KENAR UZUNLUKLARI GEOMETRİK DİZİ OLUŞTURAN TAM SAYI KENARLI ÜÇGENLER



Benzer belgeler
NİSAN 2010 DENEMESİ A)75 B)80 C)85 D)90 E)95 A)0 B)1 C)2 D)3 E)4

ULUSAL MATEMATİK OLİMPİYATLARI DENEMESİ ( ŞUBAT 2010 )

ÜÇGEN VE KENARLARI ARASINDA BAĞINTILAR

EVVET ARKADAŞLAR HOŞGELDİNİZ BU DERSİMİZDE ÜÇGENLER VE ÖZELLİKLERİNE GÖZ ATACAĞIZ.

p sayısının pozitif bölenlerinin sayısı 14 olacak şekilde kaç p asal sayısı bulunur?

Olimpiyat Eğitimi TUĞBA DENEME SINAVI

İç bükey Dış bükey çokgen

XII. Ulusal Matematik Olimpiyatı Birinci Aşama Sınavı

VI. OLİMPİYAT SINAVI SORULAR

1. BÖLÜM Polinomlar BÖLÜM II. Dereceden Denklemler BÖLÜM II. Dereceden Eşitsizlikler BÖLÜM Parabol

ÜÇGENDE AÇILAR. Doğrusal olmayan üç noktayı birleştiren üç doğru parçasının birleşimine üçgen denir. AB] [AC] [BC] = ABC dir.

2000 Birinci Aşama Sınav Soruları

TAMSAYILAR. 9www.unkapani.com.tr. Z = {.., -3, -2, -1, 0, 1, 2, 3, } kümesinin her bir elemanına. a, b, c birer tamsayı olmak üzere, Burada,

Sivas Fen Lisesi Ortaokul 2. Matematik Olimpiyatı Sınavı A A) 55 B) 50 C) 45 D) 40 E) 35

Türkiye Ulusal Matematik Olimpiyatları DENEME SINAVI. 4. Deneme

ÜÇGENLER ÜNİTE 4. ÜNİTE 4. ÜNİTE 4. ÜNİTE 4. ÜNİT

HERON ÜÇGENLERĠNĠN ĠÇ VE DIġ TEĞET ÇEMBERLERĠNĠN YARIÇAPLARI ĠLE x 2y z DĠOPHANTĠNE DENKLEMĠ ARASINDAKĠ ĠLĠġKĠ ÜZERĠNE BĠR ARAġTIRMA

DİK ÜÇGEN. şekilde, m(a) = 90. [BC] kenarı hipotenüs. [AB] ve [AC] kenarları. dik kenarlardır. P İSAGOR BAĞINTISI

7 Mayıs 2006 Pazar,

Temel Kavramlar. (r) Sıfırdan farklı kompleks sayılar kümesi: C. (i) Rasyonel sayılar kümesi: Q = { a b

Cahit Arf Matematik Günleri 10

A) 1 B) 10 C) 100 D) 1000 E) Sonsuz. öğrencinin sinemaya tam bir kez birlikte gidecek şekilde ayarlanabilmesi aşağıdaki n

ULUSAL MATEMATİK OLİMPİYATLARI DENEMESİ( OCAK 2010)

9. SINIF Geometri TEMEL GEOMETRİK KAVRAMLAR

Öğrenci Seçme Sınavı (Öss) / 18 Nisan Matematik Soruları ve Çözümleri

11.Konu Tam sayılarda bölünebilme, modüler aritmetik, Diofant denklemler

Temel Kavramlar 1 Doğal sayılar: N = {0, 1, 2, 3,.,n, n+1,..} kümesinin her bir elamanına doğal sayı denir ve N ile gösterilir.

çemberi ile O Çemberlerin birbirine göre durumlarını inceleyelim. İlk durumda alalım. olduğu takdirde O2K1

29 Nisan 2007 Pazar,

5. ÜNİTE AÇILAR, ÜÇGENLER VE MESLEKİ UYGULAMALARI

İSTANBUL İL MİLLİ EĞİTİM MÜDÜRLÜĞÜ BİLİM OLİMPİYATLARI 2018 SINAVI

TEMEL KAVRAMLAR. a Q a ve b b. a b c 4. a b c 40. 7a 4b 3c. a b c olmak üzere a,b ve pozitif. 2x 3y 5z 84

Singapur Matematik Olimpiyatı Soruları

Dik koordinat sisteminde yatay eksen x ekseni (apsis ekseni), düşey eksen ise y ekseni (ordinat ekseni) dir.

140. 2< a< 1 ise kesrinin değeri aşağıdakilerden hangisi olamaz? (3,7) a 1,9 2,4 2,7 3,2 3,7. a a c b ve c a a b c

OLİMPİK GEOMETRİ ALTIN NOKTA YAYINEVİ MATEMATİK OLİMPİYATLARINA HAZIRLIK ÖMER GÜRLÜ KONU ANLATIMLI - ÖRNEK ÇÖZÜMLÜ

Sevdiğim Birkaç Soru

a) BP = P H olmalıdır. b) BP = 2 P H olmalıdır. c) P H = 2 BP olmalıdır. d) Böyle bir P noktası yoktur. e) Hiçbiri

