KST Lab. Shake Table Deney Föyü



Benzer belgeler
YILDIZ TEKNİK ÜNİVERSİTESİ

(Mekanik Sistemlerde PID Kontrol Uygulaması - 3) HAVA KÜTLE AKIŞ SİSTEMLERİNDE PID İLE SICAKLIK KONTROLÜ. DENEY SORUMLUSU Arş.Gör.

BMÜ-421 Benzetim ve Modelleme MATLAB SIMULINK. İlhan AYDIN

KST Lab. Manyetik Top Askı Sistemi Deney Föyü

DENEY.3 - DC MOTOR KONUM-HIZ KONTROLÜ

KONTROL SİSTEMLERİ TASARIMI LABORATUARINA GİRİŞ

Ege Üniversitesi Elektrik Elektronik Mühendisliği Bölümü Kontrol Sistemleri II Dersi

FIRAT ÜNİVERSİTESİ MÜHENDİSLİK FAKÜLTESİ ELEKTRİK-ELEKTRONİK MÜHENDİSLİĞİ BÖLÜMÜ EMÜ-419 OTOMATİK KONTROL LABORATUARI DENEY 8

FIRAT ÜNİVERSİTESİ MÜHENDİSLİK FAKÜLTESİ ELEKTRİK-ELEKTRONİK MÜHENDİSLİĞİ BÖLÜMÜ EMÜ-419 OTOMATİK KONTROL LABORATUARI DENEY 8

ELE 301L KONTROL SİSTEMLERİ I LABORATUVARI DENEY 4B: DC MOTOR TRANSFER FONKSİYONU VE PARAMETRELERİNİN ELDE EDİLMESİ

OTOMATİK KONTROL. Set noktası (Hedef) + Kontrol edici. Son kontrol elemanı PROSES. Dönüştürücü. Ölçüm elemanı

U.Ü. Mühendislik Mimarlık Fakültesi Elektronik Mühendisliği Bölümü ELN3102 OTOMATİK KONTROL Bahar Dönemi Yıliçi Sınavı Cevap Anahtarı

Ege Üniversitesi Elektrik Elektronik Mühendisliği Bölümü Kontrol Sistemleri II Dersi

Sistem Dinamiği. Bölüm 6. Elektrik ve Elektromekanik Sistemler. Doç.Dr. Erhan AKDOĞAN

SAYISAL KONTROL 2 PROJESİ

KISIM 1 ELEKTRONİK DEVRELER (ANALİZ TASARIM - PROBLEM)

Kullanım Kılavuzu Vibrasyon Ölçer PCE-VT 2700

TRANSİSTÖRLÜ YÜKSELTEÇLERDE GERİBESLEME

MAK669 LINEER ROBUST KONTROL

Direnç(330Ω), bobin(1mh), sığa(100nf), fonksiyon generatör, multimetre, breadboard, osiloskop. Teorik Bilgi

1. DENEY ADI: Rezonans Deneyi. analitik olarak bulmak denir. Serbestlik Derecesi: Genlik: Periyot: Frekans: Harmonik Hareket:

PID SÜREKLİ KONTROL ORGANI:

BÖLÜM-6 BLOK DİYAGRAMLARI

Ege Üniversitesi Elektrik Elektronik Mühendisliği Bölümü Kontrol Sistemleri II Dersi

BÖLÜM I GİRİŞ (1.1) y(t) veya y(x) T veya λ. a t veya x. Şekil 1.1 Dalga. a genlik, T peryod (veya λ dalga boyu)

Analog Alçak Geçiren Filtre Karakteristikleri

Ders İçerik Bilgisi. Dr. Hakan TERZİOĞLU Dr. Hakan TERZİOĞLU 1

OTOMATİK KONTROL SİSTEMLERİ İŞARET AKIŞ DİYAGRAMLARI SIGNAL FLOW GRAPH

TİTREŞİM VE DALGALAR BÖLÜM PERİYODİK HAREKET

Şekil-1. Doğru ve Alternatif Akım dalga şekilleri

Otomatik Kontrol I. Dinamik Sistemlerin Matematik Modellenmesi. Yard.Doç.Dr. Vasfi Emre Ömürlü

