Makine Elemanları I. Yorulma Analizi. Prof. Dr. İrfan KAYMAZ. Erzurum Teknik Üniversitesi. Mühendislik Fakültesi Makine Mühendisliği Bölümü

Benzer belgeler
MAKİNE ELEMANLARI DERS SLAYTLARI

Statik ve Dinamik Yüklemelerde Hasar Oluşumu

MAK 305 MAKİNE ELEMANLARI-1

Shigley s Mechanical Engineering Design Richard G. Budynas and J. Keith Nisbett

BURSA TECHNICAL UNIVERSITY (BTU) Department of Mechanical Engineering

Temel bilgiler-flipped Classroom Akslar ve Miller

Şekil Çekmeye veya basmaya çalışan kademeli milin teorik çentik faktörü kt

Malzeme yavaşça artan yükler altında denendiği zaman, belirli bir sınır gerilmede dayanımı sona erip kopmaktadır.

Ara Sınav. Verilen Zaman: 2 saat (15:00-17:00) Kitap ve Notlar Kapalı. Maksimum Puan

Deneyin Amacı Çekme deneyinin incelenmesi ve metalik bir malzemeye ait çekme deneyinin yapılması.

Makina Elemanlarının Mukavemet Hesabı

MUKAVEMET SAKARYA ÜNİVERSİTESİ MAKİNE MÜHENDİSLİĞİ BÖLÜMÜ MAKİNE ELEMANLARI-I DERS NOTU

MAKİNE ELEMANLARI 1 GENEL ÇALIŞMA SORULARI 1) Verilen kuvvet değerlerini yükleme türlerini yazınız.

Makine Elemanları I Prof. Dr. Akgün ALSARAN. Temel bilgiler-flipped Classroom Akslar ve Miller

MUKAVEMET DERSİ. (Temel Kavramlar) Prof. Dr. Berna KENDİRLİ

Kırılma Hipotezleri. Makine Elemanları. Eşdeğer Gerilme ve Hasar (Kırılma ve Akma) Hipotezleri

MAKİNE ELEMANLARI DERS SLAYTLARI

Doç.Dr.Salim ŞAHİN YORULMA VE AŞINMA

Mühendislik Mimarlık Fakültesi Makine Mühendisliği Bölümü

MAK 305 MAKİNE ELEMANLARI-1


BÖLÜM 2 MUKAVEMET HESABININ ESASLARI

MAKİNE ELEMANLARI - (1.Hafta)

YORULMA HASARLARI Y r o u r l u m a ne n dir i?

DİŞLİ ÇARKLAR II: HESAPLAMA

Makine Elemanları I Prof. Dr. İrfan Kaymaz. Temel bilgiler-flipped Classroom Mukavemet Esasları

MUKAVEMET FATİH ALİBEYOĞLU

Makine Elemanları I Prof. Dr. Akgün ALSARAN. Temel bilgiler-flipped Classroom Mukavemet Esasları

MAKİNE ELEMANLARI - (2.Hafta)

MAKİNE ELEMANLARI-I (İ.Ö)

MUKAVEMET(8. Hafta) MALZEMENİN MEKANİK ÖZELLİKLERİ ÇEKME DENEYİ

MAKİNE ELEMANLARI LABORATUARI

TEKNOLOJİNİN BİLİMSEL İLKELERİ. Öğr. Gör. Adem ÇALIŞKAN

Burma deneyinin çekme deneyi kadar geniş bir kullanım alanı yoktur ve çekme deneyi kadar standartlaştırılmamış bir deneydir. Uygulamada malzemelerin

Mühendislik Mekaniği Statik. Yrd.Doç.Dr. Akın Ataş

MAKİNE ELEMANLARI I Mukavemet Esasları (Flipped Classroom)

Mukavemet 1. Fatih ALİBEYOĞLU. -Çalışma Soruları-

MAKĠNE ELEMANLARI II REDÜKTÖR PROJESĠ

Çözüm: Borunun et kalınlığı (s) çubuğun eksenel kuvvetle çekmeye zorlanması şartından;

MalzemelerinMekanik Özellikleri II

ÇEKME DENEYİ 1. DENEYİN AMACI

MECHANICS OF MATERIALS

KOÜ. Mühendislik Fakültesi Makine Mühendisliği Bölümü (1. ve 2.Öğretim / B Şubesi) MMK208 Mukavemet II Dersi - 1. Çalışma Soruları 23 Şubat 2019

