DOĞRUSAL DENKLEMLER VE KOORDİNAT SİSTEMİ
|
|
- Chagatai Erim
- 7 yıl önce
- İzleme sayısı:
Transkript
1 DOĞRUSAL DENKLEMLER VE KOORDİNAT SİSTEMİ
2 Örnek : Taksi ile yapılan yolculukların ücreti taksimetre ile belirlenir Bir taksimetrenin açılış ücreti 2 TL, sonraki her kilometre başına 1 TL ücret ödendiğine göre; a) Ödenecek ücret ile alınan yol arasındaki ilişkiyi tabloda gösterelim b) Bu ilişkinin denklemini sayı örüntüsünün kuralını kullanarak bulalım c) Tablodaki değerleri kullanarak bir çizgi grafiği çizelim Alınan yol(x) (km) İlişki Ödenen ücret(tl) (ü) Grafik : Gidilen yol ve ücret ilişkisi Ödenen ücret(tl) ü = x x 2 + x1 ü= x ı ı ı ı ı Yol (km)
3 Örnek : Arılar, 1 kg balmumu üretmek için 22 kg bal tüketirler a) Üretilen balmumu ile tüketilen bal arasındaki ilişkiyi tabloda gösterelim b) Bu ilişkinin denklemini sayı örüntüsünün kuralını kullanarak bulalım c) Tablodaki değerleri kullanarak bir çizgi grafiği çizelim Balmumu (kg) x x Bal (kg) y x Üretilen balmumu ile tüketilen bal arasında doğrusal bir ilişki vardır y=22x Not : Doğrusal denklemler katsayılı iki değişken ve bir sabit sayı içerir a ve b katsayıları aynı anda sıfır olmamak üzere ax + by + c = 0 şeklinde gösterilirler
4 Grafik : Balmumu ile bal ilişkisi Bal (kg) y = 22x I 1 I 2 I 3 I 4 I 5 Balmumu (kg)
5 Örnek : Aşağıdaki grafiklerden hangileri doğrusal ilişki gösterir? Doğrusal ilişki Doğrusal ilişki Doğrusal ilişki değil Doğrusal ilişki değil Doğrusal ilişki Doğrusal ilişki değil
6 Örnek : Aşağıdakilerden hangileri doğrusal denklemdir? a) 2x + 4y = 1 Doğrusal denklem b) 3x + 2xy - 1 = 0 Doğrusal denklem değil c) y x 2 1 Doğrusal denklem değil d) x 2 y 3 0 Doğrusal denklem değil e) x = y f) x = 5 g) y = -2 Doğrusal denklem Doğrusal denklem Doğrusal denklem
7 NOT:
8 NOT: Noktanın koordinatları A(x,y) apsis ordinat
9 x y 1Bölge + + 2Bölge - + 3Bölge - - 4Bölge + -
10 Örnek : A (1,4), B(-4,3), C(-2,-3), D(4,-2), K(-6,-2), L(0,1), M(1,0), N(4,5) K(-6,-2) B(-4,3) C(-2,-3) y 1 L(0,1) M(1,0) Not: Apsisi 0 olan noktalar y ekseni, ordinatı sıfır olan noktalar x ekseni üzerindedirler A(1,4) N(4,5) D(4,-2) x
11 Örnek : A(-4,0), B(2,0), C(-1,3) noktaları ile gösterilen üçgeni çiziniz Alanını bulunuz A(-4,0) C(-1,3) y A A tabanyüks eklik B(2,0) x
12 Örnek: A(2,4) noktasının önce y eksenine göre simetriği olan B noktasını, B noktasının x eksenine göre simetriği olan C noktasını ve C noktasının y eksenine göre simetriği olan D noktasının koordinatlarını bulalım B(-2,4) C(-2,-4) y A(2,4) D(2,-4) x
13 1) Eksenlere Paralel Doğru Grafikleri: a) y Eksenine Paralel Doğru Grafiği : Not: x = a (sabit) denklemi ile verilen doğrunun grafiği, apsisi a olan noktadan geçen ve y eksenine paralel olan bir doğrudur
14 Örnek: x= 3, x= -3, x= 1 ve x = 0 1 x doğrularını çizelim 2 x= y -5 x= x=1 Not: x = 0 doğrusu y eksenidir x= x
15 b) x Eksenine Paralel Doğru Grafiği : Not: y = b (sabit) denklemi ile verilen doğrunun grafiği, ordinatı b olan noktadan geçen ve x eksenine paralel olan bir doğrudur
