Tedavi planlama sisteminde hesaplanan doz dağılımlarının dozimetrik kontrolü



Benzer belgeler
IMRT Hastalarının n Kalite Kontrolü: : 2D-Array Deneyimi

MLC LERİN IMRT GAMMA ANALİZİNE ETKİSİ: Tongue and Groove, Hız ve Pozisyon Hatalarının Kliniğe Etkisi

KHDAK IMRT sinde Tedavi Planlama Sistemlerinin Monte Carlo Yöntemi ile Karşılaştırılması

IMRT PROGRAMININ OLUŞTURULMASI VE UYGULANMASI KALİTE KONTROL AÇISINDAN DEĞERLENDİRME

T1 Glottik Larenks Kanserli Hastalarda, Farklı Tedavi Planlama Tekniklerinin Dozimetrik Değerlendirmesi ve TCP ile NTCP Açısından Karşılaştırması

Statik IMRT (step and shoot) yöntemine göre oluşturulan IMRT planlarının dozimetrik doğrulanmasına segment sayısının etkisi

Jinekolojik Kanserli Hastaların Tedavisinde, Farklı Planlama Tekniklerinin Dozimetrik ve Radyobiyolojik Karşılaştırması

RADYOTERAPİDE PLANLAMA. Dr Ayşe Hiçsönmez AÜTF Radyasyon Onkolojisi Mart 2015

AAPM NĠN TG-51 KLĠNĠK REFERANS DOZĠMETRĠ PROTOKOLÜ VE UYGULAMALARI

Prowess panther tedavi planlama sisteminin dozimetrik verifikasyonu ve klinik kabulün değerlendirilmesi

Doğukan Akçay¹, Fadime Akman², Zafer Karagüler², Kadir Akgüngör³. XIV. Ulusal Medikal Fizik Kongresi Antalya, 2013

IMRT de Hasta Bazlı Kalite Kontrol: Niçin ve Nasıl?

IMRT (YOĞUNLUK AYARLI RADYOTERAPİ)

Akciğer SBRT Planlama Ve Plan Değerlendirme. Fiz.Müh.Yağız Yedekçi Hacettepe Üniversitesi Radyasyon Onkolojisi A.D

RADYOTERAPİDE HEDEF VOLÜM VE DOZ TANIMLANMASI-ICRU. DR. FADİME AKMAN DEÜTF RADYASYON ONKOLOJİSİ Haziran 2011

RADYOTERAPİDE VOLÜM TANIMLAMALARI DR. FADİME AKMAN DEÜTF RADYASYON ONKOLOJİSİ

KLİNİK ÇALIŞMA ORIGINAL ARTICLE

Radyoterapide Kalite Güvenilirliği (QA)

PROSTAT KANSERİNDE TEK ARK VE ÇİFT ARK İLE YAPILAN IMAT PLANLARININ KARŞILAŞTIRILMASI

(1) MESİ MEDİKAL A.Ş.- Akdeniz Üniversitesi Doktora Programı (2) ANTAKYA ÖZEL DEFNE HASTANESİ - Çukurova Üniversitesi Doktora Programı

IMRT - VMAT HANGİ QA YÜCEL SAĞLAM MEDİKAL FİZİK UZMANI

İntrakranyal Yerleşimli Tümörlerin CyberKnife ile Tedavisinde Göz Lensi ve Tiroid Dozlarının Araştırılması

KLİNİK ÇALIŞMA ORIGINAL ARTICLE

Sayı Editöründen Editorials. Temel Radyasyon Fiziği Basic Radiation Physics

OPERE PROSTAT KANSERLİ HASTALARIN RİSK ALTINDAKİ ORGAN DOZLARININ PLANLAMA VE CONE BEAM BİLGİSAYARLI TOMOGRAFİ DOZ HESAPLAMALARIYLA KARŞILAŞTIRILMASI

Nazmiye Dönmez 1, Derya Yücel 1, Murat Okutan 1, Merdan Fayda 2, Musa Altun 2, Rasim Meral 2, Hatice Bilge 1

6 MV-X filtreli ve filtresiz ışınlarda, küçük alan output düzeltme faktörünün Monte Carlo yöntemi ile hesaplanması

Yücel AKDENİZ. MLC nin kurulum ölçümleri: Dosimetric leaf gap nasıl hesaplanır? MLC transmission nasıl ölçülür? Medikal Fizik Uzmanı

TIBBİ RADYOFİZİK UZMANI FADİME ALKAYA ÖZEL MEDICANA INTERNATIONAL İSTANBUL HASTANESİ 10.ULUSAL RADYASYON ONKOLOJİSİ NİSAN ANTALYA

Farkl protokollerdeki durdurma gücü oranlar n n %DD e risine etkisi

Dr.Nural ÖZTÜRK. TÜRK RADYASYON ONKOLOJİSİ DERNEĞİ Radyofizik Kursu Haziran 2010

Dr. Fiz. Nezahat OLACAK

IMRT VE KONFORMAL RADYOTERAPİ UYGULANAN MEME KANSERİ RADYOTERAPİ UYGULAMALARINDA DOZ DAĞILIMININ FİLM DOZİMETRESİ İLE BELİRLENMESİ

YÜKSEK ENERJİLİ X- IŞINLARIYLA YAPILAN TEDAVİLERDE KARBON FİBER MASANIN CİLT VE İZOMERKEZ DOZUNA ETKİLERİNİN ARAŞTIRILMASI

Doç.Dr.Bahar DİRİCAN Gülhane Askeri Tıp Akademisi Radyasyon Onkolojisi AD 10 Nisan ANKARA

SRS-SBRT FİZİĞİ. NADİR KÜÇÜK Medikal Fizik Uzmanı 23 Mayıs 2015

Radyoterapi Işınlarının Kalite Kontrolünde Yarı İletken Diyot ve Silindirik İyon Odası Performanslarının Karşılaştırılması

