Bant Sınırlı TBGG Kanallarda Sayısal İletim

Save this PDF as:
 WORD  PNG  TXT  JPG

Ebat: px
Şu sayfadan göstermeyi başlat:

Download "Bant Sınırlı TBGG Kanallarda Sayısal İletim"

Transkript

1 Bant Sınırlı TBGG Kanallarda Sayısal İletim Bu bölümde, bant sınırlı doğrusal süzgeç olarak modellenen bir kanal üzerinde sayısal iletimi inceleyeceğiz. Bant sınırlı kanallar pratikte çok kez karşımıza çıkar örneğin telefon kanalları, mikro-dalga görüş hattı (GH) radyo kanalları, uydu kanalları ve sualtı akustik kanallar. İletilen işaretler kanalın sebep olduğu bant genişliği sınırlamasını sağlayacak şekilde tasarlanmalıdır. Bant genişliği sınırlaması genellikle modülatörün çıkışında dikdörtgen darbelerin kullanılmasını imkânsızlaştırır. Bunun yerine, iletilen işaret bant genişliği kanalın bant genişliğine sınırlanacak şekilde şekillendirilmelidir. Bant sınırlı işaretlerin tasarımı bu bölümde incelenen konulardan birisidir. Doğrusal süzgeç kanalın iletilen işareti bozacağını göreceğiz. Kanal bozulması de-modülatör çıkışında semboller arası karışıma sebep olur ve sezicide hata olasılığında artmaya sebep olur.

2 9.1 BANT SINIRLI KANALLARDA SAYISAL İLETİM Telefon hattı gibi bant sınırlı bir kanal, aşağıda verilen dürtü tepkisi c(t) ve frekans tepkisi C(f) olan bir doğrusal süzgeç ile karakterize edilir. Şekil 9.1 Bant sınırlı kanalın mutlak genlik ve faz tepkileri

3 Şayet kanal B c Hz bant-sınırlı temel bant kanal ise, f > B c için C(f) = 0 dır. Kanalın girişinde B c Hz den daha büyük herhangi bir frekans bileşeninin geçmesi kanal tarafından engellenecektir. Bant sınırlı bir kanala girişin, işaret dalga formu g T (t) olduğunu varsayalım. Kanalın tepkisi, aşağıda verildiği gibi g T (t) ile c(t) in evirişimidir. Kanal tepkisinin frekans boyutundaki gösterimi dır. Kanalın çıkışındaki işaretin TBGG tarafından bozulduğunu varsayalım. Sonra, demodülatörün girişindeki işaret h(t) + n(t) formundadır, bu ifadede n(t) TBGG yi temsil eder. Doğrusal süzgeç kanal modeli Şekil 9.2 de görülmektedir.

4 Şekil 9.2 Bant sınırlı kanal için doğrusal süzgeç modeli Önceki bölümde gösterildiği gibi TBGG kanalda h(t), işaretinin uyumlu süzgecini içeren demodülatör çıkışındaki İGO yı maksimize eder. Bu yüzden alınan işaret r( t) h( t) n( t), aşağıda frekans tepkisi verilen bir süzgeçten geçirilir bu ifadede t 0 zaman gecikmesi süzgeç çıkışını örnekle zamanıdır. Uyumlu süzgeç çıkışında t = t 0 anında örneklenen işaret bileşeni dir, bu ifade kanal çıkış dalga formu h(t) deki enerjidir

5 Uyumlu süzgeç çıkışında gürültü bileşeni sıfır beklenen değerlidir ve güç spektral yoğunluğu aşağıda verilmiştir Böylece, uyumlu süzgeç çıkışındaki gürültü gücünün değişintisi olur. Uyumlu süzgeç çıkışındaki İGO ifadesi olarak elde edilir. Bu sonucun, Bölüm 8 de uyumlu süzgeç çıkışında elde edilen İGO ifadesinden tek farkı alınan işaret enerjisi, iletilen işaret enerjisi in ( ikili modulasyon için (E s =E b olur) yerini almıştır.

6 Örnek Yukarıda verilen darbe işareti, frekans tepki karakteristiği Şekil 9.3(a) de görülen temel bant kanal boyunca iletilmiştir. Darbe işareti Şekil 9.3(b) de görülmektedir. Kanal çıkışı, güç spektral yoğunluğu N 0 /2 olan TBGG tarafından bozulmaktadır. Alınan işaret için uyumlu süzgeci ve çıkış İGO ı belirleyiniz. Şekil 9.3 (b) deki darbe işareti (a) da görülen ideal bant sınırlı kanalda iletilmektedir. gt () t in spektrumu (c) de gösterilmiştir.

7 Çözüm Bu problem en kolay frekans boyutunda çözülür. İlk olarak, iletilen darbe işaretinin spektrumu dır. GT ( f) 2 in spektrumu Şekil 9.3(c) de görülmektedir. Böylece, dır. Daha sonra, H(f) i karşılayan süzgecin çıkışında işaret bileşeni olur.

8 Gürültü bileşeninin değişintisi aşağıda verilmiştir çıkış İGO ise Bu örnekte kanalın girişindeki işaretin bant sınırlı olmadığını gözlüyoruz. Böylelikle, iletilen işaret enerjisinin sadece bir kısmı alınır (sadece kanalın geçiş bandı içerisine düşen işaret enerjisi).

9 9.1.1 Bant Sınırlı Temel Bant Kanallarda Sayısal DGM İletimi Şekil 9.4 de fonksiyonel blok diyagramıyla gösterilen temel bant DGM iletim sistemini göz önüne alalım. Şekil 9.4 Sayısal DGM sistemin blok diyagramı M-li DGM kullanan sayısal iletişim sistemini göz önüne alalım. Böylece, giriş ikili veri dizisi k-bit lik simgelere ayrılır ve her bir simge, iletilen işaret çıkışını modüle eden bir genlik seviyesine eşlenir. İletim süzgeci çıkışındaki temel bant işaret (kanala giriş) aşağıdaki gibi ifade edilebilir. burada T = k/r b simge aralığı (1/T = R b /k simge hızıdır), R b bit hızıdır ve bitlerinin k-bit blokluk dizisine karşılık gelen genlik seviyesi dizisidir. { a n } veri

10 Kanal çıkışı diğer bir ifadeyle demodülatörde alınan işaret aşağıdaki gibi ifade edilebilir. Bu ifadede h( t) c( t) g ( ) dir, c(t) kanalın dürtüsel tepkisidir ve n(t) T t TBGG yi temsil eder. Alınan işaret dürtüsel tepkisi g R (t) ve frekans tepkisi G R (f) olan doğrusal alıcı süzgeçten geçer. g R (t), h(t) in uyumlu süzgeci ise çıkışında, İGO uygun örneklenme anlarında maksimumdur. Alıcı süzgecin çıkışı aşağıdaki gibi ifade edilebilir bu ifadede x( t) h( t) gr ( t) gt ( t) c( t) gr ( t) dir ve ( t) n( t) gr ( t) alıcı süzgeç çıkışındaki eklemeli gürültüyü gösterir. Veri simgeleri a n i geri elde etmek için, alıcı süzgeç çıkışı her T saniyede periyodik olarak örneklenir. Böylece, örnekleyici

11 veya eş değer olarak üretir. Eşitlik (9.1.13) de x x( mt ), m ( mt ) ve m 0, 1, 2,... dir. m Eşitlik (9.1.13) in sağ tarafındaki ilk terim kazanç parametresi x 0 la ölçeklenmiş istenen sembol a m dir ve dir. Eşitlik (9.1.13) in sağ tarafında ikinci terim örnekleme anında (t = mt) simgeler arası karışım (SAK) olarak isimlendirilen diğer simgelerin etkilerini gösterir. Genel olarak, SAK sayısal iletim sistemlerin başarımında kötüleşmeye sebep olur. Son olarak, eklemeli gürültüyü temsil eden üçüncü terim m, Eşitlik (9.1.7) de verilen sıfır beklenen değerli ve değişintili Gaussian rasgele değişkenidir.

12 İkili DGM için Gauss gürültülü kanalda SAK olması durumunda hata olasılığı ifadesi P 2 = Q 2E b N 0 +I Bu ifadede I SAK dolayısıyla oluşan karışım gücüdür ve hata olasılığını kötüleştirir. Performanstaki kötüleşmeyi önlemek için, verici ve alıcı süzgeçleri uygun tasarlayarak, n 0 için x 0 şartını sağlayabiliriz, böylece SAK terimi sıfırlanır. n

13 9.2 BANT-SINIRLI KANALLAR İÇİN İŞARET TASARIMI Bu altbölümde, bant-sınırlı verici süzgeç tasarımını göz önüne alıyoruz. İlk olarak, kanal bozulmasının olmaması şartı altında tasarım yapılacaktır. H(f) = C(f) G T (f) olduğu için, bozulmasız iletim şartı iletilen işaretin bant genişliği boyunca C(f) kanal frekans tepki karakteristiğinin sabit mutlak genlik ve doğrusal fazlı olmasıdır. Yani burada W mevcut kanal bant genişliği, t 0 kolaylık için sıfıra eşitlediğimiz sonlu herhangi bir zaman gecikmesidir ve C 0 kolaylık için bire eşitlediğimiz sabit kazanç faktörüdür. Böylece, kanalın bozulmasız olması ve gt () t in bant genişliğinin W ile sınırlı olması şartı altında, H ( f ) GT ( f ) dir. Bunun sonucunda, alıcıdaki uyumlu süzgecin frekans * tepkisi GR( f ) GT( f ) dir ve t = mt periyodik örnekleme anlarında çıkışı aşağıdaki formdadır

14 veya daha basit bir ifadeyle dir, burada çıkış tepkisidir. x( t) g ( t) g ( t) T R dir ve w(t) girişteki TBGG süreci n(t) ye uyumlu süzgecin Alınan işarette görülen SAK ve gürültünün miktarı bir osiloskopta görülebilir. Özellikle, alınan işareti osiloskobun dikey girişine ve yatay girişe 1 / T hızında tarama işareti uygulayarak gösterebiliriz. Elde edilen osiloskop görüntüsü insan gözüne benzediği için, göz biçimi olarak isimlendirilir. Birisi ikili DGM ve diğeri dörtlü (M = 4) DGM için olmak üzere, iki adet göz biçimi örnekleri Şekil 9.5(a) da gösterilmiştir.

