Sembolik değişken tanımlama a, t, x ve y değişkenlerini sembolik olarak tanımlayalım ve değişken listesinde görelim:

Benzer belgeler
a, t, x ve y değişkenlerini sembolik olarak tanımlayalım ve değişken listesinde görelim:

MATLAB DA SAYISAL ANALİZ DOÇ. DR. ERSAN KABALCI

>> 5*3-4+6/2^0 ans = 17 ( Matlab da sayılar arası işlemler [ +, -, /, *, ^ ] bu şekilde ifade edilmektedir.)

diff Türev Alma Fonksiyonu. >> syms x >> A=3*x^4+x^2-3*x A = 3*x^4+x^2-3*x. >> diff(a) // A fonksiyonunun türevini alır. ans = 12*x^3+2*x-3

Birinci Mertebeden Adi Diferansiyel Denklemler

Sembolik Programlama1. Gün. Sembolik Programlama. 20 Eylül 2011

2. (1 + y ) ln(x + y) = yy dif. denk. çözünüz. 3. xy dy y 2 dx = (x + y) 2 e ( y/x) dx dif. denk. çözünüz.

EŞİTLİK KISITLI TÜREVLİ YÖNTEMLER

İleri Diferansiyel Denklemler

DENKLEMLER CAUCHY-EULER DENKLEMİ. a n x n dn y dx n + a n 1x n 1 dn 1 y

Şeklinde çok sayıda diferansiyel denklemden oluşan denklem sistemleridir. Denklem sayısı = bağımlı değişken eşitliği sağlanmasıdır.

MATLAB ve Simulink Kullanımına Giriş

Bahar Yarıyılı D_IFERANS_IYEL DENKLEMLER II ARA SINAV 6 Nisan 2011 Süre: 90 dakika CEVAP ANAHTARI. y = c n x n+r. (n + r) c n x n+r 1 +

İleri Diferansiyel Denklemler

Kaynaklar Shepley L. Ross, Differential Equations (3rd Edition), 1984.

MATLAB ile Meslek Matematiği Kullanım Kılavuzu

İÇİNDEKİLER ÖNSÖZ Bölüm 1 SAYILAR 11 Bölüm 2 KÜMELER 31 Bölüm 3 FONKSİYONLAR


Dijital Kontrol Sistemleri Prof.Dr. Ayhan Özdemir. Dengede bulunan kütle-yay sistemine uygulanan kuvvetin zamana göre değişimi aşağıda verilmiştir.

MATLAB a GİRİŞ. Doç. Dr. Mehmet İTİK. Karadeniz Teknik Üniversitesi Makine Mühendisliği Bölümü

Sınav süresi 75 dakika. Student ID # / Öğrenci Numarası

Ders 5 : MATLAB ile Grafik Uygulamaları

Runge-Kutta Metodu. Runge-Kutta metodu

ELE /16 BAHAR DÖNEMİ - ÖDEV

Birinci Mertebeden Diferansiyel Denklemler Edwards and Penney, Difarensiyel denklemler ve sınır değer problemleri (çeviri: Prof. Dr.

Sağ Taraf Fonksiyonu İle İlgili Özel Çözüm Örnekleri(rezonans durumlar)

BM202 SAYISAL ÇÖZÜMLEME

Stokastik Süreçler. Bir stokastik süreç ya da rastgele süreç şöyle tanımlanabilir.

TÜREV VE UYGULAMALARI

İleri Diferansiyel Denklemler

>> pretty(f) s exp(10) 1/ s + 1 1/100 (s + 1) + 1 s

İleri Diferansiyel Denklemler

1 Lineer Diferansiyel Denklem Sistemleri

MAK 210 SAYISAL ANALİZ

Elastisite Teorisi Düzlem Problemleri için Sonuç 1

İleri Diferansiyel Denklemler

KUADRATİK FORM. Tanım: Kuadratik Form. Bir q(x 1,x 2,,x n ) fonksiyonu

2.3. MATRİSLER Matris Tanımlama

İleri Diferansiyel Denklemler

Sistem Dinamiği. Bölüm 5-Blok Diyagramlar, Durum-Değişken Modelleri ve Simülasyon Metodları. Doç.Dr. Erhan AKDOĞAN

