SAYISAL İŞARET İŞLEME LABORATUARI LAB 5: SONSUZ DÜRTÜ YANITLI (IIR) FİLTRELER

Ebat: px
Şu sayfadan göstermeyi başlat:

Download "SAYISAL İŞARET İŞLEME LABORATUARI LAB 5: SONSUZ DÜRTÜ YANITLI (IIR) FİLTRELER"

Transkript

1 SAYISAL İŞARET İŞLEME LABORATUARI LAB 5: SONSUZ DÜRTÜ YANITLI (IIR) FİLTRELER Bu bölümde aşağıdaki başlıklar ele alınacaktır. Sonsuz dürtü yanıtlı filtre yapıları: Direkt Şekil-1, Direkt Şekil-II, Kaskad ve Parelel. Filtre tasarımı için çift doğrusal dönüşüm. Fark eşitlikleri kullanarak sinüzoidal dalga şekli üretimi. Filtre tasarımı ve faydalı paketler. TMS320C6X and C kodları kullanarak oluşturulan programlama örnekleri. Bölüm 4 de tartışılan FIR filtrelerin analog karşılıkları yoktur. Bu kısımda tartışacağımız IIR filtreler analog filtreler ile de gerçekleştirilebilirler. Tasarım, çift doğrusal dönüşüm tekniği (BLT) kullanarak analog filtreyi sayısal eşdeğerine dönüştürerek gerçekleştirilir. BLT yöntemi aslında, analog bir filtrenin s-domenindeki transfer fonksiyonunu z-domeninde ayrık-zaman eşdeğer transfer fonksiyonuna dönüştüren bir tekniktir. 5.1.Giriş şeklinde verilen bir giriş-çıkış eşitliğini ele alalım. Bu eşitlik, eşitliği ile eşdeğerdir. Bu yinelemeli eşitlik IIR bir filtreyi ifade etmektedir. Çıkış, giriş kadar çıkışın önceki değerlerine (geri besleme ile) de bağlıdır. Eşitlik (5.2) den görüldüğü gibi, n anındaki çıkış y(n), sadece girişin o andaki değeri x(n) ve geçmiş değerleri x(n-1),,x(n-m) e değil çıkışın önceki değerleri y(n-1),,y(n-n) e de bağlıdır. Tüm başlangıç koşulları sıfır kabul edilirse Eşitlik (5.2) nin z-dönüşümü ile verilir. N=M kabul edilirse, transfer fonksiyonu H(z), şeklinde elde edilir. Burada N(z) ve D(z) sırasıyla pay ve payda polinomlarını göstermektedir. transfer fonksiyonunu z n ile çarpıp bölersek, Bu transfer fonksiyonunun N adet kutbu ve N adet sıfırı vardır. Eşitlik (5.5) deki tüm a katsayıları sıfır olursa transfer fonksiyonu N kutbu z-düzleminde orijinde olan FIR bir filtrenin transfer fonksiyonuna indirgenir ve her zaman kararlıdır. IIR bir filtrenin kararlı olabilmesi için her bir kutbunun genliği 1 den küçük olmalıdır. Yani,

2 1. ise, olur ve sistem karalıdır. 2. ise olur ve sistem karasızdır. 3. ise sistem kısmen karalıdır ve osilasyon yapar. Ayrıca, birim dairedeki katlı kutuplar da sistemin karasız olmasına neden olur. Tüm a katsayılarının sıfır olmasının sistemin yinelemesiz ve karalı bir FIR filtreye dönüşmesine neden olduğu unutulmamalıdır IIR Filtre Yapıları IIR bir filtreyi göstermek için kullanılan farklı yapılar vardır. Bu yapılar aşağıda tartışılmıştır Direkt Şekil-I Yapısı Şekil 5.1 de gösterilen direkt şekil-i yapısı ile Eşitlik (5.2) ile verilen filtre gerçekleştirilebilir. N. dereceden bir filtre için bu yapıda, ile gösterilen 2N adet gecikme elemanı vardır. Örneğin, ikinci dereceden bir filtre için dört gecikme elemanı kullanılır Direkt Şekil-II Yapısı Şekil (5.2) de verilen direkt şekil-ii yapısı en yaygın olarak kullanılan yapılardan biridir. Direkt şekil-i e göre yarı yarıya daha az gecikme elemanı gerektirir. Örneğin, ikinci derecen bir filtre iki adet gecikme elemanı gerektirir. Şekil 5.2 de verilen blok diyagramdan, olduğu görülmektedir. Eşitlik (5. 6) ve (5.7) nin z-dönüşümü alınarak elde edilir. O halde, olacaktır. Transfer fonksiyonu, Görüldüğü gibi, Eşitlik (5.11) Eşitlik (5.4) ün aynısıdır. Direkt şekil-ii yapı, fark eşitlikleri olan Eşitlik (5.6) ve (5.7), Eşitlik (5.2) de yerine konularak ifade edilebilir.

3 Şekil 5.1. Direkt Şekil-I IIR Filtre Yapısı. Şekil 5.2. Direkt Şekil-II IIR Filtre Yapısı. (5.6) ve (5.7) eşitlikleri IIR bir filtreyi programlamak için kullanılır. Başlangıç olarak, w(n-1), w(n-2), sıfıra eşitlenir. n anında yeni bir x(n) örneği elde edilir ve (5.6) eşitliği w(n) e göre çözülür. Daha sonra, Eşitlik (5.7) kullanılarak y(n) hesaplanır Direkt Şekil-II Evrik Yapı Şekil 5.3 de gösterilen direkt şekil-ii evrik yapı, direkt şekil-ii nin düzenlenmiş bir versiyonudur ve aynı sayıda gecikme elemanı gerektirir. Blok diyagramdan, filtre çıkışı aşağıdaki şekilde hesaplanabilir

4 Şekil 5.3. Direkt Şekil-II Evrik IIR Filtre Yapısı. Daha sonra, gecikme hattında bulunanlar eşitlikleri ile güncellenirler ve elde edilene kadar bu şekilde devam edilir. w 0 (n-1) i bulmak için Eşitlik (5.13) kullanılırsa, Benzer şekilde, w 1 (n-2) yi bulmak için Eşitlik (5.14) kullanılırsa Eşitlik (5.15) e kullanılana kadar bu yöntemi devam ettirerek, Eşitlik (5.12) nin Eşitlik (5.2) ye eşdeğer olduğu gösterilebilir. O halde, Şekil (5.3) deki blok diyagram da Şekil 5.1 ve Şekil 5.2 dekine eşdeğerdir. Evrikleştirilmiş yapı ilk olarak sıfırları sonra kutupları gerçekleştirir oysa direkt şekil-ii yapısı ilk olarak kutupları gerçekleştirir Kaskad Yapı Eşitlik (5.5) ile verilen transfer fonksiyonu birinci ve ikinci dereceden transfer fonksiyonları cinsinden aşağıdaki şekilde yazılabilir

5 Şekil 5.4. Kaskad IIR Filtre Yapısı. Şekil 5.5. Kaskad bağlı direkt şekil-ii iki parçadan oluşmuş dördüncü dereceden IIR bir filtre. Kaskad (ya da seri) yapı Şekil 5.4 de gösterilmiştir. Sistemin tamamının transfer fonksiyonu kaskad transfer fonksiyonları ile gösterilebilir. Her bir parça için, direkt şekil-ii yapısı veya evriği kullanılabilir. Şekil 5.5 de dördüncü dereceden IIR bir filtre kaskad bağlı direkt şekil-ii ile gerçekleştirilmiş ikinci dereceden iki filtre olarak gösterilmektedir. Transfer fonksiyonu H(z), kaskad bağlı ikinci dereceden transfer fonksiyonları cinsinden yazılabilir. Eşitlik (5.17) deki C sabiti katsayıların içerisine dahil edilmiştir ve farklı her bir parça i ile gösterilmiştir. Örneğin dördüncü dereceden bir transfer fonksiyonu için N=4 dür ve Eşitlik (5.8) şeklinde yeniden düzenlenebilir. Bu eşitlik Şekil (5.5) ile de doğrulanmıştır. Matematiksel açıdan pay ve payda katsayılarının doğru sıralanması çıkışı etkilemez. Ancak, pratik açıdan her bir parçanın doğru sırada olması kuantalama gürültüsünü azaltır. Birinci parçanın çıkışının ikinci parçanın girişi olduğuna dikkat ediniz. Bu kısımda verilecek bir programlama örneği IIR bir filtrenin ikinci dereceden direkt şekil-ii yapısı kullanılarak seri şekilde nasıl gerçekleştirildiğini göstermektedir Paralel Şekil Yapı Eşitlik (5.5) de verilen transfer fonksiyonu kısmi kesirlerine ayırma (PFE) yöntemi kullanılarak

