıralama 6. Reel sayılar kümesinin tamlık
18.034 İleri Diferansiyel Denklemler
MIT AçıkDersSistemi http://ocw.mit.edu 18.034 İleri Diferansiyel Denklemler 2009 Bahar Bu bilgilere atıfta bulunmak veya kullanım koşulları hakkında bilgi için http://ocw.mit.edu/terms web sitesini ziyaret
KAMU PERSONEL SEÇME SINAVI ÖĞRETMENLİK ALAN BİLGİSİ TESTİ ORTAÖĞRETİM MATEMATİK ÖĞRETMENLİĞİ TG 4 ÖABT ORTAÖĞRETİM MATEMATİK Bu testlerin her hakkı saklıdır. Hangi amaçla olursa olsun, testlerin tamamının
Polinomlar, Temel Kavramlar, Polinomlar Kümesinde Toplama, Çıkarma, Çarpma TEST D 9. E 10. C 11. B 14. D 16. D 12. C 12. A 13. B 14.
1. Ünite: Polinomlar Polinomlar, Temel Kavramlar, Polinomlar Kümesinde Toplama, Çıkarma, Çarpma 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 Polinomlarda Bölme, Bölüm ve Kalan Bulma 1 1 1 1 1 1 1 1 1
Fizik I (Fizik ve Ölçme) - Ders sorumlusu: Yrd.Doç.Dr.Hilmi Ku çu
Fizik I (Fizik ve Ölçme) - Ders sorumlusu: Yrd.Doç.Dr.Hilmi Ku çu Bu bölümde; Fizik ve Fizi in Yöntemleri, Fiziksel Nicelikler, Standartlar ve Birimler, Uluslararas Birim Sistemi (SI), Uzunluk, Kütle ve
Fizik ve Ölçme. Fizik deneysel gözlemler ve nicel ölçümlere dayanır
Fizik ve Ölçme Fizik deneysel gözlemler ve nicel ölçümlere dayanır Fizik kanunları temel büyüklükler(nicelikler) cinsinden ifade edilir. Mekanikte üç temel büyüklük vardır; bunlar uzunluk(l), zaman(t)
SBS 2013 YENİ SEVİYE BELİRLEME SINAVI BİLGİLENDİRME SUNUMU
Sayın Velilerimiz, 3 Kasım 2012 günü siz 8.sınıf velilerimize yönelik olarak hazırlamış olduğumuz bilgilendirme sunumuna katıldığınız için teşekkür ederiz. Gelen istekler doğrultusunda, sunumu sizlerin
MATEMATİK TESTİ LYS YE DOĞRU. 1. Bu testte Matematik ile ilgili 50 soru vardır.
MTMTİK TSTİ LYS-. u testte Matematik ile ilgili 0 soru vardır.. evaplarınızı, cevap kâğıdının Matematik Testi için ayrılan kısmına işaretleyiniz.. u testteki süreniz 7 dakikadır.. a, b, c birer reel sayı
İçindekiler Jeofizikte Modellemenin Amaç ve Kapsamı Geneleştirilmiş Ters Kuram ve Jeofizikte Ters Problem Çözümleri
İçindekiler Jeofizikte Modellemenin Amaç ve Kapsamı 1 Giriş 1 Tanımsal ve Stokastik Taklaşımlarla Problem Çözümlerinin Temel İlkeleri 2 Tanımsal Yaklaşımda Düz Problem Çözümlerinde Modelleme ilkeleri 4
İLKÖĞRETİM 6., 7., 8. SINIFLAR MATEMATİK DERSİ MÜFREDAT PROGRAMINDA GEÇEN CEBİR KONULARININ İNCELENMESİ MAT YL 2009 0001
T.C. ADNAN MENDERES ÜNİVERSİTESİ FEN BİLİMLERİ ENSTİTÜSÜ MATEMATİK ANABİLİMDALI İLKÖĞRETİM 6., 7., 8. SINIFLAR MATEMATİK DERSİ MÜFREDAT PROGRAMINDA GEÇEN CEBİR KONULARININ İNCELENMESİ MAT YL 2009 0001
(i) (0,2], (ii) (0,1], (iii) [1,2), (iv) (1,2]
Bölüm 5 KOM ULUKLAR 5.1 KOM ULUKLAR Tanm 5.1.1. (X, T ) bir topolojik uzay ve A ile N kümeleri X uzaynn iki alt-kümesi olsun. E er A T N olacak ³ekilde her hangi bir T T varsa, N kümesine A nn bir kom³ulu
BÖLÜM 1. Matematiksel ndüksiyon Prensibi
BÖLÜM 1 Matematiksel ndüksiyon Prensibi Matematiksel indüksiyon prensibini kullanarak a³a daki e³it(siz)liklerin her n N için gerçeklendi ini ispatlaynz. 1. 1 2 + 2 2 + 3 2 + + n 2 = n(n+1)(2n+1) 6 2.