IAEA-TRS 398 Foton Dozimetrisi

Murat Köylü(1), Burcu Gökçe(2), Yusuf Ziya Hazeral(1), Serra Kamer(1), Nezahat Olacak(1), Yavuz Anacak(1)

Dr. Gönül Kemikler İ. Ü. Onkoloji Enstitüsü

ALİ HİKMET ERİŞ TIBBİ RADYOFİZİK UZM. BEZMİALEM VAKIF ÜNİV.TIP FAK

Lineer Hızlandırıcı Tabanlı SRS/SRBT Uygulamalarında QA. Dr. Bahar Dirican GATA Radyasyon Onkolojisi AD

Yoğunluk ayarlı radyoterapide kalite kontrol yöntemleri

FARKLI IN-VIVO DOZİMETRİ TEKNİKLERİ İLE FARKLI IMRT TEKNİKLERİNDE İNTEGRAL DOZ TAYİNİ

Tedavi Planlama Sistemlerinde Kullanılan Algoritmalar. Cemile Ceylan Anadolu Sağlık Merkezi

İstanbul Üniversitesi Onkoloji Enstitüsü Tıbbi Radyofizik Bilim Dalı. İstanbul Üniversitesi İstanbul Tıp Fakültesi Radyasyon Onkolojisi Ana Bilim Dalı

ÖZGEÇMİŞ. VMAT (Volumetric Modulated Arc Therapy) yönteminde kolimatör açısının doz dağılımına etkisinin incelenmesi, Gebze Teknik Üniversitesi, 2016

Aydın ÇAKIR,Ph.D. İstanbul Üniversitesi Onkoloji Enstitüsü

BAŞ BOYUN KANSERLERİNDE ADAPTİF RADYOTERAPİ. Medikal Fizik Uzmanı Yonca YAHŞİ

Yüksek Enerjili Fotonlarda Fiziksel ve Sanal Kama Filtrelerin Dozimetrik Özelliklerinin Karşılaştırılması

Sonay GEDİK, Sibel KAHRAMAN ÇETİNTAŞ, Sema TUNÇ, Arda KAHRAMAN, Meral KURT, Candan DEMİRÖZ AKABAY, İsmail Hakkı KALYONCU, Merve CİNOĞLU

HIZLANDIRICILARIN MEDİKAL

DİYARBAKIR MEMORİAL HASTANESİ ONUR HAS RADYOTERAPİ TEKNİKERİ

İÜ ONKOLOJİ ENSTİTÜSÜ RADYOTERAPİ İŞLEYİŞ PROSEDÜRÜ

Meme Kanseri Planlama Tecrübesi ( 3D konformal planlama + field-in-field ) Bülent Yapıcı Acıbadem Maslak Hastanesi

YOĞUNLUK AYARLI RADYOTERAPİ(YART) TEKNİĞİNDE YAPRAK HAREKETLERİNİN TEKRARLANABİLİRLİGİNİN DAVID İN-VİVO DOZİMETRİK SİSTEMİ İLE İNCELENMESİ

Baş-boyun kanserlerinde giriş ve çıkış dozlarının in vivo dozimetri kullanılarak ölçülmesi ve tedavi planlama dozlarıyla karşılaştırılması

Cumhuriyet Üniversitesi, Tıp Fakültesi, Radyasyon Onkolojisi A.D., Sivas 2

KALÇA PROTEZLERİNİN RADYOTERAPİ DOZ DAĞILIMI ÜZERİNDEKİ ETKİSİNİN MONTE CARLO YÖNTEMİ VE DENEYSEL OLARAK İNCELENMESİ: ECLİPSE TEDAVİ PLANLAMA SİSTEMİ

Bir medikal lineer hızlandırıcıda sanal elektron enerjilerinin dozimetrisi

Dr. Fiz. Nezahat OLACAK

ARAŞTIRMALAR (Research Reports)

DERYA ÇÖNE. Radyoterapi Teknikeri Kozyatağı Acıbadem Hastanesi Radyoterapi Bölümü

Radyoterapi Tedavi Planlarının Optimizasyon Problemleri

Asimetrik Elektron Alan Dozimetri Parametrelerinin De erlendirilmesi

Radyoterapide Zırhlama Hesapları (NCRP 151) Medikal Fizik Uzmanı Güngör ARSLAN

1.) 18 MV Foton Enerjisinde 3B-KRT Ve YART tekniği ile Tedavi Planlaması Yapılan Prostat Kanserli Hastalarda Nötron Kontaminasyonundan Kaynaklı

Konvansiyonel Baş-Boyun Radyoterapisinde Dozimetrik Sürecin Termolüminisans Dozimetre ile Kontrolü

Türk Onkoloji Dergisi 2009;24(2): Orijinal Çal flma / Original Article

THE USAGE OF METHODS THAT ARE USED FOR THE DETERMINATION OF THE RECTANGULAR ELECTRON FIELDS OUT-PUT FACTORS FOR DIFFERENT ELECTRON ENERGIES

Tıpta Uzmanlık Öğrencisinin: Adı ve Soyadı: Tıpta Uzmanlık Eğitimine Başlama Tarihi: Tıpta Uzmanlık Eğitimine Bitirme Tarihi:

YOĞUNLUK AYARLI RADYOTERAPİ (YART) TEKNİĞİNDE İN VİVO DOZİMETRİ İÇİN ELEKTRONİK PORTAL GÖRÜNTÜLEME SİSTEMİ (EPID) VE DİYOT DEDEKTÖRLERİN KULLANILMASI

Varian Clinac IX lineer hızlandırıcı cihazında cone-beam bilgisayarlı tomografi fonksiyonlarının incelenmesi

Radyoterapi Tedavi Planlarının Değerlendirilmesi ile İlgili Protokoller

İYON ODALARI VE DOZİMETRE KALİBRASYONLARI

METRİ HIZLANDIRICILAR. Mehmet YÜKSELY ÇÜ FBE Fizik ABD.