OKUL ADI : ÖMER ÇAM ANADOLU İMAM HATİP LİSESİ EĞİTİM VE ÖĞRETİM YILI : DERSİN ADI : MATEMATİK SINIFLAR : 9

SAYILAR DOĞAL VE TAM SAYILAR

E.Ö.Y TEKİRDAĞ S.B LİSESİ 9. SINIF MATEMATİK DERSİ YILLIK PLANI Alt Öğrenme Alanı

x13. ULUSAL MATEMATİK OLİMPİYATI

1. Analitik düzlemde P(-4,3) noktasının eksenlerden ve O başlangıç noktasından uzaklığı kaç birimdir?

ÖZEL EGE LİSESİ 10. OKULLARARASI MATEMATİK YARIŞMASI 10. SINIFLAR SORULARI

26 Nisan 2009 Pazar,

DOĞRUNUN ANALİTİK İNCELEMESİ

LYS 2016 GEOMETRİ ÇÖZÜMLERİ

1.DERECEDEN DENKLEMLER. (Bu belgenin güncellenmiş halini bu adresten indirebilirsiniz)

7. ÜNİTE DOĞRUDA VE ÜÇGENDE AÇILAR

[ AN ] doğrusu açıortay olduğundan;

TAKSİ DÜZLEMİNDE FINSLER-HADWIGER EŞİTSİZLİĞİ

T. C. Manisa Celal Bayar Üniversitesi Kırkağaç Meslek Yüksekokulu Öğretim Yılı Güz Yarıyılı MATEMATİK Dersi Final Sınavı Çalışma Soruları

KPSS MATEMATİK KONU ANLATIMLI SORU BANKASI ANKARA

ÖABT Sayılar Teorisi KONU TESTİ Tam Sayılarda Bölünebilme

ÖZEL YUNUS GÜNER FEN ve ANADOLU LĐSESĐ MATEMATĐK OLĐMPĐYATI KTS 1

14. LİSELERARASI MATEMATİK YARIŞMASI EKİP FİNAL SORULARI

Özel Kasımoğlu Coşkun Fen Lisesi

{ x,y x y + 19 = 0, x, y R} = 3 tir. = sonlu kümesinin 32 tane alt kümesinde

Mustafa Özdemir İrtibat İçin : veya Altın Nokta Yayınevi

Öğrenci Seçme Sınavı (Öss) / 17 Nisan Matematik Soruları ve Çözümleri = 43. olduğuna göre a kaçtır?

deneme onlineolimpiyat.wordpress.com

OLİMPİYAT DENEMESİ 2

sayısının tamkare olmasını sağlayan kaç p asal sayısı vardır?(88.32) = n 2 ise, (2 p 1

TEMEL KAVRAMLAR. SAYI KÜMELERİ 1. Doğal Sayılar

DEVREK ANADOLU LİSESİ 9. SINIF MATEMATİK DERSİ YILLIK PLANI Alt Öğrenme Alanı

ÜNİVERSİTEYE GİRİŞ SINAV SORULARI

Atatürk Anadolu. Temel Kavramlar Üzerine Kısa Çalışmalar

1. Hem % 15 i, hem de % 33 ü tam sayı olan en küçük pozitif sayı nedir? c)

IX. Ulusal İlköğretim Matematik Olimpiyatı

1. Bir ayrıtının uzunluğu 1 olan küpler üst üste konularak tüm alanı A olan bir kare dik prizma yapılırsa, A sayısı aşağıdakilerden hangisi olabilir?

I F L. IĞDIR FEN LİSESİ MÜDÜRLÜĞÜ 2010 YILI 8. SINIFLAR I. MATEMATİK OLİMPİYAT YARIŞMASI Soru kitapçığı türü A 15 Mayıs 2010 Cumartesi,

SORU BANKASI. kpss MATEMATİK GEOMETRİ SORU. Lise ve Ön Lisans. Önce biz sorduk. Güncellenmiş Yeni Baskı. Tamamı Çözümlü.

Geometri Notları. Heron Formülü ve Üçgenleri

Problem 1. Problem 2. Problem 3. Problem 4. Problem 5. PURPLE COMET MATEMATİK BULUŞMASI Nisan c Copyright Titu Andreescu and Jonathan Kane

SİVAS FEN LİSESİ. Soru Kitapçığı Türü. 25 Nisan 2015 Cumartesi, 9:30 12:30

Bu kısımda işlem adı verilen özel bir fonksiyon çeşidini ve işlemlerin önemli özelliklerini inceleyeceğiz.

2016 UOMO 1. Aşama. A) 15 B) 17 C) 19 D) 21 E) 23 Çözüm. Denklemi düzenleyelim:

23. ULUSAL ANTALYA MATEMATİK OLİMPİYATI SORULARI A A A A A A A

1. BÖLÜM Mantık BÖLÜM Sayılar BÖLÜM Rasyonel Sayılar BÖLÜM I. Dereceden Denklemler ve Eşitsizlikler

SERĠMYA IX. ULUSAL ĠLKÖĞRETĠM MATEMATĠK OLĠMPĠYATI. 9. Ulusal. serimya. İLKÖĞRETİM 7. Ve 8. SINIFLAR ARASI MATEMATİK YARIŞMASI.