FL 3 DENEY 4 MALZEMELERDE ELASTĐSĐTE VE KAYMA ELASTĐSĐTE MODÜLLERĐNĐN EĞME VE BURULMA TESTLERĐ ĐLE BELĐRLENMESĐ 1. AMAÇ

Mukavemet-I. Yrd.Doç.Dr. Akın Ataş

BASMA DENEYİ MALZEME MÜHENDİSLİĞİ BÖLÜMÜ. 1. Basma Deneyinin Amacı

BURSA TEKNİK ÜNİVERSİTESİ DOĞA BİLİMLERİ, MİMARLIK VE MÜHENDİSLİK FAKÜLTESİ MAKİNE MÜHENDİSLİĞİ BÖLÜMÜ 3 NOKTA EĞME DENEYİ FÖYÜ

Prof. Dr. İrfan KAYMAZ

KAYMA GERİLMESİ (ENİNE KESME)

İNŞAAT MALZEME BİLGİSİ

KAMYON ARKA AKS GÖVDESİNDEKİ KIRILMALAR

BURULMA DENEYİ 2. TANIMLAMALAR:

FZM 220. Malzeme Bilimine Giriş

AKSLAR ve MİLLER. DEÜ Makina Elemanlarına Giriş Ç. Özes, M. Belevi, M. Demirsoy

BAŞKENT ÜNİVERSİTESİ MAKİNE MÜHENDİSLİĞİ BÖLÜMÜ MAK 402 MAKİNE MÜHENDİSLİĞİ LABORATUVARI DENEY 10 YORULMA TESTİ

GERİLME Cismin kesilmiş alanı üzerinde O

BURULMA DENEYİ 2. TANIMLAMALAR:

METALURJİ VE MALZEME MÜH. LAB VE UYG. DERSİ FÖYÜ

2. Amaç: Çekme testi yapılarak malzemenin elastiklik modülünün bulunması

DENEYİN ADI: Yorulma Deneyi. DENEYİN AMACI: Makina Parçalarının Yorulma Dayanımlarının Saptanması

T.C. ONDOKUZ MAYIS ÜNİVERSİTESİ MÜHENDİSLİK FAKÜLTESİ MAKİNA MÜHENDİSLİĞİ BÖLÜMÜ YORULMA DENEY FÖYÜ

MMU 402 FINAL PROJESİ. 2014/2015 Bahar Dönemi

BİLGİSAYAR DESTEKLİ TASARIM VE ANALİZ (ANSYS) (4.Hafta)

Malzemenin Mekanik Özellikleri

AKMA VE KIRILMA KRİTERLERİ

Kesit Tesirleri Tekil Kuvvetler

BAŞKENT ÜNİVERSİTESİ MAKİNE MÜHENDİSLİĞİ BÖLÜMÜ MAK 402 MAKİNE MÜHENDİSLİĞİ LABORATUVARI DENEY 9B - BURULMA DENEYİ

STATIK MUKAVEMET. Doç. Dr. NURHAYAT DEĞİRMENCİ

BARTIN ÜNĠVERSĠTESĠ MÜHENDĠSLĠK FAKÜLTESĠ METALURJĠ VE MALZEME MÜHENDĠSLĠĞĠ

MUKAVEMET Öğr. Gör. Fatih KURTULUŞ

T.C. KOCAELĠ ÜNĠVERSĠTESĠ MÜHENDĠSLĠK FAKÜLTESĠ MEKATRONĠK MÜHENDĠSLĠĞĠ BÖLÜMÜ MEKATRONĠK YAPI ELEMANLARI UYGULAMASI

MMU 420 FINAL PROJESİ

MAKİNE ELEMANLARI DERS SLAYTLARI

MMU 420 FINAL PROJESİ. 2015/2016 Bahar Dönemi. Bir Yarı eliptik yüzey çatlağının Ansys Workbench ortamında modellenmesi

T.C. BİLECİK ŞEYH EDEBALİ ÜNİVERSİTESİ MÜHENDİSLİK FAKÜLTESİ MAKİNE VE İMALAT MÜHENDİSLİĞİ BÖLÜMÜ MIM331 MÜHENDİSLİKTE DENEYSEL METODLAR DERSİ

2009 Kasım. MUKAVEMET DEĞERLERİ KONU İNDEKSİ M. Güven KUTAY

Malzemelerin Mekanik Özellikleri

1 MAKİNE ELEMANLARINDA TEMEL KAVRAMLAR VE BİRİM SİSTEMLERİ

KİRİŞLERDE VE İNCE CİDARLI ELEMANLARDA KAYMA GERİLMELERİ

TAHRİBATLI MALZEME MUAYENESİ DENEYİ

Doç. Dr. Halit YAZICI

Uygulanan dış yüklemelere karşı katı cisimlerin birim alanlarında sergiledikleri tepkiye «Gerilme» denir.