6 Şekil 5.6. Paralel şekil IIR filtre yapısı. şeklinde gösterilebilir. Paralel yapı Şekil 5.6 da gösterilmiştir. Transfer fonksiyonlarından her biri birinci ya da ikinci dereceden fonksiyonlar olabilir. Paralel şekil etkin bir şekilde ikinci dereceden direkt şekil-ii yapıları ile gösterilebilir. H(z) aşağıdaki şeklide ifade edilebilir Örneğin, dördüncü dereceden bir transfer fonksiyonu için Eşitlik (5.21) deki H(z) şeklinde yeniden düzenlenebilir. Dördüncü dereceden bu paralel yapı Şekil 5.7 de gösterildiği gibi ikinci dereceden iki direkt şekil-ii parça ile gösterilebilir. Şekilden, y(n) çıkışı her bir parçanın çıkışına bağlı olarak ifade edilebilir IIR filtrenin katsayılarına ilişkin kuantalama hatası, filtrenin kutuplarının ve sıfırlarının karmaşık düzlemdeki yerinin kayma miktarına bağlıdır. Yani belirli bir kutbun karmaşık düzlemdeki yerinin değişmesi diğer kutupların tümünün konumuna bağlıdır. Kutuplar arasındaki bu bağımlılığı en küçük yapmak için, N. dereceden IIR bir filtre ikinci dereceden filtrelerin seri bağlanması ile gerçekleştirilir Çift Doğrusal Dönüşüm (BLT) BLT analog bir filtreyi sayısal bir filtreye dönüştürmek için kullanılan en yaygın tekniktir. Bu dönüşüm

7 Şekil 5.7. Paralel bağlı ikinci dereceden iki direkt şekil-ii parçadan oluşan dördüncü dereceden IIR filtre. eşitliğini kullanarak analog s-düzleminden z-düzlemine bire bir geçiş sağlar. T saniyedeki örnekleme sayısı olmak üzere, K sabiti genellikle 2/T olarak seçilir. Sonraki kısımlarda K nın diğer değerleri de verilecektir. Bu dönüşüm sayesinde i) s-düzleminin sol tarafı z-düzleminde birim dairenin içine ii) iii) s-düzleminin sağ tarafı z-düzleminde birim dairenin dışına s-düzleminde sanal jw ekseni z-düzleminde birim dairenin üzerine haritalanır. w ve (5.24), A w D sırasıyla analog ve sayısal frekansları göstersin. s=jw A ve z= olan-k üzereeşitlik olacaktır. Karmaşık üstel fonksiyonlar cinsinden sinüs ve kosinüs için Euler bağlantılarını kullanarak Eşitlik (5.25) deki w A elde edilir. Bu eşitlik analog frekansla sayısal frekans arasındaki ilişkiyi verir. Bu ilişki pozitif w A değerleri için Şekil 5.8 de çizilmiştir.

8 Şekil 5.8. Analog ve sayısal frekanslar arasındaki ilişki BLT Tasarım Yöntemi H(s) transfer fonksiyonuna sahip analog bir filtreyi H(z) transfer fonksiyonlu sayısal bir filtreye BLT yöntemi ile dönüştürmek şu şekilde ifade edilebilir: H(s) analog filtre tasarımından iyi bilinen filtrelerden birinin (Butterworth, Chebyshev, Bessel vb.) transfer fonksiyonu olarak seçilebilir. Genellikle K sabiti 2/T seçilir. Ancak olarak da seçilebilir. Burada w A = w = w dir. c D

SAYISAL İŞARET İŞLEME LABORATUARI LAB 3: SONLU DÜRTÜ YANITLI (FIR) FILTRELER

SAYISAL İŞARET İŞLEME LABORATUARI LAB 3: SONLU DÜRTÜ YANITLI (FIR) FILTRELER SAYISAL İŞARET İŞLEME LABORATUARI LAB 3: SONLU DÜRTÜ YANITLI (FIR) FILTRELER Bu bölümde aşağıdaki başlıklar ele alınacaktır. z- dönüşümü FIR filtrelerin tasarımı ve gerçekleştirilmesi C ve TMS320C6x kodları

Detaylı

18.034 İleri Diferansiyel Denklemler

18.034 İleri Diferansiyel Denklemler MIT AçıkDersSistemi http://ocw.mit.edu 18.034 İleri Diferansiyel Denklemler 2009 Bahar Bu bilgilere atıfta bulunmak veya kullanım koşulları hakkında bilgi için http://ocw.mit.edu/terms web sitesini ziyaret

Detaylı

Ayrık zamanlı sinyaller için de ayrık zamanlı Fourier dönüşümleri kullanılmatadır.

Ayrık zamanlı sinyaller için de ayrık zamanlı Fourier dönüşümleri kullanılmatadır. Bölüm 6 Z-DÖNÜŞÜM Sürekli zamanlı sinyallerin zaman alanından frekans alanına geçişi Fourier ve Laplace dönüşümleri ile mümkün olmaktadır. Laplace, Fourier dönüşümünün daha genel bir şeklidir. Ayrık zamanlı

Detaylı

TIBBİ ENSTRUMANTASYON TASARIM VE UYGULAMALARI SAYISAL FİLTRELER

TIBBİ ENSTRUMANTASYON TASARIM VE UYGULAMALARI SAYISAL FİLTRELER TIBBİ ENSTRUMANTASYON TASARIM VE UYGULAMALARI SAYISAL FİLTRELER SUNU PLANI Analog sayısal çevirici FIR Filtreler IIR Filtreler Adaptif Filtreler Pan-Tompkins Algoritması Araş. Gör. Berat Doğan 08/04/2015

Detaylı

SİNYALLER VE SİSTEMLERİN MATLAB YARDIMIYLA BENZETİMİ

SİNYALLER VE SİSTEMLERİN MATLAB YARDIMIYLA BENZETİMİ SİNYALLER VE SİSTEMLERİN MATLAB YARDIMIYLA BENZETİMİ 2.1. Sinyal Üretimi Bu laboratuarda analog sinyaller ve sistemlerin sayısal bir ortamda benzetimini yapacağımız için örneklenmiş sinyaller üzerinde

Detaylı

Analog Alçak Geçiren Filtre Karakteristikleri

Analog Alçak Geçiren Filtre Karakteristikleri Analog Alçak Geçiren Filtre Karakteristikleri Analog alçak geçiren bir filtrenin genlik yanıtı H a (jω) aşağıda gösterildiği gibi verilebilir. Ω p : Geçirme bandı kenar frekansı Ω s : Söndürme bandı kenar

Detaylı

Deney 5 : Ayrık Filtre Tasarımı. Prof. Dr. Aydın Akan Bahattin Karakaya Umut Gündoğdu Yeşim Hekim Tanç

Deney 5 : Ayrık Filtre Tasarımı. Prof. Dr. Aydın Akan Bahattin Karakaya Umut Gündoğdu Yeşim Hekim Tanç İ. Ü. Elektrik&Elektronik Müh. Böl. İŞARET İŞLEME ve UYGULAMALARI Deney 5 : Ayrık Filtre Tasarımı Prof. Dr. Aydın Akan Bahattin Karakaya Umut Gündoğdu Yeşim Hekim Tanç Deney 5 : Ayrık Filtre Tasarımı 1.