ELE 301L KONTROL SİSTEMLERİ I LABORATUVARI DENEY 4:ORANSAL, TÜREVSEL VE İNTEGRAL (PID) KONTROL ELEMANLARININ İNCELENMESİ 2

Musa DEMİRCİ. KTO Karatay Üniversitesi. Konya

(Mekanik Sistemlerde PID Kontrol Uygulaması - 1) SÜSPANSİYON SİSTEMLERİNİN PID İLE KONTROLÜ. DENEY SORUMLUSU Arş.Gör. Sertaç SAVAŞ

Cobra3 lü Akuple Sarkaçlar

MATLAB/Simulink ile Sistem Modellemesine Giriş

MM 409 MatLAB-Simulink e GİRİŞ

Bu uygulama saatinde, dinamik sistemlerin simülasyonu (benzetimi) için geliştirilmiş olan, oldukça kullanışlı bir arayüz, Simulink, tanıtılacaktır.

Manyetostatik algılayıcılar Manyetostatik algılayıcılar DC manyetik alan ölçüm prensibine göre çalışırlar. Bu tip algılayıcılar Manyetik endüktif

OTOMATİK KONTROL SİSTEMLERİ İŞARET AKIŞ DİYAGRAMLARI SIGNAL FLOW GRAPH

Sistem Dinamiği. Bölüm 2- Dinamik Cevap ve Laplace Dönüşümü. Doç.Dr. Erhan AKDOĞAN

2011 Third International Conference on Intelligent Human-Machine Systems and Cybernetics

EEM 202 DENEY 9 Ad&Soyad: No: RC DEVRELERİ-II DEĞİŞKEN BİR FREKANSTA RC DEVRELERİ (FİLTRELER)

OTOMATİK KONTROL SİSTEMLERİ. DİNAMİK SİSTEMLERİN MODELLENMESİ ve ANALİZİ

BÖLÜM 4 TEK SERBESTLİK DERECELİ SİSTEMLERİN HARMONİK OLARAK ZORLANMIŞ TİTREŞİMİ

ELEKTRİK ENERJİ SİSTEMLERİNDE OLUŞAN HARMONİKLERİN FİLTRELENMESİNİN BİLGİSAYAR DESTEKLİ MODELLENMESİ VE SİMÜLASYONU

Kontrol Sistemlerinin Analizi

ADIYAMAN ÜNĠVERSĠTESĠ MÜHENDĠSLĠK FAKÜLTESĠ ELEKTRĠK-ELEKTRONĠK MÜHENDĠSLĠĞĠ BÖLÜMÜ DEVRE ANALĠZĠ LABORATUVARI-II DENEY RAPORU

G( q ) yer çekimi matrisi;

T.C. ERCİYES ÜNİVERSİTESİ MÜHENDİSLİK FAKÜLTESİ MEKATRONİK MÜHENDİSLİĞİ BÖLÜMÜ ELEKTRONİK SİSTEMLER LABORATUVARI 1 OPAMP DEVRELERİ-2

Çukurova Üniversitesi Biyomedikal Mühendisliği

DENEY 1: AC de Akım ve Gerilim Ölçme

Doç. Dr. Sabri KAYA Erciyes Üni. Müh. Fak. Elektrik-Elektronik Müh. Bölümü. Ders içeriği

