İKİ İDEMPOTENT MATRİSİN BAZI KOMBİNASYONLARININ GRUP TERSİNİ BULAN BİR ALGORİTMA



Benzer belgeler
1.GRUPLAR. c (Birleşme özelliği) sağlanır. 2) a G için a e e a a olacak şekilde e G. vardır. 3) a G için denir) vardır.

1. GRUPLAR. c (Birleşme özelliği) sağlanır. 2) a G için a e e a a olacak şekilde e G (e ye birim eleman denir) vardır.

Bu kısımda işlem adı verilen özel bir fonksiyon çeşidini ve işlemlerin önemli özelliklerini inceleyeceğiz.

GEO182 Lineer Cebir. Matrisler. Matrisler. Dersi Veren: Dr. İlke Deniz Derse Devam: %70. Vize Sayısı: 1

olsun. Bu halde g g1 g1 g e ve g g2 g2 g e eşitlikleri olur. b G için a b b a değişme özelliği sağlanıyorsa

13. Karakteristik kökler ve özvektörler

Matrisler ve matris işlemleri

ÖZDEĞERLER- ÖZVEKTÖRLER

Lineer Cebir. Doç. Dr. Niyazi ŞAHİN TOBB. İçerik: 1.1. Lineer Denklemlerin Tanımı 1.2. Lineer Denklem Sistemleri 1.3. Matrisler

VEKTÖR UZAYLARI 1.GİRİŞ

Şayet bir lineer sistemin en az bir çözümü varsa tutarlı denir.

Mustafa Sezer PEHLİVAN. Yüksek İhtisas Üniversitesi Beslenme ve Diyetetik Bölümü

DEĞİŞMELİ BANACH CEBİRLERİNİN GELFAND SPEKTRUMLARI ÜZERİNE

Matris İşlemleri Uygulaması

3. BÖLÜM MATRİSLER 1

Lineer Bağımlılık ve Lineer Bağımsızlık

Lineer Denklem Sistemleri Kısa Bilgiler ve Alıştırmalar

10. DİREKT ÇARPIMLAR

Afyon Kocatepe Üniversitesi Fen ve Mühendislik Bilimleri Dergisi

KUADRATİK FORM. Tanım: Kuadratik Form. Bir q(x 1,x 2,,x n ) fonksiyonu

Cebir 1. MIT Açık Ders Malzemeleri

Cebir 1. MIT Açık Ders Malzemeleri

Temel Kavramlar. (r) Sıfırdan farklı kompleks sayılar kümesi: C. (i) Rasyonel sayılar kümesi: Q = { a b

Yrd. Doç. Dr. A. Burak İNNER

xy, de iki polinom verildiğinde bunların

için Örnek 7.1. simetri grubunu göz önüne alalım. Şu halde dür. Şimdi kalan sınıflarını göz önüne alalım. Eğer ve olarak alırsak işlemini kullanarak

ii) S 2LW 2WH 2LW 2WH S 2WH 2LW S 3( x 1) 5( x 2) 5 3x 3 5x x Maliye Bölümü EKON 103 Matematik I / Mart 2018 Proje 2 CEVAPLAR C.1) C.

Lineer Dönüşümler ÜNİTE. Amaçlar. İçindekiler. Yazar Öğr. Grv.Dr. Nevin ORHUN

7. BÖLÜM İÇ ÇARPIM UZAYLARI İÇ ÇARPIM UZAYLARI İÇ ÇARPIM UZAYLARI İÇ ÇARPIM UZAYLARI .= Genel: Vektörler bölümünde vektörel iç çarpım;

11.Konu Tam sayılarda bölünebilme, modüler aritmetik, Diofant denklemler

Temel Kavramlar 1 Doğal sayılar: N = {0, 1, 2, 3,.,n, n+1,..} kümesinin her bir elamanına doğal sayı denir ve N ile gösterilir.