Akciğer Radyoterapisinde RPM. Berna Savaş Özel Onkomer Onkoloji Merkezi, İzmir

YOĞUNLUK AYARLI RADYOTERAPİ UYGULAMALARI İÇİN KULLANILAN DOZ ÖLÇÜM DOĞRULAMA SİSTEMLERİNİN KARŞILAŞTIRILMASI

Farkl foton enerjilerinin absorbe doz ölçümlerinin UAEA protokolleri TRS 277 ve TRS 398 e göre karfl laflt r lmas

Volumetrik ark tedavi (VMAT) plan doğrulaması için silindirik diyod array performansının değerlendirilmesi

MEDİKAL FİZİK KONGRESİ TRABZON. NAMIK KAYALILAR M.Sc. Medikal Fizik Uzmanı NEOLIFE TIP MERKEZİ İSTANBUL

Neolife VMAT Deneyimi

Radyoterapi Tedavi Planlarının Dozimetrik Doğrulaması. Dr. Fiz. Nezahat OLACAK E.Ü. Tıp Fakültesi Radyasyon Onkolojisi AD.

KLİNİK ÇALIŞMA ORIGINAL ARTICLE

TRS 398 VE YÜKSEK ENERJİLİ FOTONLARDA DOZ KALİBRASYONU

Akciğer SBRT Planlamalarında Hareket Takibi

T.C. EGE ÜNİVERSİTESİ DOZLARIYLA KARŞILAŞTIRILMASI. Yüksek Lisans Tezi. Radyasyon Onkolojisi Anabilim Dalı Tıbbi Radyofizik Programı.

PROSTAT KANSERİNDE TOMOTERAPİ IMRT İLE 3-D KONFORMAL RADYOTERAPİNİN DOZİMETRİK KARŞILAŞTIRMASI. Adem PEHLİVANLI YÜKSEK LİSANS TEZİ FİZİK

YAYINLAR. 1. Uluslararası hakemli dergilerde yayınlanan makaleler (SCI & SSCI & Arts and Humanities)

Radyoterapi Cihazlarının Teknik Özelliklerinin Hasta Seçimindeki Etkisi. Basri Günhan (Ph.D) Tıbbi Radyofizik Uzmanı Neolife Tıp Merkezi

Prostat Kanserinde Prostat Spesifik Membran Antijen 177. Lu-DKFZ-617 ( 177 Lu-PSMA) Tedavisinde Organ ve Tümör Dozimetrisi: ilk sonuçlar

REFERANS STANDART DOZİMETRE SİSTEMLERİNİN İZLENEBİLİRLİĞİ

F.Ü. SHMYO Tıbbi Görüntüleme Teknikleri Selami SERHATLIOĞLU

Eksternal Radyoterapi ve Brakiterapi Dozlarının Birleştirilmesinde Radyobiyolojik Modeller

Radyoterapi Tedavi Planlama İşlemleri ve Tedavi Planlarının Değerlendirilmesinde Kullanılan Kavramlar, Tanımları

Radyoterapide Kalite Kontrol


BAŞ-BOYUN TÜMÖRLERİNDE CYBERKNIFE UYGULAMALARI. HACETTEPE ÜNİVERSİTESİ RADYASYON ONKOLOJİSİ ANABİLİM DALI Kemal ERDOĞAN Radyoterapi Teknikeri

TOMOTERAPİ CİHAZI İLE PROSTAT KANSERİ TEDAVİSİ

Transkript:

Türk Onkoloji Dergisi 2011;26(4):167-173 doi: 10.5505/tjoncol.2011.597 KLİNİK ÇALIŞMA ORIGINAL ARTICLE Tedavi planlama sisteminde hesaplanan doz dağılımlarının dozimetrik kontrolü Dosimetric control of dose distribution calculated in computerized treatment planning system Sevim ŞAHİN, 1 Orhan GÜRLER, 2 Sema GÖZCÜ, 1 Meral KURT, 1 Kansu ŞENGÜL, 1 Ali ALTAY, 1 Sibel KAHRAMAN ÇETİNTAŞ, 1 Lütfi ÖZKAN 1 1 Uludağ Üniversitesi Tıp Fakültesi, Radyasyon Onkolojisi Anabilim Dalı, Bursa; 2 Uludağ Üniversitesi Fen-Edebiyat Fakültesi, Fizik Bölümü, Bursa AMAÇ Çalışmanın amacı, bilgisayarlı tedavi planlama sisteminde (BTPS) hesaplanan doz değerleri ile farklı volümlü iyon odaları ve linear 2D-Array kullanılarak ölçülen dozları karşılaştırarak dozimetrik kontrolü sağlamaktır. GEREÇ VE YÖNTEM Farmer, Semiflex ve PinPoint iyon odalarıyla ölçümleri alınan alanlar BTPS de oluşturuldu. 2D-Array ile açık alan, izosentrik, oblik ve wedge filtreli alanlarda ölçümler alındı. Bu alanlar BTPS de oluşturularak nokta doz okumaları yapıldı ve profilleri oluşturuldu. Ölçülen ve planlanan izodoz dağılımları karşılaştırıldı. BULGULAR PinPoint iyon odasının en yüksek, Farmer iyon odasının ise en düşük doz okuması yaptığı görüldü. BTPS ile en uyumlu sonuçlar Semiflex iyon odasıyla elde edildi. 2D-Array kullanılarak yapılan okumalarda merkezi eksende BTPS ile uyum gözlenirken, build-up ve penumbra bölgelerinde %20 lere çıkan fark gözlendi. SONUÇ İyon odası ölçümleri incelendiğinde, BTPS ye en yakın sonuçlar Semiflex iyon odası ile elde edilmiştir. 2D-Array kullanılarak yapılan okumalarda gözlenen uyumsuzluğun nedenleri; build-up bölgesindeki doz değişkenliği ve ışın modellemesinde ölçülen profiller ile algoritma tarafından oluşturulan profillerin penumbra bölgelerinde tam olarak çakışmaması olarak bulundu. Anahtar sözcükler: Bilgisayarlı tedavi planlama sistemi; lineer 2D-Array; radyoterapide kalite kontrol. OBJECTIVES The purpose of this study is providing dosimetric control by comparing dose values calculated in computerized treatment planning system (CTPS) and measured by Linear 2D-Array and ion chambers of various volumes. METHODS Fields measured by Farmer, Semiflex and PinPoint ion chambers were created in CTPS. Using Linear 2D-Array, measurements were done in open, isocentric, oblique and wedge filtered fields which created in CTPS. Dose values were compared. RESULTS PinPoint ion chamber measured top dose values whereas Farmer ion chamber measured low values. The most compatible results with CTPS were obtained by Semiflex ion chamber. However, in 2D-Array measurements, concordance was observed with CTPS in central axis, difference reached 20 % in build-up and penumbra regions. CONCLUSION The most compatible results with CTPS were obtained by Semiflex ion chamber. Reasons of discordance in 2D-Array measurements were found as; varible dose around build-up region, and not to obtain the exact superpose of profiles penumbra region. Key words: Computerized treatment planning system; linear 2Darray; quality assurence in radiotherapy. İletişim (Correspondence): Dr. Sevim ŞAHİN. Uludağ Üniversitesi Tıp Fakültesi, Radyasyon Onkolojisi Anabilim Dalı, Bursa, Turkey. Tel: +90-224 - 295 34 44 e-mail (e-posta): sewim.sahin@gmail.com 2011 Onkoloji Derneği - 2011 Association of Oncology. 167