15 Şekil 9.5 Göz biçimleri (a) ikili ve dörtlü DGM için göz biçimi örnekleri (b) SAK ın göz açıklığına etkisi SAK ın etkisi gözün kapanmasına sebep olur, böylece hataya sebep verecek eklemeli gürültü için marjı azaltır.

16 9.2.1 Sıfır SAK için Bant Sınırlı İşaret Tasarımı- Nyquist Kıstası Daha önce tanımlandığı gibi bir sayısal iletişim sistemi göz önüne alalım. gt () t bant genişliği W ye eşit veya daha az olduğunda, ideal bant sınırlı kanalda iletim yapmaktadır. Bu yüzden alıcı süzgecin çıkışında, işaretin Fourier dönüşümü olan kanalın bant genişliği aşağıdaki gibi verilir burada G T (f) ve G R (f) verici ve alıcı süzgeçlerin frekans tepkilerini gösterirler ve C( f ) C0 exp( j2 ft0), f W kanalın frekans tepkisini gösterir. Kolaylık için, C 0 = 1 ve t 0 = 0 seçebiliriz. Ayrıca, alıcı süzgecin çıkışı t = mt, m =., -2, -1, 0, 1,2 anlarında periyodik olarak örneklendiğinde Eşitlik (9.2.3) de verilen ifadeye dönüşür. Bu eşitliğin sağ tarafında birinci terim, istenen simgedir, ikinci terim SAK ı oluşturur ve üçüncü terim eklemeli gürültüdür.

17 SAK ın etkisini kaldırmak için, gerekli ve yeterli şart n m ve x(0) 0için, x( mt nt ) 0 dir. Burada x(0) = 1 varsayımında bulunabiliriz. Bu şartın anlamı tüm haberleşme sistemi tasarımı aşağıdaki koşulu sağlayacak biçimde yapılır. Bu şart Nyquist darbe-şekillendirici kıstası veya sıfır SAK için Nyquist şartı olarak bilinir. Sıfır SAK için Nyquist Şartı. x(t) in sağlaması için gerekli ve yeterli şart aşağıda verilmiştir. Fourier dönüşümü X(f) in sağlaması gerekli olan şart ise Şimdi kanalın W bant genişlikli olduğunu varsayalım. için X(f) = 0 dır. Üç durum söz konusudur f için C(f) = 0 dır; böylece W f W

18 1 1- İlk durumda, T veya eşdeğer olarak 1 n 2W 2W dır. Z( f ) X ( f ), Şekil 9.6 da T n T görüldüğü gibi X(f) in 1/T kadar ayrı örtüşmeyen kopyalarından oluştuğu için, bu durumda Z(f) = T sağlayacak X(f) yoktur. Böylelikle, sıfır SAK sağlayan bir sistem tasarlanması imkansızdır. Şekil 9.6 T 1 2W durumu için Z(f) in çizimi Bu durumda, T veya eşdeğer olarak 2W 2W T (Nyquist hızı) dır. Şekil 9.7 de görüldüğü gibi 1/T ile ayrılmış X(f) in kopyaları örtüşmektedirler. Şekil 9.7 T 1 2W durumu için Z(f) in çizimi

19 Açıkça görüleceği gibi, Z(f) = T şartını sağlayan sadece bir tane X(f) vardır ve aşağıda verilmiştir. Diğer ifade biçimiyle X ( f ) T f 2W dır. Ters Fourier i sonucunu verir. Bu durumun anlamı sıfır SAK için T in en küçük değeri T = 1/2W dır; bu değer için x(t) sinc fonksiyonu olmalıdır. 3- T > 1/ 2W durum için, Şekil 9.8 de görüldüğü gibi Z(f), X(f) in 1 /T le ayrılmış kopyalarından oluşur. Bu durumda, X(f) için Z(f) = T şartını sağlayacak sonsuz sayıda farklı seçenek vardır. Şekil 9.8 T > 1/2W durumu için Z(f) in çizimi

20 T > 1/ 2W durum için, istenen spektral özelliklere sahip ve pratikte çokça kullanılan darbe spektrumu yükseltilmiş kosinüs (Raised Cosine) spektrumudur. Yükseltilmiş kosinüsün frekans karakteristikleri aşağıda verilmiştir. Yükseltilmiş kosinüs spektrumuna sahip x(t) darbesi aşağıda verilmiştir. Bu ifadelerde azalma faktörü olarak isimlendirilir ve 0 1 aralığında değer alır.

21 Şekil 9.9 Yükseltilmiş kosinüs spektrumuna sahip darbeler İşaretin, Nyquist frekansın (BG=1/2T) ötesinde işgal ettiği bant genişliği aşan bant genişliği 1 olarak isimlendirilir ve Nyquist frekansının yüzdesi olarak belirtilir. Örneğin, 2 olduğunda, aşan bant genişliği % 50 dir (BG=3/4T); 1 olduğunda aşan bant genişliği %100 dür (BG=1/T). 0 için darbe x( t) sin c( t / T ) ye indirgenir ve simge hızı 1/T = 2W dir. 1 olduğunda, simge hızı 1/T = W dır. Genelde, x(t) in kuyrukları 0 için 1 / t 3 hızında azalırlar.

22 Yükseltilmiş kosinüs spektrumu için verici ve alıcı için pratik süzgeçler tasarlamak mümkündür. f Kanalın ideal olduğu özel durumda, kanal frekans tepkisi C( f) 2W kosinüs spektrumu olan tüm sistem frekans tepkisi aşağıda verilmiştir. için, yükseltilmiş Bu durumda, alıcı süzgeci verici süzgeciyle uyumluysa, İdeal olarak, rc ( f ) G ( f ) G ( f ) G ( f ) T R T 2 dir. olur ve R gecikmesidir. G f G f * ( ) T( ) dir. Bu ifadede t 0 süzgecin gerçeklenebilir olmasını sağlayan zaman Örnek İdeal bir kanal Şekil 9.10 da görülen frekans tepki karakteristiğine sahiptir. G T (f) verici ve G R (f) alıcı süzgeç frekans tepki karakteristiklerini GT ( f ) GR ( f ) X rc ( f ) olacak biçimde belirleyiniz. İstenen azalma faktörü 1/ 2 seçilmiştir. Ayrıca, simge hızı 1/T yi belirleyin ve Nyquist hızıyla karşılaştırın.

23 Şekil 9.10 Örnek deki ideal kanalın frekans tepkisi Çözüm Kanalın geçiş bandı f 1200 Hz aralığında sınırlı ve 1/ 2 olduğu için, dır. Böylece, simge hızı 1/ T = 1600 simge/saniye dir. Buna karşın, Nyquist hızı 2400 simge/saniye dir. Xrc ( f) frekans tepkisi (T = 1/ 1600 için) aşağıda verilmiştir.

24 Böylece, olur. G T (f) ve G R (f) in faz karakteristikleri ( f) ( f) R T olacak biçimde doğrusal seçilirler. 9.4 KANAL BOZULMASININ VAR OLMASI DURUMUNDA SİSTEM TASARIMI Önceki bölümde alıcı süzgeç çıkışında sıfır SAK sonucu veren işaret tasarım kuralını tanımladık. Bir kanal üzerinde SAK sız iletim için alıcı-verici süzgeçler ve kanal transfer fonksiyonu aşağıdaki eşitliği sağlamalıdır. Bu alt bölümde, bozulmalı bir kanalda SAK ı bastıran sayısal iletim sistemi tasarımıyla ilgileniyoruz. Önce kanal bozulmalarının çeşitli türlerini kısaca gösteriyoruz. Sonra, verici ve alıcı süzgeçlerin tasarımını göz önüne alıyoruz. Bozulmanın iki türü vardır. Birincisi genlik bozulması, Şekil 9.15 (a) da görüldüğü gibi için genlik karakteristiği C f sabit olmadığında ortaya çıkar. İkinci tür bozulma faz bozulması olarak isimlendirilir ve Şekil 9.15 (b) de görüldüğü gibi c ( f ) frekans boyutunda doğrusal olmadığında ortaya çıkar. f W

25 Şekil 9.15 Kanal karakteristikleri (a) genlik bozulması ve (b) faz bozulması Faz bozulmasının bir diğer görünümü c ( f ) in türevinin alınmasıyla elde edilir ve buna Zarf gecikme karakteristiğini deriz aşağıda gibi tanımlarız. Faz tepkisi c ( f ) frekans boyutunda doğrusal olduğunda, zarf gecikmesi tüm frekanslar için sabittir. Bu durumda, iletilen işaretteki tüm frekanslar aynı sabit zaman gecikmesiyle kanaldan geçer. Böyle bir durumda, faz bozulması yoktur. Ancak c ( f ) doğrusal olmadığında, zarf gecikmesi ( f ) frekansla değişir ve giriş işaretindeki farklı frekans bileşenleri farklı gecikmelerle kanaldan geçer. Bu durumda, iletilen işaretin gecikme bozulmasına maruz kaldığını söyleriz.

26 Genlik ve faz bozulmalarının ikisi de alınan işarete simgeler arası karışıma sebep olur. Örneğin, örnekleme anlarında sıfır SAK değerli yükseltilmiş kosinüs spektruma sahip bir darbe tasarladığımızı varsayalım. Böyle bir darbenin bir örneği Şekil 9.16 (a) da gösterilmiştir. Bu darbe f W için sabit genlikli C f 1 ve dik faz karakteristiği (doğrusal zarf gecikmesi) olan bir kanaldan geçerse, kanal çıkışında alınan darbe Şekil 9.16(b) de gösterilmiştir. Sonuç darbelerin SAK a maruz kalacak biçimde, periyodik sıfır geçişlerinin gecikme bozulması kadar kaydığına dikkat ediniz. Bunun sonucunda, ardı ardına darbe dizilir bir diğerinin içine girer ve darbelerin tepeleri SAK tan dolayı artık fark edilemezler.