TEST: 6. Verilenlere göre EF =? A) 1 B) 2 C) 3 D) 4 E) 5 A) 7 B) 8 C) 10 D) 11 E) 12. x eksenini 5 te, y eksenini 7 de kesen doğrunun denklemi

Mustafa Sezer PEHLİVAN. Yüksek İhtisas Üniversitesi Beslenme ve Diyetetik Bölümü

İÇİNDEKİLER. Bölüm 2 CEBİR 43

12-B. Polinomlar - 1 TEST. olduğuna göre P(x - 2, y + 4) polinomunun katsayılar toplamı kaçtır? olduğuna göre A B kaçtır? A) 78 B) 73 C) 62 D 58 E) 33

2017 MÜKEMMEL YGS MATEMATİK

Ö.S.S MATEMATĐK SORULARI ve ÇÖZÜMLERĐ = 43. olduğuna göre a kaçtır?

Asal Çarpanlara Ayırma / EBOB-EKOK ORTAK DERSLER MATEMATİK. Prof. Dr. Emin KASAP

Örnek...3 : Aşağıdaki ifadelerden hangileri bir dizinin genel terim i olabilir?

1998 ULUSAL ANTALYA MATEMAT IK OL IMP IYATI B IR INC I AŞAMA SORULARI

1998 ÖSS A) 30 B) 27 C) 18 D) 9 E) 5 A) 8000 B) 7800 C) 7500 D) 7200 E) 7000

VEKTÖRLER. DOĞRU PARÇASI: Doğrunun A ve B noktaları ile bunların arasında kalan bütün noktalarından oluşan kümeye [AB] DOĞRU PARÇASI denir.

CEVAP ANAHTARI 1-B 2-C 3-C 4-C 5-B 6-E 7-D 8-E 9-C 10-E 11-E 12-A 13-A 1-A 2-D 3-C 4-D 5-D 6-B 7-D 8-B 9-D 10-E 11-D 12-C

PROJEYİ HAZIRLAYANLAR YUSUFHAN BAŞER BERKE SERTEL NAİLE ÇOLAK

FERMAT VE EULER TEOREMLERİ

ÖZEL EGE LİSESİ EGE BÖLGESİ OKULLAR ARASI MATEMATİK YARIŞMASI 1.AŞAMA KONU KAPSAMI

ASAL SAYILAR - TAM BÖLENLER - FAKTÖRİYEL Test -1

ise, yazılı olarak çözmeniz gereken 3 problemden oluşmakta olup, süresi 75 dakikadır. Elinizdeki

16. ULUSAL MATEMATİK OLİMPİYATI

II. DERECEDEN DENKLEMLER Test -1

16. ULUSAL ANTALYA MATEMATİK SORULARI A A A A A A A

Transkript:

ORTAÖĞRETİM ÖĞRENCİLERİ ARASI ARAŞTIRMA PROJELERİ YARIŞMASI (01 013) KENAR UZUNLUKLARI GEOMETRİK DİZİ OLUŞTURAN TAM SAYI KENARLI ÜÇGENLER Fatih KORKUSUZ Şehit Fazıl Yıldırım Anadolu Lisesi Eskişehir Kadir Erdem KARACA Haı Ahmet Kanatlı Anadolu Lisesi Eskişehir Osman EKİZ Danışman Öğretmen ESKİŞEHİR 013 1

ÖZET Kenar uzunlukları ile alanı tam sayı olan üçgenlere heron üçgenleri denir. Heron üçgenlerinin özelliklerinin inelenmesi sırasında ortaya çıkan çoğu problem sayılar teorisini ilgilendiren problemlerdir. Bu alan geometri ile sayılar teorisinin iç içe olduğu bir çalışma alanıdır. Tarih boyuna bir çok matematikçi heron üçgenleri üzerine çalışmalar yapmıştır. Biz bu çalışmada kenarları geometrik dizi oluşturan tam sayı kenarlı üçgenlerin elde edilebilmesi için gerekli şartları ortaya koyduk. Bir parametreye bağlı olarak bu tip üçgenleri üretmeye çalıştık. Bu üçgenlerin açıortay, kenar ortay, yükseklik ve alan bağıntıları bulunup rasyonel değer alıp alamayaakları üzerinde durulmuştur. Ayrıa bu üçgenlerin iç açıları için alt ve üst sınırlar bulunmaya çalışılmıştır.

İÇİNDEKİLER Özet İçindekiler 3 1. Kaynak Araştırması. Ön Bilgiler 3. Geometrik Orta Üçgenleri 9 3.1. Primitif Geometrik Orta Üçgeni ve Üreteçleri 9 3.. Bazı Primitif Geometrik Orta Üçgenleri 1. Primitif Geometrik Orta üçgeninde Açıortay, Kenarortay ve Yükseklik Bağıntıları 1.1. PGO Üçgeninin Kenarortay Uzunlukları 1.. PGO Üçgeninin Açıortay Bağıntıları 15.3. PGO Üçgeninde Yükseklik Bağıntıları 17.. PGO Üçgeninde Alan Bağıntısı 19.5. PGO Üçgeninin Açıları Arasındaki Bağıntılar 19.6. PGO Üçgeninin Alanının Alabileeği En Büyük Değer 1 5. k Geometrik Orta Üçgeni 1 6. Sonuçlar ve Tartışma 7. Kaynaklar 3