Sistem Dinamiği. Bölüm 2- Dinamik Cevap ve Laplace Dönüşümü. Doç.Dr. Erhan AKDOĞAN

MATLAB'A GİRİŞ. Contents

MATLAB de GRAFİK İŞLEMLERİ

Matris Cebiriyle Çoklu Regresyon Modeli

MAK 210 SAYISAL ANALİZ

İÇİNDEKİLER KISIM 1: BİRİNCİ MERTEBE ADİ DİFERENSİYEL DENKLEMLER

DEVRE VE SİSTEM ANALİZİ ÇALIŞMA SORULARI

Değişken içeren ve değişkenlerin belli değerleri için doğru olan cebirsel eşitliklere denklem denir.

TOBB Ekonomi ve Teknoloji Üniversitesi Mühendislik Fakültesi Elektrik ve Elektronik Mühendisliği Bölümü ELE 301 Kontrol Sistemleri I.

İÇİNDEKİLER. Bölüm 2 CEBİR 43

Kesirli Türevde Son Gelişmeler

YAZILI SINAV SORU ÖRNEKLERİ MATEMATİK

Math 322 Diferensiyel Denklemler Ders Notları 2012

DÜZCE ÜN IVERS ITES I FEN-EDEB IYAT FAKÜLTES I

Algoritmalar ve Programlama. DERS - 4 Yrd. Doç. Dr. Ahmet SERBES

2(1+ 5 ) b = LYS MATEMATİK DENEMESİ. işleminin sonucu kaçtır? A)2 5 B)3 5 C)2+ 5 D)3+ 5 E) işleminin sonucu kaçtır?

x 0 = A(t)x + B(t) (2.1.2)

SAYISAL ÇÖZÜMLEME Yrd. Doç. Dr. Adnan SONDAŞ Sayısal Çözümleme

Diferansiyel denklemler uygulama soruları

Yrd. Doç. Dr. A. Burak İNNER

1. Hafta SAYISAL ANALİZE GİRİŞ

Ders İçerik Bilgisi. Sistem Davranışlarının Analizi. Dr. Hakan TERZİOĞLU. 1. Geçici durum analizi. 2. Kalıcı durum analizi. MATLAB da örnek çözümü

k ise bir gerçek sayı olsun. Buna göre aşağıdaki işlemler Matlab da yapılabilir.

İşaret ve Sistemler. Ders 11: Laplace Dönüşümleri

İleri Diferansiyel Denklemler

MATLAB. Temel işlemler, Vektörler, Matrisler DOÇ. DR. ERSAN KABALCI

Lineer Dönüşümler ÜNİTE. Amaçlar. İçindekiler. Yazar Öğr. Grv.Dr. Nevin ORHUN

Şekilde görülen integralin hesaplanmasında, fonksiyonun her verilen bir noktası için kümülatif alan hesabı yapılır.

İleri Diferansiyel Denklemler

1. ÇÖZÜM YOLU: (15) 8 = = 13 13:2 = :2 = :2 = 1.2+1

S4 u(x, y) = ln ( sin y. S5 u(x, y) = 2α 2 sec(α(x 4α 2 t)) fonksiyonunun

Bilgisayar Programlama MATLAB

Birden Fazla RDnin Bileşik Olasılık Fonksiyonları

İleri Diferansiyel Denklemler

DENİZ HARP OKULU TEMEL BİLİMLER BÖLÜM BAŞKANLIĞI DERS TANITIM BİLGİLERİ

Zaman Domeninde Modelleme Transfer Fonksiyonu Durum Uzay Dönüşümü Durum Uzay Transfer Fonksiyonu DönüşümÜ


İleri Diferansiyel Denklemler

Nokta uzayda bir konumu belirtir. Noktanın 0 boyutlu olduğu kabul edilir. Herhangi bir büyüklüğü yoktur.

NĐĞDE ÜNĐVERSĐTESĐ Elektrik Elektronik Mühendisliği Bölümü. Devre Tasarımı Ders Notları MATLAB. Arş. Gör. Salim ÇINAR. salim çınar

CEVAP ANAHTARI. Tempo Testi D 2-B 3-A 4-A 5-C 6-B 7-B 8-C 9-B 10-D 11-C 12-D 13-C 14-C

Elektrik Mühendisliği Elektrik Makinaları Güç Sistemleri (Elektrik Tesisleri) Kontrol Sistemleri

Bir özvektörün sıfırdan farklı herhangi bri sabitle çarpımı yine bir özvektördür.