Açık Çevrim Kontrol Açık Çevrim Kontrol

PROSES KONTROL DENEY FÖYÜ

ELEKTRİK TESİSLERİNDE HARMONİKLERİN PASİF FİLTRE KULLANILARAK AZALTILMASI VE SİMÜLASYONU. Sabir RÜSTEMLİ

ELEKTRİK-ELEKTRONİK MÜHENDİSLİĞİ DENETİM SİSTEMLERİ LABORATUVARI DENEY RAPORU. Deney No: 3 PID KONTROLÜ

DC Beslemeli Raylı Ulaşım Sistemlerinin Simülasyonu

Dr. Uğur HASIRCI. Blok Diyagramlar Geribeslemeli Sistemlerin Analizi ve Tasarımı

YAPI ZEMİN ETKİLEŞİMİ. Yrd. Doç. Dr Mehmet Alpaslan KÖROĞLU

L300P GÜÇ BAĞLANTISI BAĞLANTI TERMİNALLERİ

Mekatroniğe Giriş Dersi

ELEKTRİK DEVRELERİ-2 LABORATUVARI VIII. DENEY FÖYÜ

Elektrik - Elektronik Fakültesi

Online teknik sayfa DFV60A-22PC65536 DFV60 TEKERLEKLI ENKODER

Bölüm 12 İşlemsel Yükselteç Uygulamaları

H04 Mekatronik Sistemler. Yrd. Doç. Dr. Aytaç Gören

Sistem Dinamiği. Bölüm 9- Frekans Domeninde Sistem Analizi. Doç.Dr. Erhan AKDOĞAN

İçerik. Ürün no.: SLS46CI-70.K28-M12 Güvenlik tek ışın fotoelektrik sensör verici

Aktif Titreşim Kontrolü için Bir Yapının Sonlu Elemanlar Yöntemi ile Modelinin Elde Edilmesi ve PID, PPF Kontrolcü Tasarımları

Bölüm 16 CVSD Sistemi

Zorlamalı Titreşim ş Testleri

Deney 10: Analog - Dijital Dönüştürücüler (Analog to Digital Converters - ADC) Giriş

ELE 301L KONTROL SİSTEMLERİ I LABORATUVARI DENEY 3: ORANSAL, TÜREVSEL VE İNTEGRAL (PID) KONTROL ELEMANLARININ İNCELENMESİ *

Sistem Dinamiği. Bölüm 5-Blok Diyagramlar, Durum-Değişken Modelleri ve Simülasyon Metodları. Doç.Dr. Erhan AKDOĞAN

DENEY 3 HAVALI KONUM KONTROL SİSTEMİ DENEY FÖYÜ

ALTERNATĐF AKIM (AC) I AC NĐN ELDE EDĐLMESĐ; KARE VE ÜÇGEN DALGALAR

Deney 3 5 Üç-Fazlı Tam Dalga Tam-Kontrollü Doğrultucu

KARADENİZ TEKNİK ÜNİVERSİTESİ Mühendislik Fakültesi Elektrik-Elektronik Mühendisliği Bölümü ELK 2008 DEVRELER II LABORATUARI

DEPREMLERİN KAYIT EDİLMESİ - SİSMOGRAFLAR -

Senkronizasyon Opsiyon Modülü. SV-IS7 Serisi. Kullanıcı Manueli

DÜZCE ÜNİVERSİTESİ TEKNOLOJİ FAKÜLTESİ ELEKTRİK-ELEKTRONİK MÜHENDİSLİĞİ BÖLÜMÜ EET305 OTOMATİK KONTROL I Dr. Uğur HASIRCI

Online teknik sayfa DFV60A-22PL65536 DFV60 TEKERLEKLI ENKODER

Hazırlayan: Tugay ARSLAN

Otomatik Kontrol (Doğrusal sistemlerde Kararlılık Kriterleri) - Ders sorumlusu: Doç.Dr.HilmiKuşçu

OTOMATİK KONTROL SİSTEMLERİ BLOK DİYAGRAM İNDİRGEME KURALLARI

Deney 5 : Ayrık Filtre Tasarımı. Prof. Dr. Aydın Akan Bahattin Karakaya Umut Gündoğdu Yeşim Hekim Tanç

TRAMVAY OTOMATİK MAKAS KONTROL SİSTEMİ

MEB YÖK MESLEK YÜKSEKOKULLARI PROGRAM GELĐŞTĐRME PROJESĐ. 1. Endüstride kullanılan Otomatik Kontrolun temel kavramlarını açıklayabilme.

