İMKB-100 ENDEKSİNİN DESTEK VEKTÖR MAKİNELERİ İLE GÜNLÜK, HAFTALIK VE AYLIK VERİLER KULLANARAK TAHMİN EDİLMESİ *

Ebat: px
Şu sayfadan göstermeyi başlat:

Download "İMKB-100 ENDEKSİNİN DESTEK VEKTÖR MAKİNELERİ İLE GÜNLÜK, HAFTALIK VE AYLIK VERİLER KULLANARAK TAHMİN EDİLMESİ *"

Transkript

1 AİBÜ Sosyal Bilimler Enstitüsü Dergisi, Bahar 2013, Cilt:13, Yıl:13, Sayı:1, 13: İMKB-100 ENDEKSİNİN DESTEK VEKTÖR MAKİNELERİ İLE GÜNLÜK, HAFTALIK VE AYLIK VERİLER KULLANARAK TAHMİN EDİLMESİ * Nezih TAYYAR 1 Selin TEKİN 2 FORECASTING ISE-100 INDEX USING SUPPORT VECTOR MACHINES WITH DAILY, WEEKLY AND MONTHLY DATA Öz Bu çalışmada İstanbul Menkul Kıymetler Borsası Ulusal 100 Endeksi (İMKB- 100) hareket yönü tahmini amacıyla Destek Vektör Makineleri (DVM) yöntemi kullanılmıştır. DVM'lerin sınıflandırma başarısı çalışmada kullanılan ikinci bir yöntem olan Lojistik Regresyon (LR) yöntemi ile karşılaştırılmıştır. Çalışmada hisse senedi analizinde teknik analizin yararlandığı araçlardan biri olan teknik göstergelerden (indikatörler) yararlanılmıştır. Modellere dâhil edilen teknik göstergeler LR analizi ile incelenmiş ve LR analizinde anlamlı olan göstergeler bağımsız değişken olarak kullanılmıştır. Analiz, arası dönemi kapsamaktadır. Toplam 4226 adet veri günlük, haftalık ve aylık veri setleri şeklinde düzenlenmiştir. Her veri seti için 4 model oluşturulmuş ve her model için farklı değerlendirme kriterleri uygulanarak yöntemlerin endeks hareket yönü tahmin performansları değerlendirilmiştir. Yapılan değerlendirmeler sonucunda DVM'nin oluşturulan 12 model içerisinde İMKB- 100 endeksi hareket yönünü en iyi tahminlediği modelin haftalık model 1 olduğu (%70,0) gözlenmiştir. Bu model aynı zamanda İMKB-100 endeksi artış (%82,89) ve azalış yönünü (%54,68) birbirine en yakın ve yüksek oranda tahminleyen model olarak bulunmuştur. Anahtar kelimeler: Destek Vektör Makineleri; Endeks Hareket Yönü Tahmini; Lojistik Regresyon; Sınıflandırma; İMKB-100 * Bu makale Selin Tekin in Uşak Üniversitesi Sosyal Bilimler Enstitüsü İşletme Bölümü nde sunmuş olduğu DESTEK VEKTÖR MAKİNELERİ YÖNTEMİ İLE İMKB-100 ENDEKSİ HAREKET YÖNÜ TAHMİNİ başlıklı Yüksek Lisans Tezinden yararlanılarak hazırlanmıştır. 1 Yrd. Doç. Dr., Uşak Üniversitesi, İktisadi ve İdari Bilimler Fakültesi, İşletme Bölümü, e-posta: 2 Uşak Üniversitesi, Sosyal Bilimler Enstitüsü, İşletme Bölümü, Yüksek Lisans Mezunu, e-posta: 189

2 AIBU Journal of Social Sciences, Spring 2013, Vol:13, Year:13, Issue:1, 13: Abstract This study aims to forecast the movement direction of Istanbul Stock Exchange National 100 Index (ISE-100) using Support Vector Machines (SVM). SVMs' classification performance was compared with Logistic Regression (LR), the other method used in this study, in order to forecast the movement direction of ISE-100 Index. Technical indicators that are among the devices useful for technical analysis in stock prediction were used. These indicators included in models were analysed with LR analysis and then, significant ones were used as independent variables. The analysis includes the data from to data were established as daily, weekly and monthly data sets. 4 models were built for each dataset and index movement direction forecasting performance of these methods was evaluated by applying different criteria for each model. The results of this study show that SVMs estimate the movement of ISE-100 Index best with weekly Model 1 (70.0%) among 12 models. Additionally, it is observed that this model has a high level of estimation and the closest increase (82.89%) and decrease (54.68%) direction of ISE 100 Index. Keywords: Support Vector Machines; Index Movement Direction Forecast; Logistic Regression; Classification; ISE-100 Giriş Hisse senedi getirilerinin tahmin edilebilirliği, gerek yatırımcılar gerekse araştırmacılar için büyük önem arz etmektedir. Bu durum, hisse senedi tahminine yönelik, geçmişten günümüze, farklı değerleme yöntemleri ve pek çok farklı teknik kullanılarak çok sayıda tahmin çalışması yapılmasına sebep olmuştur. Son zamanlarda bilgisayar teknolojilerindeki hızlı ilerleme ile İstanbul Menkul Kıymetler Borsası'na (İMKB) yönelik yapılan çalışmalarda kullanılan klasik yöntemlerin yanı sıra yeni nesil yöntemler olarak bilinen veri madenciliği yöntemlerinin başarılı sonuçlar vermesi bu alana olan ilgiyi artırmıştır. Veri Madenciliği (VM); büyük miktarda veri içinden, gelecek ile ilgili tahmin yapmamızı sağlayacak bağıntı ve kuralların bilgisayar programları kullanılarak aranmasıdır (Timor ve Şimşek, 2008:5). VM'de kullanılan modeller, tahmin edici ve tanımlayıcı olmak üzere iki ana başlık altında incelenmektedir. VM modellerini gördükleri işlevlere göre sınıflama ve regresyon modelleri, kümeleme modelleri ve birliktelik kuralları ve ardışık zamanlı örüntüler olmak üzere üç ana başlık altında incelemek de mümkündür. Sınıflama ve regresyon modelleri tahmin edici, kümeleme, birliktelik kuralları ve ardışık zamanlı örüntü modelleri tanımlayıcı modellerdir (Albayrak ve Yılmaz, 2009:33). Tahmin edici modellerde, sonuçları bilinen verilerden hareket edilerek bir model geliştirilmesi ve 190

3 AİBÜ Sosyal Bilimler Enstitüsü Dergisi, Bahar 2013, Cilt:13, Yıl:13, Sayı:1, 13: kurulan bu modelden yararlanılarak sonuçları bilinmeyen veri kümeleri için sonuç değerlerin tahmin edilmesi amaçlanmaktadır. Tanımlayıcı modellerde ise karar vermeye rehberlik etmede kullanılabilecek mevcut verilerdeki örüntülerin tanımlanması sağlanmaktadır. VM'de tahmin edici modeller olarak bilinen başlıca sınıflama ve regresyon modelleri; karar ağaçları, genetik algoritmalar, K-En yakın komşu, bellek temelli nedenleme, lojistik regresyon (Akpınar, 2000:4); Bayes sınıflandırması, zaman serisi analizi, yapay sinir ağları ve destek vektör makineleridir (Kaya ve Köymen, 2008:161). Bu modellerden hisse senedi fiyat öngörüsünde sıklıkla kullanılanlar ise LR ve yapay sinir ağları (YSA)'dır. VM, veri tabanı teknolojileri, istatistik, makine öğrenmesi gibi birçok farklı disiplini içeren bir alandır (Kaya ve Köymen, 2008:159). Bu çalışmada VM'nde sınıflama ve regresyon problemlerinde başarı ile kullanılan bir makine öğrenmesi yöntemi olan DVM sonuçlarını karşılaştırmak amacıyla hisse senedi fiyat öngörüsünde sıklıkla kullanılan LR yöntemi kullanılarak İMKB-100 endeksinin hareket yönü tahmini yapılmıştır. Literatürde İMKB-100 endeksi tahminine yönelik gerek klasik teknikler ile gerek VM yöntemlerinden YSA'nın kullanıldığı çok sayıda çalışma olmasına karşın, DVM'lerin kullanıldığı sadece iki çalışmaya rastlanılmıştır. Bu nedenle bu çalışmanın amacı, oldukça yeni bir öğrenme algoritması olan DVM'lerin, teknik analizde kullanılan göstergelerden yararlanarak, hisse senedi analizlerinde diğer yöntemlere alternatif bir yöntem olarak kullanılabilirliğini göstermek ve hangi veri seti üzerinde en iyi tahmin performansı gösterdiğini belirlemektir. 2. Literatür Taraması Yapılan literatür araştırmasında, DVM'lerin uluslararası finans literatüründe hisse senedi tahmininde yaygın olarak kullanıldığı gözlenmiştir. Bu çalışmalarda, DVM'lerin tahmin performansı, farklı istatistiksel yöntemler ya da VM yöntemleri ile birleştirilerek değerlendirilmiştir. İMKB'ye yönelik yapılan tahminlerde ise hisse senedi tahminine yönelik DVM kullanılarak yapılan iki çalışmaya; Kara vd. (2011) ve Özdemir vd. ( 2011) rastlanmıştır. Bu çalışmalar haricinde, İMKB'ye yönelik yapılan çalışmaların çoğunda bilgisayar temelli öğrenme algoritmalarından YSA modellerinin kullanıldığı gözlenmiştir. 191

4 AIBU Journal of Social Sciences, Spring 2013, Vol:13, Year:13, Issue:1, 13: Kim (2003), KOSPI endeksinin günlük yönünü tahmin etmek amacıyla 12 teknik gösterge ile DVM yöntemini kullanmıştır. Analiz dönemi Ocak Aralık 1998 olarak belirlenmiştir. Toplam 2928 verinin %80'i (2347 tanesi) eğitim verisi, %20'si (581 tanesi) test verisi olarak kullanılmıştır. KOSPI endeksinin tahmini amacıyla ikili sınıflandırma yapılmıştır; endeks getirileri bir gün önceki gün sonu değerine göre arttığında ''1'', azaldığında ''0'' olarak sınıflandırılmıştır. DVM yöntemi, geri yayılım sinir ağları (BPNN) ve durum tabanlı çıkarsama (CBR) yöntemleri ile karşılaştırılmıştır. DVM'nin, BPNN ve CBR yöntemlerine nazaran daha iyi performans gösterdiği ve finansal zaman serileri tahmini için gelecek vadeden bir yöntem olduğu belirtilmiştir. DVM'leri, bir taraftan diğer yöntemlerden daha avantajlı özelliklere sahipken diğer taraftan bir takım dezavantajlara da sahiptir. Örneğin; veri sayısının çok fazla ve yüksek boyutlu olduğu durumlarda, DVM eğitimi zaman maliyetine yol açmaktadır. Böyle durumlarda DVM yönteminin daha çok diğer yeni nesil yöntemlerle geliştirilerek tahminlerde bulunulduğu gözlenmiştir. İncelenen bu çalışmalarda DVM'ler ile diğer yöntemlerin hibrid kullanımının sınıflama performansını ve tahmin doğruluğunu artırdığı gözlenmiştir. Pai ve Lin (2005), on şirkete ait hisse senedinin fiyat yönünü tahmin etmek amacıyla, doğrusal zaman serisi tahmininde yaygın olarak kullanılan bütünleştirilmiş otoregresif hareketli ortalama (ARIMA) ve DVM modellerini entegre eden bir tahmin modeli geliştirmişlerdir. ARIMA ve DVM yi entegre eden hibrid modelin, yalnızca ARIMA ve yalnızca DVM kullanan modellerle kıyaslandığında, tüm tahmin hatalarını anlamlı bir biçimde azalttığı gözlenmiştir. Huang vd. (2005), NIKKEI 225 endeksinin haftalık hareket yönünü tahmin etmek için DVM yöntemini kullanmışlardır. DVM'nin performansını dört farklı sınıflandırma yöntemi; rastgele yürüyüş (RW) modeli, doğrusal diskriminant analizi (LDA), kuadratik diskriminant analizi (QDA) ve Elman geri yayılım sinir ağları (EBNN) ile karşılaştırmışlardır. Aynı zamanda çalışmada bu sınıflandırma yöntemleri ile DVM'yi kombine eden bir model geliştirmişlerdir. Çalışmada S&P-500 endeksi ve Japon Yeni (JPY) girdi değişkenleri olarak belirlenmiştir. 1 Ocak Aralık 2002 dönemine ait toplam 676 verinin 640'ı model ve parametre özelliklerini belirlemek amacıyla, geriye kalan 36 veri performans karşılaştırması için kullanılmıştır. RW, LDA, QDA, EBNN ve DVM yöntemlerinin bireysel tahmin performansları ile tüm bu sınıflandırma yöntemlerinin entegre edilmesiyle oluşturulan kombine modelin tahmin performansları karşılaştırılmıştır. Çalışma sonucunda, NIKKEI endeksinin haftalık hareket yönü için en iyi tahmin performansının, DVM ile diğer sınıflandırma yöntemlerini entegre eden modele (%75) ait olduğu 192