27 Şekil 9.16 Kanal bozulmasının etkileri (a) kanal girişinde (b) kanal çıkışında

28 Bir sonraki alt bölümde, iki tasarım problemini göz önüne alıyoruz. Birincisi, kanal karakteristikleri bilindiğinde kanal bozulmasının var olmasıyla alıcı ve verici süzgeçlerin tasarımı. İkincisi kanal karakteristikleri yani ve bilinmediğinde kanal bozulması için otomatik ve uyarlamalı doğrulama yapan ve kanal denkleştirici olarak bilinen özel bir süzgecin tasarımını göz önüne alacağız Bilinen Bir Kanal için Verici ve Alıcı Süzgeçlerin Tasarımı Bu alt bölümde, kanal frekans karakteristiği C( f) in bilindiğini varsayıyoruz; böylece alıcı süzgecin çıkışında İGO ı maksimum yaparak sıfır SAK veren verici ve alıcı süzgeçlerin tasarımı problemini göz önüne alıyoruz. Şekil 9.17 göz önüne aldığımız sistemi göstermektedir. Şekil 9.17 G T (f) ve G R (f) tasarımı için sistem düzeni İşaret bileşenleri için, aşağıdaki koşul sağlanmalıdır

29 Burada Xrc ( f) örnekleme anlarında sıfır SAK veren istenen yükseltilmiş kosinüs spektrumudur ve t 0 verici ve alıcı süzgeçlerin fiziksel gerçeklenmesini sağlamak için zaman gecikmesidir. Kanal tepkisinin (C(f) ) vericide bilinmesi durumunda, vericideki süzgeci aşağıdaki frekans tepkisine sahip olacak biçimde seçilir Eklemeli beyaz Gaussian gürültünün var olması durumunda, alıcıdaki süzgeç alınan işaret darbesiyle uyumlu olacak biçimde tasarlanır. Böylece, onun frekans tepkisi dır, burada t r uygun bir gecikmedir. Kanal tepkisinin alıcıda bilinmesi durumunda ise verici süzgeç G T f = X rc f e j2πft 0 Olarak seçilir alıcı süzgeç ise bilinen kanal tepkisini yok edecek biçimde G R f = X rc f C(f) e j2πft 0 seçilir. Böylelikle kanalın bilinen bozucu etkileri yok edilir. Bu yapılan işlemlere kanal denkleştirme (channel equalization) denir.

30 Örnek Aşağıda verilen frekans tepkisine sahip bir kanal üzerinde 4800 bit/sn hızında veri iletimi yapan ikili iletişim sistemi için verici ve alıcı süzgeç karakteristiklerinin mutlak genliklerini belirleyiniz. burada W = 4800 Hz dir. Eklemeli gürültü sıfır beklenen değerli ve N 0 /2 spektral yoğunluklu beyaz Gaussian dır. Çözüm W = 1/T = 4800 olduğu için, yükseltilmiş kosinüs spektrumlu ve darbe kullanıyoruz. Böylece 1 olan bir sonra ve olur.

1. LİNEER PCM KODLAMA

1. LİNEER PCM KODLAMA 1. LİNEER PCM KODLAMA 1.1 Amaçlar 4/12 bitlik lineer PCM kodlayıcısı ve kod çözücüsünü incelemek. Kuantalama hatasını incelemek. Kodlama kullanarak ses iletimini gerçekleştirmek. 1.2 Ön Hazırlık 1. Kuantalama

Detaylı

KABLOSUZ İLETİŞİM

KABLOSUZ İLETİŞİM KABLOSUZ İLETİŞİM 805540 MODÜLASYON TEKNİKLERİ SAYISAL MODÜLASYON İçerik 3 Sayısal modülasyon Sayısal modülasyon çeşitleri Sayısal modülasyon başarımı Sayısal Modülasyon 4 Analog yerine sayısal modülasyon

Detaylı

ELK 318 İLETİŞİM KURAMI-II

ELK 318 İLETİŞİM KURAMI-II ELK 318 İLETİŞİM KURAMI-II Nihat KABAOĞLU Kısım 5 DERSİN İÇERİĞİ Sayısal Haberleşmeye Giriş Giriş Sayısal Haberleşmenin Temelleri Temel Ödünleşimler Örnekleme ve Darbe Modülasyonu Örnekleme İşlemi İdeal

Detaylı

BÖLÜM 1 TEMEL KAVRAMLAR

BÖLÜM 1 TEMEL KAVRAMLAR BÖLÜM 1 TEMEL KAVRAMLAR Bölümün Amacı Öğrenci, Analog haberleşmeye kıyasla sayısal iletişimin temel ilkelerini ve sayısal haberleşmede geçen temel kavramları öğrenecek ve örnekleme teoremini anlayabilecektir.

Detaylı

ELK 318 İLETİŞİM KURAMI-II

ELK 318 İLETİŞİM KURAMI-II ELK 318 İLETİŞİM KURAMI-II Nihat KABAOĞLU Kısım 4 DERSİN İÇERİĞİ Sayısal Haberleşmeye Giriş Giriş Sayısal Haberleşmenin Temelleri Temel Ödünleşimler Örnekleme ve Darbe Modülasyonu Örnekleme İşlemi İdeal

Detaylı

TIBBİ ENSTRUMANTASYON TASARIM VE UYGULAMALARI SAYISAL FİLTRELER

TIBBİ ENSTRUMANTASYON TASARIM VE UYGULAMALARI SAYISAL FİLTRELER TIBBİ ENSTRUMANTASYON TASARIM VE UYGULAMALARI SAYISAL FİLTRELER SUNU PLANI Analog sayısal çevirici FIR Filtreler IIR Filtreler Adaptif Filtreler Pan-Tompkins Algoritması Araş. Gör. Berat Doğan 08/04/2015

Detaylı

Şeklinde ifade edilir. Çift yan bant modülasyonlu işaret ise aşağıdaki biçimdedir. ile çarpılırsa frekans alanında bu sinyal w o kadar kayar.

Şeklinde ifade edilir. Çift yan bant modülasyonlu işaret ise aşağıdaki biçimdedir. ile çarpılırsa frekans alanında bu sinyal w o kadar kayar. GENLİK MODÜLASYONU Mesaj sinyali m(t) nin taşıyıcı sinyal olan c(t) nin genliğini modüle etmesine genlik modülasyonu (GM) denir. Çeşitli genlik modülasyonu türleri vardır, bunlar: Çift yan bant modülasyonu,

Detaylı

NİĞDE ÜNİVERSİTESİ MÜHENDİSLİK FAKÜLTESİ ELEKTRİK-ELEKTRONİK MÜHENDİSLİĞİ BÖLÜMÜ

NİĞDE ÜNİVERSİTESİ MÜHENDİSLİK FAKÜLTESİ ELEKTRİK-ELEKTRONİK MÜHENDİSLİĞİ BÖLÜMÜ History in Pictures - On January 5th, 1940, Edwin H. Armstrong transmitted thefirstfmradiosignalfromyonkers, NY to Alpine, NJ to Meriden, CT to Paxton, MA to Mount Washington. 5 January is National FM

Detaylı

EEM HABERLEŞME TEORİSİ NİĞDE ÜNİVERSİTESİ MÜHENDİSLİK FAKÜLTESİ ELEKTRİK-ELEKTRONİK MÜHENDİSLİĞİ BÖLÜMÜ

EEM HABERLEŞME TEORİSİ NİĞDE ÜNİVERSİTESİ MÜHENDİSLİK FAKÜLTESİ ELEKTRİK-ELEKTRONİK MÜHENDİSLİĞİ BÖLÜMÜ EEM3006 - HABERLEŞME TEORİSİ NİĞDE ÜNİVERSİTESİ MÜHENDİSLİK FAKÜLTESİ ELEKTRİK-ELEKTRONİK MÜHENDİSLİĞİ BÖLÜMÜ EEM3006 - HABERLEŞME TEORİSİ Dersin Öğretim Elemanı: Yrd. Doç. Dr. Yasin KABALCI Ders Görüşme

Detaylı

EEM HABERLEŞME TEORİSİ NİĞDE ÜNİVERSİTESİ MÜHENDİSLİK FAKÜLTESİ ELEKTRİK-ELEKTRONİK MÜHENDİSLİĞİ BÖLÜMÜ

EEM HABERLEŞME TEORİSİ NİĞDE ÜNİVERSİTESİ MÜHENDİSLİK FAKÜLTESİ ELEKTRİK-ELEKTRONİK MÜHENDİSLİĞİ BÖLÜMÜ EEM3006 - HABERLEŞME TEORİSİ NİĞDE ÜNİVERSİTESİ MÜHENDİSLİK FAKÜLTESİ ELEKTRİK-ELEKTRONİK MÜHENDİSLİĞİ BÖLÜMÜ EEM3006 - HABERLEŞME TEORİSİ Dersin Öğretim Elemanı: Yrd. Doç. Dr. Yasin KABALCI Ders Görüşme

Detaylı

EEM HABERLEŞME TEORİSİ NİĞDE ÜNİVERSİTESİ MÜHENDİSLİK FAKÜLTESİ ELEKTRİK-ELEKTRONİK MÜHENDİSLİĞİ BÖLÜMÜ

EEM HABERLEŞME TEORİSİ NİĞDE ÜNİVERSİTESİ MÜHENDİSLİK FAKÜLTESİ ELEKTRİK-ELEKTRONİK MÜHENDİSLİĞİ BÖLÜMÜ EEM3006 - HABERLEŞME TEORİSİ NİĞDE ÜNİVERSİTESİ MÜHENDİSLİK FAKÜLTESİ ELEKTRİK-ELEKTRONİK MÜHENDİSLİĞİ BÖLÜMÜ EEM3006 - HABERLEŞME TEORİSİ Dersin Öğretim Elemanı: Yrd. Doç. Dr. Yasin KABALCI Ders Görüşme