16 Örnek: y = 3, y = -3, y = 1 ve y = 0 doğrularını çizelim y Not: y = 0 doğrusu x eksenidir y=3 2 1 y= y=0 y=-3 x
17 2) Orijinden Geçen Doğru Grafiği : Not: y = ax denklemi ile verilen doğru grafikleri orijinden geçen bir doğruyu belirtir Örneğin, y = x, y = 2x, y = -3x gibi Örnek: y = 2x doğrusunu çizelim Not: Doğru grafikleri çizilirken, doğruya ait iki nokta bulunarak bu noktalar birleştirilir ve uzatılır x = 0 için y = 20 = 0 x = 1 için y = 21 = 2 A(0,0) B(1,2)
18 A(0,0) y B(1,2) Not: Doğrusal denklemlerin grafiği bir doğru modelidir Bu doğruyu oluşturan sıralı ikililere karşılık gelen noktalar doğrudaştır A B y=2x x
19 3) Eksenleri Birer Noktada Kesen Doğru Grafiği : Not: y = ax + b denklemi ile verilen doğru grafikleri eksenleri birer noktada kesen doğruyu belirtir Örnek: y = x + 2 doğrusunu çizelim x = 0 için y = = 2 x = -1 için y = = 1 A(0,2) B(-1,1)
20 A(0,2) y B(-1,1) B A y = x x
21 Örnek: y= 3x-5 denklemindeki değişkenlerin katsayılarını ve sabit sayıyı bulalım y = 3x-5 y - 3x + 5 = 0 y nin katsayısı 1, x in katsayısı -3 ve sabit sayı 5 tir 1y - 3x + 5 = 0
22 Örnek: 4x - 5y = 20 doğrusu ile eksenler arasında kalan bölgenin alanı kaç birim karedir? x = 0 için 40 5y = 20 y = -4 A(0,-4) Y = 0 için 4x 50 = 20 4x = 20 x = 5 B(5,0) A br 7/C A 4x-5y=20 B
23 Örnek: A(-1,3) ve B(1,2) noktalarından hangileri 3x + 2y -3 = 0 doğrusuna aittir? A(-1,3) için ; 3x + 2y -3 = 0 3(-1) = = = 0 0 = 0 olduğundan A noktası verilen doğruya aittir B(1,2) için ; 3x + 2y -3 = = = olduğundan B noktası verilen doğruya ait değildir
24 Örnek: A(-2,k) noktası 3x - y + 7 = 0 doğrusu üzerinde olduğuna göre k kaçtır? A(-2,k) için ; 3x - y + 7 = 0 3(-2) - k + 7 = k + 7 = = k k = 1
25 Not: x eksenini a noktasında, y eksenini b noktasında kesen doğrunun denklemi; x a y b 1 Örnek: Aşağıdaki doğrunun denklemini yazınız şeklindedir d 4 x 3 y x 3 (4) y 1 4x 3y (3) 4x 3y 12 4x 3y 12 0
26 Örnek: x 5 y 3 1 doğrusunu çizelim Örnek: x 4 y 3 1 doğrusunu çizelim x 5 y 3 1 B x 4 y 3 1 A A B
27 2010 SBS SORUSU
28 2008 SBS SORUSU
29 y x
30 2009 SBS SORUSU
31 2011 SBS SORUSU
32 ÖDEV : Ders Kitabı Çalışma Kitabı 22-23
33 DERS KİTABI (SAYFA : 77-78)
34
35
36
37
38
39 ÇALIŞMA KİTABI (SAYFA : 22-23)
40
41
42
43
d) x - y = 0 e) 5x -3y = 0 f) 4x -2y = 0 g) 2x +5y = 0
Koordinat sistemi Orijinden geçen doğrular Aşağıda koordinat sisteminde orijinden geçen doğruyu inceleyelim. Tanım: Orijinden geçen doğrular eksenlere dokunmaz. Orijin bir nokta olduğu için sonsuz doğru
DetaylıDOĞRUNUN ANALİTİK İNCELEMESİ
Koordinatlar DOĞRUNUN ANALİTİK İNCELEMESİ Bilindiği gibi, düzlemdeki her bir noktaya bir (a,b) sıralı ikilisi, her bir (a,b) sıralı ikilisine bir nokta karşılık gelir. Eğer bir A noktasına karşılık gelen
DetaylıDik koordinat sisteminde yatay eksen x ekseni (apsis ekseni), düşey eksen ise y ekseni (ordinat ekseni) dir.