1. KAYNAK ARAŞTIRMASI Heron üçgenleri ve bunun özel bir ailesi olan Pisagor üçgenleri üzerine Sierpinski, Rosen, Guy, Beauregard ve Suryanarayan, Buhholz ve MaDougall, Sastry, Zelator, Kramer, Lua gibi matematikçiler çeşitli çalışmalar yapmıştır. Eşen (010) ve Darıyeri (006) çalışmalarında heron üçgenleri üzerinde yapılan çalışmaların kronolojik sıralaması hakkında bilgi vermiştir. Buhholz ve MaDougall (1999), kenarları geometrik ve aritmetik dizi biçiminde olan rasyonel alanlı üçgenler ve kirişler dörtgenleri üzerinde çalışmıştır. Kenarları aritmetik olan üçgenlerin sonsuz bir ailesi için tam bir karakterizasyon verilmiştir ve ayrıa geometrik diziden oluşan kenarlara sahip hiçbir üçgenin olamayaağı gösterilmiştir.(eşen, 010) Yapılan çalışmalar inelendiğinde kenarları aritmetik dizi oluşturan heron üçgenleri üzerine kapsamlı araştırmalar yapılmıştır. Fakat kenarları geometrik ve harmonik dizi oluşturan üçgenler üzerine yapılan araştırmalar ise az sayıdadır. Bunun bir sebebi bu şekildeki üçgenlerinin alanlarının tam sayı olmamasıdır. Çünkü, Buhholz ve MaDougall (1999), kenarları geometrik diziden oluşan kenarlara sahip bir üçgenin heron üçgeni olamayaağını göstermiştir.. ÖN BİLGİLER Bu bölümde daha sonraki bölümlerde kullanılaak tanım ve teoremler verilmiştir. Tanım.1. a ve b iki tamsayı ve a 0 olsun. b = a. olaak şekilde bir tamsayısı varsa a, b yi böler veya b, a ile bölünür deriz ve bu durumu a b şeklinde ifade ederiz. (Erdoğan&Yılmaz, 008)

Tanım.. b ve iki tamsayı olsun. Eğer bir a 0 tamsayısı için a b ve a koşulları gerçekleniyor ise a ya, b ve tamsayılarının bir ortak böleni denir. Bir b 0 tamsayısının bölenleri sonlu sayıdadır. O halde b ve den en az birisi sıfırdan farklı ise bu iki tamsayının ortak bölenlerinin sayısı sonludur. (Erdoğan&Yılmaz, 008) Tanım.3. b ve, en az birisi sıfırdan farklı iki tamsayı olsun. i) d b, d ii) a b, a a d iii) d 0 koşullarına uyan bir d tamsayısına b ve tamsayılarının en büyük ortak böleni (e.b.o.b.) denir ve (b,) şeklinde gösterilir. (Erdoğan&Yılmaz, 008) Tanım.. (a,b) 1 ise a ve b tamsayılarına aralarında asaldır deriz. (Erdoğan&Yılmaz, 008) Tanım.5. p 1 tamsayısı verilsin. Eğer p nin ±1 ve ± p den başka böleni yoksa p tamsayısı bir asal sayıdır deriz. Asal olmayan bir tamsayıya bileşik sayı diyeeğiz. (Erdoğan&Yılmaz, 008) Tanım.6. ( p, p + ) seklindeki asal sayı çiftlerine asal sayı ikizi, ( p, p +, p + 6) asal sayılarına asal sayı üçüzü, ( p, p +, p + 6, p + 8) seklindeki asal sayılara da asal sayı dördüzü adı verilir. (Erdoğan&Yılmaz, 008) Tanım.7. a, b, m ; m 0 tam sayıları verilsin. Eğer m a b) ise a, b ye m modülüne göre kongrüent dir denir ve a b (modm) şeklinde gösterilir. (Erdoğan&Yılmaz, 008) Tanım.8. Her m 0 tamsayısını, m yi geçmeyen ve m ile aralarında asal olan tamsayıların sayısına eşleyen fonksiyona Euler in -fonksiyonu adı verilir ve m nin resmi (m) ile gösterilir. (Erdoğan&Yılmaz, 008) 5

Tanım.9. Bir tam sayının karesi şeklinde ifade edilebilen sayılara tam kare sayılar denir. Teorem.1. mn, 1 ve mn tam kare ise m ve n de tam karedir. Teorem.. a tek tam sayı ise 1mod a 0mod olur. a ve a çift tam sayı ise Teorem.3. x xy y z denkleminin negatif olmayan tamsayılardaki tüm çözümleri k (Andreesu&Andria, 00) Z olmak üzere x, yz, k,0, k, 0, kk, üçlüleridir. Teorem.. x xy y z denkleminin negatif olmayan tamsayılardaki tüm çözümleri k Z olmak üzere x, yz, k,0, k, 0, kk,, kkk,, üçlüleridir. (Andreesu&Andria, 00) Teorem.5. x çift tam sayı ise x 0 mod16 ve x tek tam sayı ise x 1 9mod16 ve x çift tam sayı ise x 0mod16 ve x tek tam sayı ise x 1mod16 Tanım.10. Üç açısı da dar açı olan üçgene dar açılı üçgen, bir açısı dik olan üçgene dik açılı üçgen, bir açısı geniş olan üçgene geniş açılı üçgen denir. (Küpeli, 010) Tanım.11. Kenar uzunlukları birbirinden farklı olan üçgene çeşitkenar üçgen, herhangi iki kenar uzunluğu eşit olan üçgene ikizkenar üçgen, üç kenar uzunluğu da birbirine eşit olan üçgene eşkenar üçgen denir. (Küpeli, 010) Tanım.1. Üçgenin bir köşesini karşısındaki kenarın orta noktasına birleştiren doğru parçasına üçgenin o kenarına ait kenarortayı denir. Üçgenin bir köşesindeki 6