Detaylı

EEM HABERLEŞME TEORİSİ NİĞDE ÜNİVERSİTESİ MÜHENDİSLİK FAKÜLTESİ ELEKTRİK-ELEKTRONİK MÜHENDİSLİĞİ BÖLÜMÜ

EEM HABERLEŞME TEORİSİ NİĞDE ÜNİVERSİTESİ MÜHENDİSLİK FAKÜLTESİ ELEKTRİK-ELEKTRONİK MÜHENDİSLİĞİ BÖLÜMÜ EEM3006 - HABERLEŞME TEORİSİ NİĞDE ÜNİVERSİTESİ MÜHENDİSLİK FAKÜLTESİ ELEKTRİK-ELEKTRONİK MÜHENDİSLİĞİ BÖLÜMÜ EEM3006 - HABERLEŞME TEORİSİ Dersin Öğretim Elemanı: Yrd. Doç. Dr. Yasin KABALCI Ders Görüşme

Detaylı

KABLOSUZ İLETİŞİM

KABLOSUZ İLETİŞİM KABLOSUZ İLETİŞİM 805540 MODÜLASYON TEKNİKLERİ FREKANS MODÜLASYONU İçerik 3 Açı modülasyonu Frekans Modülasyonu Faz Modülasyonu Frekans Modülasyonu Açı Modülasyonu 4 Açı modülasyonu Frekans Modülasyonu

Detaylı

Sürekli-zaman İşaretlerin Ayrık İşlenmesi

Sürekli-zaman İşaretlerin Ayrık İşlenmesi Sürekli-zaman İşaretlerin Ayrık İşlenmesi Bir sürekli-zaman işaretin sayısal işlenmesi üç adımdan oluşmaktadır: 1. Sürekli-zaman işaretinin bir ayrık-zaman işaretine dönüştürülmesi 2. Ayrık-zaman işaretin

Detaylı

DENEY 3. Tek Yan Bant Modülasyonu

DENEY 3. Tek Yan Bant Modülasyonu DENEY 3 Tek Yan Bant Modülasyonu Tek Yan Bant (TYB) Modülasyonu En basit genlik modülasyonu, geniş taşıyıcılı çift yan bant genlik modülasyonudur. Her iki yan bant da bilgiyi içerdiğinden, tek yan bandı

Detaylı

İşaret ve Sistemler. Ders 2: Spektral Analize Giriş

İşaret ve Sistemler. Ders 2: Spektral Analize Giriş İşaret ve Sistemler Ders 2: Spektral Analize Giriş Spektral Analiz A 1.Cos (2 f 1 t+ 1 ) ile belirtilen işaret: f 1 Hz frekansında, A 1 genliğinde ve fazı da Cos(2 f 1 t) ye göre 1 olan parametrelere sahiptir.

Detaylı

1. DARBE MODÜLASYONLARI

1. DARBE MODÜLASYONLARI 1. DARBE MODÜLASYONLARI 1.1 Amaçlar Darbe modülasyonunun temel kavramlarını tanıtmak. Örnekleme teorisini açıklamak. Bilgi iletiminde kullanılan birkaç farklı modülasyon tekniği vardır. Bunlardan bazıları

Detaylı

Doç. Dr. İbrahim Altunbaş 11.01.2007 Araş. Gör. Hacı İlhan TEL 351 ANALOG HABERLEŞME Final Sınavı

Doç. Dr. İbrahim Altunbaş 11.01.2007 Araş. Gör. Hacı İlhan TEL 351 ANALOG HABERLEŞME Final Sınavı Doç. Dr. İbrahim Altunbaş 11.01.2007 Araş. Gör. Hacı İlhan TEL 351 ANALOG HABERLEŞME Final Sınavı 1) a) Aşağıdaki işaretlerin Fourier serisi katsayılarını yazınız. i) cos2π 0 t ii) sin2π 0 t iii) cos2π

Detaylı

KABLOSUZ İLETİŞİM

KABLOSUZ İLETİŞİM KABLOSUZ İLETİŞİM 805540 MODÜLASYON TEKNİKLERİ ANALOG MODÜLASYON İçerik 3 Modülasyon Analog Modülasyon Genlik Modülasyonu Modülasyon Kipleme 4 Bilgiyi iletim için uygun hale getirme işi. Temel bant mesaj

Detaylı

HABERLEŞMENIN AMACI. Haberleşme sistemleri istenilen haberleşme türüne göre tasarlanır.

HABERLEŞMENIN AMACI. Haberleşme sistemleri istenilen haberleşme türüne göre tasarlanır. 2 HABERLEŞMENIN AMACI Herhangi bir biçimdeki bilginin zaman ve uzay içinde, KAYNAK adı verilen bir noktadan KULLANICI olarak adlandırılan bir başka noktaya aktarılmasıdır. Haberleşme sistemleri istenilen

Detaylı

ANALOG İLETİŞİM. 3. Kanal ayrımı sağlar. Yani modülasyon sayesinde aynı iletim hattında birden çok bilgi yollama olanağı sağlar.

ANALOG İLETİŞİM. 3. Kanal ayrımı sağlar. Yani modülasyon sayesinde aynı iletim hattında birden çok bilgi yollama olanağı sağlar. ANALOG İLETİŞİM Modülasyon: Çeşitli kaynaklar tarafından üretilen temel bant sinyalleri kanalda doğrudan iletim için uygun değildir. Bu nedenle, gönderileek bilgi işareti, iletim kanalına uygun bir biçime

Detaylı

ANALOG İLETİŞİM SİSTEMLERİNDE İLETİM KAYIPLARI

ANALOG İLETİŞİM SİSTEMLERİNDE İLETİM KAYIPLARI BÖLÜM 6 1 Bu bölümde, işaretin kanal boyunca iletimi esnasında görülen toplanır Isıl/termal gürültünün etkilerini ve zayıflamanın (attenuation) etkisini ele alacağız. ANALOG İLETİŞİM SİSTEMLERİNDE İLETİM

Detaylı

Deney 5 : Ayrık Filtre Tasarımı. Prof. Dr. Aydın Akan Bahattin Karakaya Umut Gündoğdu Yeşim Hekim Tanç

Deney 5 : Ayrık Filtre Tasarımı. Prof. Dr. Aydın Akan Bahattin Karakaya Umut Gündoğdu Yeşim Hekim Tanç İ. Ü. Elektrik&Elektronik Müh. Böl. İŞARET İŞLEME ve UYGULAMALARI Deney 5 : Ayrık Filtre Tasarımı Prof. Dr. Aydın Akan Bahattin Karakaya Umut Gündoğdu Yeşim Hekim Tanç Deney 5 : Ayrık Filtre Tasarımı 1.

Detaylı

İşaret ve Sistemler. Ders 3: Periyodik İşaretlerin Frekans Spektrumu

İşaret ve Sistemler. Ders 3: Periyodik İşaretlerin Frekans Spektrumu İşaret ve Sistemler Ders 3: Periyodik İşaretlerin Frekans Spektrumu Fourier Serileri Periyodik işaretlerin spektral analizini yapabilmek için periyodik işaretler sinüzoidal işaretlerin toplamına dönüştürülür

Detaylı

TRANSİSTÖRLÜ YÜKSELTEÇLERDE GERİBESLEME

TRANSİSTÖRLÜ YÜKSELTEÇLERDE GERİBESLEME TRANSİSTÖRLÜ YÜKSELTEÇLERDE GERİBESLEME Amaç Elektronikte geniş uygulama alanı bulan geribesleme, sistemin çıkış büyüklüğünden elde edilen ve giriş büyüklüğü ile aynı nitelikte bir işaretin girişe gelmesi

Detaylı

4.1 FM ve FzM İŞARETLERİN GÖSTERİMİ

4.1 FM ve FzM İŞARETLERİN GÖSTERİMİ AÇI MODÜLASYONU Frekans modülasyon (FM)sistemlerinde taşıyıcı frekans faz modülasyon (FzM veya PM) sistemlerinde mesaj işaretindeki değişimlere paralel olarak taşıyıcının fazı değiştirilir. Frekans ve

Detaylı

SAYISAL İŞARET İŞLEME LABORATUARI LAB 5: SONSUZ DÜRTÜ YANITLI (IIR) FİLTRELER

SAYISAL İŞARET İŞLEME LABORATUARI LAB 5: SONSUZ DÜRTÜ YANITLI (IIR) FİLTRELER SAYISAL İŞARET İŞLEME LABORATUARI LAB 5: SONSUZ DÜRTÜ YANITLI (IIR) FİLTRELER Bu bölümde aşağıdaki başlıklar ele alınacaktır. Sonsuz dürtü yanıtlı filtre yapıları: Direkt Şekil-1, Direkt Şekil-II, Kaskad

Detaylı

1. Darbe Genlik Modülasyonunu anlar ve bunun uygulamasını

1. Darbe Genlik Modülasyonunu anlar ve bunun uygulamasını BÖLÜM 2 DARBE MODÜLASYONU Bölümün Amacı Öğrenci, Darbe modülasyonlar türlerine ilişkin blok şemaları çizerek, modülasyonve demodülasyon işlevlerini bir giriş sinyali üzerinde uygulayarak anlayabilecektir.

Detaylı

Sürekli Dalga (cw) ve frekans modülasyonlu sürekli dalga (FM-CW) radarları

Sürekli Dalga (cw) ve frekans modülasyonlu sürekli dalga (FM-CW) radarları Sürekli Dalga (cw) ve frekans modülasyonlu sürekli dalga (FM-CW) radarları Basit CW Radar Blok Diyagramı Vericiden f 0 frekanslı sürekli dalga gönderilir. Hedefe çarpıp saçılan sinyalin bir kısmı tekrar

Detaylı

DÜZCE ÜNİVERSİTESİ MÜHENDİSLİK FAKÜLTESİ ELEKTRİK ELEKTRONİK MÜHENDİSLİĞİ BÖLÜMÜ TEMEL HABERLEŞME SİSTEMLERİ TEORİK VE UYGULAMA LABORATUVARI 1.