DERS NOTLARI. Yard. Doç. Dr. Namık AKÇAY İstanbul Üniversitesi Fen Fakültesi

8. HOMOMORFİZMALAR VE İZOMORFİZMALAR

Bir özvektörün sıfırdan farklı herhangi bri sabitle çarpımı yine bir özvektördür.

İleri Diferansiyel Denklemler

Üye : Yrd. Doç. Dr. Erdal ÖZYURT Adnan Menderes Üni. Üye : Yrd. Doç. Dr. Fatih KOYUNCU Muğla Üni.

İleri Diferansiyel Denklemler


EME Sistem Simülasyonu. Giriş. Olasılık Dağılımı. Rassal Degiskenler

ÖABT Lineer Cebir KONU TESTİ Matris Cebiri

PAMUKKALE ÜNİVERSİTESİ FEN BİLİMLERİ ENSTİTÜSÜ TOPLANABİLEN VEYA SINIRLI OLAN DİZİ UZAYLARI ARASINDAKİ DÖNÜŞÜMLERİN ÖZELLİKLERİ

DÜZGÜN ÖLÇÜM. Ali DÖNMEZ Doğuş Üniversitesi, Fen Bilimleri Bölümü. Halit ORHAN Atatürk Üniversitesi, Matematik Bölümü

Fatih University- Faculty of Engineering- Electric and Electronic Dept.

A COMMUTATIVE MULTIPLICATION OF DUAL NUMBER TRIPLETS

Topolojik Uzaylarda Süreklilik Çeşitleri Üzerine

MATEMATİK BÖLÜMÜ BÖLÜM KODU:3201

Matlab da Dizi ve Matrisler. Mustafa Coşar

Eigenvalue-Eigenvector Problemleri

İndirgenme Boyutu Üç Olan Fibonacci Simetrik Sayısal Yarıgruplarının Bir Sınıfı

AB yönlü doğru parçası belirtilmiş olur. Doğrultusu, uzunluğu ve yönünden söz edilebilir.

Matrisler Matris Tanımı m satır ve n sütundan oluşan tablosuna matris adı verilir.

Eastern Mediterranean University Faculty of Arts & Sciences -- Department Of Mathematics BİLG213 BİLGİSAYAR PROGRAMLAMAYA GİRİŞ

9.Konu Lineer bağımsızlık, taban, boyut Germe. 9.1.Tanım: V vektör uzayının her bir elemanı

6. Ders. Mahir Bilen Can. Mayıs 16, 2016

BİLGİSAYAR PROGRAMLAMA. Algoritma ve Akış Şemaları

10.Konu Tam sayıların inşası

ÖRNEKLER-VEKTÖR UZAYLARI 1. Çözüm: w=k 1 u+k 2 v olmalıdır.

AYRIK YAPILAR ARŞ. GÖR. SONGÜL KARAKUŞ- FIRAT ÜNİVERSİTESİ TEKNOLOJİ FAKÜLTESİ YAZILIM MÜHENDİSLİĞİ BÖLÜMÜ, ELAZIĞ

Sayılar Kuramına Giriş Özet

Örnek...6 : Örnek...1 : Örnek...7 : Örnek...2 : Örnek...3 : Örnek...4 : Örnek...8 : Örnek...5 : MANTIK 2 MATEMATİKSEL ARAÇLAR AÇIK ÖNERMELER

8.Konu Vektör uzayları, Alt Uzaylar

BLG 1306 Temel Bilgisayar Programlama

Elementer matrisler, ters matrisi bulmak, denk matrisler

F(A, N, K) // A dizi; N, K integer if N<0 then return K; if A[N]>K then K = A[N]; return F(A, N-1, K);

MATM 133 MATEMATİK LOJİK. Dr. Doç. Çarıyar Aşıralıyev

SAYILAR DOĞAL VE TAM SAYILAR

GENELLEŞTİRİLMİŞ FUZZY KOMŞULUK SİSTEMİ ÜZERİNE

sayıların kümesi N 1 = { 2i-1: i N } ve tüm çift doğal sayıların kümesi N 2 = { 2i: i N } şeklinde gösterilebilecektir. Hiç elemanı olmayan kümeye

İleri Diferansiyel Denklemler

Buna göre, eşitliği yazılabilir. sayılara rasyonel sayılar denir ve Q ile gösterilir. , -, 2 2 = 1. sayıdır. 2, 3, 5 birer irrasyonel sayıdır.