YZM ALGORİTMA ANALİZİ VE TASARIM DERS#3: ALGORİTMA ANALİZİ#2
YZM 3207- ALGORİTMA ANALİZİ VE TASARIM DERS#3: ALGORİTMA ANALİZİ#2 Özyineli Olmayan (Nonrecursive) Algoritmaların Matematiksel Analizi En büyük elemanı bulma problemi En Büyük Elemanı Bulma Problemi Girdi
Soru Toplam Puanlama Alnan Puan
..04 No: Ad-Soyad: mza: Soru.. 3. 4. 5. 6. 7. 8. Toplam Puanlama 0 0 0 5 0 0 0 0 00 Alnan Puan 04043006. CEB RSEL TOPOLOJ ARASINAVI CEVAP ANAHTARI ( K NC Ö RET M) Not: Süre 90 Dakika. stedi iniz 7 soruyu
HAM PUAN: Üniversite Sınavlarına giren adayların sadece netler üzerinden hesaplanan puanlarına hem puan denir.
YGS / LYS SÖZLÜĞÜ OBP (ORTA ÖĞRETİM BAŞARI PUANI): Öğrencinin diploma notunun diğer öğrencilerin diploma notlarına oranıdır. En az 100 en çok 500 puan arasında değişen bu değer, öğrencinin başarısı okulun
İÇİNDEKİLER ÖNSÖZ Bölüm 1 KÜMELER Bölüm 2 SAYILAR
İÇİNDEKİLER ÖNSÖZ III Bölüm 1 KÜMELER 11 1.1. Küme 12 1.2. Kümelerin Gösterimi 13 1.3. Boş Küme 13 1.4. Denk Küme 13 1.5. Eşit Kümeler 13 1.6. Alt Küme 13 1.7. Alt Küme Sayısı 14 1.8. Öz Alt Küme 16 1.9.
Olasılık ve İstatistik Dersinin Öğretiminde Deney ve Simülasyon
Olasılık ve İstatistik Dersinin Öğretiminde Deney ve Simülasyon Levent ÖZBEK Fikri ÖZTÜRK Ankara Üniversitesi Fen Fakültesi İstatistik Bölümü Sistem Modelleme ve Simülasyon Laboratuvarı 61 Tandoğan/Ankara
matematik LYS SORU BANKASI KONU ÖZETLERİ KONU ALT BÖLÜM TESTLERİ GERİ BESLEME TESTLERİ Süleyman ERTEKİN Öğrenci Kitaplığı
matematik SORU BANKASI Süleyman ERTEKİN LYS KONU ALT BÖLÜM TESTLERİ GERİ BESLEME TESTLERİ KONU ÖZETLERİ Öğrenci Kitaplığı SORU BANKASI matematik LYS EDAM Öğrenci Kitaplığı 18 EDAM ın yazılı izni olmaksızın,
NÜMER IK ANAL IZ. Nuri ÖZALP MATEMAT IKSEL ÖNB ILG ILER. Bilimsel Hesaplama Matemati¼gi
NÜMER IK ANAL IZ Bilimsel Hesaplama Matemati¼gi Nuri ÖZALP MATEMAT IKSEL ÖNB ILG ILER Nuri ÖZALP (Ankara Üni.) NÜMER IK ANAL IZ BÖLÜM 1 7! MATEMAT IKSEL ÖNB ILG ILER 1 / 15 Kaynaklar Nümerik Analiz-Bilimsel
1. BÖLÜM Polinomlar BÖLÜM II. Dereceden Denklemler BÖLÜM II. Dereceden Eşitsizlikler BÖLÜM Parabol
ORGANİZASYON ŞEMASI . BÖLÜM Polinomlar... 7. BÖLÜM II. Dereceden Denklemler.... BÖLÜM II. Dereceden Eşitsizlikler... 9. BÖLÜM Parabol... 5 5. BÖLÜM Trigonometri... 69 6. BÖLÜM Karmaşık Sayılar... 09 7.