14 Şubat 2011 Pazartesi günü uygulamada çözdüğümüz 2. Soruyu, aynı sıra ile bu defa MATLAB kullanarak çözelim.

Chapter 9. Elektrik Devreleri. Principles of Electric Circuits, Conventional Flow, 9 th ed. Floyd

FİNAL SORULARI GÜZ DÖNEMİ A A A A A A A

ARASINAV SORULARININ ÇÖZÜMLERİ GÜZ DÖNEMİ A A A A A A A

DİFERANSİYEL DENKLEMLER-2

LĐMĐT ÖSS ÖYS YILLAR SAĞDAN VE SOLDAN LĐMĐT. ÇÖZÜM: x=2 f(x) de yerine yazılır cevap:7

İleri Diferansiyel Denklemler

İçerik. TBT 1003 Temel Bilgi Teknolojileri

ÇEV 2006 Mühendislik Matematiği (Sayısal Analiz) DEÜ Çevre Mühendisliği Bölümü Doç.Dr. Alper ELÇĐ

1. GRUPLAR. c (Birleşme özelliği) sağlanır. 2) a G için a e e a a olacak şekilde e G (e ye birim eleman denir) vardır.

Mühendislik Matematiği 2- Hafta 2-3. Arş. Gör. Dr. Sıtkı AKKAYA

MIT Açık Ders Malzemeleri Bu materyallerden alıntı yapmak veya Kullanım Koşulları hakkında bilgi almak için

MAT355 Kompleks Fonksiyonlar Teorisi I Hafta 9. Tanım 2. Kompleks düzlemin tamamında analitik olan bir fonksiyona tam fonksiyon denir.

Öğr. Elemanı: Dr. Mustafa Cumhur AKBULUT

İleri Diferansiyel Denklemler

KAHRAMANMARAŞ SÜTÇÜ İMAM ÜNİVERSİTESİ EĞİTİM ÖĞRETİM YILI FEN-EDEBİYAT FAKÜLTESİ MATEMATİK BÖLÜMÜ BİRİNCİ VE İKİNCİ ÖĞRETİM DERSLERİ

Öğrenci Seçme Sınavı (Öss) / 18 Haziran Matematik II Soruları ve Çözümleri. = 1 olur.

Transkript:

Sembolik değişken tanımlama... 1 İfadeleri daha görsel biçimde görme... 2 Türev alma... 2 Integral alma... 3 Limit alma... 4 Sembolik fonksiyonları çizdirme... 5 Sembolik ifadeleri basitleştirme... 9 Sembolik denklem çözme... 9 Çok bilinmeyenli sembolik denklemler... 9 Diferansiyel denklem çözme... 12 Çok bilinmeyenli diferansiyel denklemler... 13 Laplace dönüşümü... 14 Ters Laplace dönüşümü... 15 Diğer dönüşümler... 16 Sembolik ifadelerde değişkenlere değer verme... 16 Çok değişken içeren sembolik ifadelerde değişkenlere değer verme:... 17 Sembolik matrisler... 18 Sembolik matris işlemleri 1... 18 Sembolik matris işlemleri 2... 20 Sembolik fonksiyonlarla interaktif işlem yapmak için bir araç (funtool)... 21 Sembolik değişken tanımlama a, t, x ve y değişkenlerini sembolik olarak tanımlayalım ve değişken listesinde görelim: syms a t x y whos Name Size Bytes Class Attributes a 1x1 112 sym t 1x1 112 sym x 1x1 112 sym y 1x1 112 sym Sembolik değişkenler ile her türlü hesap yapılabilir, bu değişkenler kullanılarak başka değişkenler oluşturulabilir: f = exp(-2*t) g = sin(3*t)/(3*t) h = x^2+y^3; f =