açısını iki eş parçaya ayıran ışının, köşe ile karşı kenar arasında kalan parçasına, üçgenin o köşesine ait açıortayı denir. Üçgenin bir köşesinden karşı kenara veya bu kenarın uzantısına dik olarak çizilen doğru parçasına üçgenin bu kenarına ait yüksekliği denir. (Küpeli, 010) Teorem.6. [Üçgen Eşitsizliği]. Bir üçgende bir kenar uzunluğu diğer iki kenarın uzunlukları toplamından küçük, farkının mutlak değerinden büyüktür. (Küpeli, 010) Teorem.7. [Kenarortay Teoremi]. Bir ABC üçgeninde BC kenarına ait kenarortay uzunluğu V a olmak üzere A a Va b dir. (Küpeli, 010) V a V a = b + - a B // D // C Teorem.8. [Açıortay Teoremi]. Kenar uzunlukları ab,, olan ABC üçgeninin A açısına ait açıortayı AD ve AD na A olsun. Bu durumda; m(bad) = m(cad) B D C i) AB BD ii) na AB AC BD DC iii) AC DC a BD ve b DC ab b bağıntıları mevuttur. 7

sayısına altın oran denir ve genellikle sembolü ile göste- Tanım.13. 1 5 rilir. Tanım.1. a 1, a, a 3 reel sayı dizisinin aritmetik dizi olması için gerek ve yeter şart a a1 a olmasıdır. a1, a, a 3 reel sayı dizisinin geometrik dizi olması için gerek ve yeter şart a a1 a olmasıdır. a1, a, a 3 reel sayı dizisinin harmonik dizi olması için gerek ve yeter şart (Zelator, K., 008) 1 1 1,, a a a 1 3 dizisinin aritmetik diz olmasıdır. Teorem.9. [Kosinüs Teoremi]. Bir ABC üçgeninde A a b bosa b os b a a B os dir. (Gürlü, 003) a b ab C B a C Tanım.15. Kenar uzunlukları ile alanı tam sayı olan üçgene heron üçgenini denir. (Kramer&Lua, 000) ab Teorem.10. Kenar uzunlukları a, b, ve yarı çevre uzunluğu da u olan bir ABC üçgeninin alanı A(ABC) ise AABC uu au bu dir. (Gürlü, 003) 8

3. GEOMETRİK ORTA ÜÇGENLERİ 3.1. Primitif Geometrik Orta Üçgeni ve Üreteçleri Tanım 3.1.1. ab,, pozitif tam sayılar olmak üzere kenar uzunlukları ab,, olan ABC üçgeninde ab bağıntısı var ise bu üçgene geometrik orta üçgeni denir. Eğer a ile b aralarında asal ise üçgene primitif geometrik orta üçgeni denir. Kısaa P.G.O şeklinde ifade edilir. C a b = ab B A Biz ilk olarak geometrik orta üçgeni olma şartlarını ortaya koymaya çalışalım. Genelliği bozmadan a b kabul edelim. ab, d olsun. O halde aralarında asal a 1 ve b 1 pozitif tam sayıları için a da1 ve b db1 olur. Bu durumda ab d ab 1 1 olur. Son denklemin sol tarafı tam kare olduğundan sağ tarafı da tam kare olmalıdır. Teorem.1 den a1 p ve b1 q olaak şekilde aralarında asal pozitif p, q tam sayıları vardır. d p q dpq, a dp ve b dq olmalıdır. Bu durumda a, b, dp, dq, dpq üçlüsü elde edilir. a, b, dp, dq, dpq ile ab,, p, q, pq belirttiği üçgenler benzerdir. O yüzden ab,, p, q, pq üçlülerinin üçlüsünün belirttiği 9

üçgen primitif geometrik orta üçgeni olur. Burada pq, ikilisine PGO üçgeninin üreteçleri denir. Sonuç 3.1.1. p, q aralarında asal pozitif iki tam sayı olmak üzere bir P.G.O üçgeninin uzunlukları p, q, pq formunda olmalıdır. C p q B pq A Şimdi p, q, pq üçlüsünün hangi hallerde üçgen eşitsizliğini sağladığına bakalım. p, q, pq üçlüsünün bir üçgen belirtebilmesi için üçgen eşitsizliğini sağlaması gerekir. Bu durumda i) ii) b a pqq p ab p q pq iii) a b p pq q eşitsizliklerinin aynı anda sağlanması gerekir. i) Eğer pqq p pqq p pq p q olup p q olduğundan bu eşitsizlik daima doğrudur. ii - iii) Eğer ab p q pq olmalıdır. Bu eşitsizlik daima doğru değildir. Bu durumda seçilen her aralarında asal p, q pozitif tam sayıları ile P.G.O üçgeni elde edemeyiz. Şimdi p q pq eşitsizliğini sağlayan p, q tam sayıları arasındaki ilişkiyi bulalım. 10