BAŞKENT ÜNİVERSİTESİ MAKİNA MÜHENDİSLİĞİ BÖLÜMÜ MAK 402 MAKİNA MÜHENDİSLİĞİ LABORATUVARI DENEY - 3 ÜÇ NOKTALI EĞİLME DENEYİ

Cıvata-somun bağlantıları

BURULMA (TORSİON) Dairesel Kesitli Çubukların (Millerin) Burulması MUKAVEMET - Ders Notları - Prof.Dr. Mehmet Zor

METALİK MALZEMELERİN ÇEKME DENEYİ

DİŞLİ ÇARKLAR I: GİRİŞ

MAKINA TASARIMI I Örnek Metin Soruları TOLERANSLAR

AKSLAR ve MİLLER. DEÜ Mühendislik Fakültesi Makina Müh.Böl.Çiçek Özes. Bu sunudaki bilgiler değişik kaynaklardan derlemedir.

BETONARME-I 5. Hafta KİRİŞLER. Onur ONAT Munzur Üniversitesi Mühendislik Fakültesi İnşaat Mühendisliği Bölümü, Tunceli

MALZEME BİLGİSİ DERS 6 DR. FATİH AY.

TAK TA I K M VE V İŞ BAĞ BA LAMA

Tanım: Boyuna doğrultuda eksenel basınç kuvveti taşıyan elemanlara Basınç Çubuğu denir.

MALZEME BİLGİSİ DERS 7 DR. FATİH AY. fatihay@fatihay.net

Malzeme Bilimi Ve Labaratuvarı MEKANİK ÖZELLİKLER

GEMİLERİN MUKAVEMETİ. Dersi veren: Mustafa İNSEL Şebnem HELVACIOĞLU. Ekim 2010


Kirişlerde Kesme (Transverse Shear)

Örnek: Şekilde bir dişli kutusunun ara mili ve mile etki eden kuvvetler görülmektedir. Mildeki döndürme momenti : M d2 = Nmm dur.

Gerilme. Bölüm Hedefleri. Normal ve Kayma gerilmesi kavramının anlaşılması Kesme ve eksenel yük etkisindeki elemanların analiz ve tasarımı

Transkript:

Makine Elemanları I Prof. Dr. İrfan KAYMAZ Mühendislik Fakültesi Makine Mühendisliği Bölümü

Yorulma hasarı Aloha Havayolları Uçuş 243: Hilo dan Honolulu (Havai) Uçuşu Tarih: 28 Nisan 1988

Makine elemanlarının maruz kaldığı yükler Mukavemette malzemelerin maruz kaldığı yükleme şekilleri malzeme gerilmesini etkilemektedir. Bunu için herhangi bir makine elemanının da maruz kaldığı kuvvetin şiddeti, doğrultusu, yükleme şekli belirlenerek malzeme için emniyet değerleri, profil ve boyutlandırma seçimine karar verilmektedir. Statik yükleme Dinamik yükleme (Arka aks gövde) Kaynak: http://www.businessinsider.com

Yorulma hasarı nasıl meydana gelir? Yeteri derecede çevrimsel (değişken) yükleme neticesinde, dislakasyonlar yığını sürekli kayma bantlarını oluşturur. Bu hareketler yüzeyde, gerilme yığılmasına sebep olacak alanlar doğurur. Bu alanlardan yorulma çatlağı başlar. Kaynak: www.ndt-ed.org

Yorulma temel tanımlar Yorulma; değişken gerilmeler altında malzemenin iç yapısında meydana gelen değişimlerdir. Ömür; makine elemanının kırılıncaya kadar direnç gösterebildiği süre/ çevrim sayısıdır. Yorulma hasarının meydana gelmesi; Yükleme değişken olmalıdır Bu yükleme belirli bir çevrim sayısında etki etmelidir. Etki eden yük; akma gerilmesinin çok altında bir gerilmeye neden olsa da lokal plastik deformasyonlar yorulmaya neden olur.