exp(-2*t) g = sin(3*t)/(3*t) İfadeleri daha görsel biçimde görme pretty komutu ile ifadelerin daha görsel biçimde formatlanarak ekrana yazdırılmasını sağlayabiliriz: pretty(f) pretty(g) pretty(h) exp(-2 t) sin(3 t) -------- 3 t 2 3 x + y Türev alma diff komutu ile türev alınabilir: dfdt = diff(f) dgdt = diff(g) dfdt = -2*exp(-2*t) dgdt = cos(3*t)/t - sin(3*t)/(3*t^2) Yüksek dereceli türevler: dfdt2 = diff(f,2) % İkinci türev dfdt3 = diff(f,3) % Üçüncü türev dfdt10 = diff(f,10) % Onuncu türev dfdt2 = 4*exp(-2*t)

dfdt3 = -8*exp(-2*t) dfdt10 = 1024*exp(-2*t) Birden fazla değişken varsa, hangi değişkene göre türev alınacağını belirtebiliriz: dhdx = diff(h,x) dhdy = diff(h,y) dhdx = 2*x dhdy = 3*y^2 Integral alma int komutu ile integral alınabilir: fi = int(f) gi = int(g) fi = -exp(-2*t)/2 gi = sinint(3*t)/3 Yine integralin de hangi değişkene göre alınacağını belirtelibiliriz: hix = int(h,x) hiy = int(h,y) hix = x^3/3 + x*y^3 hiy =

x^2*y + y^4/4 Belirli integral aldırma: fi = int(f,0,1) gi = int(g,1,2) hix = int(h,x,-1,2) hiy = int(h,y,-1,2) fi = 1/2 - exp(-2)/2 gi = sinint(6)/3 - sinint(3)/3 hix = 3*y^3 + 3 hiy = 3*x^2 + 15/4 Limit alma limit komutu ile limit bulunabilir: f0 = limit(f,0) % t 0'a giderken f'nin limiti finf = limit(f,inf) % t sonsuza giderken f'nin limiti g0 = limit(f,0) % t 0'a giderken g'nin limiti ginf = limit(f,inf) % t sonsuza giderken g'nin limiti f0 = 1 finf = 0 g0 = 1

ginf = 0 Yine limitin de hangi değişkene göre alınacağını belirtelibiliriz: hx2 = limit(h,x,2) hy3 = limit(h,y,3) hx2 = y^3 + 4 hy3 = x^2 + 27 Sembolik fonksiyonları çizdirme İki boyutlu çizimler ezplot(f); % f'yi çizdir ezplot(f,[-1 1]); % f'yi istenilen aralıkta çizdir

ezplot(g); % g'yi çizdir

ezplot(g, [2 4]); % g'yi istenilen aralıkta çizdir Üç boyutlu çizimler ezsurf(h); % h'yi çizdir

ezsurf(h, [-1 1-2 2]); % h'yi x [-1,1] ve y [-2,2] aralığında çizdir

Sembolik ifadeleri basitleştirme Aşağıdaki ifadede normalde olduğundan paydaki ile sadeleşebilir. Yine basitleştirmesi yapılabilir. f = (x^2-1)/(x-1)+cos(x)^2+sin(x)^2; pretty(f); 2 2 2 x - 1 cos(x) + sin(x) + ------ x - 1 MATLAB'da sembolik ifadeleri basitleştirmek için simplify kullanabiliriz: simplify(f) x + 2 Sembolik denklem çözme Tek bilinmeyenli denklem çözme xs = solve('x^2-9=0') xs = -3 3 xs = solve('sin(x)=1/2') xs = pi/6 (5*pi)/6 Çok bilinmeyenli sembolik denklemler İki bilinmeyenli iki denklem çözdürelim: [xs,ys] = solve('3*x+5*y=9','2*x+3*y=5') xs =

-2 ys = 3 Alternatif notasyon S = solve('3*x+5*y=9','2*x+3*y=5') % Tüm değişkenler için çözümü S'ye yaz S = x: [1x1 sym] y: [1x1 sym] S.x % x için çözüm -2 S.y % y için çözüm 3 Üç bilinmeyeli üç denklem çözdürelim: eq1 = 'x+y*z=-5'; eq2 = '2*x^2+3*y-z=-7'; eq3 = 'x*y^2*z=12'; S = solve(eq1,eq2,eq3) % Tüm değişkenler için çözümü S'ye yaz S = x: [5x1 sym] y: [5x1 sym] z: [5x1 sym]