p q olduğundan p q pq p pqq 0 olur. Son eşitsizliğin her iki yanını q ile bölersek p p 1 0 q q p olup t 1 q için t t 1 eşitsizliği elde edilir. 1 5 t t 0 1 5 t 1 5 t 5 1 5 t olur. t 1 olduğundan 1 5 p 1 5 1 t 1 q olur. Eğer p q olursa ab,, p, p, p olup kenar uzunlukları 1 olan eşkenar üçgenin benzeri olan üçgenler elde edilir. Bundan sonra p q şartını sağlayan PGO üçgenleri üzerinde duralım. Bu durumda aşağıdaki sonuu elde ederiz. Sonuç 3.1.., altın oran ve p q olmak üzere, aralarında asal pozitif p, q tam p sayılarının PGO üçgeni belirtebilmesi için 1 eşitsizliğinin sağlanması q gerekir. Bu durumda p a 51 a 3 5 1 1 1 1 q b b olmalıdır. O halde PGO üçgeni olan ABC üçgeninin kenarları arasında eşitsizliği mevuttur. a 3 5 1 b 3.. Bazı Primitif Geometrik Orta üçgenleri. Verilen herhangi bir pozitif q tam sayısı yardımıyla PGO üçgenleri elde edilebilir. 11

q 51 1 p q p a p b pq q 1 51 1 p yok yok yok yok 1 p 5 1 3 9 6 3 5 6 7 8 9 1 p 51 3 16 9 1 1 p 51 5 5 16 0 6 36 5 30 51 1 p 5 7 9 5 35 8 6 5 0 1 p 51 6 7 9 36 8 6 9 56 1 p 51 9 81 9 63 7 10 100 9 70 11 111 9 77 1 p 51 9 81 6 7 8 11 11 6 88 10 100 81 90 1 p 51 11 11 81 99 9 13 169 81 117 1 196 81 16 Tablo 1 Tabloda verilen bir q tam sayısı için kaç tane ab,, üçlüsü elde edilebileeğine dair bazı örnekler verilmiştir. 1

51 Sonuç 3..1. Verilen bir q tam sayısı için q dan büyük q dan küçük q ile aralarında asal sayıların sayısı kadar ab,, üçlüsü elde edilebilmektedir. Fakat q ya bağlı bir formül elde edilmemiştir. Sonuç 3... PGO üçgeninin üreteçleri olan pq, ikilisi asal sayı ikilisi olabilmektedir. Bu duruma dair örnekler tablo 1 de mevuttur. Bu ikililerin sonlu mu, 51 sonsuz mu olduğunu ise q asal olmak üzere q ile q arasında daima bir asal olup olmadığı ile ilgilidir. Bu aralıkta daima asal sayı olup olmadığı ile ilgili bir bilgiye ulaşamadık. Şimdi PGO üçgeninin üreteçleri olan pq, ikilisi ikiz asallardan oluşabilir mi? Sorusuna evap arayalım. Eğer pq, ikilisi ikiz asallar ise p q olup 1 eşitsizliğinden q 51 q 51 1 5 1 q q q 51 5 1 q olmalıdır. Bu durumda 3 q olur. Sonuç 3..3. q, 3 ten büyük bir asal ise ise q, q ikiz asal ikilisi bir PGO üreteidir. 13

. PRİMİTİF GEOMETRİK ORTA ÜÇGENİNDE AÇIORTAY, KENAR ORTAY VE YÜKSEKLİK BAĞINTILARI. 1. PGO Üçgeninin Kenarortay Uzunlukları Burada önelikle üçgenin kenarortay uzunlukları p ve q parametrelerine bağlı olarak elde edileek ardından kenarortay uzunluklarının rasyonel olup olamayaağı sorusuna evap aranaaktır. Kenarortay Teoreminden; V a b p q V p q V p q p q V p q p q olur. Benzer şekilde V q p q p a ve V p p q q b bağıntıları elde edilebilir. Şimdi kenarortay uzunluklarının rasyonel olup olamayaağına bakalım. V ifadesinin bir rasyonel sayı belirtmesi için p q p q ifadesi tam kare olmalıdır. O halde p q p q x olaak şekilde bir x tam sayısının olması gerekir. p ile q aralarında asal olduğundan ikisi de tek veya biri tek biri çift olmalıdır. i) p ile q tek sayılar olsun. Bu durumda Teorem.5 den p q 1mod16 p 1 9mod16 ve q 1 9mod16 olup q p 19mod16 olur. Bu durumda p q p q 1 3 11mod16 (*) olur., 1

Diğer taraftan p ile q tek olduğundan x de tek olmalıdır. Bu x 1 9mod16 olaaktır. Bu ise (*) ile çelişir. O halde p q p q tam kare olamaz. ii) p ile q dan biri tek biri çift olsun. Simetriden dolayı p tek q çift olsun. Teo- rem.5 den pq 0 mod16 olup p q p q 1mod16 0,1, 9 mod16 x olması ile çelişir. O halde alamaz. olur. V hiçbir zaman rasyonel değer Şimdi V a ve V b rasyonel olup olmayaağına bakalım. p ile q aralarında asal olduğundan ikisi de tek veya biri tek biri çift olmalıdır. i) p ile q tek sayılar olsun. Bu durumda Teorem.5 den p q 1mod q p q p 1 3 mod olur. Bu durumda Teorem.5 den q p q p tam kare olamaz. ii) p ile q dan biri tek biri çift olsun. Simetriden dolayı p tek q çift olsun. Bu du- rumda Teorem.5 den p 1mod ve 0mod q p q p 1 3 mod q olur. Bu durumda Teorem.5 den q p q p tam kare olamaz. O halde V a rasyonel değer alamaz. Benzer şekilde V nin de rasyonel değer alamayaağı gösterilebilir. Sonuç.1.1. Bir PGO üçgeninin kenar ortay uzunlukları rasyonel olamaz... PGO Üçgeninin Açıortay Bağıntıları Burada önelikle üçgenin açıortay uzunlukları p ve q parametrelerine bağlı olarak elde edileek ardından açıortay uzunluklarının rasyonel olup olamayaağı sorusuna evap aranaaktır. 15