SAYISAL İŞARET İŞLEME LABORATUARI LAB 5: SONSUZ DÜRTÜ YANITLI (IIR) FİLTRELER

YAPI MEKANİĞİ LABORATUVARI

EGE ÜNİVERSİTESİ EGE MYO MEKATRONİK PROGRAMI

SIMÜLASYON DERS SORUMLUSU: DOÇ. DR. SAADETTIN ERHAN KESEN. Ders No:5 Rassal Değişken Üretimi

ULUDAĞ ÜNİVERSİTESİ MÜHENDİSLİK FAKÜLTESİ OTOMOTİV MÜHENDİSLİĞİ BÖLÜMÜ

Çukurova Üniversitesi Biyomedikal Mühendisliği

Kontrol Sistemlerinin Tasarımı

BÖLÜM 5 OTOMATİK KONTROL FORMLARI 5.1 AÇIK KAPALI KONTROL (ON-OFF) BİLGİSAYARLI KONTROL

FBs-serisi. Programlanabilir Kontrol Cihazı. Kullanım Kitabı - II [ İleri Düzey Uygulamalar. Önsöz, İçerik. FBs-PLC Interrupt Fonksiyonu 9

Transkript:

KST Lab. Shake Table Deney Föyü 1. Shake Table Deney Düzeneği Quanser Shake Table, yapısal dinamikler, titreşim yalıtımı, geri-beslemeli kontrol gibi çeşitli konularda eğitici bir deney düzeneğidir. Üzerine 7.5 kg kütle monte edilen üst tabla.5 g ivmelenmeyi sağlayan güçlü bir motor tarafından sürülmektedir. Tabla iki metal mil üzerinde küçük sapmalarla düzgün lineer hareketlenmeyi sağlayan lineer rulmanlar kullanarak hareket etmektedir. Merkezden başlandığında yüzey her iki tarafa 7.6 cm, veya 3 inç, böylece toplamda 15.4 cm hareket etme kabiliyetine sahiptir. Yüksek güçlü eyleyici 400 Watt 3 fazlı fırçasız DC motordur. Motor, tablanın konumunu 3.10 m lineer çözünürlükle ölçebilen yüksek çözünürlüğe sahip bir enkoder içerir. Analog bir ivmeölçer, tablanın ivmelenmesini ölçmek üzere platformun üzerine monte edilmiştir. Şekil 1 de Shake Table düzeneğinin ana bileşenleri görülmektedir. Bir kesintisiz güç kaynağı (UPM, Universal Power Module), bir veri toplama kartı (DAC, Data-Acquisition Card), WinCon kontrol yazılımının çalıştığı bir bilgisayar ve Shake Table platformu sistemin bileşenleridir. Shake Table İvmeölçer İvme geribeslemesi WinCon Enkoder Konum geribesleme Motor sürme akımı Amplifikatöre kontrol sinyali Şekil1 Sistem bileşenleri Kullanıcının tablanın bir sinüs dalgasını takip etmesini istediği bir örnekte sistem bileşenleri arasındaki işaret geçişlerini ele alalım. PC de WinCon programı aracılığıyla kullanıcı sinüs dalgasının genliğini ve frekansını belirler. Tablayı hareket ettirmek için gerekli akım WinCon programında hesaplanır ve data toplama kartının analog çıkış kanalı vasıtasıyla UPM e gönderilir. UPM içerisindeki amplifikatör akımı kuvvetlendirir ve motoru sürer. Tabla istenilen sinüs dalgasının frekansında ve genliğinde geri ve ileri hareket eder. Yer değişimi ve tablanın ivmesi enkoder ve ivme sensörü tarafından ölçülür. Enkoder ve ivmeölçer DAC kartına bağlıdır ve sinyalleri WinCon aracılığıyla izlenebilir ve kullanılabilir. Çizdirilen datalar sonraki analizler için saklanabilir. 1