5 AİBÜ Sosyal Bilimler Enstitüsü Dergisi, Bahar 2013, Cilt:13, Yıl:13, Sayı:1, 13: sonucuna ulaşmışlardır. Ayrıca, bireysel performanslara bakıldığında DVM yönteminin (%73), çalışmada kullanılan diğer sınıflandırma yöntemlerinden daha başarılı performans gösterdiği, RW'nin (%50) ise en kötü performansa sahip olduğu gözlenmiştir. Perez-Cruz vd. (2003), GARCH modellerinde yaygın olarak kullanılan maksimum olabilirlik (ML) uygulaması yerine DVM'leri kullanıp daha iyi tahminlere ulaşılabileceğini göstermek amacıyla dört borsa endeksi (S&P-100, FTSE-100, IBEX-35, NIKKEI) üzerinde bir çalışma yapmışlardır. Çalışma sonucunda DVM'nin ML tahminlerine oranla daha iyi tahmin doğruluğu sağladığı saptanmıştır. Bu çalışmanın konusunu oluşturan hisse senedi analizinde kullanılan teknik analiz göstergelerinin hisse senedi tahminindeki başarısı ve DVM'nin tahminleme performansındaki etkisini araştıran çalışmalarda da DVM yönteminin diğer yöntemler ile hibrid kullanımının yaygın olduğu gözlenmiştir. Yu vd. (2005), S&P-500 endeksinin günlük değişim yönü tahminine yönelik genetik algoritma tabanlı DVM (GA-DVM) modelini kullanarak yaptıkları çalışmada, literatürde yaygın olarak kullanılan 18 teknik göstergeyi; fiyat, stokastik osilatör (SO), hareketli stokastik osilatör (MSO), yavaş stokastik osilatör (SSO), değişim oranı (ROC), momentum, hareketli ortalama (MA), varyans hareketi, varyans hareket oranı, üssel hareketli ortalama (EMA), hareketli ortalamaların birleşmesi ayrılması göstergesi (MACD), toplama/dağıtım osilatörü (A/D), kapanış fiyatının beş günlük hareketli ortalamaya oranı (D5), kapanış fiyatının on günlük hareketli ortalamaya oranı (D10), fiyat osilatörü, mal kanal endeksi (CCI), göreceli güç endeksi (RSI) ve lineer regresyon çizgisi kullanmışlardır. Tüm veri seti 1 Ocak Aralık 2004 dönemini kapsamaktadır. 1 Ocak Aralık 2003 dönemi verileri eğitim amaçlı, 1 Ocak Aralık 2004 verileri ise test amaçlı kullanılmıştır. S&P-500 hisse senedi günlük fiyat endeksinin tahmini için ikili sınıflama kullanılmıştır; endeks getirileri bir gün önceki gün sonu değerine göre yüksek olduğunda ''1'', düşük olduğunda ''0'' olarak sınıflandırılmıştır. Çalışmada, DVM ile RW, ARIMA, BPNN ve önerilen model GA-DVM'nin tahmin performansları değerlendirilmiştir. Bulunan sonuçlar DVM'nin tahmin performansı üzerinde GA tabanlı değişken seçiminin önemli olduğunu göstermiştir. Buna göre DVM %78,65 lik tahmin performansı sergilerken, önerilen model GA-DVM ile %84,57 lik tahmin performansına ulaşılmıştır. Huang ve Tsai (2009), borsa tahmini üzerine yaptıkları çalışmalarında kendini örgütleyen özellik haritaları (SOFM), destek vektör regresyonu (DVR) ve filtre tabanlı özellik seçimi yöntemlerinden oluşan bir hibrid model geliştirmişlerdir. Analizde kullanılan veriler 4 Ocak Şubat 2006 dönemini 193

6 AIBU Journal of Social Sciences, Spring 2013, Vol:13, Year:13, Issue:1, 13: kapsamaktadır. Veri seti beş ayrı dilime ayrılmış ve ilk beş yıl ayrı dönemler için eğitim verisi, son bir yılı da yaklaşık ikişer aylık dönemler itibariyle ayrılarak test verisi için kullanılmıştır. Çalışmada on üç bağımsız değişken; RSI, MACD, MA, Williams'ın %R göstergesi (%R), psikolojik sınır (PSY), stokastik %K, stokastik %D, yukarı yönsel gösterge (+ DI), aşağı yönsel gösterge (- DI), BIAS, hacim oranı (VR), A oranı ve B oranı kullanılmıştır. SOFM-DVR ile özellik seçimi yöntemlerinden oluşan modelin, özellik seçimi içermeyen SOFM-DVR modeline nazaran daha kesin tahmin doğruluğu sağladığı gözlenmiştir. Ardından DVR ortalama tahmin hataları, önce seçilen özellikler daha sonra tüm özellikler kullanılarak değerlendirilmiştir. Çalışmada, SOFM- DVR hibrid modelinin, DVR nin yalnız başına gösterdiği performanstan daha iyi sonuçlar verdiği sonucuna ulaşılmıştır. DVM eğitiminde çekirdek fonksiyonlarının seçimi ve seçilen çekirdek fonksiyonu için belirlenecek parametre seçimi önemli bir rol oynamaktadır. Yapılan çalışmalarda çekirdek fonksiyonları için seçilecek parametre değerlerinin seçiminin DVM'nin sınıflandırma performansına doğrudan etki ettiği gözlenmiştir. Ding vd. (2008), borsaya kote edilmiş Çin şirketlerinin finansal durumunu belirlemeye yönelik DVM ye dayalı bir tahmin modeli kullandıkları çalışmalarında, analiz dönemi olarak dönemi verilerinden yararlanmışlardır. Çalışmada öncelikle 10 kat çapraz geçerleme kullanılarak en iyi parametre seçimi yapılmıştır. Ardından DVM nin dört çekirdek fonksiyonunun tahmin performansı değerlendirilmiştir ve radyal tabanlı çekirdek fonksiyonu (RBF) diğer çekirdeklerden başarılı bulunmuştur. Daha sonra DVM nin tahmin performansı üç katmanlı BPNN, çoklu diskiriminant analizi (MDA) ve LR ile istatistiksel olarak karşılaştırılmıştır. Çalışma sonucunda, RBF- DVM nin, BPNN, MDA ve LR yöntemlerinden daha iyi sonuçlar verdiği sonucuna ulaşılmıştır. Sap ve Awan (2005), KLSE üzerine yaptıkları çalışmada çekirdek fonksiyonu olarak Gaussian fonksiyonunu kullanılmışlardır. Çünkü Gaussian çekirdekleri eldeki verilere ek bir bilgi olmasa da iyi performans gösterebilmektedirler. Çalışma sonucunda DVM'nin zaman serisi tahminine iyi bir alternatif oluşturduğu saptanmıştır. Yapılan literatür incelemesinde, hisse senedi fiyatlarındaki aşırı dalgalanma nedeniyle oluşan gürültü probleminin de DVM performansını etkilediği gözlenmiştir. Gürültü içeren veriler söz konusu olduğunda kullanılan yöntemler ile ulaşılan sonuç doğru tahminleme oranını azaltmaktadır. DVM tekniğinin değerlendirildiği çalışmalarda, gürültüden arındırılmış veriler ile DVM performansının daha iyi sonuçlar verdiği 194

7 AİBÜ Sosyal Bilimler Enstitüsü Dergisi, Bahar 2013, Cilt:13, Yıl:13, Sayı:1, 13: gözlenmiştir. Sui vd. (2007), SSECI tahminine yönelik olarak yaptıkları çalışmalarında, 28 Nisan Eylül 2006 dönemi için toplam 2261 veriden yararlanmışlardır. Verilerin 1920'si çalışma verisi olarak 341'i test verisi olarak kullanılmıştır. Finansal veriler gürültü içerdiği için veriler dalgacık sıkıştırma yöntemi ile gürültüden arındırılmıştır. DVM hem gürültü içeren hem de gürültüden arındırılmış modellere ayrı ayrı uygulanmıştır. Gürültüden arındırılmış veri setinde (%60,12), gürültü içeren veri setine göre (%54,25) daha iyi sonuçlar alınmıştır. Son zamanlarda hisse senedi piyasalarına olan ilginin artış göstermesi, gerek yatırımcıları gerekse akademik çevreyi, hisse senetlerinin gelecek değerlerini tahmin etme konusunda çalışmalar yapmaya yöneltmiştir. Türkiye'nin tek hisse senedi piyasası olan İMKB'de hisse senedi getiri tahminine yönelik özellikle son on yıllık süreçte çok sayıda çalışma yapıldığı, bu çalışmaların çoğunluğunda ise YSA yönteminin tercih edildiği gözlenmiştir. Bunlardan bazıları Akay (2009), Akcan ve Kartal (2011), Akel ve Bayramoğlu (2008), Diler (2003), Gür (2009), Haznedaroğlu ve Taş (2010), Karaatlı (2003), Kutlu ve Badur (2009), Moralı (2011), Tektaş ve Karataş (2004) ın çalışmalarıdır. Yapılan incelemede, İMKB'de hisse senedi tahminine yönelik DVM'nin kullanıldığı iki çalışmaya rastlanmıştır. Kara vd. (2011), İMKB-100 endeksinin tahmini amacıyla yaptıkları çalışmalarında YSA ve DVM'nin performanslarını karşılaştırmışlardır. Analiz için, 2 Ocak Aralık 2007 günlük kapanış fiyatlarını kullanmışlardır. Toplam 2733 iş gününün 1440'ı artan, 1293'ü azalan yönlüdür. Çalışmada 10 teknik gösterge; basit hareketli ortalama (SMA), ağırlıklı hareketli ortalama (WMA), momentum, stokastik %K, stokastik %D, RSI, MACD, %R, A/D osilatörü ve CCI bağımsız değişken olarak kullanılmıştır. İMKB-100 endeksi tahmini için ikili sınıflandırma kullanılmıştır. Çalışma sonucunda her iki yönteminde başarılı sonuçlar vermiş olmasına rağmen YSA'nın %75,74, DVM nin %71,52 tahmin performansına sahip olduğu bulunmuştur. Özdemir vd. (2011) hisse senedi getirilerine etki edeceği düşünülen bağımsız değişkenler kullanarak İMKB-100 endeksinin getiri yönünü tahmin ettikleri çalışmalarında, ikili sınıflandırmaya imkân tanıyan LR ve DVM yöntemlerini kullanmışlardır. Çalışmada, Şubat Aralık 2010 dönemini kapsayan aylık verileri kullanmışlardır. Toplam 167 aylık veri setinin, modellerin kurulduğu 138 veri eğitim kümesine ve modellerin geçerliliğinin test edildiği 29 veri tahmin kümesine ayrılmıştır. LR yönteminin modelleme ve tahmin kümesi için doğru sınıflandırma oranları sırasıyla %75,4 ve %86,2'dir. DVM yönteminin ise tüm değişkenlerle oluşturulan modelde doğru sınıflandırma sonuçları eğitim kümesinde %73,9, test kümesinde %79,3 195

8 AIBU Journal of Social Sciences, Spring 2013, Vol:13, Year:13, Issue:1, 13: iken değişken seçimi ile kurulan modelde sırasıyla %76,1 ve %86,2 olarak gözlenmiştir. Çalışmada, yöntemlerin tahmin güçleri incelendiğinde LR'nin endeksin negatif getiri yönünü daha iyi tahminlerken, DVM yöntemiyle kurulan her iki modelde de endeksin pozitif getiri yönünü daha iyi tahmin ettiği görülmüştür. 3. Destek Vektör Makineleri (DVM) Bu bölümde yalnızca yeni bir yöntem olan DVM kısaca açıklanmıştır. Çalışmada kullanılan bir diğer yöntem olan LR; bilinen ve çok sık kullanılan bir yöntem olduğundan dolayı açıklanmamıştır. DVM'lerin temelleri istatistiksel öğrenme teorisi esas alınarak Vapnik tarafından ortaya atılmıştır (Schölkopf ve Smola, 2002). 1960'ların sonlarında Vapnik tarafından geliştirilen DVM'ler, istatistiksel öğrenme teorisi ve yapısal risk minimizasyonu ilkesine dayanan, iki sınıflı sınıflandırma ve regresyon problemlerinin çözümü amacıyla ortaya atılmış bir makine öğrenmesi yöntemidir (Vapnik 1995, 1998). DVM'lerin eğitim verileri çok az olduğu durumlarda bile genelleme kabiliyetleri iyidir. Ayrıca, hiçbir yerel minimum içermezler. DVM kuadratik programlama problemi olarak formüle edildiği için, problem kuadratik programlama teknikleri ile çözülebilir (Abe, 2005:39). Bu çalışmada İMKB-100 endeksi yönünü tahminlemek amacıyla, ikili sınıflamaya imkân tanıyan DVM kullanılmıştır, bu nedenle aşağıda yalnızca bu yöntem kısaca açıklanmıştır. DVM ile ilgili ayrıntılı bilgiye Abe (2005), Schölkopf ve Smola (2002), Suykens vd. (2002) ve Vapnik (1995, 1998) den ulaşılabilir. DVM'ler hem doğrusal olarak ayrılabilen, hem de doğrusal olarak ayrılamayan verilere uygulanabilmektedir. Doğrusal olarak ayrılabilme durumunda DVM nin amacı iki sınıfı birbirinden ayıran en iyi hiperdüzlemi bulmaktır. DVM'nin eğitimi için kullanılacak l elemandan oluşan veri kümesinin{ x, y }, i = 1,2,..., l olduğunu varsayalım. Burada y 1,1 etiket değerleri ve i durumda; i i d xi özellikler vektörüdür. Bu y i = +1 için, w. x i + b +1 (1) 196

9 AİBÜ Sosyal Bilimler Enstitüsü Dergisi, Bahar 2013, Cilt:13, Yıl:13, Sayı:1, 13: y i = -1 için, w. x i + b -1 (2) Bu eşitsizlikler bir arada ifade edilecek olursa, y i (w. x i + b) +1 (3) Burada w ağırlık vektörünü ve b sabit terimi ifade eder. Denklem 3'de gösterilen ve kaldırılması, elde edilen çözümün değişmesine yol açabilen eğitim noktalarına Destek Vektörleri (DV) adı verilmektedir. Maksimum sınırın bulunması işlemi; Minimizasyon: 1 min 2 w 2 (4) Kısıt: y i (w. x i + b) +1, i (5) ile ifade edilir (Burges, 1998: ). Burada Denklem 4 ve Denklem 5 sırasıyla çözülecek problem ve problemin çözümü sırasında kullanılan koşuldur ve bu ifade doğrusal olmayan bir optimizasyon problemidir (Özkan, 2013:189). Bu optimizasyon problemi Lagrange fonksiyonu kullanarak çözülebilir. Problemin Lagrange fonksiyonu ise, 1 2 L w y x w b l l (6) P i i i i 2 i1 i1 şeklindedir, α i Lagrange çarpanlarını gösterir (Burges, 1998:130). Denklem 6'daki ifade Karush-Kuhn-Tucker (KKT) koşulları kullanılarak dual probleme dönüştürülür. Bu problem için KKT koşulları şöyledir (Alpaydın, 2011: 264): LP 0 w i yi xi w i (7) 197