Detaylı

Ayrık Fourier Dönüşümü

Ayrık Fourier Dönüşümü Ayrık Fourier Dönüşümü Tanım: 0 n N 1 aralığında tanımlı N uzunluklu bir dizi x[n] nin AYRIK FOURIER DÖNÜŞÜMÜ (DFT), ayrık zaman Fourier dönüşümü (DTFT) X(e jω ) nın0 ω < 2π aralığında ω k = 2πk/N, k =

Detaylı

DÜZCE ÜNİVERSİTESİ TEKNOLOJİ FAKÜLTESİ ELEKTRİK-ELEKTRONİK MÜHENDİSLİĞİ BÖLÜMÜ EET305 OTOMATİK KONTROL I Dr. Uğur HASIRCI

DÜZCE ÜNİVERSİTESİ TEKNOLOJİ FAKÜLTESİ ELEKTRİK-ELEKTRONİK MÜHENDİSLİĞİ BÖLÜMÜ EET305 OTOMATİK KONTROL I Dr. Uğur HASIRCI KARARLILIK Kontrol sistemlerinin tasarımında üç temel kriter göz önünde bulundurulur: Geçici Durum Cevabı Kararlılık Kalıcı Durum Hatası Bu üç temel spesifikasyon arasında en önemlisi kararlılıktır. Eğer

Detaylı

25. KARARLILIK KAPALI ÇEVRİM SİSTEMLERİNİN KARARLILIK İNCELENMESİ

25. KARARLILIK KAPALI ÇEVRİM SİSTEMLERİNİN KARARLILIK İNCELENMESİ 25. KARARLILIK KAPALI ÇEVRİM SİSTEMLERİNİN KARARLILIK İNCELENMESİ a-) Routh Hurwitz Kararlılık Ölçütü b-) Kök Yer Eğrileri Yöntemi c-) Nyquist Yöntemi d-) Bode Yöntemi 1 2 3 4 a) Routh Hurwitz Kararlılık

Detaylı

Ayrık-Zaman Sistemler

Ayrık-Zaman Sistemler Ayrık-Zaman Sistemler Bir ayrık-zaman sistemi, bir giriş dizisi x[n] yi işleyerek daha iyi özelliklere sahip bir çıkış dizisi y[n] oluşturur. Çoğu uygulamalarda ayrık-zaman sistemi bir giriş ve bir çıkıştan

Detaylı

10. Sunum: Laplace Dönüşümünün Devre Analizine Uygulanması

10. Sunum: Laplace Dönüşümünün Devre Analizine Uygulanması 10. Sunum: Laplace Dönüşümünün Devre Analizine Uygulanması Kaynak: Temel Mühendislik Devre Analizi, J. David IRWIN-R. Mark NELMS, Nobel Akademik Yayıncılık 1 Laplace Devre Çözümleri Aşağıdaki devrenin

Detaylı

RF MİKROELEKTRONİK GÜRÜLTÜ

RF MİKROELEKTRONİK GÜRÜLTÜ RF MİKROELEKTRONİK GÜRÜLTÜ RASTGELE BİR SİNYAL Gürültü rastgele bir sinyal olduğu için herhangi bir zamandaki değerini tahmin etmek imkansızdır. Bu sebeple tekrarlayan sinyallerde de kullandığımız ortalama

Detaylı

BÖLÜM-9 SİSTEM HASSASİYETİ

BÖLÜM-9 SİSTEM HASSASİYETİ 65 BÖLÜM-9 SİSTEM HASSASİYETİ Parametre Değişimlerinin Hassasiyeti Belirsiz sistem elemanlarının davranışı o Parametre değerlerinin hatalı bilgileri o Çevrenin değişimi o Yaşlanma vb nedenlerle bozulma

Detaylı

İŞARET ve SİSTEMLER (SIGNALS and SYSTEMS) Dr. Akif AKGÜL oda no: 303 (T4 / EEM)

İŞARET ve SİSTEMLER (SIGNALS and SYSTEMS) Dr. Akif AKGÜL oda no: 303 (T4 / EEM) İşaret ve Sistemler İŞARET ve SİSTEMLER (SIGNALS and SYSTEMS) Dr. Akif AKGÜL aakgul@sakarya.edu.tr oda no: 303 (T4 / EEM) Kaynaklar: 1. Signals and Systems, Oppenheim. (Türkçe versiyonu: Akademi Yayıncılık)

Detaylı

Otomatik Kontrol. Kapalı Çevrim Kontrol Sistemin Genel Gereklilikleri

Otomatik Kontrol. Kapalı Çevrim Kontrol Sistemin Genel Gereklilikleri Otomatik Kontrol Kapalı Çevrim Kontrol Sistemin Genel Gereklilikleri H a z ı r l aya n : D r. N u r d a n B i l g i n Kapalı Çevrim Kontrol Kapalı Çevrim Kontrol Sistemin Genel Gereklilikleri Bir önceki

Detaylı

DENEY 4: Sayısal Filtreler

DENEY 4: Sayısal Filtreler DENEY 4: Sayısal Filtreler I. AMAÇ Bu deneyin amacı sonlu dürtü yanıtlı (FIR) ve sonsuz dürtü yanıtlı (IIR) sayısal filtrelerin tanıtılması ve incelenmesidir. II. ÖN HAZIRLIK 1) FIR ve IIR filtreleri kısaca

Detaylı

ALTERNATİF AKIMIN TEMEL ESASLARI

ALTERNATİF AKIMIN TEMEL ESASLARI ELEKTRİK-ELEKTRONİK MÜHENDİSLİĞİ BÖLÜMÜ ELEKTRİK-ELEKTRONİK MÜHENDİSLİĞİNE GİRİŞ DERSİ ALTERNATİF AKIMIN TEMEL ESASLARI Dr. Öğr. Üyesi Ahmet ÇİFCİ Elektrik enerjisi, alternatif akım ve doğru akım olarak

Detaylı

Sayısal Filtre Tasarımı

Sayısal Filtre Tasarımı Sayısal Filtre Tasarımı Sayısal Filtreler Filtreler ayrık zamanlı sistemlerdir. Filtreler işaretin belirli frekanslarını güçlendirmek veya zayıflatmak, belirli frekanslarını tamamen bastırmak veya belirli

Detaylı

ELEKTRİK-ELEKTRONİK MÜHENDİSLİĞİ BÖLÜMÜ İLETİŞİM LABORATUARI SAYISAL FİLTRELER

ELEKTRİK-ELEKTRONİK MÜHENDİSLİĞİ BÖLÜMÜ İLETİŞİM LABORATUARI SAYISAL FİLTRELER SAYISAL FİLTRELER Deney Amacı Sayısal filtre tasarımının ve kullanılmasının öğrenilmesi. Kapsam Ayrık zamanlı bir sistem transfer fonksiyonunun elde edilmesi. Filtren frekans tepkes elde edilmesi. Direct

Detaylı

Sayısal Kontrol - HAVA HARP OKULU

Sayısal Kontrol - HAVA HARP OKULU Sayısal Kontrol - HAVA HARP OKULU İbrahim Beklan Küçükdemiral Yıldız Teknik Üniversitesi 2015 1 / 50 Bu bölümde aşağıdaki konular incelenecektir: Sürekli ve Ayrık Kontrol Problemlerinin Tanımı Ayrık Zamanlı

Detaylı

Bölüm 9 KÖK-YER EĞRİLERİ YÖNTEMİ

Bölüm 9 KÖK-YER EĞRİLERİ YÖNTEMİ Bölüm 9 KÖK-YER EĞRİLERİ YÖNTEMİ Kapalı-döngü denetim sisteminin geçici-durum davranışının temel özellikleri kapalı-döngü kutuplarından belirlenir. Dolayısıyla problemlerin çözümlenmesinde, kapalı-döngü

Detaylı

Sistem Dinamiği ve Kontrolü Bütünleme 26 Ocak 2017 Süre: 1.45 Saat. Adı ve Soyadı : İmzası : Öğrenci Numarası :

Sistem Dinamiği ve Kontrolü Bütünleme 26 Ocak 2017 Süre: 1.45 Saat. Adı ve Soyadı : İmzası : Öğrenci Numarası : Adı ve Soyadı : İmzası : Öğrenci Numarası : SORU 1 Fiziki bir sistem yandaki işaret akış grafiği ile temsil edilmektedir.. a. Bu sistemin transfer fonksiyonunu Mason genel kazanç bağıntısını kullanarak

Detaylı

MAK 210 SAYISAL ANALİZ

MAK 210 SAYISAL ANALİZ MAK 210 SAYISAL ANALİZ BÖLÜM 6- İSTATİSTİK VE REGRESYON ANALİZİ Doç. Dr. Ali Rıza YILDIZ 1 İSTATİSTİK VE REGRESYON ANALİZİ Bütün noktalardan geçen bir denklem bulmak yerine noktaları temsil eden, yani

Detaylı

4. Sunum: AC Kalıcı Durum Analizi. Kaynak: Temel Mühendislik Devre Analizi, J. David IRWIN-R. Mark NELMS, Nobel Akademik Yayıncılık