www.usmatik.com MATEMATİK PROGRAMI YGS-LYS Matematik Çalışma Programı
www.usmatik.com MATEMATİK PROGRAMI YGS-LYS Matematik Çalışma Programı Ertuğrul US 01.09.2014 MATEMATİK PROGRAMIM Program 6 aylık (24 haftalık) bir programdır. Konuların veriliş sırasına uyularak çalışılması
NÜMER IK ANAL IZ. Nuri ÖZALP FONKS IYONLARA YAKLAŞIM. Bilimsel Hesaplama Matemati¼gi
NÜMER IK ANAL IZ Bilimsel Hesaplama Matemati¼gi Nuri ÖZALP FONKS IYONLARA YAKLAŞIM Nuri ÖZALP (Ankara Üni.) NÜMER IK ANAL IZ BÖLÜM 4 7! FONKS IYONLARA YAKLAŞIM 1 / 21 1 Polinom Interpolasyonu Newton Formu
TG 12 ÖABT İLKÖĞRETİM MATEMATİK
KAMU PERSONEL SEÇME SINAVI ÖĞRETMENLİK ALAN BİLGİSİ TESTİ İLKÖĞRETİM MATEMATİK ÖĞRETMENLİĞİ TG ÖABT İLKÖĞRETİM MATEMATİK Bu testlerin her hakkı saklıdır. Hangi amaçla olursa olsun, testlerin tamamının
Muhammed ERKUŞ. Sefer Ekrem ÇELİKBİLEK
Hazırlayan: Sunan: Muhammed ERKUŞ Sefer Ekrem ÇELİKBİLEK 20047095 20043193 FİBONACCİ SAYILARI ve ALTIN ORAN Fibonacci Kimdir? Leonardo Fibonacci (1175-1250) Pisalı Leonardo Fibonacci Rönesans öncesi Avrupa'nın
İLKÖĞRETİM MATEMATİK SOYUT CEBİR LİNEER CEBİR
ÖABT 205 Soruları yakalayan komisyon tarafından hazırlanmıştır. ÖĞRETMENLİK ALAN BİLGİSİ TESTİ ÖABT İLKÖĞRETİM MATEMATİK SOYUT CEBİR LİNEER CEBİR Konu Anlatımı Özgün Sorular Ayrıntılı Çözümler Test Stratejileri
Akademik Personel ve Lisansüstü Eğitimi Giriş Sınavı. ALES / Đlkbahar / Sayısal II / 22 Nisan 2007. Matematik Soruları ve Çözümleri
Akademik Personel ve Lisansüstü Eğitimi Giriş Sınavı ALES / Đlkbahar / Sayısal II / Nisan 007 Matematik Soruları ve Çözümleri 1. 3,15 sayısının aşağıdaki sayılardan hangisiyle çarpımının sonucu bir tam
Örnek...6 : Yandaki bölme işleminde A ve n birer doğal sayıdır. A nın alabileceği en küçük ve en bü yük değerleri bulunu z.
MODÜLER ARİTMETİK ( BÖLME BÖLÜNEBİLME KURALLARI ÖKLİT ALGORİTMASI DEĞERLENDİRME ) BÖLME İŞLEMİ VE ÖZELLİKLERİ A, B, C, K doğal sayılar ve B olmak üzere, BÖLÜNEN A B C BÖLEN BÖLÜM Örnek...5 : A, B, C birbirinden
Soyut Matematik Test B
1 Soyut Matematik Test B 1. Hangisi tümel (tam, linear) sralama ba ntsdr? (a) Yansmal, antisimetrik, geçi³ken ve örgün olan ba ntdr. (b) Yansmal, simetrik, geçi³ken ve örgün olan ba ntdr. (c) Yansmaz,
LYS GENEL KATILIMLI TÜRKİYE GENELİ ONLİNE DENEME SINAVI
LYS GENEL KATILIMLI TÜRKİYE GENELİ ONLİNE DENEME SINAVI LYS- MATEMATİK (MF-TM). Bu testte Matematik ile ilgili soru vardır.. Cevaplarınızı, cevap kâğıdının Matematik Testi için arılan kısmına işaretleiniz..
ç- çe Tasarmlar Birdal eno lu ükrü Acta³ eno lu & Acta³ statistiksel Deney Tasarm Giri³ ki A³amal ç- çe Üç A³amal ç- çe l A³amal ç- çe
lar Birdal eno lu ükrü çindekiler 1 2 3 4 5 A³amal tasarmlar (hierarchical designs) olarak da bilinen iç-içe tasarmlarda (nested designs), ³u ana kadar gördü ümüz tasarmlardan farkl olarak iki veya ikiden
İçinde x, y, z gibi değişkenler geçen önermelere açık önerme denir.