10 AIBU Journal of Social Sciences, Spring 2013, Vol:13, Year:13, Issue:1, 13: LP 0 iyi 0 b i (8) Bu koşullar Denklem 6'da yerine yazılacak olursa, optimizasyon problemi dual probleme dönüşür. Elde edilen dual problem şu şekildedir: 1 L y y x x D i i j i j i j i 2 i, j (9) 0, i (10) i Bu durumda karar fonksiyonu Denklem 11 deki gibi ifade edilir (Lee, 2009:10899). l f ( x) sgn yii xi x b i1 (11) Verilerin doğrusal olarak ayrılamadığı durumlarda ise eğitim verilerinin bir kısmının optimum hiperdüzlemin diğer tarafında kalmasından kaynaklanan problem, pozitif bir gevşek değişkenin (ξ i ) ve sınırın maksimum hale getirilmesi ve yanlış sınıflandırma hatalarının minimum hale getirilmesi arasındaki dengeyi sağlayan pozitif değerler alan ve C ile gösterilen bir düzenleme parametresinin probleme eklenmesiyle çözülür. Bu durumda doğrusal olarak ayrılamayan veriler için optimizasyon problemi Denklem 12 deki gibi ifade edilir (Kavzaoğlu ve Çölkesen, 2010:76). min w 2 C 2 i1 i (12) Bu bilgilere göre Lagrange formülasyonu yeniden şu şekilde ifade edilecektir: 198

11 AİBÜ Sosyal Bilimler Enstitüsü Dergisi, Bahar 2013, Cilt:13, Yıl:13, Sayı:1, 13: L w C y x w b 1 p i i i i i i i 2 i1 i i (13) Yukarıdaki formülasyonda i, i'nin pozitif olmasını sağlamak için kullanılmış olan Lagrange çarpanlarıdır. Bu Lagrange formülasyonun da çözülmesi zor olduğundan dolayı doğrusal ayrılabilir örneklerde olduğu gibi dual problemine dönüştürülmektedir (Burges, 1998:136). 1 L y y x x D i i j i j i j i 2 i, j (14) Burada Denklem 14 ile doğrusal olarak ayrılabilen durumdaki Denklem 9 benzerlik gösterse de Denklem 14 ün kısıtları Denklem 15 deki gibi tanımlanmıştır. Kısıtlar: iyi 0 ve 0 i C, i (15) i Bu problemin çözümünde, i 0 olan örnekler DV'lerdir (Alpaydın, 2011: 268). Doğrusal olarak ayrılamayan veriler söz konusu olduğunda sınıflandırma işlemi çekirdek fonksiyonları kullanılarak yüksek boyutlu bir uzaya taşınır. Çekirdek fonksiyonu Denklem 16 daki gibidir. K x, x ( x ) ( x ) (16) i j i j Denklem 16 nın uygulanması çekirdek düzenlemesi olarak bilinir. Çekirdek düzenlemesi, yüksek boyutlu özellik uzayında doğrudan hesaplama yapmak zorunda kalmadan çalışabilmemizi sağlar. Bu düzenleme ile problem primal ağırlık uzayında değil, Lagrange çarpanlarının ikili uzayında çözülür (Suykens vd., 2002:37) ve Denklem 17 deki gibi gösterilir (Lee, 2009:10899). 1 L y y k( x x ) D i i j i j i j i 2 i, j (17) 199

12 AIBU Journal of Social Sciences, Spring 2013, Vol:13, Year:13, Issue:1, 13: Doğrusal olmayan DVM'lerde kullanılan bu çekirdek fonksiyonları Denklem 18 ve 19 da verilen Mercer Teoremi koşullarını sağlamak zorundadır (Vapnik, 1995:140): K( x, y) K( y, x) (18) K( x, y) f ( x) f ( y) dxdy 0 (19) Yaygın olarak kullanılan çekirdek fonksiyonları şunlardır (Hsu vd., 2003:2): Doğrusal Çekirdek Fonksiyonu: T K( x, x ) x x i j i j Polinom Çekirdek Fonksiyonu: T d K( x, x ) ( x x r), 0 i j i j Sigmoid Çekirdek Fonksiyonu: T K( x, x ) tanh( x x r) i j i j Radyal Tabanlı Çekirdek Fonksiyonu (RBF): K( x, x ) exp( x x ), 0 i j i j Burada, r ve d çekirdek parametreleridir. 2 Bu çalışmada çekirdek fonksiyonları arasında kullanımı en yaygın olan RBF çekirdek fonksiyonu kullanılmıştır. RBF çekirdek fonksiyonu iki parametreye sahiptir bunlar cost (C) ve gamma ( ) dır. C ve DVM lerin doğruluk oranına etki eden iki parametredir, aldıkları değerlere bağlı olarak sınıflandırma performanslarına etki ederler. Bu nedenle en iyi doğruluk oranını veren C ve parametrelerinin bulunması için çapraz geçerlilik uygulaması yapılır. 200

13 AİBÜ Sosyal Bilimler Enstitüsü Dergisi, Bahar 2013, Cilt:13, Yıl:13, Sayı:1, 13: Veri Seti ve Analiz Bu çalışmada İMKB-100 endeksi hareket yönünün tahmin edilmesi amacıyla ikili sınıflandırmaya imkân tanıyan DVM yöntemi kullanılmıştır. DVM'nin sınıflandırma başarısı ikinci bir yöntem olarak çalışmada kullanılan LR yöntemiyle elde edilen sonuçlarla karşılaştırılmıştır. Analiz, İMKB-100 endeksinin tarihlerini kapsayan açılış, kapanış, en yüksek, en düşük ve işlem hacmi verileri kullanılarak gerçekleştirilmiştir. Uygulamada kullanılan İMKB- 100 endeksi verileri, İMKB'nin resmi sitesinde yer alan veri isteme formu aracılığı ile talep edilerek edinilmiştir. Analiz dönemini kapsayan toplam 4226 veri günlük (4026), haftalık (840) ve aylık (193) olarak üç veri seti şeklinde düzenlenmiştir. Veri setleri oluşturulurken veri sayısında azalma meydana gelmiştir. Bunun nedeni basit, üssel ve ağırlıklı hareketli ortalama gibi göstergeler hesaplanırken geçmiş dönem verilerine ihtiyaç duyulmasıdır. Haftalık ve aylık veriler oluşturulurken uygulanan ortalama alma ile günlük verilerdeki aşırı dalgalanmadan kaynaklanan gürültü problemi giderilmiştir. Oluşturulan veri setlerinin %80 i eğitim kümesine (modelleme kümesi), %20 si ise modelin daha önceden karşılaşmadığı veriler üzerindeki performansını ölçebilmek için test kümesine (tahmin kümesi) ayrılmıştır. Veriler eğitim ve test kümelerine ayrılırken birbirini takip eden periyotlara göre atama yapılmamıştır, atamalar rassal olarak gerçekleştirilmiştir. Yapılan analizde endeks hareketi bir önceki değerine göre artış gösterdiğinde ''1'', azalış gösterdiğinde ''0'' olacak şekilde kodlanmıştır ve bu değerler bağımlı değişken olarak kullanılmıştır. Çalışmada teknik analizde kullanılan ve literatürde yaygın olarak kullanım alanı bulan 27 teknik gösterge; 20 ve 200 günlük basit hareketli ortalama (SMA20, SMA200), 20 ve 200 günlük üssel hareketli ortalama (EMA20, EMA200), 20 ve 200 günlük ağırlıklı hareketli ortalama (WMA20, WMA200), Aroon osilatörü, ortalama yönsel hareket (ADX), parabolik SAR, hareketli ortalamaların birleşmesi-ayrılması (MACD), değişim oranı (ROC), göreli güç endeksi (RSI), stokastik osilatör (hızlı %D, yavaş %D), stokastik momentum endeksi (SMI), Williams ın %R göstergesi (%R), mal kanal endeksi (CCI), Chande momentum osilatörü (CMO), Bollinger bantları (BB-HLC: En yüksek, en düşük ve kapanış değerleri ile hesaplanmıştır, BB-C: Kapanış değeri ile hesaplanmıştır), ortalama doğruluk aralığı (ATR), Chaikin dalgalanma göstergesi, Chaikin osilatörü (CO), toplama/dağıtım osilatörü (A/D), denge işlem hacmi (OBV), para akışı endeksi (MFI) ve Chaikin in para akışı endeksi (CMF) modele dâhil edilmiştir. Her veri seti için dört model oluşturulmuş ve her model farklı değerlendirme kriterlerine göre analiz edilmiştir. Modellerde 201

14 AIBU Journal of Social Sciences, Spring 2013, Vol:13, Year:13, Issue:1, 13: bağımlı değişkenin t periyodundaki değeri, bağımsız değişkenlerin t-1 periyodundaki değerleri kullanılarak tahmin edilmiştir. Değişken seçimi yapılarak uygulanan modellerde arama yöntemi olarak LR analizinden yararlanılmış ve LR ile yapılan arama sonucunda anlamlı kabul edilen değişkenler takip eden modellerde analize dâhil edilmiştir. Kurulan ilk modelde yukarıda verilen tüm göstergeler bağımsız değişken olarak alınmıştır. İkinci modelde, birinci modeldeki LR analizinde anlamlılık seviyesi 0,25 den küçük olan değişkenler analize dâhil edilmiştir. Üçüncü modelde, ikinci modeldeki LR analizinde anlamlılık seviyesi 0,05 den küçük olan değişkenler analize dâhil edilmiştir. Dördüncü modelde, üçüncü modeldeki LR analizinde anlamlılık seviyesi 0,05 den küçük olan değişkenler analize dâhil edilmiştir. DVM çekirdek tipi olarak radyal tabanlı çekirdek (RBF) kullanılmıştır. RBF parametreleri cost (C) ve gamma ( )'nın optimizasyonu için çapraz geçerlilik (cross-validation) yöntemi uygulanmıştır. Belirlenen modellerde k=10 olarak alınmıştır. Çapraz geçerlilik testinde cost (C) parametresi 10 4, 10 3, 10 2, 10 1 olmak üzere dört farklı değeri alırken, gamma ( ) parametresi 10-6, 10-5, 10-4, 10-3, 10-2, 10-1 olmak üzere altı farklı değer almıştır. Modeller çalıştırılmadan önce en uygun cost (C) ve gamma ( ) parametreleri çapraz geçerleme ile hesaplanarak en iyi doğruluk oranı tespit edilmiş ve sonrasında DVM eğitimi gerçekleştirilmiştir. Uygulama için istatistiksel veri analizleri yapan, açık kaynak kodlu programlama dili ''R'' kullanılmıştır. R dili, Bell Laboratuvarları'nda John Chambers ve arkadaşları tarafından geliştirilen S dilinin bir uzantısıdır (R Core Team, 2012). DVM paketi olarak DMwR kullanılmıştır (Torgo, 2010). DMwR birçok paketten oluşmaktadır. Bu çalışmada xts, zoo, TTR paketlerinden yararlanılmıştır Günlük Veriler Kullanılarak Uygulanan Analiz Bu veri seti için uygulanan analizde modellere dâhil edilen bağımsız değişkenler şöyle belirlenmiştir; model 1 de değişken seçimi uygulanmamış, 27 bağımsız değişken analize dâhil edilmiştir. Model 2 de model 1 de LR analizinde p>0,25 olan 13 bağımsız değişken atılmış, kalan değişkenler analize dâhil edilmiştir. Model 3, model 2 de LR analizinde p<0,05 olan 7 bağımsız değişken ile kurulmuştur. Model 4 ise model 3 de LR analizinde p<0,05 olan 3 bağımsız değişkenden oluşur. 202

15 AİBÜ Sosyal Bilimler Enstitüsü Dergisi, Bahar 2013, Cilt:13, Yıl:13, Sayı:1, 13: Tablo 1'de günlük modeller için LR ve DVM yöntemlerinin eğitim ve test veri setlerindeki doğruluk oranları verilmiştir. Model 1 de LR eğitim kümesindeki 1699 artış verisinin 1188 tanesini doğru sınıflandırırken (%69,92), 1522 azalış verisinin 604 tanesini (%39,68) doğru sınıflandırmıştır. Test kümesinde ise, 424 artış verisinin 286 tanesini (%67,45) doğru sınıflandırırken, 381 azalış verisinin 136 tanesini (%35,70) doğru sınıflandırmıştır. Tablo 1 incelendiğinde, model 1 de LR yönteminin, İMKB-100 endeksi hareket yönünü doğru sınıflandırma oranının; eğitim kümesinde %55,63, test kümesinde %52,42 oranında olduğu görülmektedir. Model 1 de DVM, eğitim kümesindeki 1699 artış verisinin 1347 tanesini (%79,28) doğru sınıflandırırken, 1522 azalış verisinin 441 tanesini (%28,98) doğru sınıflandırmıştır. Test kümesinde ise, 424 artış verisinin 323 tanesini (%76,18) doğru sınıflandırırken, 381 azalış verisinin 99 tanesini (%25,98) doğru sınıflandırmıştır. Tablo 1 incelendiğinde, model 1 DVM yönteminin, İMKB-100 endeksi hareket yönünü doğru sınıflandırma oranının; eğitim kümesinde %55,51, test kümesinde %52,42 oranında olduğu görülmektedir. Model 2, 3 ve 4 ün sonuçları da Tablo 1 den görülebilir ve model 1 de olduğu gibi açıklanabilir. 203

16 Model 4 Model 3 Model 2 Model 1 AIBU Journal of Social Sciences, Spring 2013, Vol:13, Year:13, Issue:1, 13: Gerçek Gerçek Gerçek Gerçek Tablo 1. Günlük Modeller İçin LR ve DVM Yöntemlerinin Sınıflandırma Sonuçları* LR Eğitim LR Test DVM Eğitim DVM Test Tahmin Tahmin Tahmin Tahmin 0 1 DO (%) 0 1 DO (%) 0 1 DO (%) 0 1 DO (%) , , , , , , , ,18 Genel DO (%) 55,63 52,42 55,51 52, , , , , , , , ,29 Genel DO (%) 55,29 52,92 54,89 53, , , , , , , , ,45 Genel DO (%) 53,65 51,30 60,85 52, , , , , , , , ,86 Genel DO (%) 53,62 51,68 54,92 51,93 *DO: Doğruluk Oranı 204