Sistemde kullanılan elemanlar Şekil de görülmektedir. Şekil Sistem elemanları 1 Tabla Taban 3 Fırçasız DC Motor 4 Kurşun vida 5 Vida somunu 6 Elle ayarlama 7 Çelik ray 8 Lineer rulman blok 9 Sensör devre kartı 10 Sol limit sensör 11 Pozisyonlama Sensörü 1 Sağ limit sensör 13 Motor Konnektörü 14 Motor Enkoder 15 İvmeölçer 16 İvmeölçer Konnektörü. Deney Düzeneği ile Yapılmış Uygulama Örnekleri Şekil3 de Shake Table deney düzeneği ile yapılmış uygulamalara örnekler verilmiştir. Şekil3 Shake Table uygulamaları

3. Sistemin Sinüs Girişine göre Pozisyon Kontrolü Şekil4 te deney düzeneğinin WinCon yazılımıyla gerçek zamanlı kontrolünü sağlayacak MATLAB Simulink programı verilmiştir. Burada bir sinüs dalgasını izlemek için kullanılan Simulink modeli görülmektedir. Burada sistemin PD kontrolünü sağlayan Shake Table II - Control System - Q8 adlı bloğun alt sistemi Şekil5 te görülmektedir. Şekil6 ise burada kullanılan Shake Table II - Q8 bloğunun alt sistemini vermektedir. Şekil4 Sinüs dalgası izlemek için kullanılan Simulink modeli 3

Şekil5 Shake Table II - Control System - Q8 bloğunun alt sistemi Şekil6 Shake Table II - Q8 bloğunun alt sistemi 4

Şekil7 de sistemin PD pozisyon kontrolü için WinCon kütüphanesinden alınan bloğun alt sistemi verilmiştir. 1 Xd (m) x (m) 98696s s +565.49s+98696 High-Pass Filter Table Position Error K* u PD Gain 1 u (A) v (m/s) Şekil 7 PD kontrol bloğu Sistemin transfer fonksiyonu motora uygulanan akım, I m ve pozisyon, x arasındaki bağıntının s domeninde ifade edilmesidir, (1). X s I s m (1) K f s Burada verilen K f ise açık çevrim kazancıdır ve Denklem () de verilmiştir. X s M P () K t b t Burada M t motorun hareket etmesiyle birlikte oluşan toplam kütle, P b ve K t ise motora özgün kataloğunda verilmiş sabitlerdir. Sistemin pozisyon kontrolü için Şekil 8 de verilen Denklem (3) teki PD kontrol kullanılmıştır. I s k X s X s k sx s sb X s (3) m p d d sd d Burada X d arzu edilen motor pozisyonunu, k p oransal kazancı, k d türevsel kazancı ifade etmektedir. (3) te verilen PD kontrol denklemi (1) deki açık çevrim transfer fonksiyonunda yerine koyulup X(s)/X d (s) çözülürse sistemin kapalı çevrim fonksiyonu, k X s k sb p d sd X s K s k k s d f p d (4) olarak elde edilir. 5