Birkaç tane çözüm bulunduğuna dikkat edin. Bu çözümlerin hepsi de bu denklemleri sağlar. Örnek olarak birinci çözümün doğruluğunu kontrol edelim. x, y ve z değişkenlerine birinci çözüm değerlerini verelim: x = S.x(1) y = S.y(1) z = S.z(1) x = 1 y = -2 z = 3 Birinci denklemin sol tarafını hesaplayalım, sağ tarafa (-5) eşit çıkmalı x+y*z -5 İkinci denklemin sol tarafını hesaplayalım, sağ tarafa (-7) eşit çıkmalı 2*x^2+3*y-z -7 Üçüncü denklemin sol tarafını hesaplayalım, sağ tarafa (12) eşit çıkmalı x*y^2*z 12

Diğer çözümler için de benzer şekilde sağlama yapabiliriz. Diferansiyel denklem çözme dsolve komutu ile diferansiyel denklemler çözülebilir. Bunun için iki yaklaşım izlenebilir. Birinci yöntemde önce zamana bağlı bir değişken şu şekilde tanımlanır: syms x(t) Burada değişkeni 'ye bağlı, yani 'nin bir fonksyonu olarak düşünülebilir. Bu fonksiyonun türevini belirmek için diff komutunu kullanarak bir diferansiyel denklem oluşturularak çözdürülebilir. Örneğin denklemini için çözdürelim: dsolve(diff(x) == -3*x) C5*exp(-3*t) = atama komutu olduğundan diferansiyel denklemdeki eşitliği belirtmek için == kullanıldığına dikkat ediniz. Ayrıca denkeml için ilk koşul vermediğimiz için çözümde bir C sabiti var. Eğer ilk koşul da vermek istersek (mesela ilk koşul verelim) dsolve(diff(x) == -3*x, x(0)==1) exp(-3*t) denklemini ve için çözdürelim. Türeve bağlı ilk koşulu verebilmek için önce türev fonksiyonunu oluşturmalıyız: Dx = diff(x); % x'in türev fonksiyonunu Dx değişkenine atayalım dsolve(diff(x,2)-4*diff(x)+5*x==1,x(0)==1,dx(0)==0) % İstenilen ilk değerler için çözdürelim (4*exp(2*t)*cos(t))/5 - (8*exp(2*t)*sin(t))/5 + 1/5 Türevsel denklem çözdürmek için ikinci yaklaşım da şudur: Sembolik değişkenleri içeren ifadeleri metin şeklinde ifade edebiliriz. Metin içerisinde türevi belirtmek için D harfi kullanılır. İkinci türev D2, üçüncü türev D3... şeklinde belirtilir. MATLAB bu metin ifadelerini kendi içinde sembolik ifadelere çevirerek işlem yapar. Metin içerisinde geçen değişkenlerin daha öncesinde syms ile tanımlanmasına gerek yoktur. Örneğin denklemini için çözdürelim:

dsolve('dx = -3*x') C5*exp(-3*t) İlk koşul vermediğimiz için çözümde bir C sabiti var. Eğer ilk koşul da vermek istersek (mesela ilk koşul verelim) x = dsolve('dx = -3*x','x(0) = 1') x = exp(-3*t) denklemini ve için çözdürelim dsolve('d2x-4*dx+5*x=1','x(0)=1','dx(0)=0') (4*exp(2*t)*cos(t))/5 - (8*exp(2*t)*sin(t))/5 + 1/5 dsolve normalde bağımsız değişkeni zaman (t) olarak alır. Bağımsız değişkene başka bir şey demek istersek onu da parametre olarak belirtebiliriz. Mesela bağımsız değişken olsun ve denkleminden 'yi çözdürelim: dsolve('dx = -3*x','s') C12*exp(-3*s) Yukarıda verilen iki yaklaşım (bağımlı değişken tanımlama ve metin tabanlı yaklaşım) teoride eşdeğerdir, birbiri yerine kullanılabilir. Fakat problem tipine göre pratikte bir metot diğerine göre daha kodlama açısından daha avantajlı olabilir, tercih programcıya aittir. Çok bilinmeyenli diferansiyel denklemler Çok bilinmeyenli diferansiyel denklemleri de normal denklemleri çözdürdüğümüze benzer çekilde çözdürebiliriz. Örneğin