17 AİBÜ Sosyal Bilimler Enstitüsü Dergisi, Bahar 2013, Cilt:13, Yıl:13, Sayı:1, 13: Günlük verilerle kurulan modellerin sonuçları genel olarak incelendiğinde, model-1, model-2 ve model-4 test kümesi sonuçları İMKB-100 endeksi artış yönünü DVM'nin (%76,18, %74,29, %89,86) LR'den (%67,45, %72,41, %79,72) daha iyi sınıflandırdığını, azalış yönünü ise LR'nin (%35,70, %31,23, %20,47) DVM'den (%25,98, %29,92, %9,71) daha başarılı sınıflandırdığını göstermektedir. Model 3'te ise artış yönünü sınıflandırmada LR (%77,12) DVM'den (%67,45) daha iyiyken, azalış yönünü sınıflandırmada DVM (%36,22) LR'den (%22,57) daha başarılı bulunmuştur. Günlük verilerde DVM nin artışları, LR nin azalışları daha iyi tahmin ettiği söylenebilir. Eğitim veri setinde LR nin doğruluk oranları %53,62 ile %55,63 arasında, DVM nin ise %54,89 ile %60,85 arasındadır. Test veri setinde LR nin doğruluk oranları %51,30 ile %52,92 arasında, DVM nin ise %51,93 ile %53,29 arasındadır. DVM hem eğitim kümesinde hem de test kümesinde LR den daha iyi sonuçlar vermiştir. Açıklayıcı değişken sayısındaki azalmanın etkisi incelendiğinde tüm açıklayıcı değişkenleri kullanan model 1 den, yalnızca 3 açıklayıcı değişken kullanan model 4 e doğru gidildiğinde test veri setinde LR nin genel doğruluk oranlarında büyük farklılık olmamasına rağmen (model 1:%52,42, model 2:%52,92, model 3: %51,30 ve model 4:%51,68), azalışları tahmin performansı düşmüş (model 1:%35,70, model 2:%31,23, model 3: %22,57 ve model 4:%20,47), artışları tahmin performansı yükselmiştir (model 1:%67,45, model 2:%72,41, model 3: %77,12 ve model 4:%79,72). DVM de ise ilk üç model göz önünde bulundurulduğunda bunun tam tersi bir durum söz konusudur, artışları tahmin performansı düşerken, azalışları tahmin performansında bir yükselme gözlenmiştir. Ancak en az açıklayıcı değişkenin kullanıldığı model 4 te azalışlar %9,71 oranında doğru tahmin edilirken, artışlar %89,86 doğru tahmin edilmiştir. Günlük modeller için değişken sayısını azaltmanın genel doğruluk oranı üzerinde belirgin bir etkisi olmazken, artış ve azalışların doğruluk oranlarını etkilediğini söyleyebiliriz. Bu modeller İMKB-100 endeksini tahmin etme amaçlı kullanılmak istenirse, test verileri sonuçlarına göre karar verilmelidir. Her ne kadar eğitim verilerinde daha iyi doğruluk oranları bulunmuş olsa da, önemli olan modellerin daha önceden hiç karşılaşmadığı verilerde gösterdiği performanstır. Buna göre test verilerinde en iyi performansı veren DVM model 2, %53,29 luk doğruluk oranı ile İMKB-100 endeksi tahmininde kullanılabilir. Ancak bu modelin artış ve azalışları sırasıyla %74,29 ve %29,92 oranında tahmin ettiği, artışlarda başarılı, azalışlarda ise başarılı olmadığı göz önünde bulundurulmalıdır. Bu nedenle DVM model 3, 205

18 AIBU Journal of Social Sciences, Spring 2013, Vol:13, Year:13, Issue:1, 13: %52,67 doğruluk oranı ve artış ve azalışları sırasıyla %67,45 ve %36,22 oranında tahmin ettiğinden, alternatif olarak düşünülmelidir Haftalık Veriler Kullanılarak Uygulanan Analiz Haftalık veri seti için uygulanan analizlerde de günlük veri setlerinde olduğu gibi model 1 de tüm bağımsız değişkenler analize dâhil edilmiştir. Model 2 de, model 1 de LR analizinde p<0,25 olan 15 bağımsız değişken analize dâhil edilmiştir. Model 3, model 2 de LR analizinde p<0,05 olan 7 bağımsız değişken ile kurulmuştur. Model 4 ise model 3 de LR analizinde p<0,05 olan 3 bağımsız değişkenden oluşur. Tablo 2'de haftalık modeller için LR ve DVM yöntemlerinin eğitim ve test veri setlerindeki doğruluk oranları verilmiştir. Model 1 de LR yöntemi, eğitim kümesindeki 408 artış verisinin 332 tanesini (%81,37) doğru sınıflandırırken, 292 azalış verisinin 167 tanesini (%57,19) doğru sınıflandırmıştır. Test kümesinde ise, 76 artış verisinin 56 tanesini (%73,68) doğru sınıflandırırken, 64 azalış verisinin 38 tanesini (%59,38) doğru sınıflandırmıştır. LR yönteminin, İMKB-100 endeksi hareket yönünü doğru sınıflandırma oranının; eğitim kümesinde %71,29, test kümesinde %67,14 olduğu görülmektedir. Model 1 de DVM, eğitim kümesindeki 408 artış verisinin 344 tanesini (%84,31) doğru sınıflandırırken, 292 azalış verisinin 161 tanesini (%55,14) doğru sınıflandırmıştır. Test kümesinde ise, 76 artış verisinin 63 tanesini (%82,89) doğru sınıflandırırken, 64 azalış verisinin 35 tanesini (%54,69) doğru sınıflandırmıştır. DVM yönteminin, İMKB-100 endeksi hareket yönünü doğru sınıflandırma oranının; eğitim kümesinde %72,14, test kümesinde %70,0 oranında olduğu görülmektedir. 206

19 Model 4 Model 3 Model 2 Model 1 AİBÜ Sosyal Bilimler Enstitüsü Dergisi, Bahar 2013, Cilt:13, Yıl:13, Sayı:1, 13: Gerçek Gerçek Gerçek Gerçek Tablo 2. Haftalık Modeller İçin LR ve DVM Yöntemlerinin Sınıflandırma Sonuçları* LR Eğitim LR Test DVM Eğitim DVM Test Tahmin Tahmin Tahmin Tahmin 0 1 DO (%) 0 1 DO (%) 0 1 DO (%) 0 1 DO (%) , , , , , , , ,89 Genel DO (%) 71,29 67,14 72,14 70, , , , , , , , ,84 Genel DO (%) 71,71 64,29 68,57 69, , , , , , , , ,58 Genel DO (%) 70,14 70,00 72,14 68, , , , , , , , ,58 Genel DO (%) 70,57 67,86 71,43 67,14 *DO: Doğruluk Oranı 207

20 AIBU Journal of Social Sciences, Spring 2013, Vol:13, Year:13, Issue:1, 13: Haftalık verilerle kurulan modellerin sonuçları genel olarak incelendiğinde, test kümesinde model 1 ve model 2'de, İMKB-100 endeksi artış yönünü DVM nin (%82,89, %86,84) LR'ye (%73,68, %73,68) göre daha başarılı sınıflandırdığı, azalış yönünü sınıflandırmada ise LR'nin (%59,38, %53,13) DVM'den (%54,69, %48,44) daha iyi sonuçlar verdiği görülmektedir. Model 3'te azalışları DVM (%53,13), LR'den (%51,56) daha iyi tahminlerken, artışları sınıflandırmada LR (%85,53), DVM'den (%81,58) daha başarılı bulunmuştur. Model 4'te ise azalış yönünü LR (%51,56), DVM'den (%50,0) daha iyi sınıflandırırken, artış yönünü her iki yöntemin de aynı oranda (%81,58) tahminlediği görülmektedir. Eğitim veri setinde LR nin doğruluk oranları %70,14 ile %71,71 arasında, DVM nin ise %68,57 ile %72,14 arasındadır. Test veri setinde LR nin doğruluk oranları %64,29 ile %70,00 arasında, DVM nin ise %67,14 ile %70,00 arasındadır. Sonuçlar birbirine yakın olsa da DVM nin LR den daha iyi performans gösterdiği söylenebilir. Açıklayıcı değişken sayısındaki azalmanın etkisi incelendiğinde tüm açıklayıcı değişkenleri kullanan model 1 den, yalnızca 3 açıklayıcı değişken kullanan model 4 e doğru gidildiğinde test veri setinde DVM genel doğruluk oranlarında bir azalma meydana gelmiştir. Ancak bu değişim artışlar ve azalışlar için aynı paralelde değildir, artış ve azalışların doğruluk oranlarının değişimi, modellerdeki değişken sayısı ile ilişkili değildir. LR nin genel, artış ve azalış doğruluk oranlarındaki değişim de modellerdeki değişken sayısı ile ilişkili değildir. Test verilerinde en iyi performansı veren iki model vardır, bunlar %70 doğruluk oranı ile DVM model 1 ve LR model 3 tür. DVM model 1 artış ve azalışları sırasıyla %82,89 ve %54,69 oranında tahmin ederken, LR model 3 artış ve azalışları sırasıyla %51,56 ve %85,53 oranında tahmin etmiştir. DVM model 1 artış ve azalış oranları arasındaki farkın LR model 3 den daha az olması nedeniyle İMKB-100 endeksinin haftalık yönünü tahmin etmekte kullanılabilir Aylık Veriler Kullanılarak Uygulanan Analiz Aylık veri seti için uygulanan analizlerde de günlük ve haftalık veri setlerinde olduğu gibi model 1 de tüm bağımsız değişkenler analize dâhil edilmiştir. Model 2 de, model 1 de LR analizinde p<0,25 olan 10 bağımsız değişken analize dâhil edilmiştir. Model 3, model 2 de LR analizinde p<0,05 olan 2 bağımsız değişken ile kurulmuştur. Model 4 ise model 3 de LR analizinde p<0,05 olan yalnızca 1 bağımsız değişkenden oluşur. Tablo 3'te aylık modeller için LR ve DVM yöntemlerinin eğitim ve test veri setlerindeki doğruluk oranları verilmiştir. Model 1 de LR 208

Uzaktan Algılama Teknolojileri

Uzaktan Algılama Teknolojileri Uzaktan Algılama Teknolojileri Ders 11 Hiperspektral Görüntülerde Kümeleme ve Sınıflandırma Alp Ertürk alp.erturk@kocaeli.edu.tr Sınıflandırma Sınıflandırma işleminin amacı, her piksel vektörüne bir ve

Detaylı

A. SCI ve SCIE Kapsamındaki Yayınlar

A. SCI ve SCIE Kapsamındaki Yayınlar A. SCI ve SCIE Kapsamındaki Yayınlar A.1. Erilli N.A., Yolcu U., Egrioglu E., Aladag C.H., Öner Y., 2011 Determining the most proper number of cluster in fuzzy clustering by using artificial neural networks.

Detaylı

Karaciğerde Oluşan Hastalıkların Tespitinde Makine Öğrenmesi Yöntemlerinin Kullanılması

Karaciğerde Oluşan Hastalıkların Tespitinde Makine Öğrenmesi Yöntemlerinin Kullanılması Karaciğerde Oluşan Hastalıkların Tespitinde Makine Öğrenmesi Yöntemlerinin Kullanılması 1 Emre DANDIL Bilecik Ş. Edebali Üniversitesi emre.dandil@bilecik.edu.tr +90228 214 1613 Sunum İçeriği Özet Giriş

Detaylı

TRAKYA ÜNİVERSİTESİ FEN BİLİMLERİ ENSTİTÜSÜ MAKİNA MÜHENDİSLİĞİ ANABİLİM DALI DOKTORA PROGRAMI ŞEKİL TANIMA ÖDEV 2 KONU : DESTEK VEKTÖR MAKİNELERİ

TRAKYA ÜNİVERSİTESİ FEN BİLİMLERİ ENSTİTÜSÜ MAKİNA MÜHENDİSLİĞİ ANABİLİM DALI DOKTORA PROGRAMI ŞEKİL TANIMA ÖDEV 2 KONU : DESTEK VEKTÖR MAKİNELERİ TRAKYA ÜNİVERSİTESİ FEN BİLİMLERİ ENSTİTÜSÜ MAKİNA MÜHENDİSLİĞİ ANABİLİM DALI DOKTORA PROGRAMI ŞEKİL TANIMA ÖDEV 2 KONU : DESTEK VEKTÖR MAKİNELERİ Kenan KILIÇASLAN Okul No:1098107203 1. DESTEK VEKTÖR MAKİNELER

Detaylı

Zaman Serileri-1. If you have to forecast, forecast often. EDGAR R. FIEDLER, American economist. IENG 481 Tahmin Yöntemleri Dr.