4. Sunum: AC Kalıcı Durum Analizi. Kaynak: Temel Mühendislik Devre Analizi, J. David IRWIN-R. Mark NELMS, Nobel Akademik Yayıncılık 4. Sunum: AC Kalıcı Durum Analizi Kaynak: Temel Mühendislik Devre Analizi, J. David IRWIN-R. Mark NELMS, Nobel Akademik Yayıncılık 1 Giriş Aşağıdaki şekillere ve ifadelere bakalım ve daha önceki derslerimizden

Detaylı

Sürekli-zaman İşaretlerin Ayrık İşlenmesi

Sürekli-zaman İşaretlerin Ayrık İşlenmesi Sürekli-zaman İşaretlerin Ayrık İşlenmesi Bir sürekli-zaman işaretin sayısal işlenmesi üç adımdan oluşmaktadır: 1. Sürekli-zaman işaretinin bir ayrık-zaman işaretine dönüştürülmesi 2. Ayrık-zaman işaretin

Detaylı

Otomatik Kontrol (Doğrusal sistemlerde Kararlılık Kriterleri) - Ders sorumlusu: Doç.Dr.HilmiKuşçu

Otomatik Kontrol (Doğrusal sistemlerde Kararlılık Kriterleri) - Ders sorumlusu: Doç.Dr.HilmiKuşçu 1 2 1 3 4 2 5 6 3 7 8 4 9 10 5 11 12 6 K 13 Örnek Kararlılık Tablosunu hazırlayınız 14 7 15 Kapalı çevrim kutupları ve kararlıkları a. Kararlı sistem; b. Kararsız sistem 2000, John Wiley & Sons, Inc. Nise/Cotrol

Detaylı

DENEY 3: DTMF İŞARETLERİN ÜRETİLMESİ VE ALGILANMASI

DENEY 3: DTMF İŞARETLERİN ÜRETİLMESİ VE ALGILANMASI DENEY 3: DTMF İŞARETLERİN ÜRETİLMESİ VE ALGILANMASI AMAÇ: DTMF işaretlerin yapısının, üretim ve algılanmasının incelenmesi. MALZEMELER TP5088 ya da KS58015 M8870-01 ya da M8870-02 (diğer eşdeğer entegreler

Detaylı

SİNYALLER ve SİSTEMLER

SİNYALLER ve SİSTEMLER SİNYALLER ve SİSTEMLER 1. Sinyallerin Sınıflandırılması 1.1 Sürekli Zamanlı ve Ayrık Zamanlı Sinyaller 1.2 Analog ve Sayısal Sinyaller Herhangi bir (a,b) reel sayı aralığında bir x(t) sinyali sonsuz değer

Detaylı

Şekil-1. Doğru ve Alternatif Akım dalga şekilleri

Şekil-1. Doğru ve Alternatif Akım dalga şekilleri 2. Alternatif Akım =AC (Alternating Current) Değeri ve yönü zamana göre belirli bir düzen içerisinde değişen akıma AC denir. En çok bilinen AC dalga biçimi Sinüs dalgasıdır. Bununla birlikte farklı uygulamalarda

Detaylı

Mekatronik Mühendisliği Lab1 (Elektrik-Elektronik) Diyotlu Doğrultucu Uygulamaları

Mekatronik Mühendisliği Lab1 (Elektrik-Elektronik) Diyotlu Doğrultucu Uygulamaları YILDIZ TEKNİK ÜNİVERSİTESİ MAKİNA FAKÜLTESİ MEKATRONİK MÜHENDİSLİĞİ BÖLÜMÜ ELEKTRİKELEKTRONİK LABORATUARI (LAB I) DENEY 6 Deney Adı: Diyotlu Doğrultucu Uygulamaları Öğretim Üyesi: Yard. Doç. Dr. Erhan

Detaylı

Ders İçerik Bilgisi. Dr. Hakan TERZİOĞLU Dr. Hakan TERZİOĞLU 1

Ders İçerik Bilgisi. Dr. Hakan TERZİOĞLU Dr. Hakan TERZİOĞLU 1 Dr. Hakan TERZİOĞLU Ders İçerik Bilgisi PID Parametrelerinin Elde Edilmesi A. Salınım (Titreşim) Yöntemi B. Cevap Eğrisi Yöntemi Karşılaştırıcı ve Denetleyicilerin Opamplarla Yapılması 1. Karşılaştırıcı

Detaylı

KARADENİZ TEKNİK ÜNİVERSİTESİ Mühendislik Fakültesi Elektrik-Elektronik Mühendisliği Bölümü ELK222 TEMEL ELEKTRİK LABORATUARI-II

KARADENİZ TEKNİK ÜNİVERSİTESİ Mühendislik Fakültesi Elektrik-Elektronik Mühendisliği Bölümü ELK222 TEMEL ELEKTRİK LABORATUARI-II ALTERNATİF AKIM KÖPRÜLERİ 1. Hazırlık Soruları Deneye gelmeden önce aşağıdaki soruları cevaplayınız ve deney öncesinde rapor halinde sununuz. Omik, kapasitif ve endüktif yük ne demektir? Açıklayınız. Omik

Detaylı

Transfer Fonksiyonu. Dürtü yanıtı h[n] olan sisteme x[n]=z n girişi uygulandığında

Transfer Fonksiyonu. Dürtü yanıtı h[n] olan sisteme x[n]=z n girişi uygulandığında Z DÖNÜŞÜMÜ Transfer Fonksiyonu Dürtü yanıtı h[n] olan sisteme x[n]=z n girişi uygulandığında Burada toplamı n ye bağımlı olmayıp sadece sistemin dürtü yanıtı ve z değerine bağlı bir katsayıdır. şeklinde

Detaylı

EEM 202 DENEY 9 Ad&Soyad: No: RC DEVRELERİ-II DEĞİŞKEN BİR FREKANSTA RC DEVRELERİ (FİLTRELER)

EEM 202 DENEY 9 Ad&Soyad: No: RC DEVRELERİ-II DEĞİŞKEN BİR FREKANSTA RC DEVRELERİ (FİLTRELER) EEM 0 DENEY 9 Ad&oyad: R DEVRELERİ-II DEĞİŞKEN BİR FREKANTA R DEVRELERİ (FİLTRELER) 9. Amaçlar Değişken frekansta R devreleri: Kazanç ve faz karakteristikleri Alçak-Geçiren filtre Yüksek-Geçiren filtre

Detaylı

KATI CİSİMLERİN BAĞIL İVME ANALİZİ:

KATI CİSİMLERİN BAĞIL İVME ANALİZİ: KATI CİSİMLERİN BAĞIL İVME ANALİZİ: Genel düzlemsel hareket yapmakta olan katı cisim üzerinde bulunan iki noktanın ivmeleri aralarındaki ilişki, bağıl hız v A = v B + v B A ifadesinin zamana göre türevi

Detaylı

ELE401/ /17 GÜZ ÖDEV 2 - ÇÖZÜMLER

ELE401/ /17 GÜZ ÖDEV 2 - ÇÖZÜMLER ELE40/50 06/7 GÜZ ÖDEV - ÇÖZÜMLER -) Lyapunov kararlılığı için = 0, V( ) = 0 0, V( ) > 0 biçiminde bir Lyapunov fonksiyonu 0, V( ) 0 eşitsizliğini sağlanmalıdır. Asimptotik kararlılık için 0, V( ) < 0

Detaylı

Çukurova Üniversitesi Biyomedikal Mühendisliği

Çukurova Üniversitesi Biyomedikal Mühendisliği Çukurova Üniversitesi Biyomedikal Mühendisliği BMM309 Elektronik-2 Laboratuvarı Deney Föyü Deney#10 Analog Aktif Filtre Tasarımı Doç. Dr. Mutlu AVCI Arş. Gör. Mustafa İSTANBULLU ADANA, 2015 DENEY 10 Analog

Detaylı

TİTREŞİM VE DALGALAR BÖLÜM PERİYODİK HAREKET

TİTREŞİM VE DALGALAR BÖLÜM PERİYODİK HAREKET TİTREŞİM VE DALGALAR Periyodik Hareketler: Belirli aralıklarla tekrarlanan harekete periyodik hareket denir. Sabit bir nokta etrafında periyodik hareket yapan cismin hareketine titreşim hareketi denir.