DÜZCE ÜNİVERSİTESİ MÜHENDİSLİK FAKÜLTESİ ELEKTRİK ELEKTRONİK MÜHENDİSLİĞİ BÖLÜMÜ TEMEL HABERLEŞME SİSTEMLERİ TEORİK VE UYGULAMA LABORATUVARI 1. DÜZCE ÜNİVERSİTESİ MÜHENDİSLİK FAKÜLTESİ ELEKTRİK ELEKTRONİK MÜHENDİSLİĞİ BÖLÜMÜ TEMEL HABERLEŞME SİSTEMLERİ TEORİK VE UYGULAMA LABORATUVARI 1. DENEY GENLİK MODÜLASYONUNUN İNCELENMESİ-1 Arş. Gör. Osman

Detaylı

ELK 318 İLETİŞİM KURAMI-II

ELK 318 İLETİŞİM KURAMI-II ELK 318 İLETİŞİM KURAMI-II Nihat KABAOĞLU Kısım 2 DERSİN İÇERİĞİ Sayısal Haberleşmeye Giriş Giriş Sayısal Haberleşmenin Temelleri Temel Ödünleşimler Örnekleme ve Darbe Modülasyonu Örnekleme İşlemi İdeal

Detaylı

DÜZCE ÜNİVERSİTESİ MÜHENDİSLİK FAKÜLTESİ ELEKTRİK ELEKTRONİK MÜHENDİSLİĞİ BÖLÜMÜ TEMEL HABERLEŞME SİSTEMLERİ TEORİK VE UYGULAMA LABORATUVARI 2.

DÜZCE ÜNİVERSİTESİ MÜHENDİSLİK FAKÜLTESİ ELEKTRİK ELEKTRONİK MÜHENDİSLİĞİ BÖLÜMÜ TEMEL HABERLEŞME SİSTEMLERİ TEORİK VE UYGULAMA LABORATUVARI 2. DÜZCE ÜNİVERSİTESİ MÜHENDİSLİK FAKÜLTESİ ELEKTRİK ELEKTRONİK MÜHENDİSLİĞİ BÖLÜMÜ TEMEL HABERLEŞME SİSTEMLERİ TEORİK VE UYGULAMA LABORATUVARI 2. DENEY GENLİK MODÜLASYONUNUN İNCELENMESİ-2 Arş. Gör. Osman

Detaylı

ANALOG MODÜLASYON BENZETİMİ

ANALOG MODÜLASYON BENZETİMİ ANALOG MODÜLASYON BENZETİMİ Modülasyon: Çeşitli kaynaklar tarafından üretilen temel bant sinyalleri kanalda doğrudan iletim için uygun değildir. Bu nedenle, gönderileek bilgi işareti, iletim kanalına uygun

Detaylı

RASGELE SÜREÇLER İ.Ü. ELEKTRİK ELEKTRONİK MÜHENDİSLİĞİ İLETİŞİM LABORATUVARI ARALIK, 2007

RASGELE SÜREÇLER İ.Ü. ELEKTRİK ELEKTRONİK MÜHENDİSLİĞİ İLETİŞİM LABORATUVARI ARALIK, 2007 RASGELE SÜREÇLER İ.Ü. ELEKTRİK ELEKTRONİK MÜHENDİSLİĞİ İLETİŞİM LABORATUVARI ARALIK, 007 1 Tekdüze Dağılım Bir X rasgele değişkenin, a ve b arasında tekdüze dağılımlı olabilmesi için olasılık yoğunluk

Detaylı

DENEY NO:1 SAYISAL MODÜLASYON VE DEMODÜLASYON

DENEY NO:1 SAYISAL MODÜLASYON VE DEMODÜLASYON DENEY NO:1 SAYISAL MODÜLASYON VE DEMODÜLASYON 1. Amaç Sayısal Modülasyonlu sistemleri tanımak ve sistemlerin nasıl çalıştığını deney ortamında görmektir. Bu Deneyde Genlik Kaydırmalı Anahtarlama (ASK),

Detaylı

KABLOSUZ İLETİŞİM

KABLOSUZ İLETİŞİM KABLOSUZ İLETİŞİM 805540 DENKLEŞTİRME, ÇEŞİTLEME VE KANAL KODLAMASI İçerik 3 Denkleştirme Çeşitleme Kanal kodlaması Giriş 4 Denkleştirme Semboller arası girişim etkilerini azaltmak için Çeşitleme Sönümleme

Detaylı

ELEKTRİK-ELEKTRONİK MÜHENDİSLİĞİ BÖLÜMÜ İLETİŞİM LABORATUARI SAYISAL FİLTRELER

ELEKTRİK-ELEKTRONİK MÜHENDİSLİĞİ BÖLÜMÜ İLETİŞİM LABORATUARI SAYISAL FİLTRELER SAYISAL FİLTRELER Deney Amacı Sayısal filtre tasarımının ve kullanılmasının öğrenilmesi. Kapsam Ayrık zamanlı bir sistem transfer fonksiyonunun elde edilmesi. Filtren frekans tepkes elde edilmesi. Direct

Detaylı

Doğrudan Dizi Geniş Spektrumlu Sistemler Tespit & Karıştırma

Doğrudan Dizi Geniş Spektrumlu Sistemler Tespit & Karıştırma Doğrudan Dizi Geniş Spektrumlu Sistemler Tespit & Karıştırma Dr. Serkan AKSOY Gebze Yüksek Teknoloji Enstitüsü Elektronik Mühendisliği Bölümü saksoy@gyte.edu.tr Geniş Spektrumlu Sistemler Geniş Spektrumlu

Detaylı

3 Genlik Modülasyonu

3 Genlik Modülasyonu 3 Genlik Modülasyonu Ses, müzik, görüntü ve video analog işaret örnekleridir. Bu işaretlerin her biri kendi bandgenişliği, dinamik aralığı ve işaretin doğası ile karakterize edilir. Örneğin, konuşma ses

Detaylı

OTOMATİK KONTROL SİSTEMLERİ İŞARET AKIŞ DİYAGRAMLARI SIGNAL FLOW GRAPH

OTOMATİK KONTROL SİSTEMLERİ İŞARET AKIŞ DİYAGRAMLARI SIGNAL FLOW GRAPH OTOMATİK KONTROL SİSTEMLERİ İŞARET AKIŞ DİYAGRAMLARI SIGNAL FLOW GRAPH İŞARET AKIŞ DİYAGRAMLARI İşaret akış diyagramları blok diyagramlara bir alternatiftir. Fonksiyonel bloklar, işaretler, toplama noktaları

Detaylı

ANALOG HABERLEŞME (GM)

ANALOG HABERLEŞME (GM) ANALOG HABERLEŞME (GM) Taşıyıcı sinyalin sinüsoidal olduğu haberleşme sistemidir. Sinüs işareti formül olarak; V. sin(2 F ) ya da i I. sin(2 F ) dır. Formülde; - Zamana bağlı değişen ani gerilim (Volt)

Detaylı

İşaret ve Sistemler. Ders 1: Giriş

İşaret ve Sistemler. Ders 1: Giriş İşaret ve Sistemler Ders 1: Giriş Ders 1 Genel Bakış Haberleşme sistemlerinde temel kavramlar İşaretin tanımı ve çeşitleri Spektral Analiz Fazörlerin frekans düzleminde gösterilmesi. Periyodik işaretlerin

Detaylı

ANALOG FİLTRELEME DENEYİ

ANALOG FİLTRELEME DENEYİ ELEKTRİK-ELEKTRONİK MÜHENDİSLİĞİ BÖLÜMÜ ANALOG FİLTRELEME DENEYİ Ölçme ve telekomünikasyon tekniğinde sık sık belirli frekans bağımlılıkları olan devreler gereklidir. Genellikle belirli bir frekans bandının

Detaylı

Şekil-1. Doğru ve Alternatif Akım dalga şekilleri

Şekil-1. Doğru ve Alternatif Akım dalga şekilleri 2. Alternatif Akım =AC (Alternating Current) Değeri ve yönü zamana göre belirli bir düzen içerisinde değişen akıma AC denir. En çok bilinen AC dalga biçimi Sinüs dalgasıdır. Bununla birlikte farklı uygulamalarda

Detaylı

EEM 202 DENEY 9 Ad&Soyad: No: RC DEVRELERİ-II DEĞİŞKEN BİR FREKANSTA RC DEVRELERİ (FİLTRELER)

EEM 202 DENEY 9 Ad&Soyad: No: RC DEVRELERİ-II DEĞİŞKEN BİR FREKANSTA RC DEVRELERİ (FİLTRELER) EEM 0 DENEY 9 Ad&oyad: R DEVRELERİ-II DEĞİŞKEN BİR FREKANTA R DEVRELERİ (FİLTRELER) 9. Amaçlar Değişken frekansta R devreleri: Kazanç ve faz karakteristikleri Alçak-Geçiren filtre Yüksek-Geçiren filtre

Detaylı

Güç Spektral Yoğunluk (PSD) Fonksiyonu

Güç Spektral Yoğunluk (PSD) Fonksiyonu 1 Güç Spektral Yoğunluk (PSD) Fonksiyonu Otokorelasyon fonksiyonunun Fourier dönüşümü j f ( ) FR ((τ) ) = R ( (τ ) ) e j π f τ S f R R e d dτ S ( f ) = F j ( f )e j π f ( ) ( ) f τ R S f e df R (τ ) =

Detaylı

8. FET İN İNCELENMESİ

8. FET İN İNCELENMESİ 8. FET İN İNCELENMESİ 8.1. TEORİK BİLGİ FET transistörler iki farklı ana grupta üretilmektedir. Bunlardan birincisi JFET (Junction Field Effect Transistör) ya da kısaca bilinen adı ile FET, ikincisi ise

Detaylı

MİKRODALGA ÖLÇÜM TEKNİKLERİ

MİKRODALGA ÖLÇÜM TEKNİKLERİ MİKRODALGA ÖLÇÜM TEKNİKLERİ Dr. Murat CELEP TÜBİTAK ULUSAL METROLOJİ ENSTİTÜSÜ 02 Nisan 2014 1 İÇERİK Ölçme Mikrodalga gürültü S-parametreleri Network Analyzer Spektrum analyzer SAR ölçümleri 2 ÖLÇME (?)