Zaman Serileri-1. If you have to forecast, forecast often. EDGAR R. FIEDLER, American economist. IENG 481 Tahmin Yöntemleri Dr. Zaman Serileri-1 If you have to forecast, forecast often. EDGAR R. FIEDLER, American economist IENG 481 Tahmin Yöntemleri Dr. Hacer Güner Gören Zaman Serisi nedir? Kronolojik sırayla elde edilen verilere

Detaylı

Zeki Optimizasyon Teknikleri

Zeki Optimizasyon Teknikleri Zeki Optimizasyon Teknikleri Ara sınav - 25% Ödev (Haftalık) - 10% Ödev Sunumu (Haftalık) - 5% Final (Proje Sunumu) - 60% - Dönem sonuna kadar bir optimizasyon tekniğiyle uygulama geliştirilecek (Örn:

Detaylı

VERİ MADENCİLİĞİ (Sınıflandırma Yöntemleri) Yrd.Doç.Dr. Kadriye ERGÜN kergun@balikesir.edu.tr

VERİ MADENCİLİĞİ (Sınıflandırma Yöntemleri) Yrd.Doç.Dr. Kadriye ERGÜN kergun@balikesir.edu.tr VERİ MADENCİLİĞİ (Sınıflandırma Yöntemleri) Yrd.Doç.Dr. Kadriye ERGÜN kergun@balikesir.edu.tr Genel İçerik Veri Madenciliğine Giriş Veri Madenciliğinin Adımları Veri Madenciliği Yöntemleri Sınıflandırma

Detaylı

Kurumsal Şeffaflık, Firma Değeri Ve Firma Performansları İlişkisi Bist İncelemesi

Kurumsal Şeffaflık, Firma Değeri Ve Firma Performansları İlişkisi Bist İncelemesi T.C İSTANBUL ÜNİVERSİTESİ Sosyal Bilimler Enstitüsü İşletme Anabilim Dalı Finans Bilim Dalı Yüksek Lisans Tezi Özeti Kurumsal Şeffaflık, Firma Değeri Ve Firma Performansları İlişkisi Bist İncelemesi Prof.

Detaylı

Zaman Serileri. IENG 481 Tahmin Yöntemleri Dr. Hacer Güner Gören

Zaman Serileri. IENG 481 Tahmin Yöntemleri Dr. Hacer Güner Gören Zaman Serileri IENG 481 Tahmin Yöntemleri Dr. Hacer Güner Gören Zaman Serisi nedir? Kronolojik sırayla elde edilen verilere sahip değișkenlere zaman serisi adı verilmektedir. Genel olarak zaman serisi,

Detaylı

Forex Göstergeler. www.ifcmarkets.com

Forex Göstergeler. www.ifcmarkets.com Forex Göstergeler Forex piyasasında teknik analiz yaparken trader lar için ana araçlardan biri trend göstergesidir. Ataletinin bir sonucu olarak bu gösterge seti eğilimli piyasa sırasında fiyat hareketinin

Detaylı

Türkçe Dokümanlar Ġçin Yazar Tanıma

Türkçe Dokümanlar Ġçin Yazar Tanıma Türkçe Dokümanlar Ġçin Yazar Tanıma Özcan KOLYĠĞĠT, Rıfat AġLIYAN, Korhan GÜNEL Adnan Menderes Üniversitesi, Matematik Bölümü Bölümü, Aydın okolyigit@gmail.com, rasliyan@adu.edu.tr, kgunel@adu.edu.tr Özet:

Detaylı

Zeki Optimizasyon Teknikleri

Zeki Optimizasyon Teknikleri Zeki Optimizasyon Teknikleri Tabu Arama (Tabu Search) Doç.Dr. M. Ali Akcayol Tabu Arama 1986 yılında Glover tarafından geliştirilmiştir. Lokal minimum u elimine edebilir ve global minimum u bulur. Değerlendirme

Detaylı

Destek ve sevgilerini eksik etmeyen Ailem ve sevgili yeğenlerim Emre ve Bengisu ya. iii

Destek ve sevgilerini eksik etmeyen Ailem ve sevgili yeğenlerim Emre ve Bengisu ya. iii Destek ve sevgilerini eksik etmeyen Ailem ve sevgili yeğenlerim Emre ve Bengisu ya. iii iv v İçindekiler Sunuş... vii Önsöz... ix 1. Giriş...1 1.1 İstanbul Menkul Kıymetler Borsası...2 2. Testler ve Test

Detaylı

DEÜ MÜHENDİSLİK FAKÜLTESİ MÜHENDİSLİK BİLİMLERİ DERGİSİ Cilt: 16 Sayı: 48 sh. 86-93 Eylül 2014

DEÜ MÜHENDİSLİK FAKÜLTESİ MÜHENDİSLİK BİLİMLERİ DERGİSİ Cilt: 16 Sayı: 48 sh. 86-93 Eylül 2014 DEÜ MÜHENDİSLİK FAKÜLTESİ MÜHENDİSLİK BİLİMLERİ DERGİSİ Cilt: 16 Sayı: 48 sh. 86-93 Eylül 2014 DESTEK VEKTÖR MAKİNELERİ PARAMETRE OPTİMİZASYONUNUN DUYGU ANALİZİ ÜZERİNDEKİ ETKİSİ (EFFECTS OF SUPPORT VECTOR

Detaylı

HİSSE SENETLERİNİN ALIM SATIM KARARLARINDA TEKNİK ANALİZ VE BİST UYGULAMASI

HİSSE SENETLERİNİN ALIM SATIM KARARLARINDA TEKNİK ANALİZ VE BİST UYGULAMASI YILDIZ TEKNİK ÜNİVERSİTESİ İKTİSADİ VE İDARİ BİLİMLER FAKÜLTESİ İKTİSAT BÖLÜMÜ BİTİRME TEZİ HİSSE SENETLERİNİN ALIM SATIM KARARLARINDA TEKNİK ANALİZ VE BİST UYGULAMASI Doç. Dr. Fazıl Kayıkçı 09032031 Bergutay

Detaylı

PAPATYA YAYINCILIK EĞİTİM Bilgisayar Sis. San. ve Tic. A.Ş. Veri Madenciliği Yöntemleri Dr. Yalçın ÖZKAN -II-

PAPATYA YAYINCILIK EĞİTİM Bilgisayar Sis. San. ve Tic. A.Ş. Veri Madenciliği Yöntemleri Dr. Yalçın ÖZKAN -II- Dr. Yalçın ÖZKAN Dr. Yalçın ÖZKAN PAPATYA YAYINCILIK EĞİTİM Bilgisayar Sis. San. ve Tic. A.Ş. Ankara Caddesi, Prof. Fahreddin Kerim Gökay Vakfı İşhanı Girişi, No: 11/3, Cağaloğlu (Fatih)/İstanbul Tel

Detaylı

YÖNEYLEM ARAŞTIRMASI - III

YÖNEYLEM ARAŞTIRMASI - III YÖNEYLEM ARAŞTIRMASI - III Prof. Dr. Cemalettin KUBAT Yrd. Doç. Dr. Özer UYGUN İçerik Quadratic Programming Bir karesel programlama modeli aşağıdaki gibi tanımlanır. Amaç fonksiyonu: Maks.(veya Min.) z

Detaylı

IMKB'de Oynaklık Tahmini Üzerine Bir Çalışma

IMKB'de Oynaklık Tahmini Üzerine Bir Çalışma IMKB'de Oynaklık Tahmini Üzerine Bir Çalışma Yrd. Doç. Dr. Hakan Aygören Pamukkale Üniversitesi, İ.İ.B.F. Özet Finansal piyasalarda oynaklık yatırımcılar için yatırım kararlan verirken önemli rol oynamaktadır.

Detaylı

Zaman Serileri Madenciliği Kullanılarak Nüfus Artışı Tahmin Uygulaması

Zaman Serileri Madenciliği Kullanılarak Nüfus Artışı Tahmin Uygulaması Zaman Serileri Madenciliği Kullanılarak Nüfus Artışı Tahmin Uygulaması Maltepe Üniversitesi, Yazılım Mühendisliği Bölümü, İstanbul zeynepguven@maltepe.edu.tr, turgaybilgin@maltepe.edu.tr Özet: Zaman serileri

Detaylı

KİNETİK MODEL PARAMETRELERİNİN BELİRLENMESİNDE KULLANILAN OPTİMİZASYON TEKNİKLERİNİN KIYASLANMASI

KİNETİK MODEL PARAMETRELERİNİN BELİRLENMESİNDE KULLANILAN OPTİMİZASYON TEKNİKLERİNİN KIYASLANMASI KİNETİK MODEL PARAMETRELERİNİN BELİRLENMESİNDE KULLANILAN OPTİMİZASYON TEKNİKLERİNİN KIYASLANMASI Hatice YANIKOĞLU a, Ezgi ÖZKARA a, Mehmet YÜCEER a* İnönü Üniversitesi Mühendislik Fakültesi Kimya Mühendisliği

Detaylı

Morgan Stanley Capital International Türkiye Endeksinin Yapay Sinir Ağları ile Öngörüsü

Morgan Stanley Capital International Türkiye Endeksinin Yapay Sinir Ağları ile Öngörüsü EGE AKADEMİK BAKIŞ / EGE ACADEMIC REVIEW Cilt: 12 Sayı: 4 Ekim 2012 ss. 541-547 Morgan Stanley Capital International Türkiye Endeksinin Yapay Sinir Ağları ile Öngörüsü Forecasting of Morgan Stanley Capital

Detaylı

Bulanık Mantık Tabanlı Uçak Modeli Tespiti

Bulanık Mantık Tabanlı Uçak Modeli Tespiti Bulanık Mantık Tabanlı Uçak Modeli Tespiti Hüseyin Fidan, Vildan Çınarlı, Muhammed Uysal, Kadriye Filiz Balbal, Ali Özdemir 1, Ayşegül Alaybeyoğlu 2 1 Celal Bayar Üniversitesi, Matematik Bölümü, Manisa

Detaylı

ÖZGEÇMİŞ. 1. Adı Soyadı : Kamile ŞANLI KULA İletişim Bilgileri : Ahi Evran Üniversitesi, Fen Edebiyat Fakültesi, Adres Matematik Bölümü, KIRŞEHİR

ÖZGEÇMİŞ. 1. Adı Soyadı : Kamile ŞANLI KULA İletişim Bilgileri : Ahi Evran Üniversitesi, Fen Edebiyat Fakültesi, Adres Matematik Bölümü, KIRŞEHİR Resim ÖZGEÇMİŞ 1. Adı Soyadı : Kamile ŞANLI KULA İletişim Bilgileri : Ahi Evran Üniversitesi, Fen Edebiyat Fakültesi, Adres Matematik Bölümü, KIRŞEHİR Telefon : 386 280 45 50 Mail : kskula@ahievran.edu.tr

Detaylı

YÖNEYLEM ARAŞTIRMASI - III

YÖNEYLEM ARAŞTIRMASI - III YÖNEYLEM ARAŞTIRMASI - III Prof. Dr. Cemalettin KUBAT Yrd. Doç. Dr. Özer UYGUN İçerik Bu bölümde eşitsizlik kısıtlarına bağlı bir doğrusal olmayan kısıta sahip problemin belirlenen stasyoner noktaları

Detaylı

Fonksiyon Optimizasyonunda Genetik Algoritmalar

Fonksiyon Optimizasyonunda Genetik Algoritmalar 01-12-06 Ümit Akıncı Fonksiyon Optimizasyonunda Genetik Algoritmalar 1 Fonksiyon Optimizasyonu Fonksiyon optimizasyonu fizikte karşımıza sık çıkan bir problemdir. Örneğin incelenen sistemin kararlı durumu

Detaylı

GİRİŞ... 1 I. BÖLÜM - Beklenen Fayda, Karar Verme Ve Stokastik Süreçler...5

GİRİŞ... 1 I. BÖLÜM - Beklenen Fayda, Karar Verme Ve Stokastik Süreçler...5 GİRİŞ... 1 I. BÖLÜM - Beklenen Fayda, Karar Verme Ve Stokastik Süreçler...5 1.1. Beklenen Fayda...5 1.2. Karar Verme...9 1.2.1. Belirlilik Halinde Karar Verme...10 1.2.2. Risk Halinde Karar Verme...10

Detaylı

Web Madenciliği (Web Mining)

Web Madenciliği (Web Mining) Web Madenciliği (Web Mining) Hazırlayan: M. Ali Akcayol Gazi Üniversitesi Bilgisayar Mühendisliği Bölümü Konular Denetimli Öğrenmenin Temelleri Karar Ağaçları Entropi ID3 Algoritması C4.5 Algoritması Twoing

Detaylı

Web Madenciliği (Web Mining)

Web Madenciliği (Web Mining) Web Madenciliği (Web Mining) Hazırlayan: M. Ali Akcayol Gazi Üniversitesi Bilgisayar Mühendisliği Bölümü Konular Denetimsiz Öğrenmenin Temelleri Kümeleme Uzaklık Fonksiyonları Öklid Uzaklığı Manhattan

Detaylı

KAHKAHA TANIMA İÇİN RASSAL ORMANLAR

KAHKAHA TANIMA İÇİN RASSAL ORMANLAR KAHKAHA TANIMA İÇİN RASSAL ORMANLAR Heysem Kaya, A. Mehdi Erçetin, A. Ali Salah, S. Fikret Gürgen Bilgisayar Mühendisliği Bölümü Boğaziçi Üniversitesi / Istanbul Akademik Bilişim'14, Mersin, 05.02.2014

Detaylı

THE EFFECT OF MACROECONOMIC FACTORS ON STOCK PRICES IN FINANCIAL CRISES PERIODS

THE EFFECT OF MACROECONOMIC FACTORS ON STOCK PRICES IN FINANCIAL CRISES PERIODS Süleyman Demirel Üniversitesi İktisadi ve İdari Bilimler Fakültesi Dergisi Y.2009, C.14, S.1 s.127-136. Suleyman Demirel University The Journal of Faculty of Economics and Administrative Sciences Y.2009,

Detaylı

ÖZGEÇMİŞ DİL ADI SINAV ADI PUAN SEVİYE YIL DÖNEM. İngilizce ÜDS 65 İYİ 2002 Bahar PROGRAM ADI ÜLKE ÜNİVERSİTE ALAN DİĞER ALAN BAŞ.

ÖZGEÇMİŞ DİL ADI SINAV ADI PUAN SEVİYE YIL DÖNEM. İngilizce ÜDS 65 İYİ 2002 Bahar PROGRAM ADI ÜLKE ÜNİVERSİTE ALAN DİĞER ALAN BAŞ. ÖZGEÇMİŞ TC KİMLİK NO: PERSONEL AD: SOYAD: DOĞUM TARİHİ: ERDİNÇ KARADENİZ 1/4/78 12:00 AM SİCİL NO: UYRUK: EHLİYET: B DİL ADI SINAV ADI PUAN SEVİYE YIL DÖNEM İngilizce ÜDS 65 İYİ 2002 Bahar PROGRAM ADI

Detaylı

Genetik Algoritmalar. Bölüm 1. Optimizasyon. Yrd. Doç. Dr. Adem Tuncer E-posta:

Genetik Algoritmalar. Bölüm 1. Optimizasyon. Yrd. Doç. Dr. Adem Tuncer E-posta: Genetik Algoritmalar Bölüm 1 Optimizasyon Yrd. Doç. Dr. Adem Tuncer E-posta: adem.tuncer@yalova.edu.tr Optimizasyon? Optimizasyon Nedir? Eldeki kısıtlı kaynakları en iyi biçimde kullanmak olarak tanımlanabilir.