denklemlerini ilk koşullar ve olmak üzere çözdürelim: S = dsolve('dx = y', 'Dy = -x', 'x(0)=0', 'y(0)=1') S = y: [1x1 sym] x: [1x1 sym] S.x % x(t) için çözüm sin(t) S.y % y(t) için çözüm cos(t) Laplace dönüşümü laplace komutu ikl sembolik fonksiyonların Laplace dönüşümü alınabilir. Örneğin birim dürtü fonksiyonu için Laplace dönüşümü: syms t F = laplace(dirac(t)) % dirac = birim dürtü F = 1 Birim basamak fonksiyonu için Laplace dönüşümü: F = laplace(heaviside(t)) % heaviside = birim basamak F = 1/s

Rampa fonksiyonu için Laplace dönüşümü: f = int(heaviside(t)); % rampa, birim basamağın integralidir F = laplace(f) F = 1/(2*s^2) + laplace(t*sign(t), t, s)/2 Sinüs ve kosinüs fonksiyonları için Laplace dönüşümü syms w F = laplace( sin(w*t) ) F = w/(s^2 + w^2) F = laplace( cos(w*t) ) F = s/(s^2 + w^2) Ters Laplace dönüşümü ilaplace komutu ile ters Laplace dönüşümü alınabilir. Örneğin: syms s; f = ilaplace(1/(s+2)) f = exp(-2*t) f = ilaplace(3/(s^2+9)) f = sin(3*t) f = ilaplace(s/(s^2+9))

f = cos(3*t) F = 1/(s^2*(s+1)*(s+2)); pretty(f); % Fonksiyonu güzel formatlanmış olarak görelim 1 ------------------ 2 s (s + 1) (s + 2) f = ilaplace(1/(s^2*(s+1)*(s+2))); pretty(f); % Sonucu güzel formatlanmış olarak görelim t exp(-2 t) 3 - + exp(-t) - --------- - - 2 4 4 Laplace ve ters Laplace dönüşümü birbirinin tersidir. f'nin Laplace'ını alırsak yine F'yi elde ederiz: laplace(f) 1/(s + 1) - 1/(4*(s + 2)) - 3/(4*s) + 1/(2*s^2) Eşit olduklarını görebilmek için sonucu basitleştirelim ve güzel formatlanmıl bir biçimde görelim pretty(simplify(laplace(f))) 1 ----------------- 2 2 s (s + 3 s + 2) Diğer dönüşümler Laplace dönüşümüne benzer şekilde başka faydalı sembolik dönüşümler, örneğin Fourier ve z- dönüşümleri ve tersleri de MATLAB'da kolayca gerçekleştirebilir. Detaylı bilgi ve örnekler için: doc fourier, doc ifourier, doc ztrans, doc iztrans ile ilgili yardım dosyalarına ulaşabilirsiniz. Sembolik ifadelerde değişkenlere değer verme subs komutu ile sembolik ifadede bir değişkene nümerik bir değer verebiliriz.

syms x f = x^3+x^2+x+4 f = x^3 + x^2 + x + 4 f ifadesindeki sembolik değişken (x) yerine 2 koyalım subs(f,2) 18 subs komutu ile bir sembolik değişkeni başka bir sembolik değişkenle veya ifadeyle de değiştirebiliriz: syms y f2 = subs(f,y) % f'de x yerine y koyarak f2 değişkenini oluştur f2 = y^3 + y^2 + y + 4 f3 = subs(f,(x+1)) % f'de x yerine x+1 koyarak f3 değişkenini oluştur f3 = x + (x + 1)^2 + (x + 1)^3 + 5 Not: f3'teki terimleri açmak için expand komutunu kullanabiliriz: expand(f3) x^3 + 4*x^2 + 6*x + 7 Çok değişken içeren sembolik ifadelerde değişkenlere değer verme: syms x y; f = x*y

f = x*y f'de x yerine 2, y yerine de 3 koyalım: subs(f, {x, y}, {2,3}) 6 f'de x yerine x+2, y yerine de y^3 koyalım: subs(f, {x, y}, {x+2,y^3}) y^3*(x + 2) Sembolik matrisler Sembolik değişkenler kullanılarak matrisler de oluşturulabilir: syms x; A = [1 x;2 x^2+1] B = [x^2+1 4*x; x-3 1] A = [ 1, x] [ 2, x^2 + 1] B = [ x^2 + 1, 4*x] [ x - 3, 1] Sembolik matris işlemleri 1 Nümerik matrislerle yaptığımız işlemlerin çoğunu sembolik matrislerde de yapabiliriz. Örneğin matris toplamı