MATEMATİK. Doç Dr Murat ODUNCUOĞLU

İleri Diferansiyel Denklemler

ANADOLU ÜNİVERSİTESİ AÇIKÖĞRETİM FAKÜLTESİ İLKÖĞRETİM ÖĞRETMENLİĞİ LİSANS TAMAMLAMA PROGRAMI. Analiz. Cilt 2. Ünite 8-14

VEKTÖRLER. DOĞRU PARÇASI: Doğrunun A ve B noktaları ile bunların arasında kalan bütün noktalarından oluşan kümeye [AB] DOĞRU PARÇASI denir.

ZAMAN SKALASINDA LİNEER OLMAYAN İNTEGRAL EŞİTSİZLİKLERİ. YÜKSEK LİSANS TEZİ Hakan TEMİZ. Danışman Doç. Dr. Mustafa Kemal YILDIZ

SAYI SİSTEMLERİ ve BOOLE CEBİRİ 1+1=1 ÖĞR.GÖR. GÜNAY TEMÜR - TEKNOLOJİ F. / BİLGİSAYAR MÜH.

11. HAFTA BLM323 SAYISAL ANALİZ. Okt. Yasin ORTAKCI.

Genel Kullanılış 1: [değişken ismi] = [değişken ismi] [işlem] [sayı veya string ifade veya değişken]

Rakam : Sayıları yazmaya yarayan sembollere rakam denir.

DERS: CEBİRDEN SEÇME KONULAR KONU: ENDOMORFİZMA HALKALARI

13.Konu Reel sayılar

3. işleminin birim elemanı vardır, yani her x A için x e = e x = x olacak şekilde e A vardır.

İleri Diferansiyel Denklemler

DOĞRUSAL OLMAYAN PROGRAMLAMA -I-

T.C. ORDU ÜNİVERSİTESİ FEN BİLİMLERİ ENSTİTÜSÜ 2X2 BLOK MATRİSLERDE MOORE-PENROSE İNVERSLER İÇİN BAZI YENİ GÖSTERİMLER TUĞÇE TOPAL YÜKSEK LİSANS TEZİ

ab H bulunur. Şu halde önceki önermenin i) koşulu da sağlanır ve H G bulunur.

BMT 206 Ayrık Matematik. Yük. Müh. Köksal GÜNDOĞDU 1

L-BULANIK ESNEK GRUPLAR

EGE ÜNİVERSİTESİ FEN FAKÜLTESİ MATEMATİK BÖLÜMÜ İ.Ö ÖĞRETİM YILI BAHAR YARIYILI BÜTÜNLEME PROGRAMI

1.SINIF 1. DÖNEM DERS MÜFREDATI. (9) TEORİ/UYG. (SAAT) MATH 101 Matematik I Calculus I Zorunlu 4-6 PHYS 101 Fizik I Physics I Zorunlu ECE 101

x 0 = A(t)x + B(t) (2.1.2)

DERS NOTLARI. Yard. Doç. Dr. Namık AKÇAY İstanbul Üniversitesi Fen Fakültesi

için doğrudur. olmak üzere tüm r mertebeli gruplar için lemma nın doğru olduğunu kabul edelim. G grubunun mertebesi n olsun. ve olsun.

EGE ÜNİVERSİTESİ FEN FAKÜLTESİ MATEMATİK BÖLÜMÜ İ.Ö ÖĞRETİM YILI BAHAR YARIYILI ARASINAV PROGRAMI

Örnek...3 : Aşağıdaki ifadelerden hangileri bir dizinin genel terim i olabilir?