ANALĐTĐK GEOMETRĐ 1. Analitik Düzlem Bir düzlemde dik kesişen iki sayı doğrusunun oluşturduğu sisteme analitik düzlem denir. Analitik düzlem, dik koordinat sistemi veya dik koordinat düzlemi olarak da
DetaylıTEST. Doğrusal Denklemler kg domates ile 2 kg salça yapılmaktadır. 2. Aşağıda verilen, 5. Cebinde 50 si bulunan Nehir babasından her
Doğrusal Denklemler 7. Sınıf Matematik Soru Bankası TEST. t Zaman (sn) 0 0 0 0 Yol (m) 0 00 0 00 Yukarıdaki tabloda bir koşucunun metre cinsinden aldığı ol ile sanie cinsinden harcadığı zaman verilmiştir.
DetaylıKoordinat sistemi. Eksenlere paralel doğrular: y eksenine paralel doğrular. Koordinat ekseninde doğrular. Çanta. Kalem. Doğru
Koordinat sistemi Koordinat ekseninde doğrular Eksenlere paralel doğrular: y eksenine paralel doğrular Çanta Kalem Doğru Söylediğimiz somut nesnelerin resmini çizebildiğimiz gibi cebirsel ifadelerinde
DetaylıİÇİNDEKİLER. Ön Söz...2. Noktanın Analitik İncelenmesi...3. Doğrunun Analitiği Analitik Düzlemde Simetri...25
İÇİNDEKİLER Ön Söz...2 Noktanın Analitik İncelenmesi...3 Doğrunun Analitiği...11 Analitik Düzlemde Simetri...25 Analitik Sistemde Eşitsizlikler...34 Çemberin Analitik İncelenmesi...40 Elips...58 Hiperbol...70
DetaylıBir Doğrusal Programlama Modelinin Genel Yapısı
Bir Doğrusal Programlama Modelinin Genel Yapısı Amaç Fonksiyonu Kısıtlar M i 1 N Z j 1 N j 1 a C j x j ij x j B i Karar Değişkenleri x j Pozitiflik Koşulu x j >= 0 Bu formülde kullanılan matematik notasyonların
Detaylı1. O(0,0) merkezli, 3 birim yarıçaplı. 2. x 2 +y 2 =16 denklemi ile verilen. 3. O(0,0) merkezli ve A(3,4)
HAZİNE-1 Düzlemde sabit M(a,b) noktasından eşit uzaklıkta bulunan noktaların geometrik yeri, M merkezli R yarıçaplı çemberdir. HAZİNE-2 O(0,0) merkezli, R yarıçaplı çemberin denklemi; x 2 +y 2 =R 2 dir.
DetaylıPARABOL Test -1. y x 2x m 1 parabolü x eksenini kesmiyorsa m nin alabileceği değerler kümesi aşağıdakilerden hangisidir?
PROL est -. m parabolü eksenini kesmiorsa m nin alabileceği değerler kümesi aşağıdakilerden hangisidir?. f a b c (, ) ) (, ) (, ) (, ) ( 6, ). m parabolü eksenini iki farklı noktada kesmektedir. una göre,
Detaylı1. Analitik düzlemde P(-4,3) noktasının eksenlerden ve O başlangıç noktasından uzaklığı kaç birimdir?
HAZİNE- HAZİNE-2 O başlangıç noktasında dik kesişen iki sayı ekseninin oluşturduğu sisteme koordinat sistemi denir. Bir noktanın x-eksenindeki dik izdüşümüne karşılık gelen x sayısına noktanın apsis i
Detaylı- 2-1 0 1 2 + 4a a 0 a 4a
İKİNCİ DERECEDEN FNKSİYNLARIN GRAFİKLERİ a,b,c,z R ve a 0 olmak üzere, F : R R f() = a + b + c şeklinde tanımlanan fonksionlara ikinci dereceden bir değişkenli fonksionlar denir. Bu tür fonksionların grafikleri
DetaylıParametrik doğru denklemleri 1
Parametrik doğru denklemleri 1 A noktasından geçen, doğrultman (doğrultu) vektörü w olan d doğrusunun, k parametresine göre parametrik denklemi: AP k w P A k w P A k w P A k W (P değişken nokta) A w P
DetaylıMatematikte karşılaştığınız güçlükler için endişe etmeyin. Emin olun benim karşılaştıklarım sizinkilerden daha büyüktür.