Türk Onkoloji Dergisi Kanser günümüzün en önemli sağlık problemlerinden biridir. Tüm kanserli hastaların %60-80 i hastalık tanısı aldıktan sonra geçen süreçte en az bir kez radyoterapi görmektedirler. Radyoterapide en önemli kural, tümöre maksimum dozu verirken, çevresindeki riskli organların ve sağlıklı dokuların mümkün olan en az dozu almasını sağlamaktır. Bu amaca yönelik olarak üç boyutlu konformal radyoterapi (3D CRT), yoğunluk ayarlı radyoterapi (Intensity Modulated Radiation Therapy, IMRT), organ hareketlerini takip ederek yapılan görüntü takipli radyoterapi (Image Guided Radiation Therapy, IGRT) ve tomoterapi gibi gelişmiş teknikler uygulanmaktadır. 3D CRT de öncelikle, hastaya tedavi bölgesine göre pozisyon verme ve immobilizasyonun sağlanması gerekir. Tedavi, ilgili bölgenin bilgisayarlı tomografi (BT) kesitleri kullanılarak yapılan sanal simülasyon ile başlar. Görüntüleme yöntemine bağlı olarak, görünen tümör, kritik yapılar ve ilgili diğer organ sınırları tüm kesitlerde konturlenir. Üç boyutlu BTPS yazılımı ile konturlenen kesitler üzerinde alanlar belirlenir. Bu sistemin en kullanışlı özelliklerinden biri, hedef volüm ve diğer yapıların görülebildiği ışın gözü görüntüsünün (Beam Eye View) elde edilmesidir. BEV opsiyonu ile hasta anatomisinin radyasyon kaynağının bulunduğu noktadan görüntüsü elde edilir. [1] Huzmenin nokta kaynaktan çıktıktan sonra ayrılması göz önüne alınarak, hedef volüm ve risk altındaki organlara, blokların ve kolimatörlerin doğru yerleştirilmesi sağlanır. Böylece, alan marj belirlemeleri daha sağlıklı yapılabilmekte, PTV nin (Planning Target Volume) yüksek izodoz bölgesi (tanımlanan dozun %95 inden fazla) içinde kalması sağlanabilmektedir. Enerji, wedge ve ışın ağırlıkları seçildikten sonra planın 3 boyutlu doz hesaplatılması yapılır. Doz dağılımı değerlendirilir ve istenen izodoz dağılımı incelenir. İzodoz dağılımı PTV yi tam olarak sarıyorsa fraksiyon sayısı, verilmesi gereken tedavi dozu ve izodoz eğrisi seçilir. DVH (Doz Volüm Histogramı) planın değerlendirilmesinde önemli rol oynar. Tedavi planlama sistemlerinde yapılan planların diferansiyel ve kümülatif doz-volüm histogramları elde edilir. Bu histogramlarda; bir plan için hedef tümör volümü ya da risk altındaki organların aldıkları dozlar değerlendirilebilir. [1] Böylece uygun tedavi alanları kullanılarak tümörü oluşturan hücreler ortadan kaldırılırken sağlıklı dokular minimum zarar görür. Planlama algoritmaları Modern bilgisayarlı planlama sistemleri ile sanal ortamda gerçeğe en yakın doz hesaplama algoritmaları oluşturulabilir. Bu algoritmalar; düzeltme/ölçüm tabanlı algoritmalar, model tabanlı ya da Monte Carlo tabanlı olabilir. Düzeltme / ölçüm tabanlı algoritmalar Bu algoritmada, referans koşullar altında düzenli tedavi alanları için su fantomunda yüzde derin doz, doz profilleri ve output faktörü ölçümleri yapılmalıdır. Hasta dozu, belirli tedavi alanları için doku eksikliği, doku imhomojenitesi gibi pek çok düzeltme uygulanarak bulunur. Bu metot tamamen ölçüm verilerine dayanır ve oldukça hızlıdır. Su fantomunda ölçülen derin dozlar arasında interpolasyon yaparak dozu hesaplar ve çeşitli derinliklerde alınan doz profillerini kullanır. Doku düzensizlikleri, inhomojenite ve ikincil elektronlar doz hesaplamasında göz ardı edilir. [2] Model tabanlı algoritmalar Monte Carlo simülasyonuyla hesaplanmış olan ışın karakteristikleri kullanılır. Ortamda oluşan etkileşimlerin birim elementi olan kerneller, Monte Carlo yöntemi ile hesaplanır. Doz kernel, farklı seviyelerdeki enerji aktarımını ve primer foton doku etkileşimleri ile oluşan sudaki doz depolanmasını tanımlar. Model tabanlı algoritmalar, heterojen ortamda absorbe dozun daha gerçekçi tanımlamasını yapar. Hasta kesitlerindeki Hounsfield Unit ile inhomojen hasta anatomisi daha iyi örneklenir. Primer fotonların hesaplanan enerji akısı, hastada enerji absorbsiyon ve transportunun hesabı inputdata olarak kullanılır. [2] FFT convolution ve superposition algoritmaları volümde depolanan dozu iki kısımda hesaplar. İlk olarak primer kernelleri kullanarak primer elektron dozunu ve daha sonra saçılma kernellerini kullanarak saçılan foton dozunu hesaplar. 168