TEMEL KAVRAMLAR. a Q a ve b b. a b c 4. a b c 40. 7a 4b 3c. a b c olmak üzere a,b ve pozitif. 2x 3y 5z 84

İç-Çarpım Uzayları ÜNİTE. Amaçlar. İçindekiler. Yazar Öğr. Grv. Dr. Nevin ORHUN

BIL1202 ALGORİTMA VE PROGRAMLAMAYA GİRİŞ

İleri Diferansiyel Denklemler

Ç.Ü Fen ve Mühendislik Bilimleri Dergisi Yıl:2012 Cilt:28-2

Transkript:

BEYKENT ÜNİVERSİTESİ FEN VE MÜHENDİSLİK BİLİMLERİ DERGİSİ Sayı 7(1) 2014, 25-36 İKİ İDEMPOTENT MATRİSİN BAZI KOMBİNASYONLARININ GRUP TERSİNİ BULAN BİR ALGORİTMA Tuğba PİŞTOFOGLU (tugbapistofoglu@gmail.com) Sakarya Üniversitesi, Fen Bilimleri Enstitüsü, Yüksel Lisans öğrencisi Murat SARDUVAN (msarduvan@sakarya.edu.tr) Sakarya Üniversitesi, Matematik Bölümü ÖZET X g, X matrisinin grup tersini göstersin. Çalışmada, P,Qe C nn sıfırdan ve birbirinden farklı iki idempotent matris ve a, b E \{0] ve c, d, e, f, g EC olmak üzere; A = ap + ÔQ + cpq + dqp + epqp + /QPQ + S'(PQ) 2 biçimli kombinasyon matrisinin, bazı koşullar altında, grup tersi için sayısal örnek oluşturan bir algoritma verilmektedir. Ayrıca, verilen algoritmayı kullanarak elde edilen bazı örnekler de çalışmanın sonuna eklenmiştir. Anahtar Kelimeler: Genelleştirilmiş involutif matris, Grup Ters, EP matris, Tripotent matris

BEYKENT UNIVERSITY JOURNAL OF SCIENCE AND ENGINEERING Volume 7(1) 2014, 25-36 AN ALGORiTHM FiNDiNG THE GROUP INVERSE OF SOME COMBiNATiONS OF TWO IDEMPOTENT MATRiCES Tugba PI TOFOGLU (tugbapistofoglu@gmail.com) Sakarya University, Institute of Science, MSc students Murat SARDUVAN (msarduvan@sakarya.edu.tr) Sakarya University, Department of Mathematics ABSTRACT Let denotes the group inverse of the matrix X. In this paper, an algorithm creating numerical examples for group inverse of the linear combination matrix of the form A = ap + ÔQ + cpq + dqp + epqp + /QPQ + ^(PQ) 2 is given under some conditions, where P,Qe C, \{0] are matrices different from each other and a, b e \{0], c, d, e, /, g e. Moreover, some examples obtained by running the algorithm are added at the end of the study. Keywords: Tripotent matrix Generalized involutive matrix, Group Inverse, EP matrix,

İki İdempotent Matrisin Bazı Kombinasyonlarının Grup Tersini Bulan Bir Algoritma 1. GIRIŞ ^m,n, m x n boyutlu kompleks matrislerin kümesini göstermek üzere eğer P e C n, n matrisi P 2 = P koşulunu sağlıyorsa idempotent matris adını alır. P e C n, n matrisi için, eğer aşağıdaki üç koşulu sağlayan X e C n, n, matrisi varsa, P e C n, n matrisine grup tersinir matristir denir: PXP = P, XPX = X, PX = XP. Eğer böyle bir X e C n, n matrisi varsa bu matris tektir ve P'nin grup tersi adını alıp P fl ile gösterilir. Bu tanıma göre açık olarak her matris grup tersinir değildir, fakat her idempotent matris grup tersinirdir ve grup tersi kendine eşittir. Daha önceden iki idempotent matrisin lineer kombinasyonlarının özel tipli matris olması ile ilgili literatürde çalışmalar mevcuttur (örneğin, bkz. [1, 2, 3, 5, 6, 7]). Liu ve diğerleri de bu makalelerden esinlenerek iki idempotent matrisin bazı kombinasyonlarının grup tersinirliği problemini ele almış ve bazı koşullar altında grup tersler vermiştir[4]. Şöyle ki, (PQ) 2 = (QP) 2 ve (PQ) 2 = o veya (QP) 2 = 0 koşulları altında iki idempotent P ve Q matrisinin A = ap + + cpq + dqp + epqp + /QPQ + #(PQ) 2 (1) biçimindeki kombinasyonunun grup tersinin açık bir ifadesi [4] çalışmasında verildi. Yine aynı makalede daha alt kombinasyonlar ile ilgili sonuçlar da bulunmaktadır. Bu makalede ise; bu sonuçlarda elde edilen durumlarla alakalı, sayısal örnekler oluşturan bir algoritma verilmektedir. Ayrıca, bu algoritma kullanılarak elde edilen bazı örnekler de makalenin sonuna eklenmiştir. Aşağıdaki dört teorem ve sonuçları [4] çalışmasında bulunabilir. 27