- 1 - ÖĞRENME ALANI CEBİR BÖLÜM KARMAŞIK SAYILAR ALT ÖĞRENME ALANLARI 1) Karmaşık Sayılar Karmaşık Sayıların Kutupsal Biçimi KARMAŞIK SAYILAR Kazanım 1 : Gerçek sayılar kümesini genişletme gereğini örneklerle
Detaylıalalım. O noktasına, bu eksenlerin sıfır noktası(orijin, merkez) denir. Pozitif sayılar, yatay
1 DİK (KARTEZYEN) KOORDİNAT SİSTEMİ: Bir O noktasında dik olarak kesişen ata ve düşe doğrultudaki iki saı eksenini ele alalım. O noktasına, u eksenlerin sıfır noktası(orijin, merkez) denir. Pozitif saılar,
DetaylıNOKTANIN ANALİTİK İNCELEMESİ NOKTANIN ANALİTİK İNCELEMESİ
NKTANIN ANALİTİK İNCELEMESİ NKTANIN ANALİTİK İNCELEMESİ Başlangıç noktasında birbirine dik olan iki saı doğrusunun oluşturduğu sisteme "Dik Koordinat Sistemi" denir. Dik Koordinat Sisteminin belirttiği
Detaylıeğim Örnek: Koordinat sisteminde bulunan AB doğru parçasının
eğim Doğrunun eğimi Eğim konusunu koordinat sistemine ve doğrunun eğimine taşımadan önce kareli zemindeki doğru parçalarının eğimini bulmaya çalışalım. Koordinat sisteminde bulunan AB doğru parçasının
DetaylıPARABOL. çözüm. kavrama sorusu. çözüm. kavrama sorusu
PARABL Bu bölümde birinci dereceden fonksion =f()=a+b ve ikinci dereceden fonksion =f()=a +b+c grafiklerini üzesel olarak inceleeceğiz. f()=a +b+c ikinci dereceden bir bilinmeenli polinom fonksionun grafiği
Detaylı4. y=-2 doğrusundan 5 birim uzaklıkta. 5. O(0,0) başlangıç noktasından 3 birim. 6. A(1,2) ve B(5,8) noktalarından eşit. 7. x=-2 doğrusundan ve A(2,0)
GEOMETRİK YER HAZİNE-1 Analitik düzlemde, verilen bir ortak özelliği sağlayan P(x,y) noktalarının apsis ve ordinatı arasındaki bağıntıya Geometrik yer denklemi denir. 4. y=-2 doğrusundan 5 birim uzaklıkta
DetaylıÖrnek...1 : mx+3y+12=0 ve 2x 5y+3=0 doğruları para - lelse m kaçtır?
İKİ DOĞRUNUN BİRBİRİNE GÖRE DURUMU DURUM 1 PARALEL DOĞRULAR ve doğruları paralel doğrular ise eğimleri eşittir. Yani / / m 1 =m 2 Ayr ıca : a 1 x+b 1 y+c 1 =0 =0} / / a 1 a 2 = b 1 c 1 c 2 Örnek...1 :
DetaylıÜNİTE. MATEMATİK-1 Yrd.Doç.Dr.Ömer TARAKÇI İÇİNDEKİLER HEDEFLER DOĞRULAR VE PARABOLLER
HEDEFLER İÇİNDEKİLER DOĞRULAR VE PARABOLLER Birinci Dereceden Polinom Fonksiyonlar ve Doğru Doğru Denklemlerinin Bulunması İkinci Dereceden Polinom Fonksiyonlar ve Parabol MATEMATİK-1 Yrd.Doç.Dr.Ömer TARAKÇI
Detaylı1. BÖLÜM Polinomlar BÖLÜM II. Dereceden Denklemler BÖLÜM II. Dereceden Eşitsizlikler BÖLÜM Parabol
ORGANİZASYON ŞEMASI . BÖLÜM Polinomlar... 7. BÖLÜM II. Dereceden Denklemler.... BÖLÜM II. Dereceden Eşitsizlikler... 9. BÖLÜM Parabol... 5 5. BÖLÜM Trigonometri... 69 6. BÖLÜM Karmaşık Sayılar... 09 7.