Yorulma Kırılma Yüzeyleri Çatlak vida diş dibinden başlamış B: çatlak ilerlemesi C: son kırılma bölgesi A: çatlağın başladığı bölge B: çatlak ilerlemesi C: son kırılma bölgesi Kırılmadan önceki alanın küçük olması yüklerin az olduğuna işaret eder.

Yorulma kırılmasına göre tasarım değişikliği

Tekrarlı yükleme: Temel kavramlar Gerilme oranı R (stress ratio) aşağıdaki gibi tanımlanır: σ R = σ min max R=-1 ise tam değişken yükleme R=0 ise sıfır-çekme gerilmesi yüklemesidir. Gerilme aralığı: Gerilme genliği: Ortalama Gerilme:

Makine elemanlarının maruz kaldığı yükler Makine elemanları sabit, tam değişken, titreşimli değişken ve genel değişken yükleme şekillerine ve buna göre de gerilmelere maruz kalmaktadır.

Dinamik zorlanmada elemanın ömrü Yorulma Analizi Değişken zorlanmaya maruz bir makine elemanın tasarımı ömür esas alınarak yapılır. Değişken yükler altında malzeme davranışı ilk defa 1866 da Wöhler tarafından gerçekleştirilmiştir. Erzurum Teknik Üniversitesi

Yorulma tesc Döner Eğilmeli yorulma test cihazı Yorulma numunesinin yüklenmesi

Yorulma tesc Yorulma Eğrisi (Wöhler Eğrisi)

Yorulma tesc:semi- log kullanım nedeni

Yorulma tesc: sonuçlardaki değişkenlik

Yorulma Eğrisi (Wöhler Eğrisi) Yorulma eğrisi; sabit bir ortalama gerilme değeri için değişik gerilme genliğinde numunenin kopuncaya kadar yüklenmesi ve bir seri Gerilme-Ömür değerlerinin elde edilmesiyle çizilir. YORULMA EĞRİSİNİN ÖZELLİKLERİ İki kısımdan oluşur ve eğik olarak inen kısmına ait mukavemet değerlerine zaman mukavemeti denir. Eğrinin yatay kısmındaki değerler ise sürekli mukavemet sınırı olarak adlandırılır. σ S = σ D : Yorulma limit değeri N o = Sonsuz Ömür

Gerilme Esaslı yaklaşım Yorulma Dayanımı: belirli bir yorulma ömrüne (çevrimine) karşılık gelen gerilme değeri Yorulma Ömrü: belirli bir gerilme seviyesine karşılık gelen çevrim sayısı Düşük çevrim yorulması (Low Cycle Fatigue): Yorulma, genelde 10.000 çevrimden az bir çevrimde (yüksek gerilme altında) meydana gelir.

Dinamik mukavemet sınırları Az kullanılacak makine elemanları zaman mukavemet bölgesinde boyutlandırılır. Neden?? Normal şartlar altında, dinamik olarak yüklenen makine elemanları sürekli mukavemet bölgesi esas alınarak boyutlandırılır. SÜREKLİ MUKAVEMET SINIRLARI

Ortalama Gerilmenin Yorulmaya Etkisi Yorulma eğrisi ortalama gerilmenin sıfır olduğu değişken gerilme genliğinde çizilmektedir yani R=-1 (tam değişken yükleme) Herhangi bir ortalama gerilme için yorulma eğrisi elde etmek yeniden yorulma deneylerinin yapılması gerekir. Yada belirli yaklaşımlar kullanılır. Ortalama gerilmenin yorulma limitine etkisi şekillerde gösterilmiştir. Şekil a da gösterildiği S-N eğrisi maksimum gerilmeçevrim sayısı olarak çizildiğinde, R değeri pozitif değere doğru gittikçe yani ortalama gerilme değeri arttıkça yorulma limit değeri azalmaktadır. Eğer S-N eğrisi, gerilme genliği-çevrim sayısı olarak çizilirse, ortalama gerilmenin değeri arttıkça müsaade edilen gerilme genliği değeri düşer.