Tuğba PİŞTOFOĞLU - Murat SARDUVAN Teorem 1. P,Q C n, n sıfırdan ve birbirinden farklı iki idempotent matris olsun. fl,fi \{0] vec C olmak üzere, 0=a+b+c^0 olsun. Bu durumda, d ^ ±a, ±ö ve a i ±b iken, 1 1 /I 1 1\ (a p +. Q + c pq ) fl =- p + - Q +(- - - - -) p Q (2) olması için gerek ve yeter koşul PQ = QP olmasıdır. a + ö = 0vea^±c iken, 1 1 1 (ap - aq + cpq) 0 = -P--Q + -PQ a a olması için gerek ve yeter koşul P QP = QP Q = P Q olmasıdır. Uyarı 1. Aslında, PQ = QP ise d ^ ±a, ±i ve a ^ ±b ek kısıtlamaları olmadan da (2) sağlanır. a = b olduğunda aşağıdaki sonuç elde edilir. Sonuç 1. P,Qe C, sıfırdan ve birbirinden farklı iki idempotent matris olsun. a e C\{0} olmak üzere, 1 1 2 2 5 (ap v + aq) 0 =-P+-Q PQ QP + PQP a a v a v a v v 2a olması için gerek ve yeter koşul P QP = QP Q olmasıdır. Teorem 2. P,Qe C n, n sıfırdan ve birbirinden farklı iki idempotent matris olsun. a,b e C\{0} ve c e C, a + b + c = 0 şartını sağlayan skalerler olsun. a ^ ±b olduğunda, 1 1 1 1 (ap + fcq + cpq) fl ( 3 ) olması için gerek ve yeter koşul P Q = Q P olmasıdır. 28

İki İdempotent Matrisin Bazı Kombinasyonlarının Grup Tersini Bulan Bir Algoritma Uyarı 2. Aslında, eğer PQ = QP ise (3) ifadesi a = ±b için de sağlanır. a = b olduğunda aşağıdaki sonuç elde edilir. Teorem 3. P, Q 6 n, n sıfırdan ve birbirinden farklı iki idempotent matris olsun. a 6 \{0] için 1 (ap aq) fl = -P -Q 1 olması için gerek ve yeter koşul PQP = QPQ olmasıdır. Dikkat edilirse buraya kadar ( P Q) 2 = ( Q P) 2 olması durumuyla ilgili sonuçlar verildi. Şimdi ( Q P) 2 = 0 veya (PQ) 2 = 0 durumları incelenecektir. Teorem 4. P, Q 6 n, n sıfırdan ve birbirinden farklı iki idempotent matris ve ( Q P) 2 = 0 olsun. a,b 6 \{0] ve c,d,e,/,g 6 olmak üzere A = ap + bq + cpq + dqp + epqp + /QPQ + g(pq) 2 matrisi grup tersinirdir ve grup tersi Afl _ 1 1 / 1 1 c \ /1 1 d a P + b Q Va + b + ab )PQ ( a + b + ab '2 1 c + d cd be + ( a + b + ab + a 2 b ' PQP /1 2 c + d cd a/\ + ( a + b + ab + ab 2 / QPQ 2 2 2c + d + g cd be ce - + T + : - + a b a b a 2 b cd a/ c/ c 2 d \ + + ( P Q ) 2 dir. Sonuç 2. P, Q 6 n, n sıfırdan ve birbirinden farklı iki idempotent matris ve QP = 0 olsun. a, b 6 \{0} ve c 6 olmak üzere A = ap + bq + cp Q matrisi grup tersinirdir ve grup tersi 29