Detaylı

KISIM 1 ELEKTRONİK DEVRELER (ANALİZ TASARIM - PROBLEM)

KISIM 1 ELEKTRONİK DEVRELER (ANALİZ TASARIM - PROBLEM) İÇİNDEKİLER KISIM 1 ELEKTRONİK DEVRELER (ANALİZ TASARIM - PROBLEM) 1. BÖLÜM GERİBESLEMELİ AMPLİFİKATÖRLER... 3 1.1. Giriş...3 1.2. Geribeselemeli Devrenin Transfer Fonksiyonu...4 1.3. Gerilim - Seri Geribeslemesi...5

Detaylı

5. Elektriksel Büyüklüklerin Ölçülebilen Değerleri

5. Elektriksel Büyüklüklerin Ölçülebilen Değerleri Elektrik devrelerinde ölçülebilen büyüklükler olan; 5. Elektriksel Büyüklüklerin Ölçülebilen Değerleri Akım Gerilim Devrede bulunan kaynakların tiplerine göre değişik şekillerde olabilir. Zamana bağlı

Detaylı

İşaret ve Sistemler. Ders 2: Spektral Analize Giriş

İşaret ve Sistemler. Ders 2: Spektral Analize Giriş İşaret ve Sistemler Ders 2: Spektral Analize Giriş Spektral Analiz A 1.Cos (2 f 1 t+ 1 ) ile belirtilen işaret: f 1 Hz frekansında, A 1 genliğinde ve fazı da Cos(2 f 1 t) ye göre 1 olan parametrelere sahiptir.

Detaylı

Gerilme Dönüşümleri (Stress Transformation)

Gerilme Dönüşümleri (Stress Transformation) Gerilme Dönüşümleri (Stress Transformation) Bu bölümde, bir noktaya etkiyen ve bir koordinat ekseni ile ilişkili gerilme bileşenlerini, başka bir koordinat sistemi ile ilişkili gerilme bileşenlerine dönüştürmek

Detaylı

DENEY 1: Matlab de Temel Haberleşme Sistemleri Uygulamaları

DENEY 1: Matlab de Temel Haberleşme Sistemleri Uygulamaları DENEY 1: Matlab de Temel Haberleşme Sistemleri Uygulamaları AMAÇ: MATLAB programının temel özelliklerinin öğrenilmesi, analog işaretler ve sistemlerin sayısal bir ortamda benzetiminin yapılması ve incelenmesi.

Detaylı

BÖLÜM I GİRİŞ (1.1) y(t) veya y(x) T veya λ. a t veya x. Şekil 1.1 Dalga. a genlik, T peryod (veya λ dalga boyu)

BÖLÜM I GİRİŞ (1.1) y(t) veya y(x) T veya λ. a t veya x. Şekil 1.1 Dalga. a genlik, T peryod (veya λ dalga boyu) BÖLÜM I GİRİŞ 1.1 Sinyal Bir sistemin durum ve davranış bilgilerini taşıyan, bir veya daha fazla değişken ile tanımlanan bir fonksiyon olup veri işlemde dalga olarak adlandırılır. Bir dalga, genliği, dalga

Detaylı

İşaret ve Sistemler. Ders 3: Periyodik İşaretlerin Frekans Spektrumu

İşaret ve Sistemler. Ders 3: Periyodik İşaretlerin Frekans Spektrumu İşaret ve Sistemler Ders 3: Periyodik İşaretlerin Frekans Spektrumu Fourier Serileri Periyodik işaretlerin spektral analizini yapabilmek için periyodik işaretler sinüzoidal işaretlerin toplamına dönüştürülür

Detaylı

Mühendislik Mekaniği Statik. Yrd.Doç.Dr. Akın Ataş

Mühendislik Mekaniği Statik. Yrd.Doç.Dr. Akın Ataş Mühendislik Mekaniği Statik Yrd.Doç.Dr. Akın Ataş Bölüm 10 Eylemsizlik Momentleri Kaynak: Mühendislik Mekaniği: Statik, R. C.Hibbeler, S. C. Fan, Çevirenler: A. Soyuçok, Ö. Soyuçok. 10. Eylemsizlik Momentleri

Detaylı

BÖLÜM X OSİLATÖRLER. e b Yükselteç. Be o Geri Besleme. Şekil 10.1 Yükselteçlerde geri besleme

BÖLÜM X OSİLATÖRLER. e b Yükselteç. Be o Geri Besleme. Şekil 10.1 Yükselteçlerde geri besleme BÖLÜM X OSİLATÖRLER 0. OSİLATÖRE GİRİŞ Kendi kendine sinyal üreten devrelere osilatör denir. Böyle devrelere dışarıdan herhangi bir sinyal uygulanmaz. Çıkışlarında sinüsoidal, kare, dikdörtgen ve testere

Detaylı

ELN3052 OTOMATİK KONTROL MATLAB ÖRNEKLERİ - 2 TRANSFER FONKSİYONU, BLOK ŞEMA VE SİSTEM BENZETİMİ UYGULAMALARI:

ELN3052 OTOMATİK KONTROL MATLAB ÖRNEKLERİ - 2 TRANSFER FONKSİYONU, BLOK ŞEMA VE SİSTEM BENZETİMİ UYGULAMALARI: ELN35 OTOMATİK KONTROL MATLAB ÖRNEKLERİ - TRANSFER FONKSİYONU, BLOK ŞEMA VE SİSTEM BENZETİMİ UYGULAMALARI: Control System Toolbox içinde dinamik sistemlerin transfer fonksiyonlarını tanımlamak için tf,

Detaylı

Bölüm 12 İşlemsel Yükselteç Uygulamaları

Bölüm 12 İşlemsel Yükselteç Uygulamaları Bölüm 12 İşlemsel Yükselteç Uygulamaları DENEY 12-1 Aktif Yüksek Geçiren Filtre DENEYİN AMACI 1. Aktif yüksek geçiren filtrenin çalışma prensibini anlamak. 2. Aktif yüksek geçiren filtrenin frekans tepkesini

Detaylı

DENEY 4: Sayısal Filtreler

DENEY 4: Sayısal Filtreler DENEY 4: Sayısal Filtreler I. AMAÇ Bu deneyin amacı sonlu dürtü yanıtlı (FIR) ve sonsuz dürtü yanıtlı (IIR) sayısal filtrelerin tanıtılması ve incelenmesidir. II. ÖN HAZIRLIK 1) FIR ve IIR filtreleri kısaca

Detaylı

ALTERNATĐF AKIM (AC) I AC NĐN ELDE EDĐLMESĐ; KARE VE ÜÇGEN DALGALAR

ALTERNATĐF AKIM (AC) I AC NĐN ELDE EDĐLMESĐ; KARE VE ÜÇGEN DALGALAR ALTERNATĐF AKIM (AC) I AC NĐN ELDE EDĐLMESĐ; KARE VE ÜÇGEN DALGALAR 1.1 Amaçlar AC nin Elde Edilmesi: Farklı ve değişken DC gerilimlerin anahtar ve potansiyometreler kullanılarak elde edilmesi. Kare dalga

Detaylı

MİKROİŞLEMCİ İLE A/D DÖNÜŞÜMÜ

MİKROİŞLEMCİ İLE A/D DÖNÜŞÜMÜ KARADENİZ TEKNİK ÜNİVERSİTESİ BİLGİSAYAR MÜHENDİSLİĞİ BÖLÜMÜ BİLGİSAYAR ORGANİZASYONU LABORATUVARI MİKROİŞLEMCİ İLE A/D DÖNÜŞÜMÜ 1. GİRİŞ Analog işaretleri sayısal işaretlere dönüştüren elektronik devrelere

Detaylı

Enerji Sistemleri Mühendisliği Bölümü

Enerji Sistemleri Mühendisliği Bölümü YALOVA ÜNİVERSİTESİ MÜHENDİSLİK FAKÜLTESİ Enerji Sistemleri Mühendisliği Bölümü ESM 413 Enerji Sistemleri Laboratuvarı-II RL, RC ve RLC DEVRELERİNİN AC ANALİZİ Puanlandırma Sistemi: Hazırlık Soruları:

Detaylı

Şekil 1.1 Genliği kuvantalanmamış sürekli zamanlı işaret. İşaretin genliği sürekli değerler alır. Buna analog işaret de denir.