Sürekli mukavemet diyagramları Yorulma eğrisi sabit bir ortalama gerilmede değişken gerilme genliğinde çizilmektedir. Herhangi bir ortalama gerilme için ilgili malzemenin dinamik mukavemet değerlerini belirlemek için farklı ortalama değerde ve zorlanmada yeniden yorulma deneylerinin yapılması gerekir. Bu zorluk nedeniyle pratikte deneyler σ m =0 olan tam değişken yükleme durumu için yapılır. Pratik durumda makine elemanların çoğu genel değişken zorlamalar altında çalışır. Dolaysıyla bu durumda kullanılacak dinamik mukavemet sınırlarını belirlemek için: Goodman-Sodeberg Yaklaşımı Simith diyagramı

Goodman- sodeberg yaklaşımı Bu yaklaşımda yatay eksende, statik mukavemet sınırından elde edilen mukavemet değerleri ve ortalama gerilme değerleri belirlenir. Düşey eksende ise gerilme genliği ve tam değişken gerilmeden elde edilen mukavemet sınırı değeri belirlenir. Goodman doğrusu ð gevrek malzemelerde Soderberg doğrusu ð sünek malzemelerde

Dinamik mukavemet sınırları SODERBERG DOĞRUSU İLE SÜREKLİ MUKAVEMET SINIRININ BELİRLENMESİ SINIR GENLİK GERİLMESİ (genel değişken zorlanmada eşdeğer nominal gerilme): Yorulmaya karşı emniyetli bir tasarım için σ gd σ em Burulmaya maruz elemanlarda sınır genlik gerilme

SMITH DİYAGRAMI (Sürekli Mukavemet Diyagramları) Smith Diyagramı aşağıdaki adımlar gerçekleştirilerek çizilir: Yatay eksene ortalama gerilmeler, düşey eksene ise sürekli mukavemet sınırı, akma ve çekme mukavemet değerleri işaretlenir. Sürekli mukavemet sınırları statik mukavemet sınırında (A noktasında) birleştirilir Sünek malzemeler için mukavemet sınırı akma gerilmesi olduğundan aşağıdaki şekilde verildiği gibi sınırlar belirlenir (B noktası)

SMITH DİYAGRAMI (Sürekli Mukavemet Diyagramları) Elde edilen bu diyagram vasıtasıyla, belirlenen herhangi bir ortalama gerilme için, gerilme genliği, maksimum ve minimum gerilme değerleri diyagramdan okunabilir. Eğer nominal gerilmeler diyagram içinde kalırsa numune sonsuz ömürlü, diyagram dışında ise sonlu ömürlüdür.

Mukavemet azalrcı faktörler Yorulma Analizi Mukavemet sınır değerleri standart deney numunelerden elde edilir. Gerçek makine elemanların boyutları, geometrik ve yüzey özellikleri farklıdır. Bu farklılıklar, tasarımdaki mukavemet azaltıcı faktörler dikkate alınarak, sürekli mukavemet sınır değerleri düzeltilir. Erzurum Teknik Üniversitesi

Mukavemet azalrcı faktörler PARÇA BÜYÜKLÜĞÜ ETKİSİ Gerçek makine elemanlarının boyutları deney numunesinden farklıdır. Boyut ñ mukavemet ò 10 mm çaptan daha büyük makine elemanların tasarımında çap düzeltme katsayısı K b kullanılır

Mukavemet azalrcı faktörler YÜZEY PÜRÜZLÜLÜĞÜ ETKİSİ Yüzey pürüzlülüğü yorulma mukavemetine olumsuz etkiler Elemanın taşıyabileceği gerilme genliği düşer Bu etki yüzey pürüzlülük katsayısı ile hesaplamalara katılır

Mukavemet azalrcı faktörler ÇENTİK ETKİSİ Makine elemanlarında kimi tasarım zorunluluğu nedeniyle geometrik düzgünsüzlük veya süreksizlikler bulunur Kuvvet akışında bozukluklar ve gerilme yığılmalarına neden olur

Mukavemet azalrcı faktörler ÇENTİK ETKİSİ Çentik bölgesinde gerilme maksimum değerine ulaşılır. Çentik nedeniyle oluşan maksimum gerilme K : teorik gerilme yığılma faktörü σ t n : Nominal (hesaplanan) gerilme Teorik gerilme yığılma faktörü, belirli bir zorlanma şekline göre çentik geometrisine bağlıdır. Teorik gerilme yığılma faktörünün değeri tablolardan belirlenir

Mukavemet azalrcı faktörler ÇEŞİTLİ ZORLANMALAR İÇİN SİLİNDİRİK ELEMANIN TEORİK GERİLME YIĞILMA FAKTÖRÜ