2. Niceleme Mantığı (Yüklemler Mantığı) Önermeler mantığı önermeleri nitelik yönünden ele aldığı için önermelerin niceliğini göstermede yetersizdir. Örneğin, "Bazı hayvanlar dört ayaklıdır." ve "Bütün
BASIN KİTAPÇIĞI ÖSYM
BASIN KİTAPÇIĞI 00000000 AÇIKLAMA 1. Bu kitapç kta Lisans Yerle tirme S nav -1 Matematik Testi bulunmaktad r. 2. Bu test için verilen toplam cevaplama süresi 75 dakikadır. 3. Bu kitapç ktaki testlerde
T.C. GIDA MÜHEND SL BÖLÜMÜ DENEY RAPORU YAZIM KILAVUZU
T.C. S 7 ARALIK ÜN VERS TES MÜHEND SL K-M MARLIK FAKÜLTES GIDA MÜHEND SL BÖLÜMÜ DENEY RAPORU YAZIM KILAVUZU Deney raporu nedir ve neden haz rlan r? Laboratuvar dersleri, test ve ölçüm düzenekleri konusunda
ALES. sýnavlarına en yakın üç bin iki yüz soru SÖZEL ADAYLAR İÇİN ALES SORU BANKASI. Tamamı Çözümlü. Savaş Doğan - Kenan Osmanoğlu - Kerem Köker
ALES 2016 sýnavlarına en yakın üç bin iki yüz soru ALES SÖZEL ADAYLAR İÇİN SORU BANKASI Tamamı Çözümlü Savaş Doğan - Kenan Osmanoğlu - Kerem Köker Savaş Doğan - Kenan Osmanoğlu - Kerem Köker ALES Sözel
Projenin Amacı: Çok kullanılan trigonometrik oranların farklı ve pratik yöntemlerle bulunması
Projenin Adı: Trigonometrik Oranlar için Pratik Yöntemler Projenin Amacı: Çok kullanılan trigonometrik oranların farklı ve pratik yöntemlerle bulunması GİRİŞ: Matematiksel işlemlerde, lazım olduğunda,
1-A. Adı Soyadı. Okulu. Sınıfı LYS-1 MATEMATİK TESTİ. Bu Testte; Toplam 50 Adet soru bulunmaktadır. Cevaplama Süresi 75 dakikadır.
-A Adı Soadı kulu Sınıfı LYS- MATEMATİK TESTİ Bu Testte; Toplam Adet soru bulunmaktadır. Cevaplama Süresi 7 dakikadır. Süre bitiminde Matematik Testi sınav kitapçığınızı gözetmeninize verip Geometri Testi
EEM 202 DENEY 5 SERİ RL DEVRESİ
SERİ RL DEVRESİ 5.1 Amaçlar i, v, v R ve v L için RMS değerlerini hesaplama Seri RL devresinde voltaj ve empedans üçgenlerini tanımlama Seri RL devresinin empdansının kazanç ve faz karakteristiklerini
12. SINIF. Ağırlık (%) SAYILAR VE CEBİR ÜSTEL VE LOGARİTMİK FONKSİYONLAR Üstel Fonksiyon 1 8 4
12. SINIF No Konular Kazanım Sayısı Ders Saati Ağırlık (%) 12.1. ÜSTEL VE LOGARİTMİK FONKSİYONLAR 6 36 17 12.1.1. Üstel Fonksiyon 1 8 4 12.1.2. Logaritma Fonksiyonu 3 18 8 12.1.3 Üstel, Logaritmik Denklemler
İleri Diferansiyel Denklemler
MIT AçıkDersSistemi http://ocw.mit.edu 18.034 İleri Diferansiyel Denklemler 2009 Bahar Bu bilgilere atıfta bulunmak veya kullanım koşulları hakkında bilgi için http://ocw.mit.edu/terms web sitesini ziyaret
IQ PLUS BUTİK EĞİTİM MERKEZİ
TÜRKÇE www.ilusegitim.com 0 232 2013 2013 www.ilusegitim.com www.ilusegitim.com 0 232 2013 2013 www.ilusegitim.com 2013 www.ilusegitim.com 0 232 2013 www.ilusegitim.com www.ilusegitim.com 0 232 www.ilusegitim.com
OPERATÖRLER BÖLÜM 4. 4.1 Giriş. 4.2. Aritmetik Operatörler
BÖLÜM 4. OPERATÖRLER 4.1 Giriş Turbo Pascal programlama dilinde de diğer programlama dillerinde olduğu gibi operatörler, yapılan işlem türüne göre aritmetik, mantıksal ve karşılaştırma operatörleri olmak
MAT223 AYRIK MATEMATİK
MAT223 AYRIK MATEMATİK Fibonacci Sayıları 4. Bölüm Emrah Akyar Anadolu Üniversitesi Fen Fakültesi Matematik Bölümü, ESKİŞEHİR 2014 2015 Öğretim Yılı Fibonacci nin Tavşanları Fibonacci Sayıları Fibonacci
Proje Adı: Sonlu Bir Aritmetik Dizinin Terimlerinin Kuvvetleri Toplamının İndirgeme Bağıntısıyla Bulunması.