Tedavi planlama sisteminde hesaplanan doz dağılımlarının dozimetrik kontrolü FFT convolution, kernelleri kartezyen koordinatlarda gösterir ve her yerde değişmez. Superposition ise kernelleri küresel koordinatlarda gösterir ve lokal elektron yoğunluğu varyasyonlarıyla değişime izin verir. Böylece inhomojen yapılarda daha iyi sonuç elde edilir. Monte Carlo tabanlı algoritmalar Madde içinde çok sayıda foton ve parçacığın etkileşimini simüle eder. Foton ve elektronların olası etkileşimlerini belirlemek için temel fizik yasaları kullanılır. En doğru doz hesaplama algoritması olarak kabul edilir. [2] Monte Carlo algoritmasında, simülasyona E enerjili bir foton veya elektronla başlanır. Ortamda hareket edecek parçacığın hareket mesafesi belirlenir. Yani etkileşim koordinatları girilir. Oluşabilecek etkileşimlerin türleri yazılır. Oluşacak parçacığın enerjisi ve yönü belirlenir. Tüm bu adımlar parçacığın enerjisi alt limitin altına inene kadar veya parçacık ilgilenilen bölgenin dışına çıkana kadar tekrarlanır. Tedavi planlama sisteminin kalite kontrolü Radyoterapide klinik sonuçları en iyi seviyeye getirmek ve tedavi alan her hasta için yüksek ve gerekli kaliteyi sağlamak için kayda değer çaba harcanmaktadır. Radyoterapi süreci oldukça karmaşıktır. İyi radyoterapi sonuçları ve tedavi güvenliği, planlanan radyasyonun belirlenen hedef alana doğru dozda verilmesi ile elde edilir. Radyoterapide kalite kontrolün amacı, planlama ve tedavinin her aşamasında oluşabilecek hataları önlemektir. [3] Bu nedenle tedavi aygıtları ve simülatörlerin, tedavi planlamanın, hastaya ait bilgilerin belli aralıklarla ölçülmesi ve kontrol edilmesi gerekmektedir. Hasta tedavisinde kalitenin sağlanması için BTPS de hesaplanan doz dağılımlarının dozimetrik araçlar kullanılarak doğruluğunun kontrol edilmesi gerekmektedir. Bu araçlar, iyon odası, film dozimetre, termolüminesans dozimetre (TLD) veya 2D-Array olabilir. Bu çalışmanın amacı, bilgisayarlı tedavi planlama sisteminde (BTPS) hesaplanan doz değerleri ile farklı volümlü iyon odaları ve linear 2D-Array kullanılarak ölçülen nokta dozları karşılaştırarak tedavi planlama sisteminin dozimetrik kontrolünü sağlamaktır. GEREÇ VE YÖNTEM Bu çalışmada Siemens MD2 lineer hızlandırıcıda 6 MV foton enerjisi kullanıldı. Ölçümler yapılmadan önce output değerleri uygun sıcaklık ve basınç koşullarında kontrol edildi. Siemens SOMA- TOM Emotion Duo BT ve simülatör ünitesi kullanılarak RW3 katı su fantomlarının ve 2D-Array in tomografisi çekildi. Dış konturlaması yapılıp bilgisayarlı planlama sistemine aktarıldı. Katı su fantomu ölçümleri, RW3 katı su fantomu kullanılarak merkezi eksende 6 MV foton enerjisinde d=10 cm de; 3x3, 4x4, 5x5, 6x6,7x7, 8x8, 9x9, 10x10, 12x12 ve 15x15 cm 2 alanda SSD 100 cm de PTW Semiflex, PTW Farmer, PTW PinPoint iyon odaları ve PTW Unidos elektrometre kullanılarak yapıldı. Her bir ışınlama için 100 MU uygulandı. Ölçümlerde her iyon odası için özel dizayn edilmiş katı su fantom plakası kullanıldı. Her bir ölçüm 3 kez tekrarlanıp ortalaması alındı. 2D-Array ile yapılan ölçümlerde, 6 MV foton enerjisi için, 5x5 ve 10x10 alanlarda SSD=100 cm de alan merkezinde ve merkezden 1, 5, 7 cm uzaklıkta, d=1, d=3, d=5, d=8 ve d=10 cm derinliklerinde nokta doz değerleri ölçüldü. Ayrıca SSD= 85 cm de, d=15 cm de nokta doz değerleri ölçüldü. Yine bu enerjiler için 5x5 ve 10x10 alanlarda SSD=100 cm de rutinde sık kullanılan 15, 30 ve 45 wedge filtreler kullanılarak SSD=100 cm de d=1, d=3 ve d=5 cm derinliklerinde nokta doz ölçümü yapıldı. Son olarak, G=45 için her iki foton enerjisinde 5x5 ve 10x10 alanlarda d=1, d=3 ve d=5 cm için nokta doz ölçüldü. Her bir ışınlama için 100 MU uygulandı. Tüm alanların planları CMS XIO tedavi planlama sisteminde convolution algoritması kullanılarak hesaplatıldı. Dozimetrik ekipmanlar ile yapılan ölçümler sonrası elde edilen veriler ile planlama sisteminde hesaplatılan değerler PTW Verisoft 3.1 ve PTW Multicheck dozimetri yazılımı kullanılarak karşılaştırıldı. 169