Şekil 1.1 Genliği kuvantalanmamış sürekli zamanlı işaret. İşaretin genliği sürekli değerler alır. Buna analog işaret de denir. İŞARETLER Sayısal işaret işleme, işaretlerin sayısal bilgisayar ya da özel amaçlı donanımda bir sayılar dizisi olarak gösterilmesi ve bu işaret dizisi üzerinde çeşitli işlemler yaparak, istenen bir bilgi

Detaylı

18.034 İleri Diferansiyel Denklemler

18.034 İleri Diferansiyel Denklemler MIT AçıkDersSistemi http://ocw.mit.edu 18.034 İleri Diferansiyel Denklemler 2009 Bahar Bu bilgilere atıfta bulunmak veya kullanım koşulları hakkında bilgi için http://ocw.mit.edu/terms web sitesini ziyaret

Detaylı

BSE 207 Mantık Devreleri Lojik Kapılar ve Lojik Devreler (Logic Gates And Logic Circuits)

BSE 207 Mantık Devreleri Lojik Kapılar ve Lojik Devreler (Logic Gates And Logic Circuits) SE 207 Mantık Devreleri Lojik Kapılar ve Lojik Devreler (Logic Gates nd Logic Circuits) Sakarya Üniversitesi Lojik Kapılar - maçlar Lojik kapıları ve lojik devreleri tanıtmak Temel işlemler olarak VE,

Detaylı

7. Sunum: Çok Fazlı Devreler. Kaynak: Temel Mühendislik Devre Analizi, J. David IRWIN-R. Mark NELMS, Nobel Akademik Yayıncılık

7. Sunum: Çok Fazlı Devreler. Kaynak: Temel Mühendislik Devre Analizi, J. David IRWIN-R. Mark NELMS, Nobel Akademik Yayıncılık 7. Sunum: Çok Fazlı Devreler Kaynak: Temel Mühendislik Devre Analizi, J. David IRWIN-R. Mark NELMS, Nobel Akademik Yayıncılık 1 Üç Fazlı Devreler Üç fazlı devreler bünyesinde üç fazlı gerilim içeren devrelerdir.

Detaylı

Uzayda iki doğrunun ortak dikme doğrusunun denklemi

Uzayda iki doğrunun ortak dikme doğrusunun denklemi Uzayda iki doğrunun ortak dikme doğrusunun denklemi Uzayda verilen d 1 ve d aykırı doğrularının ikisine birden dik olan doğruya ortak dikme doğrusu denir... olmak üzere bu iki doğru denkleminde değilse

Detaylı

EEM HABERLEŞME TEORİSİ NİĞDE ÜNİVERSİTESİ MÜHENDİSLİK FAKÜLTESİ ELEKTRİK-ELEKTRONİK MÜHENDİSLİĞİ BÖLÜMÜ

EEM HABERLEŞME TEORİSİ NİĞDE ÜNİVERSİTESİ MÜHENDİSLİK FAKÜLTESİ ELEKTRİK-ELEKTRONİK MÜHENDİSLİĞİ BÖLÜMÜ EEM3006 - HABERLEŞME TEORİSİ NİĞDE ÜNİVERSİTESİ MÜHENDİSLİK FAKÜLTESİ ELEKTRİK-ELEKTRONİK MÜHENDİSLİĞİ BÖLÜMÜ EEM3006 - HABERLEŞME TEORİSİ Dersin Öğretim Elemanı: Yrd. Doç. Dr. Yasin KABALCI Ders Görüşme

Detaylı

İnce Antenler. Hertz Dipolü

İnce Antenler. Hertz Dipolü İnce Antenler Çapları boylarına göre küçük olan antenlere ince antenler denir. Alanların hesabında antenlerin sonsuz ince kabul edilmesi kolaylık sağlar. Ancak anten empedansı bulunmak istendiğinde kalınlığın

Detaylı

Mühendislik Mekaniği Statik. Yrd.Doç.Dr. Akın Ataş

Mühendislik Mekaniği Statik. Yrd.Doç.Dr. Akın Ataş Mühendislik Mekaniği Statik Yrd.Doç.Dr. Akın Ataş Bölüm 7 İç Kuvvetler Kaynak: Mühendislik Mekaniği: Statik, R. C. Hibbeler, S. C. Fan, Çevirenler: A. Soyuçok, Ö. Soyuçok. 7. İç Kuvvetler Bu bölümde, bir

Detaylı

Sayısal Sinyal İşleme (EE 306 ) Ders Detayları

Sayısal Sinyal İşleme (EE 306 ) Ders Detayları Sayısal Sinyal İşleme (EE 306 ) Ders Detayları Ders Adı Ders Kodu Dönemi Ders Saati Uygulama Saati Laboratuar Saati Kredi AKTS Sayısal Sinyal İşleme EE 306 Bahar 3 0 0 3 8 Ön Koşul Ders(ler)i EE 303 (FD)

Detaylı

DOĞRULTUCULAR VE REGÜLATÖRLER

DOĞRULTUCULAR VE REGÜLATÖRLER Karadeniz Teknik Üniversitesi Mühendislik Fakültesi Elektrik-Elektronik Mühendisliği Bölümü Elektronik Anabilim Dalı Elektronik I Dersi Laboratuvarı DOĞRULTUCULAR VE REGÜLATÖRLER 1. Deneyin Amacı Yarım

Detaylı

Ders İçerik Bilgisi. Sistem Davranışlarının Analizi. Dr. Hakan TERZİOĞLU. 1. Geçici durum analizi. 2. Kalıcı durum analizi. MATLAB da örnek çözümü

Ders İçerik Bilgisi. Sistem Davranışlarının Analizi. Dr. Hakan TERZİOĞLU. 1. Geçici durum analizi. 2. Kalıcı durum analizi. MATLAB da örnek çözümü Dr. Hakan TERZİOĞLU Ders İçerik Bilgisi Sistem Davranışlarının Analizi 1. Geçici durum analizi 2. Kalıcı durum analizi MATLAB da örnek çözümü 2 Dr. Hakan TERZİOĞLU 1 3 Geçici ve Kalıcı Durum Davranışları

Detaylı

Direnç(330Ω), bobin(1mh), sığa(100nf), fonksiyon generatör, multimetre, breadboard, osiloskop. Teorik Bilgi

Direnç(330Ω), bobin(1mh), sığa(100nf), fonksiyon generatör, multimetre, breadboard, osiloskop. Teorik Bilgi DENEY 8: PASİF FİLTRELER Deneyin Amaçları Pasif filtre devrelerinin çalışma mantığını anlamak. Deney Malzemeleri Direnç(330Ω), bobin(1mh), sığa(100nf), fonksiyon generatör, multimetre, breadboard, osiloskop.

Detaylı

5. Sunum: Kalıcı Durum Güç Analizi. Kaynak: Temel Mühendislik Devre Analizi, J. David IRWIN-R. Mark NELMS, Nobel Akademik Yayıncılık

5. Sunum: Kalıcı Durum Güç Analizi. Kaynak: Temel Mühendislik Devre Analizi, J. David IRWIN-R. Mark NELMS, Nobel Akademik Yayıncılık 5. Sunum: Kalıcı Durum Güç Analizi Kaynak: Temel Mühendislik Devre Analizi, J. David IRWIN-R. Mark NELMS, Nobel Akademik Yayıncılık 1 Giriş Bu bölümde AC devrelerde güç hesabı ele alınacakqr. Ayrıca güç

Detaylı

HAFTA 11: ÖRNEKLEME TEOREMİ SAMPLING THEOREM. İçindekiler

HAFTA 11: ÖRNEKLEME TEOREMİ SAMPLING THEOREM. İçindekiler HAFA 11: ÖRNEKLEME EOREMİ SAMPLING HEOREM İçindekiler 6.1 Bant sınırlı sürekli zaman sinyallerinin örneklenmesi... 2 6.2 Düzgün (uniform), periyodik örnekleme... 3 6.3 Bant sınırlı sürekli bir zaman sinyaline

Detaylı

Dizi Antenler. Özdeş anten elemanlarından oluşan bir dizi antenin ışıma diyagramını belirleyen faktörler şunlardır.