Tuğba PİŞTOFOĞLU - Murat SARDUVAN dir. b a b a b 2. ANA SONUÇ VE ALGORİTMA Bu kısımda [4] çalışmasında ortaya koyulan iki önemli teoremi hatırlatacağız. Bu teoremler için sayısal örnekler oluşturan bir algoritma da bu kısımda verilmektedir. Bu algoritma yardımı ile sadece boyut ve matrislerin elemanlarının alt ve üst sınırları girilmek sureti ile teoremlere konu olan iki idempotent matris, onların (1) tipli kombinasyonları ve bu kombinasyon matrislerinin grup tersleri ile ilgili sayısal örnekler elde edilebilmektedir. Teorem 5. P, Q 6 n, n sıfırdan ve birbirinden farklı iki idempotent matris ve ( P Q) 2 = ( QP) 2 olsun. a,b 6 \{0} ve c,d,e,/,g 6, 9 = a + b + c + d + <? + / + g^0 olsun. Bu durumda A = ap + bq + cpq + dq P + P QP + /QP Q + g( P Q) 2 ifadesi grup tersinirdir ve grup tersi 1 1 / Aa fl = -P + - Q ( a -Q ö v (H+ )PQ-G+^ )QP + ( H + ; )pqp+(a+^ a;! + î s í )QPQ-(a+^ıF+ <4) dir. İspat. N = N 1 + N 2 + N 3 olsun. Burada N. ^ e + î + ^ o P + G + f + ^ + ^ o P o. AN = P + Q PQ QP + PQP + QPQ 2(PQ) 2 30

İki İdempotent Matrisin Bazı Kombinasyonlarının Grup Tersini Bulan Bir Algoritma olarak bulunur ve 9 = 0 olduğundan N 1 A = P PQ + PQP (PQ) 2, N 2 A = Q QP + QPQ (PQ) 2 olarak bulunur. N 3 A = 0 olduğundan AN = NA olduğu görülür. Ayrıca, P(P + Q PQ QP + PQP + QPQ 2(PQ) 2 ) = P (PQ) 2, Q(P + Q PQ QP + PQP + QPQ 2(PQ) 2 ) = Q (PQ) ve N(PQ)2=( 1 + 1 ( 1 + 1 + ^) ( 1 + 1 + A) + (i + l + ±^ + \a b \a b ab/ \a b abj \a b ab cd be\ il 2 c+d cd a/\ / 2 2 c+d cd-be a 2 b / Va b ab ab 2 / Va b ab a 2 b cd a/ a b 2 - ) ) ( P Q ) olduğundan 2 = ANA = A (a + b + c + d + <?+/ +,g)(pq) 2 = A, N AN = N N( P Q) 2 = N bulunur. Dolayısıyla A matrisi grup tersinirdir ve (4) sağlanır. Aşağıdaki teoremin ispatı da benzer olduğu için hatırlatılmamıştır. Teorem 6. P, Q 6 C n, n sıfırdan ve birbirinden farklı iki idempotent matris ve ( Q P) 2 = 0 olsun. a, b 6 \{0} ve c, d, e,/, g 6 olmak üzere A fl = ap + bq + cpq + dqp + epqp + /QPQ + g(pq) 2 matrisi grup tersinirdir ve grup tersi 31