Türk Onkoloji Dergisi Tablo 1 Çeşitli kare alanlarda, 6MV foton enerjisinde Farmer, Semiflex, Pinpoint iyon odaları ve BTPS verileri Alan BTPS Farmer iyon % Semiflex iyon % PinPoint iyon % cm 2 cgy odası cgy Fark odası cgy Fark odası cgy Fark 3x3 53.1 51.1 3.9 54.9 3.2 56.0 5.0 4x4 57.0 54.6 4.3 57.1 0.1 56.7 0.5 5x5 59.4 56.9 4.3 59.1 0.5 58.7 1.1 6x6 61.2 58.7 4.2 60.9 0.4 60.5 1.15 7x7 63.1 60.4 4.4 62.5 0.9 62.1 1.61 8x8 64.4 61.7 4.3 63.8 0.9 63.5 1.4 9x9 65.7 63.0 4.2 65.0 1.5 64.7 1.5 10x10 67.0 64.1 4.5 66.0 1.5 65.8 1.8 12x12 68.8 66.0 4.2 69.3 0.7 69.0 0.2 15x15 71.0 68.0 4.4 71.4 0.5 71.2 0.2 BULGULAR 6 MV foton enerjisi kullanılarak yapılan iyon odası ölçümleri, BTPS ile karşılaştırıldığında, tüm iyon odaları için hata oranının %5 in içinde olduğu Tablo 1 de gösterilmiştir. Hassas volümlü PinPoint iyon odasının en yüksek doz okuması yaparken, Farmer iyon odasının en az doz okuması yaptığı görülmektedir. BTPS ile en uyumlu sonuçlar Semiflex iyon odası ile elde edilmiş, aradaki fark en küçük alan olan 3x3 cm 2 hariç, %1.5 den az olduğu görülmüştür. PTW Verisoft yazılımı ile yapılan plan karşılaştırmalarında elde edilen izodoz dağılımları ve alan doz profilleri incelenmiştir. 2D arrayle alınan ölçümler BTPS den elde edilen koronal kesitlerle Verisoft yazılım programı kullanılarak karşılaştırıldı. Karşılaştırmada Gamma Index metodu kullanıldı. Bu metot karşılaştırmaları, 3 mm uyuşma mesafesi (DTA; distance to agreement), %3 doz farkı (DD; dose-difference) tolerans limiti alarak yapmaktadır. Hızlı doz düşüşü olan bölgelerde, özellikle penumbra bölgesinde karşılaştırma yapılırken bu limitler yükseltilebilmektedir. Bu çalışmada tolerans limitleri 3 mm de %3 olarak alınmıştır. Buna göre 3 mm uyuşma mesafesinde, %3 doz farkı kriteri için gamma değerlendirmesini geçen noktalar bulundu. Doz dağılımlarında planlama ile ölçüm değerleri arasında uyum gözlenirken, penumbra bölgesindeki uyumsuzluklar dikkat çekmiştir. Tablo 2 de 2D-Array ile yapılan açık alan okumalar gösterilmiştir. 2D-Array ile yapılan açık alan ölçümlerde bazı farklılıklar görülmektedir. Buildup ve penumbra bölgelerindeki farklılılar %20 lere kadar çıkmaktadır. 6 MV enerjisi için tüm alanlarda build-up bölgesi dışında kalan bölgelerdeki merkezi eksen okumaları %2 nin altındadır. Şekil 1 de 6 MV foton enerjisi kullanılarak 10x10 cm 2 alanda G=45º de SSD=100 cm de 5 cm derinliğinde PTW Verisoft yazılımı ile karşılaştırılmış izodoz profilleri görülmektedir. Penumbra bölgesinde uyumsuzluk görülürken, izodoz dağılımı incelendiğinde %23 e varan fark gözlenmiştir. Şekil 2 de 6 MV foton enerjisi kullanılarak 10x10 cm 2 alanda 15º wedge filtre kullanılarak SSD=100 cm de 5 cm derinliğinde PTW Verisoft yazılımı ile elde edilen izodoz dağılımı incelendiğinde, penumbra bölgesinde uyumsuzluk görülürken, %10 a varan fark gözlenmiştir. 6 MV foton enerjisi kullanılarak 10x10 cm 2 alanda 30º wedge filtre kullanılarak SSD=100 cm de 5 cm derinliğinde PTW Verisoft yazılımı ile elde edilen izodoz dağılımı dağılımı, penumbra bölgesinde uyumsuzluk görülürken, %12 ye varan farklılık gözlenmiştir. Aynı şekilde 45º wedge filtre kullanılarak SSD=100 cm de 5 cm derinliğinde PTW Verisoft yazılımı ile elde edilen izodoz dağı- 170