Detaylı

VERİ MADENCİLİĞİ İLE DEPREM VERİLERİNİN ANALİZİ

VERİ MADENCİLİĞİ İLE DEPREM VERİLERİNİN ANALİZİ VERİ MADENCİLİĞİ İLE DEPREM VERİLERİNİN ANALİZİ N. Duru -1, M. Canbay -1 Posta Adresi: 1- Kocaeli Üniversitesi Müh.Fak. Bilgisayar Mühendisliği 2- Kocaeli Üniversitesi Müh.Fak. Jeofizik Mühendisliği E-posta:

Detaylı

Veri Madenciliği Yaklaşımı ile Mesleki Yönlendirme Sistemi

Veri Madenciliği Yaklaşımı ile Mesleki Yönlendirme Sistemi Veri Madenciliği Yaklaşımı ile Mesleki Yönlendirme Sistemi YRD. DOÇ. DR. HÜSEYİN GÜRÜLER MUĞLA SITKI KOÇMAN ÜNİVERSİTESİ, TEKNOLOJİ FAKÜLTESİ, BİLİŞİM SİSTEMLERİ MÜHENDİSLİĞİ Meslek Seçimi Meslek Seçimi

Detaylı

HAFTALIK TEKNİK ANALİZ 11 Ocak 2016

HAFTALIK TEKNİK ANALİZ 11 Ocak 2016 HAFTALIK TEKNİK ANALİZ 11 Ocak 2016 İNDİKATÖRLER Hisse 5 Gün. AO 22 Gün. AO 50 Gün. AO 200 Gün. AO RSI MOMENTUM STOCHASTİC MACD Kısa Vadeli Teknik Yön PETKM 4,69 4,63 4,57 4,25 61,01 102,58 AL AL YUKARI

Detaylı

Destek Vektör Makineleriyle Sınıflandırma Problemlerinin Çözümü İçin Çekirdek Fonksiyonu Seçimi

Destek Vektör Makineleriyle Sınıflandırma Problemlerinin Çözümü İçin Çekirdek Fonksiyonu Seçimi Destek Vektör Makineleriyle Sınıflandırma Problemlerinin Çözümü İçin Çekirdek Fonksiyonu Seçimi Sevgi AYHAN Arş. Gör. Dr., Eskişehir Osmangazi Üniversitesi, Fen Edebiyat Fakültesi, İstatistik Bölümü sayhan@ogu.edu.tr

Detaylı

2001 ve 2008 Yılında Oluşan Krizlerin Faktör Analizi ile Açıklanması

2001 ve 2008 Yılında Oluşan Krizlerin Faktör Analizi ile Açıklanması 2001 ve 2008 Yılında Oluşan Krizlerin Faktör Analizi ile Açıklanması Mahmut YARDIMCIOĞLU Özet Genel anlamda krizler ekonominin olağan bir parçası haline gelmiştir. Sıklıkla görülen bu krizlerin istatistiksel

Detaylı

YAPAY SİNİR AĞLARI. Araş. Gör. Nesibe YALÇIN BİLECİK ÜNİVERSİTESİ

YAPAY SİNİR AĞLARI. Araş. Gör. Nesibe YALÇIN BİLECİK ÜNİVERSİTESİ YAPAY SİNİR AĞLARI Araş. Gör. Nesibe YALÇIN BİLECİK ÜNİVERSİTESİ İÇERİK Sinir Hücreleri Yapay Sinir Ağları Yapısı Elemanları Çalışması Modelleri Yapılarına Göre Öğrenme Algoritmalarına Göre Avantaj ve

Detaylı

The Study of Relationship Between the Variables Influencing The Success of the Students of Music Educational Department

The Study of Relationship Between the Variables Influencing The Success of the Students of Music Educational Department 71 Mehmet Akif Ersoy Üniversitesi Eğitim Fakültesi Dergisi, Yıl 9, Sayı 17, Haziran 2009, 71-76 Müzik Eğitimi Anabilim Dalı Öğrencilerinin Başarılarına Etki Eden Değişkenler Arasındaki İlişkinin İncelenmesi

Detaylı

Zaman Serileri Madenciliği Kullanılarak Nüfus Artışı Tahmin Uygulaması

Zaman Serileri Madenciliği Kullanılarak Nüfus Artışı Tahmin Uygulaması Zaman Serileri Madenciliği Kullanılarak Nüfus Artışı Tahmin Uygulaması Zeynep Behrin Güven 1, Turgay Tugay Bilgin 1 1 Maltepe Üniversitesi, Yazılım Mühendisliği Bölümü, İstanbul zeynepguven@maltepe.edu.tr,

Detaylı

DOKUZ EYLÜL ÜNİVERSİTESİ FEN BİLİMLERİ ENSTİTÜSÜ MÜDÜRLÜĞÜ DERS/MODÜL/BLOK TANITIM FORMU. Dersin Orjinal Adı: Pattern Recognition

DOKUZ EYLÜL ÜNİVERSİTESİ FEN BİLİMLERİ ENSTİTÜSÜ MÜDÜRLÜĞÜ DERS/MODÜL/BLOK TANITIM FORMU. Dersin Orjinal Adı: Pattern Recognition Dersi Veren Birim: Fen Bilimleri Enstitüsü Dersin Türkçe Adı: Örüntü Tanıma Dersin Orjinal Adı: Pattern Recognition Dersin Düzeyi:(Ön lisans, Lisans, Yüksek Lisans, Doktora) Lisansüstü Dersin Kodu: CSE

Detaylı

ÖRNEK BULGULAR. Tablo 1: Tanımlayıcı özelliklerin dağılımı

ÖRNEK BULGULAR. Tablo 1: Tanımlayıcı özelliklerin dağılımı BULGULAR Çalışma tarihleri arasında Hastanesi Kliniği nde toplam 512 olgu ile gerçekleştirilmiştir. Olguların yaşları 18 ile 28 arasında değişmekte olup ortalama 21,10±1,61 yıldır. Olguların %66,4 ü (n=340)

Detaylı

ÖZGEÇMİŞ VE ESERLER LİSTESİ

ÖZGEÇMİŞ VE ESERLER LİSTESİ ÖZGEÇMİŞ VE ESERLER LİSTESİ Adı Soyadı E-posta İletişim Adresileri : Özge CAĞCAĞ YOLCU : ozge.cagcag_yolcu@kcl.ac.uk ozgecagcag@yahoo.com : Giresun Üniversitesi, Mühendislik Fakültesi, Endüstri Mühendisliği

Detaylı

Deneysel Verilerin Değerlendirilmesi. Dersi Veren Öğretim Üyeleri: Yrd. Doç. Dr. Özge ANDİÇ ÇAKIR. Prof. Dr. Murat ELİBOL FİNAL SINAVI

Deneysel Verilerin Değerlendirilmesi. Dersi Veren Öğretim Üyeleri: Yrd. Doç. Dr. Özge ANDİÇ ÇAKIR. Prof. Dr. Murat ELİBOL FİNAL SINAVI Deneysel Verilerin Değerlendirilmesi Dersi Veren Öğretim Üyeleri: Yrd. Doç. Dr. Özge ANDİÇ ÇAKIR Prof. Dr. Murat ELİBOL FİNAL SINAVI Ödevi Hazırlayan: Özge AKBOĞA 91100019124 (Doktora) Güz,2012 İzmir 1

Detaylı

12 Ekim 2015 HİSSE ÖNERİ VE TEKNİK ANALİZ BIST-100 VIOP-30 DOW JONES XBANK / XUSIN. İNDiKATÖRLER TEKNİK ÖNERİ LİSTESİ. İndikatör Bilgilendirmesi

12 Ekim 2015 HİSSE ÖNERİ VE TEKNİK ANALİZ BIST-100 VIOP-30 DOW JONES XBANK / XUSIN. İNDiKATÖRLER TEKNİK ÖNERİ LİSTESİ. İndikatör Bilgilendirmesi 12 Ekim 2015 HİSSE ÖNERİ VE TEKNİK ANALİZ SEVGÜL DÜZGÜN sduzgun@ziraatyatirim.com.tr TURGUT USLU tuslu@ziraatyatirim.com.tr BIST-100 VIOP-30 DOW JONES XBANK / XUSIN Günlük Fiyat Hareketi Beklentilerimiz

Detaylı

İNSANSIZ HAVA ARACI PERVANELERİNİN TASARIM, ANALİZ VE TEST YETENEKLERİNİN GELİŞTİRİLMESİ

İNSANSIZ HAVA ARACI PERVANELERİNİN TASARIM, ANALİZ VE TEST YETENEKLERİNİN GELİŞTİRİLMESİ IV. ULUSAL HAVACILIK VE UZAY KONFERANSI 12-14 Eylül 212, Hava Harp Okulu, İstanbul İNSANSIZ HAVA ARACI PERVANELERİNİN TASARIM, ANALİZ VE TEST YETENEKLERİNİN GELİŞTİRİLMESİ Oğuz Kaan ONAY *, Javid KHALILOV,

Detaylı

Yrd. Doç. Dr. Mehmet Güçlü

Yrd. Doç. Dr. Mehmet Güçlü Dersin Adı DERS ÖĞRETİM PLANI Ekonometri I Dersin Kodu ECO 301 Dersin Türü (Zorunlu, Seçmeli) Dersin Seviyesi (Ön Lisans, Lisans, Yüksek Lisans, Doktora) Dersin AKTS Kredisi 6 Haftalık Ders Saati 4 Haftalık

Detaylı

VERİ MADENCİLİĞİ (Karar Ağaçları ile Sınıflandırma) Yrd.Doç.Dr. Kadriye ERGÜN

VERİ MADENCİLİĞİ (Karar Ağaçları ile Sınıflandırma) Yrd.Doç.Dr. Kadriye ERGÜN VERİ MADENCİLİĞİ (Karar Ağaçları ile Sınıflandırma) Yrd.Doç.Dr. Kadriye ERGÜN kergun@balikesir.edu.tr İçerik Sınıflandırma yöntemleri Karar ağaçları ile sınıflandırma Entropi Kavramı ID3 Algoritması C4.5

Detaylı

Matris Cebiriyle Çoklu Regresyon Modeli

Matris Cebiriyle Çoklu Regresyon Modeli Matris Cebiriyle Çoklu Regresyon Modeli Hüseyin Taştan Mart 00 Klasik Regresyon Modeli k açıklayıcı değişkenden oluşan regresyon modelini her gözlem i için aşağıdaki gibi yazabiliriz: y i β + β x i + β

Detaylı

Simpleks Yönteminde Kullanılan İlave Değişkenler (Eşitliğin yönüne göre):

Simpleks Yönteminde Kullanılan İlave Değişkenler (Eşitliğin yönüne göre): DP SİMPLEKS ÇÖZÜM Simpleks Yöntemi, amaç fonksiyonunu en büyük (maksimum) veya en küçük (minimum) yapacak en iyi çözüme adım adım yaklaşan bir algoritma (hesaplama yöntemi) dir. Bu nedenle, probleme bir

Detaylı

YAPAY SİNİR AĞLARI İLE FİYAT TAHMİNLEMESİ

YAPAY SİNİR AĞLARI İLE FİYAT TAHMİNLEMESİ YAPAY SİNİR AĞLARI İLE FİYAT TAHMİNLEMESİ Elif ERDOĞAN Fatih Üniversitesi Ankara Meslek Yüksekokulu, Ostim /Ankara Öğretim Görevlisi eerdogan@fatih.edu.tr Hamide ÖZYÜREK Fatih Üniversitesi Ankara Meslek

Detaylı

Pamukkale Üniversitesi Mühendislik Bilimleri Dergisi. Pamukkale University Journal of Engineering Sciences

Pamukkale Üniversitesi Mühendislik Bilimleri Dergisi. Pamukkale University Journal of Engineering Sciences Pamukkale Üniversitesi Mühendislik Bilimleri Dergisi Pamukkale University Journal of Engineering Sciences İSTABUL MEKUL KIYMETLER BORSASI DA İŞLEM GÖRE FİRMALARI DESTEK VEKTÖR MAKİELERİ KULLAILARAK SIIFLADIRILMASI

Detaylı

Gevşek Hesaplama (COMPE 474) Ders Detayları

Gevşek Hesaplama (COMPE 474) Ders Detayları Gevşek Hesaplama (COMPE 474) Ders Detayları Ders Adı Gevşek Hesaplama Ders Kodu COMPE 474 Dönemi Ders Uygulama Laboratuar Kredi AKTS Saati Saati Saati Bahar 3 0 0 3 5 Ön Koşul Ders(ler)i Dersin Dili Dersin

Detaylı

2. BASİT DOĞRUSAL REGRESYON 12

2. BASİT DOĞRUSAL REGRESYON 12 1. GİRİŞ 1 1.1 Regresyon ve Model Kurma / 1 1.2 Veri Toplama / 5 1.3 Regresyonun Kullanım Alanları / 9 1.4 Bilgisayarın Rolü / 10 2. BASİT DOĞRUSAL REGRESYON 12 2.1 Basit Doğrusal Regresyon Modeli / 12

Detaylı

2.1 Bir Sınıfı Örneklerinden Öğrenme... 15 2.2 Vapnik-Chervonenkis (VC) Boyutu... 20 2.3 Olası Yaklaşık Doğru Öğrenme... 21

2.1 Bir Sınıfı Örneklerinden Öğrenme... 15 2.2 Vapnik-Chervonenkis (VC) Boyutu... 20 2.3 Olası Yaklaşık Doğru Öğrenme... 21 İçindekiler Önsöz İkinci Basım için Önsöz Türkçe Çeviri için Önsöz Gösterim xiii xv xvii xix 1 Giriş 1 1.1 Yapay Öğrenme Nedir?......................... 1 1.2 Yapay Öğrenme Uygulamalarına Örnekler...............