Detaylı

DENEY 2 SABİT İVME İLE DÜZGÜN DOĞRUSAL HAREKET VE DÜZLEMDE HAREKET

DENEY 2 SABİT İVME İLE DÜZGÜN DOĞRUSAL HAREKET VE DÜZLEMDE HAREKET DENEY 2 SABİT İVME İLE DÜZGÜN DOĞRUSAL HAREKET VE DÜZLEMDE HAREKET AMAÇ: Sabit ivme ile düzgün doğrusal hareket çalışılıp analiz edilecek ve eğik durumda bulunan hava masasındaki diskin hareketi incelenecek

Detaylı

Sakarya Üniversitesi Bilgisayar ve Bilişim Bilimleri Fakültesi Bilgisayar Mühendisliği Bölümü

Sakarya Üniversitesi Bilgisayar ve Bilişim Bilimleri Fakültesi Bilgisayar Mühendisliği Bölümü Sakarya Üniversitesi Bilgisayar ve Bilişim Bilimleri Fakültesi Bilgisayar Mühisliği Bölümü KABLOSUZ AĞ TEKNOLOJİLERİ VE UYGULAMALARI LABORATUAR FÖYÜ Sayısal Haberleşme Uygulamaları Deney No:1 Konu: Örnekleme

Detaylı

ANALOG ELEKTRONİK - II. Opampla gerçekleştirilen bir türev alıcı (differantiator) çalışmasını ve özellikleri incelenecektir.

ANALOG ELEKTRONİK - II. Opampla gerçekleştirilen bir türev alıcı (differantiator) çalışmasını ve özellikleri incelenecektir. BÖLÜM 6 TÜREV ALICI DEVRE KONU: Opampla gerçekleştirilen bir türev alıcı (differantiator) çalışmasını ve özellikleri incelenecektir. GEREKLİ DONANIM: Multimetre (Sayısal veya Analog) Güç Kaynağı: ±12V

Detaylı

B ol um 5 ANALOG IS ARETLER IN SPEKTRUM ANAL IZ I

B ol um 5 ANALOG IS ARETLER IN SPEKTRUM ANAL IZ I Bölüm 5 ANALOG İŞARETLERİN SPEKTRUM ANALİZİ 10 Bölüm 5. Analog İşaretlerin Spektrum Analizi 5.1 Fourier Serisi Sınırlı (t 1, t 2 ) aralığında tanımlanan f(t) fonksiyonunun sonlu Fourier serisi açılımı

Detaylı

4. Sunum: AC Kalıcı Durum Analizi. Kaynak: Temel Mühendislik Devre Analizi, J. David IRWIN-R. Mark NELMS, Nobel Akademik Yayıncılık

4. Sunum: AC Kalıcı Durum Analizi. Kaynak: Temel Mühendislik Devre Analizi, J. David IRWIN-R. Mark NELMS, Nobel Akademik Yayıncılık 4. Sunum: AC Kalıcı Durum Analizi Kaynak: Temel Mühendislik Devre Analizi, J. David IRWIN-R. Mark NELMS, Nobel Akademik Yayıncılık 1 Giriş Aşağıdaki şekillere ve ifadelere bakalım ve daha önceki derslerimizden

Detaylı

Mobil ve Kablosuz Ağlar (Mobile and Wireless Networks)

Mobil ve Kablosuz Ağlar (Mobile and Wireless Networks) Mobil ve Kablosuz Ağlar (Mobile and Wireless Networks) Hazırlayan: M. Ali Akcayol Gazi Üniversitesi Bilgisayar Mühendisliği Bölümü Ders konuları 2 1 Kodlama ve modülasyon yöntemleri İletim ortamının özelliğine

Detaylı

Güç elektroniği elektrik mühendisliğinde enerji ve elektronik bilim dalları arasında bir bilim dalıdır.

Güç elektroniği elektrik mühendisliğinde enerji ve elektronik bilim dalları arasında bir bilim dalıdır. 3. Bölüm Güç Elektroniğinde Temel Kavramlar ve Devre Türleri Doç. Dr. Ersan KABALC AEK-207 GÜNEŞ ENERJİSİ İLE ELEKTRİK ÜRETİMİ Güç Elektroniğine Giriş Güç elektroniği elektrik mühendisliğinde enerji ve

Detaylı

Bölüm 18 ASK Sistemi 18.1 AMAÇ 18.2 TEMEL KAVRAMLARIN İNCELENMESİ

Bölüm 18 ASK Sistemi 18.1 AMAÇ 18.2 TEMEL KAVRAMLARIN İNCELENMESİ Bölüm 18 ASK Sistemi 18.1 AMAÇ 1. ASK modülasyonu ve demodülasyonunun prensiplerinin incelenmesi. 2. Bir ASK modülatörünün gerçekleştirilmesi. 3. oherent ve noncoherent ASK demodülatörlerinin gerçeklenmesi.

Detaylı

Direnç(330Ω), bobin(1mh), sığa(100nf), fonksiyon generatör, multimetre, breadboard, osiloskop. Teorik Bilgi

Direnç(330Ω), bobin(1mh), sığa(100nf), fonksiyon generatör, multimetre, breadboard, osiloskop. Teorik Bilgi DENEY 8: PASİF FİLTRELER Deneyin Amaçları Pasif filtre devrelerinin çalışma mantığını anlamak. Deney Malzemeleri Direnç(330Ω), bobin(1mh), sığa(100nf), fonksiyon generatör, multimetre, breadboard, osiloskop.

Detaylı

BÖLÜM I GİRİŞ (1.1) y(t) veya y(x) T veya λ. a t veya x. Şekil 1.1 Dalga. a genlik, T peryod (veya λ dalga boyu)

BÖLÜM I GİRİŞ (1.1) y(t) veya y(x) T veya λ. a t veya x. Şekil 1.1 Dalga. a genlik, T peryod (veya λ dalga boyu) BÖLÜM I GİRİŞ 1.1 Sinyal Bir sistemin durum ve davranış bilgilerini taşıyan, bir veya daha fazla değişken ile tanımlanan bir fonksiyon olup veri işlemde dalga olarak adlandırılır. Bir dalga, genliği, dalga

Detaylı

EEM HABERLEŞME TEORİSİ NİĞDE ÜNİVERSİTESİ MÜHENDİSLİK FAKÜLTESİ ELEKTRİK-ELEKTRONİK MÜHENDİSLİĞİ BÖLÜMÜ

EEM HABERLEŞME TEORİSİ NİĞDE ÜNİVERSİTESİ MÜHENDİSLİK FAKÜLTESİ ELEKTRİK-ELEKTRONİK MÜHENDİSLİĞİ BÖLÜMÜ EEM3006 - HABERLEŞME TEORİSİ NİĞDE ÜNİVERSİTESİ MÜHENDİSLİK FAKÜLTESİ ELEKTRİK-ELEKTRONİK MÜHENDİSLİĞİ BÖLÜMÜ EEM3006 - HABERLEŞME TEORİSİ Dersin Öğretim Elemanı: Yrd. Doç. Dr. Yasin KABALCI Ders Görüşme

Detaylı

KARADENİZ TEKNİK ÜNİVERSİTESİ Mühendislik Fakültesi Elektrik-Elektronik Mühendisliği Bölümü ELK 2008 DEVRELER II LABORATUARI

KARADENİZ TEKNİK ÜNİVERSİTESİ Mühendislik Fakültesi Elektrik-Elektronik Mühendisliği Bölümü ELK 2008 DEVRELER II LABORATUARI DİRENÇ-ENDÜKTANS VE DİRENÇ KAPASİTANS FİLTRE DEVRELERİ HAZIRLIK ÇALIŞMALARI 1. Alçak geçiren filtre devrelerinin çalışmasını anlatınız. 2. Yüksek geçiren filtre devrelerinin çalışmasını anlatınız. 3. R-L

Detaylı

Bölüm 12 İşlemsel Yükselteç Uygulamaları

Bölüm 12 İşlemsel Yükselteç Uygulamaları Bölüm 12 İşlemsel Yükselteç Uygulamaları DENEY 12-1 Aktif Yüksek Geçiren Filtre DENEYİN AMACI 1. Aktif yüksek geçiren filtrenin çalışma prensibini anlamak. 2. Aktif yüksek geçiren filtrenin frekans tepkesini

Detaylı

5. Elektriksel Büyüklüklerin Ölçülebilen Değerleri

5. Elektriksel Büyüklüklerin Ölçülebilen Değerleri Elektrik devrelerinde ölçülebilen büyüklükler olan; 5. Elektriksel Büyüklüklerin Ölçülebilen Değerleri Akım Gerilim Devrede bulunan kaynakların tiplerine göre değişik şekillerde olabilir. Zamana bağlı

Detaylı

Waveguide to coax adapter. Rectangular waveguide. Waveguide bends

Waveguide to coax adapter. Rectangular waveguide. Waveguide bends Rectangular waveguide Waveguide to coax adapter Waveguide bends E-tee 1 Dalga Kılavuzları, elektromanyetik enerjiyi kılavuzlayan yapılardır. Dalga kılavuzları elektromanyetik enerjinin mümkün olan en az

Detaylı

DENEY 5. Pasif Filtreler

DENEY 5. Pasif Filtreler ULUDAĞ ÜNİVERSİTESİ MÜHENDİSLİK FAKÜLTESİ ELEKTRİKELEKTRONİK MÜHENDİSLİĞİ BÖLÜMÜ EEM24 Elektrik Devreleri Laboratuarı II 2425 Bahar DENEY 5 Pasif Filtreler Deneyi Yapanın Değerlendirme Adı Soyadı : Ön

Detaylı

Bekleme Hattı Teorisi

Bekleme Hattı Teorisi Bekleme Hattı Teorisi Sürekli Parametreli Markov Zincirleri Tanım 1. * +, durum uzayı * +olan sürekli parametreli bir süreç olsun. Aşağıdaki özellik geçerli olduğunda bu sürece sürekli parametreli Markov