Tedavi planlama sisteminde hesaplanan doz dağılımlarının dozimetrik kontrolü 5x5 cm SSD=100 cm Tablo 2 2D-Array ile yapılan açık alan doz ölçümleri 10x10 cm SSD=100 cm Derinlik Hesap Ölçüm % Hesap Ölçüm % (cm) X cgy cgy Fark cgy cgy Fark 1 0 86.4 93.0 7.0 92.5 96.1 3.7-1 85.6 92.0 6.9 92.3 93.3 1.0 5 1.3 2.0 3.5 50.7 44.9 11.4 7 0.9 1.0 11.1 3.1 3.0 3.3 3 0 88.0 87.0 1.1 94.3 93.8 0.5-1 82.5 86.0 4.0 94.1 93.3 0.8 5 1.5 1.9 21.0 56.6 47.7 15.7 7 0.9 1.0 11.1 3.1 3.3 6.0 5 0 78.9 78.0 1.1 86.1 85.6 0.5-1 78.2 77.0 1.5 85.9 85.1 0.9 5 1.6 2.0 20.0 56.6 48.8 15.9 7 0.9 1.0 11.1 3.9 5.0 22.0 8 0 66.8 66.0 1.2 74.3 73.9 0.5-1 66.1 65.0 1.6 74.1 73.0 1.5 5 1.8 2.0 10.0 54.7 53.4 2.4 7 0.9 1.0 11.1 4.4 5.0 12.0 10 0 59.5 58.9 1.01 67.1 66.9 0.2-1 58.9 58.7 0.3 66.9 66.2 1.0 5 1.9 2.4 20.8 51.6 53.1 2.8 7 0.9 1.2 25.0 4.9 6.0 18.3 140 120 100 80 60 40 20 0-20 -40-60 -80-100 -120-140 -150-100 -50 0 50 100 150 100%-0.803/0.803 cgy 200% 120% 110% 105% 100% 95% 90% 85% 80% 70% 60% 50% 40% 30% 20% 10% Şekil 1. 6 MV 10x10 cm 2 G=45 o SSD=100 d=5 cm izodoz dağılımı. 100%-0.612/0.612 cgy 140 120 100 80 200% 120% 60 40 110% 105% 100% 20 95% 90% 0-20 85% 80% 70% -40-60 -80-100 -120 60% 50% 40% 30% 20% 10% -140-150 -100-50 0 50 100 150 Şekil 2. 6 MV 10x10 cm 2 W=15 o SSD=100 d=5 cm izodoz dağılımı. Renkli şekiller derginin online sayısında görülebilir. (www.onkder.org) 171

Türk Onkoloji Dergisi lımı incelendiğinde, penumbra bölgesinde uyumsuzluk görülürken %16 ya varan farklılık gözlenmiştir. TARTIŞMA Radyoterapi tedavi güvenliği, planlanan radyasyonun belirlenen hedef alana doğru dozda verilmesi ile elde edilir. Bu amaçla radyoterapi bilgisayarlı planlama sistemlerinin doz hesaplama algoritma sürecinin dozimetrik kontrolünü yapılması zorunludur. Çalışmamızda, Farmer, Semiflex ve PinPoint iyon odaları ile 2D-Array kullanılarak bilgisayarlı tedavi planlama sisteminin dozimetrik kontrolü yapıldı. Doz verifikasyon bölgeleri olarak ise ışınlama alanı, penumbra bölgesi, ışınlama alanı dışı, build-up bölgesi ve merkezi eksen belirlendi. 6 MV foton enerjisi kullanılarak yapılan iyon odası ölçümleri, BTPS sonuçları ile karşılaştırıldığında, tüm iyon odaları için hata oranının %5 in içinde olduğu görüldü. En yüksek doz okuması PinPoint iyon odası ile elde edildi. BTPS ile en uyumlu sonuçlar Semiflex iyon odası ile elde edildi, en küçük alan olan 3x3 cm 2 hariç, farkın %1.5 den az olduğu görüldü.konvansiyonel radyoterapi için kabul edilebilir hata payı ICRU [4] tarafından ±%5 olarak belirlenmiştir. Leybovich ve ark. [5] absolute doz verifikasyonunda farklı hacme sahip 3 iyon odasıyla yaptıkları çalışmada büyük volümlü iyon odasının absolute doz açısından hesaplanan değerlere daha yakın sonuçlar verdiğini bulmuşlardır. Gonzalez-Castano ve ark. [6] Farmer, PinPoint ve Semiflex iyon odalarını kullanarak yaptıkları çalışmada, Farmer iyon odası ile elde ettikleri sonuçların BTPS ye daha yakın olduğu sonucuna ulaşmışlardır. Laub ve ark. [7] ise 0.6 cm 3 Farmer iyon odası ve 0.015 cm 3 PinPoint iyon odası ile yaptıkları ölçümleri hesaplanan değerler ile karşılaştırdıklarında 0.015 cm 3 volümlü iyon odasının hesaplanan değerlere daha yakın sonuçlar verdiğini görmüşlerdir. Yaptığımız çalışmada, BTPS de hesaplanan dozlar ile 2D-Array ölçülen dozlar arasındaki farklar build-up ve penumbra bölgeleri dışında, %4 ün içindeydi. Ancak penumbra bölgesi ve alan dışı noktalarda görülen farklılık, beklenildiği gibi %4 ün çok üzerindeydi. Build-up bölgesindeki doz ile planlama sisteminin hesapladığı doz değerleri arasındaki farklılık %25 lere kadar çıktığı gözlemlendi. Bu sonuçlar literatürle uyumlu bulunmuştur. [8-10] Van Dyk, [8] ışınlama alanı içinde ve alan dışı bölgelerde %3, build-up bölgesinde 4 mm ve merkez eksende %4 tolerans olabileceğini bildirmiştir. Task Group 53, [9] ışınlama alanı içindeki toleransları açık alan için %1-2, MLC, blok, asimetrik alan için %3, farklı SSD deki alan için %1.5 ve inhomojen bölge için %5 olarak belirlemiştir. Alan dışı bölgelerde ise, açık alan için %2-5, blok için %3, wedge, MLC ve bolus için %5 ve inhomojen bölge için %5 tolerans belirtirken, build-up bölgesinde %20-50 ve merkez eksende %1-3 toleransı kabul etmiştir. SGSMP (Swiss Society of Radiobiology and Medical Physics), [10] ışınlama alanı içinde %2, alan dışı bölgelerde %3, build-up bölgesinde 3 mm ve merkezi eksende %4 tolerans olabileceğini bildirmiştir. Wiezorek ve ark. [11] çalışmalarında 3 adet 2D dedektör sisteminde (Mapcheck diyot sistemi, IMRT QA sistilasyon detektörü ve seven 29 iyon chamber) elde ettikleri sonucu Konrad BTPS de hesaplanan değerlerle ve standart dozimetrik aletlerle ölçülen değerlerle karşılaştırmışlardır. Bu 2D detektörlerle elde ettikleri dozların BTPS de hesaplanan dozlara göre deviasyonu, değişken doz bölgelerinde bile %5 i geçmemektedir 2D-Array in duyarlılık, linearite ve tekrar kullanılabilirliği gibi özellikleri Spezi ve ark. [12] ile Poppe ve ark. [13] tarafından araştırılmıştır, IMRT planlarının doğrulaması için oldukça verimli ve kullanışlı olduğu sonucuna varmışlardır. Saminathan ve ark. [14] 6 ve 18 MV de 2D-Array kullanarak 10x10 cm 2 alanda elde ettikleri sonuçları tedavi planlama sistemiyle karşılaştırmışlar, %95 e varan uyum gözlemlemişlerdir. Build-up bölgesindeki farklılıkların sebepleri; bu bölgede dozun değişken olması, bu bölgede hesaplama algoritmalarının yetersiz kalması, farklılık 172