Açıortay teoreminden; pq pq p q p q C 1 n p q p q p q p q p q p q olduğundan olmalıdır. pq nc p q p q p q p q p q pq p q (*) n C nin rasyonel olması için p q p q ifadesi tam kare olmalıdır. Bu ise Teorem.3 den dolayı mümkün değildir. Diğer taraftan üçgen eşitsizliğinden p q pq p q p q p q 3p q p q p q p q p q p q pq olur. p q ab (*) dan n Ha, b C pq ab olur. Açıortay teoreminden; 5 3 pq p q pq p A n pq pq q pq pq pq pq olduğundan n A pq q pq p q pq p p q pq q pq p q pq p p q olur. Benzer şekilde n B pq p pq q p pq q p q 16

bağıntıları elde edilir. n A nın rasyonel olabilmesi için pq q pq p q pq p ifadesi tam kare olmalıdır. p ile q aralarında asal olduğundan pq, q pq p ve q pq p ifadeleri aralarında asal olur. Bu durumda bu ifadelerin her biri Teorem.1 den dolayı tam kare olmalıdır. Di- ğer taraftan Teorem.3 den q pq p ifadesinin tam kare olmasını sağlayan pozitif p, q ikilisi yoktur. Dolayısı ile n A rasyonel olamaz. Benzer şekilde n B de rasyonel olamaz. Sonuç..1. ABC üçgeni P.G.O üçgeni ise n C rasyonel değer alamaz ve n C uzunluğu a ile b nin harmonik ortasından küçüktür. Ayrıa n A ve n B de rasyonel değer alamaz..3. PGO Üçgeninde Yükseklik Bağıntıları ABC, PGO üçgeni olsun. C den AB ye inilen dikme ayağı D ve BD AD pq x olsun. C x, p q B x D pq-x A CA AD CB BD p x q pq x p x q p q pqx x p q p q x olur. pq h CB x olduğundan h p q p q p pq 17

h p q p q p q p q p q pq p q p q 3p q p q olduğundan pq p q p q 3p q p q pq bağıntısını elde ederiz. h nin rasyonel olabilmesi için p q p q 3p q p q ifadesi tam kare olmalıdır. Önelikle p q p q ile 3p q p q ifadelerinin aralarında asal olduğunu gösterelim. p ile q aralarında asal olduğundan ikisi de tek ya da biri tek diğeri çift olmalıdır. Her iki durumda da p q p q ifadesi tek olaaktır. p q p q ile 3p q p q ifadelerinin en büyük ortak bölenine d diyelim. Bu durumda d tek olmalıdır. 3p q p q p q p q p q p q p q p q ifadesi d ile bölünmelidir. olduğundan p q p q ifadesi d ile bölündüğünden d p q olmalıdır. d tek olduğundan d p q olup p ile q aralarında asal olduğundan d p yada dq olmalıdır. d p ise d p q p q olduğundan dq olmalıdır. p ile q aralarında asal olduğundan d 1 olur. Bu durumda p q p q ile p q p q 3p q p q 3p q p q aralarında asal olmalıdır. O halde ifadesinin tam kare olması için p q p q ile 3p q p q tam kare olmalıdır. Diğer taraftan Teorem.3 den p q p q tam kare olamaz. Bu durumda h rasyonel olamaz. Sonuç.3.1. ABC, P.G.O üçgeni ise h rasyonel değer alamaz. 18

.. PGO Üçgeninde Alan Bağıntısı Buhholz & MaDougall (1999) çalışmasında tam sayı kenarlı ve kenarları geometrik dizi oluşturan üçgenlerin alan formülünü heron formülünü kullanarak bulmuş ve alanın rasyonel olamayaağını göstermişlerdir. Biz ise yukarıda bulduğumuz yükseklik bağıntısı yardımıyla alan bağıntısını bulup Buhholz & MaDougall ile aynı sonua ulaştık. Şimdi alan bağıntısını elde edelim. Üçgenin alanı S olmak üzere; 3 h pq p q p q p q p q S olduğundan pq S p q p q 3p q p q olur. Teorem.3 den P.G.O üçgeninin alanı da rasyonel olamaz. Kenar uzunlukları tam sayı olan üçgenin alanı irrasyonel olduğundan hiçbir yüksekliği rasyonel olamaz. Sonuç..1. ABC, PGO üçgeni ise yükseklikleri ve alanı irrasyoneldir..5. PGO Üçgeninin Açıları Arasındaki Bağıntılar Bu bölümde P.G.O üçgeninin açıları için alt ve üst sınırlar elde edilmeye çalışıldı. Ayrıa üçgenin dar veya geniş açılı olabilmesini sağlayan p, q değerleri bulunmaya çalışıldı. Kosinüs teoreminden a b osc ab p q p q osc pq 19

p, q için osc p q pq p q 3p q pq p q 3 osc..(1) olur. pq p q p q p q pq p q 3 3 olup (1) den pq 1 osc olmalıdır. Bu durumda 0 mc 60 olur. Sonuç.5.1. 0 ab şartını sağlayan P.G.O, ABC üçgeninde mc 60 eşitsizliği mevuttur. ABC üçgeninin eşkenar olması durumunda eşitlik durumu elde edilir. Kosinüs teoreminden q q p p os A olur. 3 pq Eğer A açısı geniş ise os A 0 q q p p pq 3 0 q p q p 0 q p 5p 0 q p 5p q p 5 p q 5 p p q 51 p 5 1 q p olmalıdır. Bu durumda 5 1 b a 51 b a bağıntısı olmalıdır. Sonuç.5.. ABC, PGO üçgeni olmak üzere; 0 mb 90 51 b a 0