Detaylı

ELK 318 İLETİŞİM KURAMI-II

ELK 318 İLETİŞİM KURAMI-II ELK 318 İLETİŞİM KURAMI-II Nihat KABAOĞLU Kısım 3 DERSİN İÇERİĞİ Sayısal Haberleşmeye Giriş Giriş Sayısal Haberleşmenin Temelleri Temel Ödünleşimler Örnekleme ve Darbe Modülasyonu Örnekleme İşlemi İdeal

Detaylı

Veri İletimi. Toto, artık Kansas da olmadığımız yönünde bir hissim var. Judy Garland (The Wizard of Oz)

Veri İletimi. Toto, artık Kansas da olmadığımız yönünde bir hissim var. Judy Garland (The Wizard of Oz) Veri İletimi Veri İletimi Toto, artık Kansas da olmadığımız yönünde bir hissim var. Judy Garland (The Wizard of Oz) 2/39 İletim Terminolojisi Veri iletimi, verici ve alıcı arasında bir iletim ortamı üzerinden

Detaylı

SİNYALLER ve SİSTEMLER

SİNYALLER ve SİSTEMLER SİNYALLER ve SİSTEMLER 1. Sinyallerin Sınıflandırılması 1.1 Sürekli Zamanlı ve Ayrık Zamanlı Sinyaller 1.2 Analog ve Sayısal Sinyaller Herhangi bir (a,b) reel sayı aralığında bir x(t) sinyali sonsuz değer

Detaylı

RF MİKROELEKTRONİK GÜRÜLTÜ

RF MİKROELEKTRONİK GÜRÜLTÜ RF MİKROELEKTRONİK GÜRÜLTÜ RASTGELE BİR SİNYAL Gürültü rastgele bir sinyal olduğu için herhangi bir zamandaki değerini tahmin etmek imkansızdır. Bu sebeple tekrarlayan sinyallerde de kullandığımız ortalama

Detaylı

= 2 6 Türevsel denkleminin 1) denge değerlerinin bulunuz. 2) Bulmuş olduğunuz dengenin istikrarlı olup olmadığını tespit ediniz.

= 2 6 Türevsel denkleminin 1) denge değerlerinin bulunuz. 2) Bulmuş olduğunuz dengenin istikrarlı olup olmadığını tespit ediniz. Siyasal Bilgiler Fakültesi İktisat Bölümü Matematiksel İktisat Ders Notu Prof. Dr. Hasan Şahin Faz Diyagramı Çizimi Açıklamarı = 2 6 Türevsel denkleminin 1) denge değerlerinin bulunuz. 2) Bulmuş olduğunuz

Detaylı

Toplam İkinci harmonik. Temel Üçüncü harmonik. Şekil 1. Temel, ikinci ve üçüncü harmoniğin toplamı

Toplam İkinci harmonik. Temel Üçüncü harmonik. Şekil 1. Temel, ikinci ve üçüncü harmoniğin toplamı FOURIER SERİLERİ Bu bölümde Fourier serilerinden bahsedeceğim. Önce harmoniklerle (katsıklıklarla) ilişkili sinüsoidin tanımından başlıyacağım ve serilerin trigonometrik açılımlarını kullanarak katsayıları

Detaylı

ASK modülasyonu ve demodülasyonu incelemek. Manchester kodlamayı ASK ya uygulamak. Gürültünün ASK üzerine etkisini incelemek.

ASK modülasyonu ve demodülasyonu incelemek. Manchester kodlamayı ASK ya uygulamak. Gürültünün ASK üzerine etkisini incelemek. 1. ASK MODÜLASYONU 1.1 Amaçlar ASK modülasyonu ve demodülasyonu inelemek. Manhester kodlamayı ASK ya uygulamak. Gürültünün ASK üzerine etkisini inelemek. 1.2 Ön Hazırlık 1. Manhester kodlama tekniğini

Detaylı

İnce Antenler. Hertz Dipolü

İnce Antenler. Hertz Dipolü İnce Antenler Çapları boylarına göre küçük olan antenlere ince antenler denir. Alanların hesabında antenlerin sonsuz ince kabul edilmesi kolaylık sağlar. Ancak anten empedansı bulunmak istendiğinde kalınlığın

Detaylı

Bölüm 13 FSK Modülatörleri.

Bölüm 13 FSK Modülatörleri. Bölüm 13 FSK Modülatörleri. 13.1 AMAÇ 1. Frekans Kaydırmalı Anahtarlama (FSK) modülasyonunun çalışma prensibinin anlaşılması.. FSK işaretlerinin ölçülmesi. 3. LM5 kullanarak bir FSK modülatörünün gerçekleştirilmesi.

Detaylı

Optik Modülatörlerin Analizi ve Uygulamaları Analysis of the Optical Modulators and Applications

Optik Modülatörlerin Analizi ve Uygulamaları Analysis of the Optical Modulators and Applications Optik Modülatörlerin Analizi ve Uygulamaları Analysis of the Optical Modulators and Applications Gizem Pekküçük, İbrahim Uzar, N. Özlem Ünverdi Elektronik ve Haberleşme Mühendisliği Bölümü Yıldız Teknik

Detaylı

Yayılı Spektrum Haberleşmesinde Kullanılan Farklı Yayma Dizilerinin Boğucu Sinyallerin Çıkarılması Üzerine Etkilerinin İncelenmesi

Yayılı Spektrum Haberleşmesinde Kullanılan Farklı Yayma Dizilerinin Boğucu Sinyallerin Çıkarılması Üzerine Etkilerinin İncelenmesi Yayılı Spektrum Haberleşmesinde Kullanılan Farklı Yayma Dizilerinin Boğucu Sinyallerin Çıkarılması Üzerine Etkilerinin İncelenmesi Ahmet Altun, Engin Öksüz, Büşra Ülgerli, Gökay Yücel, Ali Özen Nuh Naci

Detaylı

Mobil ve Kablosuz Ağlar (Mobile and Wireless Networks)

Mobil ve Kablosuz Ağlar (Mobile and Wireless Networks) Mobil ve Kablosuz Ağlar (Mobile and Wireless Networks) Hazırlayan: M. Ali Akcayol Gazi Üniversitesi Bilgisayar Mühendisliği Bölümü Ders konuları Sinyaller Sinyallerin zaman düzleminde gösterimi Sinyallerin

Detaylı

Ders Adı Kodu Yarıyılı T+U Saati Ulusal Kredisi AKTS. Sayısal Haberleşme Sistemleri EEE492 8 3+2 4 5

Ders Adı Kodu Yarıyılı T+U Saati Ulusal Kredisi AKTS. Sayısal Haberleşme Sistemleri EEE492 8 3+2 4 5 DERS BİLGİLERİ Ders Adı Kodu Yarıyılı T+U Saati Ulusal Kredisi AKTS Sayısal Haberleşme Sistemleri EEE492 8 3+2 4 5 Ön Koşul Dersleri Dersin Dili Dersin Seviyesi Dersin Türü İngilizce Lisans Seçmeli / Yüz

Detaylı

Ders Notlarının Creative Commons lisansı Feza BUZLUCA ya aittir. Lisans: http://creativecommons.org/licenses/by-nc-nd/3.0/

Ders Notlarının Creative Commons lisansı Feza BUZLUCA ya aittir. Lisans: http://creativecommons.org/licenses/by-nc-nd/3.0/ Eşzamanlı (Senkron) Ardışıl Devrelerin Tasarlanması (Design) Bir ardışıl devrenin tasarlanması, çözülecek olan problemin sözle anlatımıyla (senaryo) başlar. Bundan sonra aşağıda açıklanan aşamalardan geçilerek

Detaylı

DENEY 1 SABİT HIZLA DÜZGÜN DOĞRUSAL HAREKET

DENEY 1 SABİT HIZLA DÜZGÜN DOĞRUSAL HAREKET DENEY 1 SABİT HIZLA DÜZGÜN DOĞRUSAL HAREKET AMAÇ: Bir nesnenin sabit hızda, net gücün etkisi altında olmadan düzgün bir hat üzerinde hareket etmesini doğrulamak ve bu hızı hesaplanmaktır. GENEL BİLGİLER:

Detaylı

VERĠ HABERLEġMESĠ OSI REFERANS MODELĠ

VERĠ HABERLEġMESĠ OSI REFERANS MODELĠ VERĠ HABERLEġMESĠ OSI REFERANS MODELĠ Bölüm-2 Resul DAġ rdas@firat.edu.tr VERİ HABERLEŞMESİ TEMELLERİ Veri İletişimi İletişimin Genel Modeli OSI Referans Modeli OSI Modeli ile TCP/IP Modelinin Karşılaştırılması

Detaylı

EEM HABERLEŞME TEORİSİ NİĞDE ÜNİVERSİTESİ MÜHENDİSLİK FAKÜLTESİ ELEKTRİK-ELEKTRONİK MÜHENDİSLİĞİ BÖLÜMÜ

EEM HABERLEŞME TEORİSİ NİĞDE ÜNİVERSİTESİ MÜHENDİSLİK FAKÜLTESİ ELEKTRİK-ELEKTRONİK MÜHENDİSLİĞİ BÖLÜMÜ EEM3006 - HABERLEŞME TEORİSİ NİĞDE ÜNİVERSİTESİ MÜHENDİSLİK FAKÜLTESİ ELEKTRİK-ELEKTRONİK MÜHENDİSLİĞİ BÖLÜMÜ EEM3006 - HABERLEŞME TEORİSİ Dersin Öğretim Elemanı: Yrd. Doç. Dr. Yasin KABALCI Ders Görüşme

Detaylı

ĠġLEMSEL KUVVETLENDĠRĠCĠLERĠN DOĞRUSAL UYGULAMALARI. NOT: Devre elemanlarınızın yanma ihtimallerine karşın yedeklerini de temin ediniz.