Tuğba PİŞTOFOĞLU - Murat SARDUVAN 1 1 ( 1 1 c \ /1 1 d -P + -Q-(- + - + )PQ-(- + - + a O \a O ao/ \a o ao '2 1 c + d cd - Oe Va O ao a 2 O ' /1 2 c + d cd - a-\ '2 2 c + 2d + h cd - Oe - de a O ao a 2 O cd - a- - d- cd 2 \, + ao2 +ar2tb2 )(PQ)2 dir. Sonuç 3. P,Qe, sıfırdan ve birbirinden farklı iki idempotent matris ve PQ = 0 olsun. \{0] ve d 6 olmak üzere ap + bq + dqp matrisi grup tersinirdir ve grup tersi 1 1 (1 1 d dir. Uyarı 3. Bu sonuçları kullanarak, sıfırdan ve birbirinden farklı idempotent P ve Q matrislerinin ap + bq + cpq + dqp + <?PQP + /QPQ + ^PQPQ şeklindeki kombinasyonunun grup tersinir olmasıyla beraber grup involutif olduğunu da söyleyebiliriz. Örneğin, ( P Q) 2 ^ 0 ve (PQ) 2 = 0 olsun. Bu durumda, a = 1, b = -1,2e + c + d + cd = 1 ve 2/ + c + d - cd = -1 olduğunda ap + bq + cpq + dqp + <?PQP + /QPQ + ^PQPQ matrisi grup involutiftir. Aşağıdaki Algoritma kullanılarak Teorem 5 için sayısal üretilebilir. örnekler 32

İki İdempotent Matrisin Bazı Kombinasyonlarının Grup Tersini Bulan Bir Algoritma Algoritma. Girdiler: P ve Q matrisleri için ortak bir mertebe (n), bu matrislerin elemanları için (x < y) olmak üzere bir en küçük (x) ve bir en büyük (y) tamsayı ve (1) tipli kombinasyonu oluşturacak katsayılar için bir en küçük ( t) ve bir en büyük (z) skaleri. Çıktılar: Elemanları; x ve y tamsayıları (kendileri de dahil olabilir) arasındaki tam sayılardan oluşan n boyutlu değişmeli P, Q 6 n, n sıfırdan ve birbirinden farklı idempotent matrisleri, bu matrisler için (1) tipli A 6 n, n lineer kombinasyon matrisi ve bu kombinasyon matrisinin (4) veya (5) ile verilen grup tersi. Adım 1) Sayac=0 sayacını kur. Adım 2) Girilen x ve y skalerlerine göre P, Q 6 n, n matrislerinin oluşturulması için onların tüm elemanlarını değişken kabul edip bu değişkenlerin x'den y'ye kadar birer artacak şekilde döngüsünü kur. Sonraki adımlar, bu döngülerin içinde kalsın. Adım 3) Bu elemanlar ile P, Q 6 n, n matrislerini oluştur. Adım 4) Oluşturulan P, Q 6 n, n matrisleri için idempotent olma, birbirinden farklı olma ve ( P Q) 2 = ( QP) 2 koşullarını kontrol et. Eğer bu koşullar sağlanıyorsa Adım 5' e git, aksi takdirde Adım 2' ye gidip sonraki döngüye geç. Adım 5) a, b, c, d, e, /, g 6 skalerlerini rasgele üret. Eğer a ^ 0, b ^ 0 ve a + b + c + d + e + / + g^0 koşulları sağlanıyorsa Adım 6' ya git. Aksi takdirde bu adımı tekrarla. Adım 7) sayac değişkenini 1 artır. Adım 8) (1) tipli lineer kombinasyon matrisini oluştur. 33