Mukavemet azalrcı faktörler ÇEŞİTLİ ZORLANMALAR İÇİN SİLİNDİRİK ELEMANIN TEORİK GERİLME YIĞILMA FAKTÖRÜ

Mukavemet azalrcı faktörler ÇENTİK FAKTÖRÜ: K ç Sünek malzeme ð çentik hassasiyeti az gevrek malzeme ð çentik hassasiyeti fazla Çentik faktörü; hem çentik geometrik etkisini (Kt) ve hem de malzemenin çentik hassasiyetini içeren bir faktördür. q : K Çentik hassasiyet katsayısı ç = t 1+ q( K 1)

Mukavemet Sınırları Yüzey pürüzlülüğü, boyut etkisi, çentik etkisi dikkate alındığında Statik zorlanma Sünek malzeme * σ = K σ * b τ = K τ b ak ak Gevrek malzeme * σ = * τ = Kbσ K ç Kbτ K ç ak ak Dinamik zorlanma Çekme-basma * ÇD σ = * ED σ = K y K K ç Eğilme K y K K ç b b σ σ ÇD ED Burulma ve kesme * D τ = K y K K ç b τ D

Dinamik mukavemet sınırları Tasarım Aşamasında Kullanılacak Kriterler Elemanın tecrübe edeceği çevrim sayısına göre, eğer malzemeye ait S-N eğrisi yoksa, statik mukavemet değerleri kullanılarak aşağıdaki yorulma limit değerleri mukavemet sınırları olarak kullanılır. N=1 σ D σ k σ 0. 9σ N=1000 D k N=1e6 σ D 0. 5σ k Genel kural olarak; N 10 3 ise statik mukavemet sınırı 10 3 <N<10 6 ise zaman mukavemet sınırı N 10 6 ise sürekli mukavemet sınırı

Farklı yükleme durumunda Eşdeğer gerilme ifadeleri Farklı yükleme modlarında yorulma hesabı Hem burulma momentinin hem de eğilme momentinin birlikte etki ettiği ve bu yüklemelerin değişken olduğu durumlarda yorulma analizi aşağıda verilen akma hipotezi ifadesi yardımıyla hesaplanır. Von-Mises ortalama gerilme: σ ʹ = σ + m 2 m 2 3τ m Von-Mises gerilme gerilme: σ ʹ = σ + g 2 g 2 3τ g

ÖRNEK 1 Şekilde verilen eleman 1. F=10500 dan 2. F=2500..7500 dan 3. F=-1500 +12000 dan 4. F=±6500 dan Kuvvetlerle çekmeye zorlanmaktadır. Elemanın boyutları D=40 mm, d=35 mm, r=7 mm, elemanın malzemesi C45, kopma mukavemeti 63 dan/mm 2, akma sınırı 42 dan/mm 2 çentik hassasiyet faktörü 0.7, yüzey pürüzlülük faktörü 0.85, boyut faktörü 0.86 olarak verilmektedir. Sodeberg diyagramında a) Deney çubuğunu mukavemet sınır doğrusu, elemanın mukavemet sınırı doğrusunu, S=2 için sodeberg emniyet doğrusunu çiziniz b) Yukarıda verilen yükleme durumlarını Sodeberg diyagramında gösteriniz ve emniyet açısından değerlendiriniz

Örnek 2 Şekilde bir halat çarkın yardımıyla dönen bir mil gösterilmiştir. S=2 için milin mukavemet açısında kontrolü istenmektedir. Çarkın çevresine uygulanan kuvvet F=50 dan, çarkın çapı D=250 mm, mil çapı d=25 mm, kullanılan malzeme St42, akma sınırı 25 dan/mm 2, l=50 mm, milin çentik faktörü 1.25 boyut faktörü 0.93 yüzey pürüzlülük faktörü 0.9 olarak verilmektedir.

Flipped Classroom Örnek Şekilde verilen mil Mb=50e3 Nmm sabit burulma momentine ve F=1000-2000N değişken yük altındadır. Milin uzunluğu L=1000 mm dir. Mil malzemesinin akma mukavemeti 490 MPa ve azaltılmış yorulma limit değeri 155 MPa dır. Emniyet katsayısını 2 olarak alınız. a) Mesnet tepkilerini bularak momentlere ait diyagramları çiziniz. b) Emniyetli çap değerini bulunuz.