Dizi Antenler. Özdeş anten elemanlarından oluşan bir dizi antenin ışıma diyagramını belirleyen faktörler şunlardır. Dizi Antenler Özdeş anten elemanlarından oluşan bir dizi antenin ışıma diyagramını belirleyen faktörler şunlardır. 1. Dizi antenin geometrik şekli (lineer, dairesel, küresel..vs.) 2. Dizi elemanları arasındaki

Detaylı

Sistem Dinamiği. Bölüm 2- Dinamik Cevap ve Laplace Dönüşümü. Doç.Dr. Erhan AKDOĞAN

Sistem Dinamiği. Bölüm 2- Dinamik Cevap ve Laplace Dönüşümü. Doç.Dr. Erhan AKDOĞAN Sistem Dinamiği - Dinamik Cevap ve Laplace Dönüşümü Doç. Sunumlarda kullanılan semboller: El notlarına bkz. Yorum Soru MATLAB Bolum No.Alt Başlık No.Denklem Sıra No Denklem numarası Şekil No Şekil numarası

Detaylı

Alternatif Akım Devre Analizi

Alternatif Akım Devre Analizi Alternatif Akım Devre Analizi Öğr.Gör. Emre ÖZER Alternatif Akımın Tanımı Zamaniçerisindeyönüveşiddeti belli bir düzen içerisinde (periyodik) değişen akıma alternatif akımdenir. En bilinen alternatif akım

Detaylı

Bu deneyde lab cihazlarının kullanımı için 4 uygulama yapılacaktır.

Bu deneyde lab cihazlarının kullanımı için 4 uygulama yapılacaktır. Bu deneyde lab cihazlarının kullanımı için 4 uygulama yapılacaktır. Uygulama -1: Dirençlerin Seri Bağlanması Uygulama -2: Dirençlerin Paralel Bağlanması Uygulama -3: Dirençlerin Karma Bağlanması Uygulama

Detaylı

Tanım: Kök yer eğrisi sistem parametrelerinin değişimi ile sistemin kapalı döngü köklerinin s düzlemindeki yerini gösteren grafiktir.

Tanım: Kök yer eğrisi sistem parametrelerinin değişimi ile sistemin kapalı döngü köklerinin s düzlemindeki yerini gösteren grafiktir. Kök Yer Eğrileri Kök Yer Eğrileri Bir kontrol tasarımcısı sistemin kararlı olup olmadığını ve kararlılık derecesini bilmek, diferansiyel denklem çözmeden bir analiz ile sistem performansını tahmin etmek

Detaylı

Bölüm 4 Ardışıl Lojik Devre Deneyleri

Bölüm 4 Ardışıl Lojik Devre Deneyleri Bölüm 4 Ardışıl Lojik Devre Deneyleri DENEY 4-1 Flip-Floplar DENEYİN AMACI 1. Kombinasyonel ve ardışıl lojik devreler arasındaki farkları ve çeşitli bellek birimi uygulamalarını anlamak. 2. Çeşitli flip-flop

Detaylı

Çukurova Üniversitesi Biyomedikal Mühendisliği

Çukurova Üniversitesi Biyomedikal Mühendisliği Çukurova Üniversitesi Biyomedikal Mühendisliği BMM309 Elektronik-2 Laboratuarı Deney Föyü Deney#6 İşlemsel Kuvvetlendiriciler (OP-AMP) - 2 Doç. Dr. Mutlu AVCI Arş. Gör. Mustafa İSTANBULLU ADANA, 2015 DENEY

Detaylı

MAK 210 SAYISAL ANALİZ

MAK 210 SAYISAL ANALİZ MAK 210 SAYISAL ANALİZ BÖLÜM 8- SAYISAL İNTEGRASYON 1 GİRİŞ Mühendislikte sık karşılaşılan matematiksel işlemlerden biri integral işlemidir. Bilindiği gibi integral bir büyüklüğün toplam değerinin bulunması

Detaylı

Sayısal Kontrol - HAVA HARP OKULU Bölüm 2 Sürekli Zaman Sistemlerin Ayrık Benzetimi

Sayısal Kontrol - HAVA HARP OKULU Bölüm 2 Sürekli Zaman Sistemlerin Ayrık Benzetimi Sayısal Kontrol - HAVA HARP OKULU Bölüm 2 Sürekli Zaman Sistemlerin Ayrık Benzetimi İbrahim Beklan Küçükdemiral Yıldız Teknik Üniversitesi 2015 1 / 41 Bu bölümde aşağıdaki konular incelenecektir: Nümerik

Detaylı

OTOMATİK KONTROL SİSTEMLERİ. DİNAMİK SİSTEMLERİN MODELLENMESİ ve ANALİZİ

OTOMATİK KONTROL SİSTEMLERİ. DİNAMİK SİSTEMLERİN MODELLENMESİ ve ANALİZİ OTOMATİK KONTROL SİSTEMLERİ DİNAMİK SİSTEMLERİN MODELLENMESİ ve ANALİZİ 1) İdeal Sönümleme Elemanı : a) Öteleme Sönümleyici : Mekanik Elemanların Matematiksel Modeli Basit mekanik elemanlar, öteleme hareketinde;

Detaylı

Düzenlilik = ((Vçıkış(yük yokken) - Vçıkış(yük varken)) / Vçıkış(yük varken)

Düzenlilik = ((Vçıkış(yük yokken) - Vçıkış(yük varken)) / Vçıkış(yük varken) KTÜ Mühendislik Fakültesi Bilgisayar Mühendisliği Bölümü Sayısal Elektronik Laboratuarı DOĞRULTUCULAR Günümüzde bilgisayarlar başta olmak üzere bir çok elektronik cihazı doğru akımla çalıştığı bilinen

Detaylı

TRANSİSTÖRLÜ YÜKSELTEÇLERDE GERİBESLEME

TRANSİSTÖRLÜ YÜKSELTEÇLERDE GERİBESLEME TRANSİSTÖRLÜ YÜKSELTEÇLERDE GERİBESLEME Amaç Elektronikte geniş uygulama alanı bulan geribesleme, sistemin çıkış büyüklüğünden elde edilen ve giriş büyüklüğü ile aynı nitelikte bir işaretin girişe gelmesi

Detaylı

( ) (0) ( ) (2 )... ( )...

( ) (0) ( ) (2 )... ( )... Hatırlanacağı gibi, analog kontrol sistemlerinde tüm sistemler diferansiyel denklemlerle modelleniyordu. Bu diferansiyel denklem Laplace Dönüşümü yoluyla s karmaşık değişkeninin cebirsel bir denklemine

Detaylı

11. Sunum: İki Kapılı Devreler. Kaynak: Temel Mühendislik Devre Analizi, J. David IRWIN-R. Mark NELMS, Nobel Akademik Yayıncılık

11. Sunum: İki Kapılı Devreler. Kaynak: Temel Mühendislik Devre Analizi, J. David IRWIN-R. Mark NELMS, Nobel Akademik Yayıncılık 11. Sunum: İki Kapılı Devreler Kaynak: Temel Mühendislik Devre Analizi, J. David IRWIN-R. Mark NELMS, Nobel Akademik Yayıncılık 1 Giriş İki kapılı devreler giriş akımları ve gerilimleri ve çıkış akımları

Detaylı

ENLEME BAĞLANTILARININ DÜZENLENMESİ

ENLEME BAĞLANTILARININ DÜZENLENMESİ ENLEME BAĞLANTILARININ Çok parçalı basınç çubuklarının teşkilinde kullanılan iki tür bağlantı şekli vardır. Bunlar; DÜZENLENMESİ Çerçeve Bağlantı Kafes Bağlantı Çerçeve bağlantı elemanları, basınç çubuğunu

Detaylı

İÇİNDEKİLER ÖNSÖZ Bölüm 1 SAYILAR 11 Bölüm 2 KÜMELER 31 Bölüm 3 FONKSİYONLAR

İÇİNDEKİLER ÖNSÖZ Bölüm 1 SAYILAR 11 Bölüm 2 KÜMELER 31 Bölüm 3 FONKSİYONLAR İÇİNDEKİLER ÖNSÖZ III Bölüm 1 SAYILAR 11 1.1. Sayı Kümeleri 12 1.1.1.Doğal Sayılar Kümesi 12 1.1.2.Tam Sayılar Kümesi 13 1.1.3.Rasyonel Sayılar Kümesi 14 1.1.4. İrrasyonel Sayılar Kümesi 16 1.1.5. Gerçel

Detaylı

Ders #2. Otomatik Kontrol. Laplas Dönüşümü. Prof.Dr.Galip Cansever

Ders #2. Otomatik Kontrol. Laplas Dönüşümü. Prof.Dr.Galip Cansever Ders #2 Otomatik Kontrol Laplas Dönüşümü Prof.Dr.Galip Cansever Pierre-Simon Laplace, 1749-1827 Matematiçi ve Astronomdur. http://www-history.mcs.st-andrews.ac.uk/biographies/laplace.html LAPLAS DÖNÜŞÜMÜ

Detaylı

fonksiyonu için in aralığındaki bütün değerleri için sürekli olsun. in bu aralıktaki olsun. Fonksiyonda meydana gelen artma miktarı

fonksiyonu için in aralığındaki bütün değerleri için sürekli olsun. in bu aralıktaki olsun. Fonksiyonda meydana gelen artma miktarı 10.1 Türev Kavramı fonksiyonu için in aralığındaki bütün değerleri için sürekli olsun. in bu aralıktaki bir değerine kadar bir artma verildiğinde varılan x = x 0 + noktasında fonksiyonun değeri olsun.