Tuğba PİŞTOFOĞLU - Murat SARDUVAN Adım 9) (1) tipli lineer kombinasyon matrisinin (4) tipli grup tersini oluştur. Adım 10) Sırasıyla sayac değişkeninin değerini, a, b, c, d, e, /, g 6 skalerlerini, (1) tipli lineer kombinasyon matrisini ve onun (4) tipli grup tersini yazdır. Not: Yukarıdaki algoritmada; (4) ifadesi yerine (5) ifadesi alınır, Adım 4)' de bulunan ( P Q) 2 = ( Q P) 2 koşulu ( Q P) 2 = 0 koşulu ile değiştirilir ve Adım5) de a+b+c+d+e+/+g^0 Teorem 6 için sayısal örnekler elde edilir. koşulu kontrol ettirilmez ise Örnek. Teorem 5 için yukarıdaki algoritma yardımıyla üretilmiş P, Q 6 n, n sıfırdan ve birbirinden farklı idempotent matrisleri, a, b 6 \{0} ve c,d,e,/,g 6, skalerleri ve bunlar tarafından üretilmiş (1) tipli lineer kombinasyon matrisi ile onun grup tersi 1 0 1 1 0 0 P = 1 0 1,Q = 1 0 1 2 0 2 0 0 1 a = 3, b = 2, c = 2, d = 0, e = 4,/ = 1,g = 3 A = ll 0 l3 15 0 15 26 0 28 ve A a = 14/15 0 13/30 1/15 0 1/15 3/15 0 11/30 biçiminde elde edilebilir. Benzer şekilde Teorem 6 için yine yukarıdaki algoritma yardımıyla P = 1 0 1 1 0 1 2 0 2, Q= 1 0 0 1 0 1 0 0 1 a = 3, b = 2, c = 2, d = 0, e = 4,/ = 1,g = 3 34

İki İdempotent Matrisin Bazı Kombinasyonlarının Grup Tersini Bulan Bir Algoritma -11 0-13 14/15 0 13/30 A = -15 0-15 ve A g = -1/15 0-1/15. 26 0 28. -3/15 0-11/30 elde edilir. 3. SONUÇ Moore-Penrose ters ve grup ters birçok uygulamalı problemde çözüm bulma amacı ile kullanılabilen genelleştirilmiş ters çeşitleridir. Her iki ters de her matris için tek olmakla birlikte grup tersin Moore-Penrose terse göre avantajı daha az şart içermesi, dezavantajı her matris için Moore-Penrose ters var olmasına rağmen grup tersin olmayabilişidir. Bununla birlikte idempotent matrislerin istatistikteki önemi ki-kare dağılımı düşünüldüğünde çok büyüktür. Dolayısı ile [4] çalışmasında bulunan ve yukarıda hatırlatılan sonuçların ileride uygulamalı bilimlerde kullanılması olası bir durumdur. Bu makalede bu olası uygulamalara ışık tutabilecek sayısal örneklerin elde edilmesi probleminin üstesinden gelinmiştir KAYNAKLAR [1] Baksalary, J.K., Baksalary, O.M., Idempotency of linear combinations of two idempotent matrices, Linear Algebra Appl., 321, 3-7, 2000. [2] Baksalary, J.K., Baksalary, O.M., and Styan, G.P.H., Idempotency of linear combinations of an idempotent matrix and a tripotent matrix, Linear Algebra Appl., 354, 21-34, 2002. [3] Baksalary, J.K., Baksalary, O.M., When is a linear combination of two idempotent matrices is the group involutory matrix?, Linear Multilinear Algebra, 54(6), 429-435, 2006. [4] Liu, X., Wu, L. & Yu, Y. "The group inverse of the combinations of two idempotent matrices", Linear Multilinear Algebra 59, (1), 2011, 101-115. 35

Tugba PÎÇTOFOGLU - Murat SARDUVAN [5] Özdemir, H., Özban, A.Y., On idempotency of linear combinations of idempotent matrices, Appl. Math. Comput., 159, 439-448, 2004. [6] Özdemir, H., Sarduvan, M., Özban, A.Y., & Demirta, N., "On idempotency and tripotency of linear combinations of tripotent matrices", Appl. Math. Comput., 207, 2009, 197-201. [7] Sarduvan, M. & Özdemir, H., "On linear combinations of two tripotent, idempotent, and involutive matrices", Appl. Math. Comput., 200, 2008, 401-406. 36