Bu kapalı çevrim transfer fonksiyonu verilen bir konum komutuna karşılık zemin konumunun nasıl cevap vereceğini tanımlar. (5) Şekil 8 Shake table II sisteminin konumu için kullanılan kontrol sisteminin blok diyagramı PD kontrolör Şekil 7 deki PD konum kontrolörü bloğunda yapıldı ve şu yapıdadır. u=k (X d -X) buradaki K kontrol kazancı, X d ayar noktası durumu, ve X ölçülen durumdur. Kontrol kazanç vektörü K=[k p,k d ] T şeklinde tanımlıdır ve ayar noktası durumu X d =[x d,v d ] T istenen v d hız ile birlikte istenen x d konumunu içerir. İstenen konum ve hız Simulink bloklarıyla üretilir. Sistemin durumu X=[x,v x ] T şeklinde tanımlıdır. Burada x ölçülen tabla konumlarını ve v x tablanın hızıdır. Direkt olarak Shake Table tablasının hızının ölçümü yoktur. (örneğin takometre gibi). Bu yüzden ölçülen pozisyonun türevi alınarak hesaplanır ve gürültüyü elimine etmek için filtrelenir. Hız aşağıdaki gibi ikinci dereceden yüksek geçiren filtre kullanılarak hesaplanır. (6) Burada ζ filtrenin sönüm oranı ve w d filtrenin kesim frekansıdır(rad/s cinsinden). Bu filtre parametreleri Matlab M-file dosyasında kuruludur ve çalıştırılırak hız cevabının bantgenişliği ve şekli değiştirlebilir. KONTROL PARAMETRELERİ bölümünde konum kontrolörün doğal frekansı ve sönüm oranı kullanıcı tarafından tanımlanır. 6

% ************************************************************************ % CONTROL PARAMETERS % ************************************************************************ % kapalı çevrim sistemin istenen doğal frekans (Hz) f0 = 15; % kapalı çevrim sistemin istenen sönüm oranı zeta = 0.75; Tablo 1: Değişen yük kütlesi için hesaplanan örnek kontrol kazançları Motor tarafından taşınmakta olan toplam kütle M değişkeniyle gösterilir. Kontrol kazançlarını üretmek için adet tasarım kontrol parametresi kullanılır: doğal frekans, f 0, ve sönüm frekansı ζ. Genellikle doğal frekans cevabın hızını belirler ve sönüm oranı cevabın şeklini belirler (örneğin aşım). Bu özellikleri tanımlamak için, her iki kontrol kazancı arttırılan yük kütlesi gibi arttırılır. İstenen konumu verilen tablanın cevabını tanımlayan kapalı çevrim transfer fonksiyonu daha önce elde edilmiştir ve eşitlik (4) te verilmiştir. Bu ikinci dereceden sistemin ve ayar noktası hız değişkeni b sd =0 iken, ikinci dereceden transfer fonksiyonu ile eşleştirilebilir. Burada w 0 doğal frekans ve ζ sönüm oranıdır. Dikkat edilirse f 0 doğal frekansın birim Hertz iken, w 0 doğal frekansı rad/s şeklindedir. Arasındaki ilişki ise (8) şeklindedir. Aşağıdaki kontrol kazançları kullanılarak, Eşitlik (4) teki Shake Table II kapalı çevrim transfer fonksiyonun paydası sisteminin eşitlik karakteristik eşitlik olarak bilinen (7) deki transfer fonksiyonun paydasıyla eşleştirilir. (7) (9) Tablo 1 deki listelenmiş kazançlar oransal kazanç ilişkisi (9) ve (10) de tanımlı turev kazanç formulü kullanılarak elde edilir. (10) 7

4. Modelin Matlab Simulasyonu ve Gerçek Zamanlı Çalışma Sonuçlarının Karşılaştırılması kp Scope Sine Wave Gain3 du/dt bsd kd 1/kf Gain1 1 s Transfer Fcn Derivative Gain Gain du/dt Derivative1 98696s s +565.49s+98696 High-Pass Filter Scope1 Şekil 9 Shake Table Sistemi Konum Kontrolü Simulink Blok Diagramı 0.05 Konum 0.0 0.015 0.01 Pozisyon(cm) 0.005 0-0.005-0.01-0.015-0.0 Xd X -0.05 0 1 3 4 5 6 7 8 9 10 Zaman Şekil 10 Shake Table Sistemi Konum Kontrolü Simulasyon Cevabı 8

0.0 0.015 X Xd Gercek Zamanli Sistem Konum Cevabi 0.01 0.005 Konum 0-0.005-0.01-0.015-0.0 0 1000 000 3000 4000 5000 6000 7000 8000 Zaman Şekil 11 Shake Table Sistemi Konum Kontrolü Gerçek Zamanlı Sistem Cevabı 9