Detaylı

1. LİNEER PCM KODLAMA

1. LİNEER PCM KODLAMA 1. LİNEER PCM KODLAMA 1.1 Amaçlar 4/12 bitlik lineer PCM kodlayıcısı ve kod çözücüsünü incelemek. Kuantalama hatasını incelemek. Kodlama kullanarak ses iletimini gerçekleştirmek. 1.2 Ön Hazırlık 1. Kuantalama

Detaylı

HOMOGEN OLMAYAN DENKLEMLER

HOMOGEN OLMAYAN DENKLEMLER n. mertebeden homogen olmayan lineer bir diferansiyel denklemin y (n) + p 1 (x)y (n 1) + + p n 1 (x)y + p n (x)y = f(x) (1) şeklinde olduğunu ve bununla ilgili olan n. mertebeden lineer homogen denlemin

Detaylı

BÖLÜM 6 LAPLACE DÖNÜŞÜMLERİ

BÖLÜM 6 LAPLACE DÖNÜŞÜMLERİ BÖLÜM 6 LAPLACE DÖNÜŞÜMLERİ 6.2. Laplace Dönüşümü Tanımı Bir f(t) fonksiyonunun Laplace alındığında oluşan fonksiyon F(s) ya da L[f(t)] olarak gösterilir. Burada tanımlanan s; ÇÖZÜM: a) b) c) ÇÖZÜM: 6.3.

Detaylı

BÖLÜM-6 BLOK DİYAGRAMLARI

BÖLÜM-6 BLOK DİYAGRAMLARI 39 BÖLÜM-6 BLOK DİYAGRAMLARI Kontrol sistemlerinin görünür hale getirilmesi Bileşenlerin transfer fonksiyonlarını gösterir. Sistemin fiziksel yapısını yansıtır. Kontrol giriş ve çıkışlarını karakterize

Detaylı

TOBB Ekonomi ve Teknoloji Üniversitesi Mühendislik Fakültesi Elektrik ve Elektronik Mühendisliği Bölümü ELE 301 Kontrol Sistemleri I.

TOBB Ekonomi ve Teknoloji Üniversitesi Mühendislik Fakültesi Elektrik ve Elektronik Mühendisliği Bölümü ELE 301 Kontrol Sistemleri I. TOBB Ekonomi ve Teknoloji Üniversitesi Mühendislik Fakültesi Elektrik ve Elektronik Mühendisliği Bölümü ELE 3 Kontrol Sistemleri I Ara Sınav 8 Haziran 4 Adı ve Soyadı: Bölüm: No: Sınav süresi dakikadır.

Detaylı

Yrd. Doç. Dr. A. Burak İNNER

Yrd. Doç. Dr. A. Burak İNNER Yrd. Doç. Dr. A. Burak İNNER Kocaeli Üniversitesi Bilgisayar Mühendisliği Yapay Zeka ve Benzetim Sistemleri Ar-Ge Lab. http://yapbenzet.kocaeli.edu.tr Doğrusal Ara Değer Hesabı Lagrance Polinom İnterpolasyonu

Detaylı

FİZ217 TİTREŞİMLER VE DALGALAR DERSİNİN 2. ARA SINAV SORU CEVAPLARI

FİZ217 TİTREŞİMLER VE DALGALAR DERSİNİN 2. ARA SINAV SORU CEVAPLARI 1) Gerilmiş bir ipte enine titreşimler denklemi ile tanımlıdır. Değişkenlerine ayırma yöntemiyle çözüm yapıldığında için [ ] [ ] ifadesi verilmiştir. 1.a) İpin enine titreşimlerinin n.ci modunu tanımlayan

Detaylı

= 2 6 Türevsel denkleminin 1) denge değerlerinin bulunuz. 2) Bulmuş olduğunuz dengenin istikrarlı olup olmadığını tespit ediniz.

= 2 6 Türevsel denkleminin 1) denge değerlerinin bulunuz. 2) Bulmuş olduğunuz dengenin istikrarlı olup olmadığını tespit ediniz. Siyasal Bilgiler Fakültesi İktisat Bölümü Matematiksel İktisat Ders Notu Prof. Dr. Hasan Şahin Faz Diyagramı Çizimi Açıklamarı = 2 6 Türevsel denkleminin 1) denge değerlerinin bulunuz. 2) Bulmuş olduğunuz

Detaylı

İleri Diferansiyel Denklemler

İleri Diferansiyel Denklemler MIT AçıkDersSistemi http://ocw.mit.edu 18.034 İleri Diferansiyel Denklemler 2009 Bahar Bu bilgilere atıfta bulunmak veya kullanım koşulları hakkında bilgi için http://ocw.mit.edu/terms web sitesini ziyaret

Detaylı

Yöneylem Araştırması II

Yöneylem Araştırması II Yöneylem Araştırması II Öğr. Gör. Dr. Hakan ÇERÇİOĞLU cercioglu@gazi.edu.tr BÖLÜM I: Doğrusal Programlama Tekrarı Doğrusal Programlama Tanımı Doğrusal Programlama Varsayımları Grafik Çözüm Metodu Simpleks

Detaylı

FİZİK 4. Ders 10: Bir Boyutlu Schrödinger Denklemi

FİZİK 4. Ders 10: Bir Boyutlu Schrödinger Denklemi FİZİK 4 Ders 10: Bir Boyutlu Schrödinger Denklemi Bir Boyutlu Schrödinger Denklemi Beklenen Değer Kuyu İçindeki Parçacık Zamandan Bağımsız Schrödinger Denklemi Kare Kuyu Tünel Olayı Basit Harmonik Salınıcı

Detaylı

Deney 10: Analog - Dijital Dönüştürücüler (Analog to Digital Converters - ADC) Giriş

Deney 10: Analog - Dijital Dönüştürücüler (Analog to Digital Converters - ADC) Giriş Deney 10: Analog - Dijital Dönüştürücüler (Analog to Digital Converters - ADC) Analog - Dijital Dönüştürücülerin ADC0804 entegre devresi ile incelenmesi Giriş Sensör ve transdüser çıkışlarında genellikle

Detaylı

T.C. ONDOKUZ MAYIS ÜNİVERSİTESİ MÜHENDİSLİK FAKÜLTESİ ELEKTRİK-ELEKTRONİK MÜHENDİSLİĞİ BÖLÜMÜ ELEKTRONİK LABORATUVARI-II DENEY RAPORU AKTİF FİLTRELER

T.C. ONDOKUZ MAYIS ÜNİVERSİTESİ MÜHENDİSLİK FAKÜLTESİ ELEKTRİK-ELEKTRONİK MÜHENDİSLİĞİ BÖLÜMÜ ELEKTRONİK LABORATUVARI-II DENEY RAPORU AKTİF FİLTRELER T.C. ONDOKUZ MAYIS ÜNİVERSİTESİ MÜHENDİSLİK FAKÜLTESİ ELEKTRİK-ELEKTRONİK MÜHENDİSLİĞİ BÖLÜMÜ ELEKTRONİK LABORATUVARI-II Öğrenci No: Adı Soyadı: Grubu: DENEY RAPORU AKTİF FİLTRELER Deneyin Yapıldığı Tarih:.../.../2017

Detaylı

Fatih Üniversitesi Elektrik ve Elektronik Mühendisliği Bölümü EEM 316 Haberleşme I LAB SINAVI DARBE GENLİK MODÜLASYONU (PWM)

Fatih Üniversitesi Elektrik ve Elektronik Mühendisliği Bölümü EEM 316 Haberleşme I LAB SINAVI DARBE GENLİK MODÜLASYONU (PWM) Fatih Üniversitesi Elektrik ve Elektronik Mühendisliği Bölümü EEM 316 Haberleşme I LAB SINAVI DARBE GENLİK MODÜLASYONU (PWM) 9.1 Amaçlar 1. µa741 ile PWM modülatör kurulması. 2. LM555 in çalışma prensiplerinin

Detaylı