Detaylı

PARALEL VERİ MADENCİLİĞİ ALGORİTMALARI. BAŞARIM 09, 15-18 Nisan 2009, ODTÜ, Ankara

PARALEL VERİ MADENCİLİĞİ ALGORİTMALARI. BAŞARIM 09, 15-18 Nisan 2009, ODTÜ, Ankara PARALEL VERİ MADENCİLİĞİ ALGORİTMALARI BAŞARIM 09, 15-18 Nisan 2009, ODTÜ, Ankara Veri Madenciliğine Genel Bir Bakış Veri Madenciliğinin Görevleri Sınıflama Seri Sınıflama Algoritmaları Paralel Sınıflama

Detaylı

ZAMAN SERİLERİNDE AYRIŞTIRMA YÖNTEMLERİ

ZAMAN SERİLERİNDE AYRIŞTIRMA YÖNTEMLERİ ZAMAN SERİLERİNDE AYRIŞTIRMA YÖNTEMLERİ 1 A. GİRİŞ Gözlemlerin belirli bir dönem için gün, hafta, ay, üç ay, altı ay, yıl gibi birbirini izleyen eşit aralıklarla yapılması ile elde edilen seriler zaman

Detaylı

Örüntü Tanıma (COMPE 467) Ders Detayları

Örüntü Tanıma (COMPE 467) Ders Detayları Örüntü Tanıma (COMPE 467) Ders Detayları Ders Adı Ders Kodu Dönemi Ders Saati Uygulama Saati Laboratuar Saati Kredi AKTS Örüntü Tanıma COMPE 467 Bahar 3 0 0 3 5 Ön Koşul Ders(ler)i Dersin Dili Dersin Türü

Detaylı

Fatih Kölmek. ICCI 2012-18.Uluslararası Enerji ve Çevre Fuarı ve Konferansı 25 Nisan 2012, İstanbul, Türkiye

Fatih Kölmek. ICCI 2012-18.Uluslararası Enerji ve Çevre Fuarı ve Konferansı 25 Nisan 2012, İstanbul, Türkiye Fatih Kölmek ICCI 2012-18.Uluslararası Enerji ve Çevre Fuarı ve Konferansı 25 Nisan 2012, İstanbul, Türkiye Türkiye Elektrik Piyasası Dengeleme ve Uzlaştırma Mekanizması Fiyat Tahmin Modelleri Yapay Sinir

Detaylı

İKTİSADİ VE İDARİ BİLİMLER FAKÜLTESİ İŞLETME BÖLÜMÜ BÖLÜM KODU: 0207

İKTİSADİ VE İDARİ BİLİMLER FAKÜLTESİ İŞLETME BÖLÜMÜ BÖLÜM KODU: 0207 İKTİSADİ VE İDARİ BİLİMLER FAKÜLTESİ İŞLETME BÖLÜMÜ BÖLÜM KODU: 0207 01.Yarıyıl Dersleri Ders Kodu Ders Adı İngilizce Ders Adı TE PR KR AKTS IKT105 İktisada Giriş Introduction to Economics 3 0 3 4 ISL101

Detaylı

K-En Yakın Komşu Algoritması Parametrelerinin Sınıflandırma Performansı Üzerine Etkisinin İncelenmesi

K-En Yakın Komşu Algoritması Parametrelerinin Sınıflandırma Performansı Üzerine Etkisinin İncelenmesi K-En Yakın Komşu Algoritması Parametrelerinin Sınıflandırma Performansı Üzerine Etkisinin İncelenmesi Erdal TAŞCI* Aytuğ ONAN** *Ege Üniversitesi Bilgisayar Mühendisliği Bölümü **Celal Bayar Üniversitesi

Detaylı

YATIRIM ARAÇLARININ GETİRİLERİ ARASINDAKİ İLİŞKİLERİN ÇOK BOYUTLU ÖLÇEKLEME YÖNTEMİ İLE ANALİZİ

YATIRIM ARAÇLARININ GETİRİLERİ ARASINDAKİ İLİŞKİLERİN ÇOK BOYUTLU ÖLÇEKLEME YÖNTEMİ İLE ANALİZİ Ekonomik ve Sosyal Araştırmalar Dergisi, Güz 2012, Cilt:8, Yıl:8, Sayı:2, 8:45-55 YATIRIM ARAÇLARININ GETİRİLERİ ARASINDAKİ İLİŞKİLERİN ÇOK BOYUTLU ÖLÇEKLEME YÖNTEMİ İLE ANALİZİ Mustafa İBİCİOĞLU * MULTIDIMENSIONAL

Detaylı

Zeki Optimizasyon Teknikleri

Zeki Optimizasyon Teknikleri Zeki Optimizasyon Teknikleri Genetik Algoritma (Genetic Algorithm) Doç.Dr. M. Ali Akcayol Genetik Algoritma 1970 li yıllarda John Holland tarafından geliştirilmiştir. 1989 yılında David E. Goldberg Genetik

Detaylı

Araştırma Görevlisi İSMAİL ÇÖLKESEN

Araştırma Görevlisi İSMAİL ÇÖLKESEN Araştırma Görevlisi İSMAİL ÇÖLKESEN ÖZGEÇMİŞ Adı Soyadı : İSMAİL ÇÖLKESEN Doğum Tarihi : 1981 Ünvanı : Dr. Öğrenim Durumu : Derece Alan Üniversite Lisans Yüksek Lisans Doktora Jeodezi ve Fotogrametri Müh.

Detaylı

YALIN SİNİRSEL BULANIK BİR MODEL İLE İMKB 100 ENDEKSİ TAHMİNİ

YALIN SİNİRSEL BULANIK BİR MODEL İLE İMKB 100 ENDEKSİ TAHMİNİ Gazi Üniv. Müh. Mim. Fak. Der. J. Fac. Eng. Arch. Gazi Univ. Cilt 26, No 4, 897-904, 2011 Vol 26, No 4, 897-904, 2011 YALIN SİNİRSEL BULANIK BİR MODEL İLE İMKB 100 ENDEKSİ TAHMİNİ Yeşim OK *, Mehmet ATAK

Detaylı

Sevim Yasemin ÇİÇEKLİ 1, Coşkun ÖZKAN 2

Sevim Yasemin ÇİÇEKLİ 1, Coşkun ÖZKAN 2 1078 [1025] LANDSAT 8'İN ADANA SEYHAN BARAJ GÖLÜ KIYI ÇİZGİSİNİN AYLIK DEĞİŞİMİNİN BELİRLENMESİNDE KULLANILMASI Sevim Yasemin ÇİÇEKLİ 1, Coşkun ÖZKAN 2 1 Arş. Gör., Erciyes Üniversitesi, Harita Mühendisliği

Detaylı

İleri Örüntü Tanıma Teknikleri Ve Uygulamaları İçerik

İleri Örüntü Tanıma Teknikleri Ve Uygulamaları İçerik Tekrar Konular İleri Örüntü Tanıma Teknikleri Ve Uygulamaları İçerik 1. Uygulamalar ve tanımlamalar 2. Örüntü tanıma sistemleri ve bir örnek 3. Bayes karar teorisi 4. En yakın komşu sınıflandırıcıları

Detaylı

BİLECİK ÜNİVERSİTESİ AKADEMİK ÖZGEÇMİŞ FORMU

BİLECİK ÜNİVERSİTESİ AKADEMİK ÖZGEÇMİŞ FORMU BİLECİK ÜNİVERSİTESİ AKADEMİK ÖZGEÇMİŞ FORMU KİŞİSEL BİLGİLER Adı Soyadı SERPİL TÜRKYILMAZ Ünvanı Yardımcı Doçent Doktor Birimi SOSYAL BİLİMLER ENSTİTÜSÜ Doğum Yeri ESKİŞEHİR E-Posta serpil.turkyilmaz@bilecik.edu.tr

Detaylı

VERİ MADENCİLİĞİ (Karar Ağaçları ile Sınıflandırma) Yrd.Doç.Dr. Kadriye ERGÜN

VERİ MADENCİLİĞİ (Karar Ağaçları ile Sınıflandırma) Yrd.Doç.Dr. Kadriye ERGÜN VERİ MADENCİLİĞİ (Karar Ağaçları ile Sınıflandırma) Yrd.Doç.Dr. Kadriye ERGÜN kergun@balikesir.edu.tr Genel İçerik Veri Madenciliğine Giriş Veri Madenciliğinin Adımları Veri Madenciliği Yöntemleri Sınıflandırma

Detaylı

ÇİMENTO BASMA DAYANIMI TAHMİNİ İÇİN YAPAY SİNİR AĞI MODELİ

ÇİMENTO BASMA DAYANIMI TAHMİNİ İÇİN YAPAY SİNİR AĞI MODELİ ÇİMENTO BASMA DAYANIMI TAHMİNİ İÇİN YAPAY SİNİR AĞI MODELİ Ezgi Özkara a, Hatice Yanıkoğlu a, Mehmet Yüceer a, * a* İnönü Üniversitesi Mühendislik Fakültesi Kimya Mühendisliği Bölümü, Malatya, 44280 myuceer@inonu.edu.tr

Detaylı

Stratejik Düşünce Enstitüsü Ekonomi Koordinatörlüğü

Stratejik Düşünce Enstitüsü Ekonomi Koordinatörlüğü Stratejik Düşünce Enstitüsü Ekonomi Koordinatörlüğü www.sde.org.tr ANALİZ 2014/2 2013 YILI ALTIN ANALİZİ Dr. M. Levent YILMAZ Ekonomistlerin çoğu zaman yanıldığı ve nedenini tahmin etmekte zorlandığı bir

Detaylı

15 Ekim 2015 HİSSE ÖNERİ VE TEKNİK ANALİZ BIST-100 VIOP-30 DOW JONES XBANK / XUSIN. İNDiKATÖRLER TEKNİK ÖNERİ LİSTESİ. İndikatör Bilgilendirmesi

15 Ekim 2015 HİSSE ÖNERİ VE TEKNİK ANALİZ BIST-100 VIOP-30 DOW JONES XBANK / XUSIN. İNDiKATÖRLER TEKNİK ÖNERİ LİSTESİ. İndikatör Bilgilendirmesi 5 Ekim 05 HİSSE ÖNERİ VE TEKNİK ANALİZ SEVGÜL DÜZGÜN sduzgun@ziraatyatirim.com.tr TURGUT USLU tuslu@ziraatyatirim.com.tr BIST-00 VIOP-30 DOW JONES XBANK / XUSIN Günlük Fiyat Hareketi Beklentilerimiz İndikatör

Detaylı

Sağlık Kuruluşlarında Maliyet Yönetimi ve Güncel

Sağlık Kuruluşlarında Maliyet Yönetimi ve Güncel Sağlık Kuruluşlarında Maliyet Yönetimi ve Güncel Uygulamalar YRD. DOÇ. DR. EMRE ATILGAN TRAKYA ÜNİVERSİTESİ SAĞLIK YÖNETİMİ BÖLÜMÜ Sağlık Kurumlarında Maliyet Yönetimi ve Güncel Uygulamalar Sunum Planı:

Detaylı

4 Eylül 2015 HİSSE ÖNERİ VE TEKNİK ANALİZ BIST-100 VIOP-30 DOW JONES XBANK / XUSIN. İNDiKATÖRLER TEKNİK ÖNERİ LİSTESİ. İndikatör Bilgilendirmesi

4 Eylül 2015 HİSSE ÖNERİ VE TEKNİK ANALİZ BIST-100 VIOP-30 DOW JONES XBANK / XUSIN. İNDiKATÖRLER TEKNİK ÖNERİ LİSTESİ. İndikatör Bilgilendirmesi 4 Eylül 2015 HİSSE ÖNERİ VE TEKNİK ANALİZ SEVGÜL DÜZGÜN sduzgun@ziraatyatirim.com.tr TURGUT USLU tuslu@ziraatyatirim.com.tr BIST-100 VIOP-30 DOW JONES XBANK / XUSIN Günlük Fiyat Hareketi Beklentilerimiz

Detaylı

VİRTUS Serbest Yatırım Fonu. Finans Yatırım Bosphorus Capital A Tipi Risk Yönetimi Hisse Senedi Fonu

VİRTUS Serbest Yatırım Fonu. Finans Yatırım Bosphorus Capital A Tipi Risk Yönetimi Hisse Senedi Fonu VİRTUS Serbest Yatırım Fonu Finans Yatırım Bosphorus Capital A Tipi Risk Yönetimi Hisse Senedi Fonu Bosphorus Capital Bosphorus Capital Portföy Yönetimi A.Ş. Türk finans piyasalarında aktif varlık yönetimine

Detaylı

SOSYAL BİLİMLER ENSTİTÜSÜ/İŞLETME ANABİLİM DALI (DR) SOSYAL BİLİMLER ENSTİTÜSÜ/İŞLETME ANABİLİM DALI (YL) (TEZLİ)

SOSYAL BİLİMLER ENSTİTÜSÜ/İŞLETME ANABİLİM DALI (DR) SOSYAL BİLİMLER ENSTİTÜSÜ/İŞLETME ANABİLİM DALI (YL) (TEZLİ) SONER AKKOÇ DOÇENT Adres ÖZGEÇMİŞ YÜKSEKÖĞRETİM KURULU Dumlupınar Üniversitesi Uygulamalı Bilimler Yüksekokulu Evliya Çelebi Yerleşkesi KÜTAHYA 10.04.2014 Telefon E-posta 2742652031-4631 Doğum Tarihi 26.11.1978

Detaylı

YÖK TEZLERİ PROJE KELİME TARAMASI

YÖK TEZLERİ PROJE KELİME TARAMASI YÖK TEZLERİ PROJE KELİME TARAMASI YÖK Tezleri Proje Kelimesi Taraması Sonuçları Toplam Çalışma Sayısı 1833 İncelenen 1673 İlgisiz 372 Toplam İncelenen 1301 X Projesi 720 Proje Yönetimi 123 Yatırım Projeleri

Detaylı

Örnek. Aşağıdaki veri setlerindeki X ve Y veri çiftlerini kullanarak herbir durumda X=1,5 için Y nin hangi değerleri alacağını hesaplayınız.