C = A+B C = [ x^2 + 2, 5*x] [ x - 1, x^2 + 2] Matris çarpımı C = A*B C = [ x*(x - 3) + x^2 + 1, 5*x] [ (x^2 + 1)*(x - 3) + 2*x^2 + 2, x^2 + 8*x + 1] Matris tersi Ai = inv(a) Ai = [ (x^2 + 1)/(x^2-2*x + 1), -x/(x^2-2*x + 1)] [ -2/(x^2-2*x + 1), 1/(x^2-2*x + 1)] Matris tersinin doğruluğunu kontrol edelim Ai*A [ (x^2 + 1)/(x^2-2*x + 1) - (2*x)/(x^2-2*x + 1), 0] [ 0, (x^2 + 1)/(x^2-2*x + 1) - (2*x)/(x^2-2*x + 1)] Bu sonuç aslında birim matrise eşit ama MATLAB sadeleştirmeleri yapmamış olduğu için böyle olduğu anlaşılmıyor. Bu durumlarda simplify kullanabiliriz: simplify(ai*a) [ 1, 0]

[ 0, 1] Sembolik matris işlemleri 2 Özdeğer buldurma eig(a) x^2/2 - (x*(x + 2)*(x^2-2*x + 4))^(1/2)/2 + 1 (x*(x + 2)*(x^2-2*x + 4))^(1/2)/2 + x^2/2 + 1 Determinant det(a) x^2-2*x + 1 Karakteristik polinom charpoly(a) [ 1, - x^2-2, x^2-2*x + 1] Matris exponansiyeli expm(a) [ (x^2*exp(x^2/2 - (x*(x + 2)*(x^2-2*x + 4))^(1/2)/2 + 1) - x^2*exp((x*(x + 2)*(x^2-2*x + 4))^(1/2)/2 + x^2/2 + 1) + exp(x^2/2 - (x*(x + 2)*(x^2-2*x + 4))^(1/2)/2 + 1)*(x*(x + 2)*(x^2-2*x + 4))^(1/2) + exp((x*(x + 2)*(x^2-2*x + 4))^(1/2)/2 + x^2/2 + 1)*(x*(x + 2)*(x^2-2*x + 4))^(1/2))/(2*(x*(x + 2)*(x^2-2*x + 4))^(1/2)), -(x*exp(x^2/2 - (x^4 + 8*x)^(1/2)/2 + 1) - x*exp((x^4 + 8*x)^(1/2)/2 + x^2/2 + 1))/(x^4 + 8*x)^(1/2)] [ -(2*(exp(x^2/2 - (x*(x + 2)*(x^2-2*x + 4))^(1/2)/2 + 1) - exp((x*(x + 2)*(x^2-2*x + 4))^(1/2)/2 + x^2/2 + 1)))/(x*(x + 2)*(x^2-2*x + 4))^(1/2), (x^2*exp((x*(x + 2)*(x^2-2*x + 4))^(1/2)/2 + x^2/2 + 1) - x^2*exp(x^2/2 - (x*(x + 2)*(x^2-2*x + 4))^(1/2)/2 + 1) + exp(x^2/2 - (x*(x + 2)*(x^2-2*x + 4))^(1/2)/2 + 1)*(x*(x + 2)*(x^2-2*x + 4))^(1/2) + exp((x*(x + 2)*(x^2-2*x + 4))^(1/2)/2 + x^2/2 + 1)*(x*(x + 2)*(x^2-2*x +

4))^(1/2))/(2*(x*(x + 2)*(x^2-2*x + 4))^(1/2))] Sembolik fonksiyonlarla interaktif işlem yapmak için bir araç (funtool) funtool

Published with MATLAB R2015a