Tedavi planlama sisteminde hesaplanan doz dağılımlarının dozimetrik kontrolü planlama sistemlerinde ışın modellemesi sırasında ölçülen profiller ile algoritma tarafından oluşturulan profillerin penumbra bölgelerinde tam olarak çakışmamasından ve doğru ölçüm yapmanın zorluğu olarak bulundu. Çalışmamızdan elde ettiğimiz sonuçlar doğrultusunda, hem iyon odalarının hem de 2D-Array in ölçümlerinde BTPS convulution algoritması ile elde edilen doz hesaplarının gerçeğe yakın ve literatürle uyumlu olduğu bulunmuştur. Ayrıca 2D-Array in BTPS kalite kontrolünde oldukça başarılı olduğu, özellikle merkez eksende minimum hata payı ile sonuca ulaştığımız görülmektedir. 2D-Array, pratik kurulumu ve hızlı sonuç elde etmesi ile tedavi plan doğrulamaları için hem zaman tasarrufu sağlayacak, hem de plan doğruluğunu maksimum düzeyde sağlayarak kaliteli tedaviye ulaşılmasına yardımcı olacaktır. KAYNAKLAR 1. Khan FM. The Physics of radiation therapy. 3rd ed. Minnesota: Williams & Wilkins; 2003. 2. Evans MDC. Computerized treatment planning systems for external photon beam radiotherapy. International Atomic Energy Agency Publication. Montreal, Quebec, Canada: 2006. p. 387-406. 3. Stuk, Radiation and Nuclear Safety Authority, Quality Assurance in Radiotherapy, Guide ST 2.1, 2003 4. International comission on radiation units and measurements. Report 62, Prescribing, recording and reporting photon beam therapy (Supplement to ICRU Report 50), 1999. 5. Leybovich LB, Sethi A, Dogan N. Comparison of ionization chambers of various volumes for IMRT absolute dose verification. Med Phys 2003;30(2):119-23. 6. González-Castaño D, Pena J, Sánchez-Doblado F, Hartmann GH, Gómez F, Leal A. The change of response of ionization chambers in the penumbra and transmission regions: impact for IMRT verification. Med Biol Eng Comput 2008;46(4):373-80. 7. Laub WU, Wong T. The volume effect of detectors in the dosimetry of small fields used in IMRT. Med Phys 2003;30(3):341-7. 8. Van Dyk J. Quality assurance of radiation therapy planning systems: current status and remaining challenges. Int J Radiat Oncol Biol Phys 2008;71:23-7. 9. Fraass B, Doppke K, Hunt M, Kutcher G, Starkschall G, Stern R, Van Dyke J. American Association of Physicists in Medicine Radiation Therapy Committee Task Group 53: quality assurance for clinical radiotherapy treatment planning. Med Phys 1998;25(10):1773-829. 10. SGSMP (Swiss Society of Radiobiology and Medical Physics): Vanselaar J, Welleweerd H, Munheer B: Tolerancesfor theaccuracyofphoton beam dose calculationsof treatment planning systems, Elsevier Radiotherapy and Oncology, 2009. 11. Wiezorek T, Banz N, Schwedas M, Scheithauer M, Salz H, Georg D, et al. Dosimetric quality assurance for intensity-modulated radiotherapy feasibility study for a filmless approach. Strahlenther Onkol 2005;181(7):468-74. 12. Spezi E, Angelini AL, Romani F, Ferri A. Characterization of a 2D ion chamber array for the verification of radiotherapy treatments. Phys Med Biol 2005;50(14):3361-73. 13. Poppe B, Blechschmidt A, Djouguela A, Kollhoff R, Rubach A, Willborn KC, et al. Two-dimensional ionization chamber arrays for IMRT plan verification. Med Phys 2006;33(4):1005-15. 14. Saminathan S, Manickam R, Chandraraj V, Supe SS. Dosimetric study of 2D ion chamber array matrix for the modern radiotherapy treatment verification. J Appl Clin Med Phys 2010;11(2):3076. 173