Örnek. Aşağıdaki veri setlerindeki X ve Y veri çiftlerini kullanarak herbir durumda X=1,5 için Y nin hangi değerleri alacağını hesaplayınız. Örnek Aşağıdaki veri setlerindeki X ve Y veri çiftlerini kullanarak herbir durumda X=1,5 için Y nin hangi değerleri alacağını hesaplayınız. i. ii. X 1 2 3 4 1 2 3 4 Y 2 3 4 5 4 3 2 1 Örnek Aşağıdaki veri

Detaylı

3 KESİKLİ RASSAL DEĞİŞKENLER VE OLASILIK DAĞILIMLARI

3 KESİKLİ RASSAL DEĞİŞKENLER VE OLASILIK DAĞILIMLARI ÖNSÖZ İÇİNDEKİLER III Bölüm 1 İSTATİSTİK ve SAYISAL BİLGİ 11 1.1 İstatistik ve Önemi 12 1.2 İstatistikte Temel Kavramlar 14 1.3 İstatistiğin Amacı 15 1.4 Veri Türleri 15 1.5 Veri Ölçüm Düzeyleri 16 1.6

Detaylı

ÖZGEÇMİŞ VE ESERLER LİSTESİ

ÖZGEÇMİŞ VE ESERLER LİSTESİ ÖZGEÇMİŞ VE ESERLER LİSTESİ ÖZGEÇMİŞ Adı Soyadı: Emin AVCI Doğum Tarihi: 20.07.1976 Öğrenim Durumu: Derece Bölüm/Program Üniversite Yıl Lisans İngilizce İşletme Bölümü Marmara Üniversitesi 1994-1998 Yüksek

Detaylı

YÖNEYLEM ARAŞTIRMASI - III

YÖNEYLEM ARAŞTIRMASI - III YÖNEYLEM ARAŞTIRMASI - III Prof. Dr. Cemalettin KUBAT Yrd. Doç. Dr. Özer UYGUN İçerik (Eşitlik Kısıtlı Türevli Yöntem) Bu metodu incelemek için Amaç fonksiyonu Min.z= f(x) Kısıtı g(x)=0 olan problemde

Detaylı

GRAFİK 1 : ÜRETİM ENDEKSİNDEKİ GELİŞMELER (Yıllık Ortalama) (1997=100) Endeks 160,0 140,0 120,0 100,0 80,0 60,0 40,0 20,0. İmalat Sanayii

GRAFİK 1 : ÜRETİM ENDEKSİNDEKİ GELİŞMELER (Yıllık Ortalama) (1997=100) Endeks 160,0 140,0 120,0 100,0 80,0 60,0 40,0 20,0. İmalat Sanayii TÜTÜN ÜRÜNLERİ İMALAT SANAYİİ Hazırlayan Ömür GENÇ ESAM Müdür Yardımcısı 78 1. SEKTÖRÜN TANIMI Tütün ürünleri imalatı ISIC Revize 3 sınıflandırmasına göre, imalat sanayii alt ayrımında 16 no lu gruplandırma

Detaylı

Büyük Veri ve Endüstri Mühendisliği

Büyük Veri ve Endüstri Mühendisliği Büyük Veri ve Endüstri Mühendisliği Mustafa Gökçe Baydoğan Endüstri Mühendisliği Bölümü Boğaziçi Üniversitesi İstanbul Yöneylem Araştırması/Endüstri Mühendisliği Doktora Öğrencileri Kolokyumu 21-22 Nisan

Detaylı

Üniversite Öğrencilerinin Akademik Başarılarını Etkileyen Faktörler Bahman Alp RENÇBER 1

Üniversite Öğrencilerinin Akademik Başarılarını Etkileyen Faktörler Bahman Alp RENÇBER 1 Çankırı Karatekin Üniversitesi Sosyal Bilimler Enstitüsü Dergisi 3(1): 191-198 Üniversite Öğrencilerinin Akademik Başarılarını Etkileyen Faktörler Bahman Alp RENÇBER 1 Özet Bu çalışmanın amacı, üniversite

Detaylı

HAM PETROL FİYATLARININ BİST 100 VE BİST ULAŞTIRMA ENDEKSLERİ İLE İLİŞKİSİ

HAM PETROL FİYATLARININ BİST 100 VE BİST ULAŞTIRMA ENDEKSLERİ İLE İLİŞKİSİ Kastamonu Üniversitesi İktisadi ve İdari Bilimler Fakültesi Dergisi Nisan 2016, Sayı:12 HAM PETROL FİYATLARININ BİST 100 VE BİST ULAŞTIRMA ENDEKSLERİ İLE İLİŞKİSİ Selçuk KENDİRLİ 1 Muhammet ÇANKAYA 2 Özet:

Detaylı

Kredi Onayı İçin Bir Sınıflandırma Algoritması Önerisi A Classification Algorithm Advice for Credit Approval

Kredi Onayı İçin Bir Sınıflandırma Algoritması Önerisi A Classification Algorithm Advice for Credit Approval Kredi Onayı İçin Bir Sınıflandırma Algoritması Önerisi A Classification Algorithm Advice for Credit Approval İsmail Haberal Bilgisayar Mühendisliği Bölümü Başkent Üniversitesi ihaberal@baskent.edu.tr Umut

Detaylı

14 Mart 2016 HİSSE ÖNERİ VE TEKNİK ANALİZ BIST-100 VIOP-30 DOW JONES XBANK / XUSIN. İNDiKATÖRLER TEKNİK ÖNERİ LİSTESİ. İndikatör Bilgilendirmesi

14 Mart 2016 HİSSE ÖNERİ VE TEKNİK ANALİZ BIST-100 VIOP-30 DOW JONES XBANK / XUSIN. İNDiKATÖRLER TEKNİK ÖNERİ LİSTESİ. İndikatör Bilgilendirmesi 14 Mart 2016 HİSSE ÖNERİ VE TEKNİK ANALİZ SEVGÜL DÜZGÜN sduzgun@ziraatyatirim.com.tr TURGUT USLU tuslu@ziraatyatirim.com.tr BIST-100 VIOP-30 DOW JONES XBANK / XUSIN Günlük Fiyat Hareketi Beklentilerimiz

Detaylı

12 Ocak 2016 HİSSE ÖNERİ VE TEKNİK ANALİZ BIST-100 VIOP-30 DOW JONES XBANK / XUSIN. İNDiKATÖRLER TEKNİK ÖNERİ LİSTESİ. İndikatör Bilgilendirmesi

12 Ocak 2016 HİSSE ÖNERİ VE TEKNİK ANALİZ BIST-100 VIOP-30 DOW JONES XBANK / XUSIN. İNDiKATÖRLER TEKNİK ÖNERİ LİSTESİ. İndikatör Bilgilendirmesi 12 Ocak 2016 HİSSE ÖNERİ VE TEKNİK ANALİZ SEVGÜL DÜZGÜN sduzgun@ziraatyatirim.com.tr TURGUT USLU tuslu@ziraatyatirim.com.tr BIST-100 VIOP-30 DOW JONES XBANK / XUSIN Günlük Fiyat Hareketi Beklentilerimiz

Detaylı

MONİTOR 26/03/2015 05/02/2015

MONİTOR 26/03/2015 05/02/2015 FX BİST MONİTOR MONİTOR 26/03/2015 05/02/2015 Halk Yatırım Yurtiçi Satış Destek Bölümü tarafından hazırlanmıştır. Halk Yatırım Satış ve Pazarlama Birimi tarafından hazırlanmıştır bloomberg, lük FOREX GÖRÜNÜM

Detaylı

Haftalık Teknik Analiz 15 Şubat 2016

Haftalık Teknik Analiz 15 Şubat 2016 BIST-100 HAFTALIK TEKNİK GÖRÜNÜM Teknik Analiz: BIST-100 endeksinde haftalık hareket bandı 69.889-74.656 aralığında gerçekleşirken, hafta 70.937 seviyesinden %4,40 değer kaybıyla tamamlandı. Haftaya pozitif

Detaylı

MAYIS 2012 FON BÜLTENİ

MAYIS 2012 FON BÜLTENİ MAYIS 2012 FON BÜLTENİ PİYASALARDAKİ GELİŞMELER Zayıf Halka: Avrupa Ocak ayında yaşadığımız ralli dönemi sonrası son üç aydır, tüm Global piyasalar tam anlamıyla yatay bir bant içerisinde hareket etmektedir.

Detaylı

Haftalık Teknik Analiz 07 Mart 2016

Haftalık Teknik Analiz 07 Mart 2016 BIST-100 HAFTALIK TEKNİK GÖRÜNÜM Teknik Analiz: BIST-100 endeksinde haftalık hareket bandı 74.423-77.527 aralığında gerçekleşirken, hafta 77.191 seviyesinden %3,02 oranında değer artışıyla tamamlandı.

Detaylı

ÜSTEL DÜZLEŞTİRME YÖNTEMİ

ÜSTEL DÜZLEŞTİRME YÖNTEMİ ÜSEL DÜLEŞİRME YÖNEMİ ÜSEL DÜLEŞİRME YÖNEMİ Bu bölüme kadar anlatılan yöntemler zaman içinde değişmeyen parametre varsayımına uygun serilerin tahminlerinde kullanılmaktaydı. Bu tür seriler deterministik

Detaylı

SAKARYA ÜNİVERSİTESİ EĞİTİM FAKÜLTESİ DÖRDÜNCÜ SINIF ÖĞRENCİLERİNİN ÖĞRETMENLİK MESLEĞİNE KARŞI TUTUMLARI

SAKARYA ÜNİVERSİTESİ EĞİTİM FAKÜLTESİ DÖRDÜNCÜ SINIF ÖĞRENCİLERİNİN ÖĞRETMENLİK MESLEĞİNE KARŞI TUTUMLARI SAKARYA ÜNİVERSİTESİ EĞİTİM FAKÜLTESİ DÖRDÜNCÜ SINIF ÖĞRENCİLERİNİN ÖĞRETMENLİK MESLEĞİNE KARŞI TUTUMLARI Arş.Gör. Duygu GÜR ERDOĞAN Sakarya Üniversitesi Eğitim Fakültesi dgur@sakarya.edu.tr Arş.Gör. Demet

Detaylı

Apriori Algoritması ile Teknik Seçmeli Ders Seçim Analizi

Apriori Algoritması ile Teknik Seçmeli Ders Seçim Analizi Apriori Algoritması ile Teknik Seçmeli Ders Seçim Analizi Emre Güngör 1,2, Nesibe Yalçın 1,2, Nilüfer Yurtay 3 1 Bilecik Şeyh Edebali Üniversitesi, Bilgisayar Mühendisliği Bölümü, 11210, Merkez, Bilecik

Detaylı

18 Aralık 2015 HİSSE ÖNERİ VE TEKNİK ANALİZ BIST-100 VIOP-30 DOW JONES XBANK / XUSIN. İNDiKATÖRLER TEKNİK ÖNERİ LİSTESİ. İndikatör Bilgilendirmesi

18 Aralık 2015 HİSSE ÖNERİ VE TEKNİK ANALİZ BIST-100 VIOP-30 DOW JONES XBANK / XUSIN. İNDiKATÖRLER TEKNİK ÖNERİ LİSTESİ. İndikatör Bilgilendirmesi 18 Aralık 2015 HİSSE ÖNERİ VE TEKNİK ANALİZ SEVGÜL DÜZGÜN sduzgun@ziraatyatirim.com.tr TURGUT USLU tuslu@ziraatyatirim.com.tr BIST-100 VIOP-30 DOW JONES XBANK / XUSIN Fiyat Hareketi Beklentilerimiz İndikatör

Detaylı

Sınavlı ve Sınavsız Geçiş İçin Akademik Bir Karşılaştırma

Sınavlı ve Sınavsız Geçiş İçin Akademik Bir Karşılaştırma Sınavlı ve Sınavsız Geçiş İçin Akademik Bir Karşılaştırma Öğr. Gör. Kenan KARAGÜL, Öğr. Gör. Nigar KARAGÜL, Murat DOĞAN 3 Pamukkale Üniversitesi, Honaz Meslek Yüksek Okulu, Lojistik Programı, kkaragul@pau.edu.tr

Detaylı

Yrd.Doç. Dr. Tülin ÇETİN

Yrd.Doç. Dr. Tülin ÇETİN Yrd.Doç. Dr. Tülin ÇETİN ÖĞRENİM DURUMU Derece Üniversite Bölüm / Program Lisans Ege Üniversitesi Bilgisayar Mühendisliği 1987-1992 Lisans Celal Bayar Üniversitesi İnşaat Mühendisliği 2001-2004 Y. Lisans

Detaylı

İÇİNDEKİLER 1. GİRİŞ...

İÇİNDEKİLER 1. GİRİŞ... İÇİNDEKİLER 1. GİRİŞ... 1 1.1. Regresyon Analizi... 1 1.2. Uygulama Alanları ve Veri Setleri... 2 1.3. Regresyon Analizinde Adımlar... 3 1.3.1. Problemin İfadesi... 3 1.3.2. Konu ile İlgili Potansiyel

Detaylı

Destek Vektör Makinesi Yöntemi ile Sondaj İlerleme Hızı Optimizasyonu. Korhan KOR, Türkiye Petrolleri; Gürşat ALTUN, İstanbul Teknik Üniversitesi

Destek Vektör Makinesi Yöntemi ile Sondaj İlerleme Hızı Optimizasyonu. Korhan KOR, Türkiye Petrolleri; Gürşat ALTUN, İstanbul Teknik Üniversitesi Destek Vektör Makinesi Yöntemi ile Sondaj İlerleme Hızı Optimizasyonu Korhan KOR, Türkiye Petrolleri; Gürşat ALTUN, İstanbul Teknik Üniversitesi ÖZ Günümüzde enerji kaynaklarına olan talep artışı nedeniyle

Detaylı