0 mb 90 51 ba b eşitsizlikleri mevuttur..6. PGO Üçgeninin Alanının Alabileeği En Büyük Değer p q p q 3p q p q S olduğunu bulmuştuk. p q x y 3y x y alırsak AABC olur. x y3y x x xy 3y (*) dir. Diğer taraftan p q p q olduğundan x y olur. x y y p q x ve x y y x y y 3y x xy 3y 3y olur. (*) dan için eşitlik durumu elde edilir. x y3yx 3 S olur. p q 3 Sonuç.6.1. ABC, PGO üçgeni ise S eşitsizliği mevuttur. Eşitlik olması için üçgenin eşkenar olması gerekir. 5. k GEOMETRİK ORTA ÜÇGENİ Bu bölümde geometrik orta üçgeninin bir çeşit genelleşmesi olan k Geometrik orta üçgenini tanımlayıp kenarları arasındaki ilişkiyi vereeğiz. Tanım 5.1. p, q aralarında asal pozitif tam sayılar ve k Z olmak üzere bir ABC üçgeninin kenar uzunlukları p, q, kpqolan üçgene k geometrik orta üçgeni denir. Şimdi bu üçgenin kenarları arasındaki ilişkiyi elde edelim. 1

Genelliği bozmadan p q kabul edelim. Üçgen eşitsizliğinden i) p q kpq p q olmalıdır. Bu durumda p q olduğundan p q kpq p kpqq 0 ve 0 p kpq q eşitsizlik sitemini çözmeliyiz. Bu eşitsizliklerin her iki tarafı q ile bölünürse p p k 1 0 q q ve p p 0 k 1 q q p p k 1 0 q q olur. p k k 1 q p p 0 k 1 q q k k p olur. Bu iki eşitsizlik birleştirilirse q k k p k k eşitsizliği elde edilir. q Sonuç 5.1. ABC üçgeninin k geometrik orta üçgeni olabilmesi için k k p k k eşitsizliğinin sağlanması gerekir. q 6. Sonuçlar ve Tartışma Tarih boyuna çeşitli matematikçiler heron üçgenleri hakkında kapsamlı çalışmalar yapmışlardır. Heron üçgenlerinin bir alt gurubu olan aritmetik üçgenler hakkında da epey çalışma mevuttur. Anak kenarları tam sayı ve kenar uzunlukları geometrik dizi olan üçgenler heron üçgeni olmadığından hakkında fazla bir çalışma yapılmamıştır. Biz ise çalışmamızda bu üçgenlerin özelliklerini ele aldık. Tek bir parametre yardımıyla bu üçgenlerin elde edilebileeğini gösterdik. Fakat elde edilebileek üçgen sayısını formüle edemedik. Bu tip üçgenlerin kenar uzunlukları, yar-

dımı eleman uzunlukları ve açıları arasında bağıntılar elde edilmiş ayrıa yardımı eleman uzunlukları ile alanın rasyonel değer alamayaağı gösterilmiştir. Son olarak bu üçgenlerin bir genellemesi olan k geometrik orta üçgeni kavramı verilmiş ve bu üçgenin kenarları arasındaki ilişki elde edilmiştir. 3

7. KAYNAKLAR [1] Andreesu, T., Andria, D., 00, An Introdution to Diophantine Equations, GIL Publishing House p.85-88. [] Buhholz, R. H. and MaDougall, J. A., 1999, Heron Quadrilaterals with Sides in Arithmeti Progression, Bull. Aus. Math. So., p.63-69. [3] Darıyeri, M. 006., Heron Üçgenlerinin Bazı özellikleri Üzerine Bir Araştırma, Basılmamış Yüksek Lisans Tezi [] Erdoğan, M., Yılmaz, G., 008, Çözümlü problemlerle Soyut Cebir ve Sayılar Teorisi, Beykent Üniversitesi Yayınları [5] Eşen, T., 010, Açıları ve Kenarları Aritmetik, Geometrik ve Harmonik Dizi Oluşturan Üçgenler ile x 3y z Diophantine Denklemi Arasındaki İlişkiler Üzerine Bir Araştırma, Basılmamış yüksek lisans tezi [6] Gürlü, Ö., 003, Meraklısına Geometri, Zambak Yayınları [7] Kramer, A. V., Lua, F., 000, Some Remarks on Heron Triangles, Ata. Aad.Paed. Agriensis, Setio Mathematiae 7, p.5-38. [8] Küpeli, S. 010., 100 Yılın Olimpiyat Sorularıyla Geometri, Altın nokta Yayınevi, İzmir [9] Zelator, K., 008, Triangle Angles and Sides in Progression and the Diophantine Equation x 3y z, arxiv:0803.3778(pdf).