Proje Adı: Sonlu Bir Aritmetik Dizinin Terimlerinin Kuvvetleri Toplamının İndirgeme Bağıntısıyla Bulunması. Projenin Amacı: Aritmetik bir dizinin ilk n-teriminin belirli tam sayı kuvvetleri toplamının
TOPOLOJ TEST A. 1. A³a dakilerden hangisi topoloji tanmlama yöntemi de ildir?
1 TOPOLOJ TEST A 1. A³a dakilerden hangisi topoloji tanmlama yöntemi de ildir? (a) Açk kümeleri belirleme (b) Kapal kümeleri belirleme (c) Alt-kümeleri belirleme (d) Kaplamlar belirleme (e) çlemleri belirleme
2014 LYS MATEMATİK. x lü terimin 1, 3. 3 ab olduğuna göre, ifadesinin değeri kaçtır? 2b a ifade- sinin değeri kaçtır? olduğuna göre, x.
4 LYS MATEMATİK. a b b a ifade- ab olduğuna göre, sinin değeri kaçtır? 5. ifadesinin değeri kaçtır? 5. P() polinomunda katsaısı kaçtır? 4 lü terimin 4 log log çarpımının değeri kaçtır? 6. 4 olduğuna göre,.
MATEMATİK ve DOĞA. Ayşe AYRAN Prof. Dr. Neşet AYDIN Çanakkale Onsekiz Mart Üniversitesi, Fen Edebiyat Fakültesi, Matematik Bölümü
MATEMATİK ve DOĞA Ayşe AYRAN Prof. Dr. Neşet AYDIN Çanakkale Onsekiz Mart Üniversitesi, Fen Edebiyat Fakültesi, Matematik Bölümü ÖZET Leonardo Fibonacci 13. yy yaşamış İtalyan bir matematikçidir. Fibonacci
2(1+ 5 ) b = LYS MATEMATİK DENEMESİ. işleminin sonucu kaçtır? A)2 5 B)3 5 C)2+ 5 D)3+ 5 E) işleminin sonucu kaçtır?
017 LYS MATEMATİK DENEMESİ Soru Sayısı: 50 Sınav Süresi: 75 ı 1. 4. (1+ 5 ) 1+ 5 işleminin sonucu kaçtır? A) 5 B)3 5 C)+ 5 işleminin sonucu kaçtır? D)3+ 5 E)1+ 5 A) B) 1 C) 1 D) E) 3. 4 0,5.16 0,5 işleminin
Massachusetts Teknoloji Enstitüsü-Fizik Bölümü
Massachusetts Teknoloji Enstitüsü-Fizik Bölümü Fizik 8.01 Ödev # 10 Güz, 1999 ÇÖZÜMLER Dru Renner [email protected] 8 Aralık 1999 Saat: 09.54 Problem 10.1 (a) Bir F kuvveti ile çekiyoruz (her iki ip ile). O
ÜNİTE 5 KESİKLİ RASSAL DEĞİŞKENLER VE OLASILIK DAĞILIMLARI
ÜNİTE 5 KESİKLİ RASSAL DEĞİŞKENLER VE OLASILIK DAĞILIMLARI 1 Rassal Değişken Bir deney ya da gözlemin şansa bağlı sonucu bir değişkenin aldığı değer olarak düşünülürse, olasılık ve istatistikte böyle bir
12.SINIF A VE B GRUBU MATEMATİK-GEOMETRİ DERSİ KURS KONULARI VE TESTLERİ
.SINIF A VE B GRUBU MATEMATİK-GEOMETRİ DERSİ KURS KONULARI VE TESTLERİ A-TEST SAYILAR- TEMEL KAVRAMLAR A-TEST SAYILAR- POLİNOMLAR B-TEST POLİNOMLAR- PARALEL DOĞRULARDA VE ÜÇGENDE AÇILAR A- B TEST PARALEL