ĠġLEMSEL KUVVETLENDĠRĠCĠLERĠN DOĞRUSAL UYGULAMALARI. NOT: Devre elemanlarınızın yanma ihtimallerine karşın yedeklerini de temin ediniz. Deneyin Amacı: Kullanılacak Materyaller: ĠġLEMSEL KUVVETLENDĠRĠCĠLERĠN DOĞRUSAL UYGULAMALARI LM 741 entegresi x 1 adet 22kΩ x 1 adet 10nF x 1 adet 5.1 V Zener Diyot(1N4655) x 1 adet 100kΩ potansiyometre

Detaylı

KISIM 1 ELEKTRONİK DEVRELER (ANALİZ TASARIM - PROBLEM)

KISIM 1 ELEKTRONİK DEVRELER (ANALİZ TASARIM - PROBLEM) İÇİNDEKİLER KISIM 1 ELEKTRONİK DEVRELER (ANALİZ TASARIM - PROBLEM) 1. BÖLÜM GERİBESLEMELİ AMPLİFİKATÖRLER... 3 1.1. Giriş...3 1.2. Geribeselemeli Devrenin Transfer Fonksiyonu...4 1.3. Gerilim - Seri Geribeslemesi...5

Detaylı

Bölüm 10 İşlemsel Yükselteç Karakteristikleri

Bölüm 10 İşlemsel Yükselteç Karakteristikleri Bölüm 10 İşlemsel Yükselteç Karakteristikleri DENEY 10-1 Fark Yükselteci DENEYİN AMACI 1. Transistörlü fark yükseltecinin çalışma prensibini anlamak. 2. Fark yükseltecinin giriş ve çıkış dalga şekillerini

Detaylı

AC-DC Dönüştürücülerin Genel Özellikleri

AC-DC Dönüştürücülerin Genel Özellikleri AC-DC Dönüştürücülerin Genel Özellikleri U : AC girişteki efektif faz gerilimi f : Frekans q : Faz sayısı I d, I y : DC çıkış veya yük akımı (ortalama değer) U d U d : DC çıkış gerilimi, U d = f() : Maksimum

Detaylı

REZONANS DEVRELERİ. Seri rezonans devreleri bir bobinle bir kondansatörün seri bağlanmasından elde edilir. RL C Rc

REZONANS DEVRELERİ. Seri rezonans devreleri bir bobinle bir kondansatörün seri bağlanmasından elde edilir. RL C Rc KTÜ, Elektrik Elektronik Müh. Böl. Temel Elektrik aboratuarı. Giriş EZONNS DEVEEİ Bir kondansatöre bir selften oluşan devrelere rezonans devresi denir. Bu devre tipinde selfin manyetik enerisi periyodik

Detaylı

ELEKTRİK DEVRELERİ-2 LABORATUVARI VIII. DENEY FÖYÜ

ELEKTRİK DEVRELERİ-2 LABORATUVARI VIII. DENEY FÖYÜ EEKTRİK DEVREERİ-2 ABORATUVARI VIII. DENEY FÖYÜ SERİ VE PARAE REZONANS DEVRE UYGUAMASI Amaç: Seri ve paralel rezonans devrelerini incelemek, devrelerin karakteristik parametrelerini ölçmek, rezonans eğrilerini

Detaylı

Analog Alçak Geçiren Filtre Karakteristikleri

Analog Alçak Geçiren Filtre Karakteristikleri Analog Alçak Geçiren Filtre Karakteristikleri Analog alçak geçiren bir filtrenin genlik yanıtı H a (jω) aşağıda gösterildiği gibi verilebilir. Ω p : Geçirme bandı kenar frekansı Ω s : Söndürme bandı kenar

Detaylı

Bölüm 14 FSK Demodülatörleri

Bölüm 14 FSK Demodülatörleri Bölüm 14 FSK Demodülatörleri 14.1 AMAÇ 1. Faz kilitlemeli çevrim(pll) kullanarak frekans kaydırmalı anahtarlama detektörünün gerçekleştirilmesi.. OP AMP kullanarak bir gerilim karşılaştırıcının nasıl tasarlanacağının

Detaylı

BÖLÜM 6 STEREO VERİCİ VE ALICILAR. 6.1 Stereo Sinyal Kodlama/Kod Çözme Teknikleri ANALOG HABERLEŞME

BÖLÜM 6 STEREO VERİCİ VE ALICILAR. 6.1 Stereo Sinyal Kodlama/Kod Çözme Teknikleri ANALOG HABERLEŞME BÖLÜM 6 STEREO VERİCİ VE ALICILAR 6.1 Stereo Sinyal Kodlama/Kod Çözme Teknikleri Stereo kelimesi, yunanca 'da "üç boyutlu" anlamına gelen bir kelimeden gelmektedir. Modern anlamda stereoda ise üç boyut

Detaylı

DENEY 7 DALGALI GERİLİM ÖLÇÜMLERİ - OSİLOSKOP

DENEY 7 DALGALI GERİLİM ÖLÇÜMLERİ - OSİLOSKOP DENEY 7 DALGALI GERİLİM ÖLÇÜMLERİ - OSİLOSKOP Amaç: Bu deneyin amacı, öğrencilerin alternatif akım ve gerilim hakkında bilgi edinmesini sağlamaktır. Deney sonunda öğrencilerin, periyot, frekans, genlik,

Detaylı

BÖLÜM 3 AM MODÜLATÖRLERİ

BÖLÜM 3 AM MODÜLATÖRLERİ BÖLÜM 3 M MODÜLTÖRLERİ 3.1 MÇ 1. Genlik Modülasyonun(M) prensibinin anlaşılması. 2. M işaretinin frekans spektrumu ve dalga şeklinin(waveform) anlaşılması. Modülasyon yüzdesinin hesaplanması. 3. MC1496

Detaylı

Taşıyıcı İşaret (carrier) Mesajın Değerlendirilmesi. Mesaj (Bilgi) Kaynağı. Alıcı. Demodulasyon. Verici. Modulasyon. Mesaj İşareti

Taşıyıcı İşaret (carrier) Mesajın Değerlendirilmesi. Mesaj (Bilgi) Kaynağı. Alıcı. Demodulasyon. Verici. Modulasyon. Mesaj İşareti MODULASYON Bir bilgi sinyalinin, yayılım ortamında iletilebilmesi için başka bir taşıyıcı sinyal üzerine aktarılması olayına modülasyon adı verilir. Genelde orijinal sinyal taşıyıcının genlik, faz veya

Detaylı

Düzenlilik = ((Vçıkış(yük yokken) - Vçıkış(yük varken)) / Vçıkış(yük varken)

Düzenlilik = ((Vçıkış(yük yokken) - Vçıkış(yük varken)) / Vçıkış(yük varken) KTÜ Mühendislik Fakültesi Bilgisayar Mühendisliği Bölümü Sayısal Elektronik Laboratuarı DOĞRULTUCULAR Günümüzde bilgisayarlar başta olmak üzere bir çok elektronik cihazı doğru akımla çalıştığı bilinen

Detaylı

BÖLÜM 4 AM DEMODÜLATÖRLERİ

BÖLÜM 4 AM DEMODÜLATÖRLERİ BÖLÜM 4 AM DEMODÜLATÖRLERİ 4.1 AMAÇ 1. Genlik demodülasyonunun prensibini anlama.. Diyot ile bir genlik modülatörü gerçekleştirme. 3. Çarpım detektörü ile bir genlik demodülatörü gerçekleştirme. 4. TEMEL

Detaylı

OTOMATİK KONTROL SİSTEMLERİ İŞARET AKIŞ DİYAGRAMLARI SIGNAL FLOW GRAPH

OTOMATİK KONTROL SİSTEMLERİ İŞARET AKIŞ DİYAGRAMLARI SIGNAL FLOW GRAPH OTOMATİK KONTROL SİSTEMLERİ İŞARET AKIŞ DİYAGRAMLARI SIGNAL FLOW GRAPH İŞARET AKIŞ DİYAGRAMLARI İşaret akış diyagramları blok diyagramlara bir alternatiftir. Fonksiyonel bloklar, işaretler, toplama noktaları

Detaylı

Ayrık Fourier Dönüşümü

Ayrık Fourier Dönüşümü Ayrık Fourier Dönüşümü Tanım: 0 n N 1 aralığında tanımlı N uzunluklu bir dizi x[n] nin AYRIK FOURIER DÖNÜŞÜMÜ (DFT), ayrık zaman Fourier dönüşümü (DTFT) X(e jω ) nın0 ω < 2π aralığında ω k = 2πk/N, k =

Detaylı

DÜZCE ÜNİVERSİTESİ MÜHENDİSLİK FAKÜLTESİ ELEKTRİK ELEKTRONİK MÜHENDİSLİĞİ BÖLÜMÜ TEMEL HABERLEŞME SİSTEMLERİ TEORİK VE UYGULAMA LABORATUVARI 3.

DÜZCE ÜNİVERSİTESİ MÜHENDİSLİK FAKÜLTESİ ELEKTRİK ELEKTRONİK MÜHENDİSLİĞİ BÖLÜMÜ TEMEL HABERLEŞME SİSTEMLERİ TEORİK VE UYGULAMA LABORATUVARI 3. DÜZCE ÜNİVERSİTESİ MÜHENDİSLİK FAKÜLTESİ ELEKTRİK ELEKTRONİK MÜHENDİSLİĞİ BÖLÜMÜ TEMEL HABERLEŞME SİSTEMLERİ TEORİK VE UYGULAMA LABORATUVARI 3. DENEY AÇI MODÜLASYONUNUN İNCELENMESİ-1 Arş. Gör. Osman DİKMEN

Detaylı

Işıma Şiddeti (Radiation Intensity)

Işıma Şiddeti (Radiation Intensity) Işıma Şiddeti (Radiation Intensity) Bir antenin birim katı açıdan yaydığı güçtür U=Işıma şiddeti [W/sr] P or =Işıma yoğunluğu [ W/m 2 ] Örnek-4 Bir antenin güç yoğunluğu Olarak verildiğine göre, ışıyan

Detaylı