DetaylıİLKÖĞRETİM MATEMATİK ÖĞRETMENLERİ ZÜMRESİ WWW.OGRETMENFORUMU.COM YAKLAŞAN SINAVDA KORKUYU SEVİNCE DÖNÜŞTÜREN GRUP UNUTMAYIN SİZLER İÇİN BİZ HERŞEYE HAZIRIZ! Sadece MATEMATİK Öğretmenlerine Özel Grubumuz
Detaylı2. HAFTA DERS NOTLARI İKTİSADİ MATEMATİK MİKRO EKONOMİK YAKLAŞIM. Yazan SAYIN SAN
2. HAFTA DERS NOTLARI İKTİSADİ MATEMATİK MİKRO EKONOMİK YAKLAŞIM Yazan SAYIN SAN SAN / İKTİSADİ MATEMATİK / 2 C.1.2. Piyasa Talep Fonksiyonu Bireysel talep fonksiyonlarının toplanması ile bir mala ait
DetaylıEĞİM, BİR DOĞRUNUN DENKLEMİ VE EĞİMİ ARASINDAKİ İLİŞKİ
Özgür EKER EĞİM, BİR DOĞRUNUN DENKLEMİ VE EĞİMİ ARASINDAKİ İLİŞKİ Eğim: ETKİNLİK : Bir bisiklet arışındaki iki farklı parkur aşağıdaki gibidir. I. parkurda KL 00 metre ve II. parkurda AB 00 metre olduğuna
DetaylıÖZEL EGE LİSESİ EGE BÖLGESİ OKULLAR ARASI 16. MATEMATİK YARIŞMASI 10. SINIF ELEME SINAVI TEST SORULARI
EGE BÖLGESİ OKULLAR ARASI. MATEMATİK YARIŞMASI 0. SINIF ELEME SINAVI TEST SORULARI 5. sayısının virgülden sonra 9 99 999 5. basamağındaki rakam kaçtır? A) 0 B) C) 3 D) E) 8!.!.3!...4! 4. A= aşağıdaki hangi
DetaylıDENEYSELVERİLERİN GRAFİĞE AKTARILMASI
DENEYSELVERİLERİN GRAFİĞE AKTARILMASI 1 Değişken (variable): Miktarı, yani sayısal bir değeri ifade etmektedir. Cebirsel eşitliklerde değişkenler, Latin alfabesinin başlangıç ve son harfleri ile ifade
DetaylıT I M U R K A R A Ç AY, H AY D A R E Ş, O R H A N Ö Z E R K A L K U L Ü S N O B E L
T I M U R K A R A Ç AY, H AY D A R E Ş, O R H A N Ö Z E R K A L K U L Ü S N O B E L 1 Denklemler 1.1 Doğru deklemleri İki noktası bilinen ya da bir noktası ile eğimi bilinen doğruların denklemlerini yazabiliriz.
DetaylıCebirsel Fonksiyonlar
Cebirsel Fonksiyonlar Yazar Prof.Dr. Vakıf CAFEROV ÜNİTE 4 Amaçlar Bu üniteyi çalıştıktan sonra; polinom, rasyonel ve cebirsel fonksiyonları tanıyacak ve bu türden bazı fonksiyonların grafiklerini öğrenmiş
DetaylıİLKÖĞRETİM MATEMATİK ÖĞRETMENLERİ ZÜMRESİ WWW.OGRETMENFORUMU.COM YAKLAŞAN SINAVDA KORKUYU SEVİNCE DÖNÜŞTÜREN GRUP UNUTMAYIN SİZLER İÇİN BİZ HERŞEYE HAZIRIZ! Sadece MATEMATİK Öğretmenlerine Özel Grubumuz
Detaylı8. SINIF EGİM. Dikeyuzunluk Eğim(m) Yatayuzunluk. ÖR: AĢağıdaki doğruların eğimleri yüzde kaçtır? ÖR: AĢağıdaki AB doğrularının eğimlerini bulunuz.
8. SINIF EGİM Dikeyuzunluk Eğim(m) Yatayuzunluk Ģağıdaki doğruların eğimleri yüzde kaçtır? Ģağıdaki doğrularının eğimlerini bulunuz. cm cm m= cm m= 0cm cm Yukarıdaki dik üçgende doğru parçasının eğimi
Detaylı8. SINIF 2 BiLiNMEYENLi DENKLEM SiSTEMLERi
14 8. SINIF 2 BiLiNMEYENLi DENKLEM SiSTEMLERi İçerisinde 2 tane bilinmeyen bulunan ve bilinmeyenlerin derecesi en fazla 1 olan eşitliklere birinci dereceden iki bilinmeyenli denklem sistemleri denir. Çözüm
DetaylıÖSS MATEMATİK TÜREV FASİKÜLÜ
ÖSS MATEMATİK TÜREV FASİKÜLÜ GRAFİK ÇİZİMİ Bir fonksiyonun denklemi verilip grafiği istendiğinde aşağıdaki yolu izlemeliyiz. ) Fonksiyonun en geniş tanım kümesi bulunur. ) ± için fonksiyonun limiti bulunur.
Detaylı13. 2x y + z = 3 E) 1. (Cevap B) 14. Dikdörtgen biçimindeki bir tarlanın boyu 10 metre, eni 5 metre. Çözüm Yayınları
Doğrusal Denklem Sistemlerinin Çözümleri BÖLÜM 04 Test 0. y = y = 6 denklem sisteminin çözüm kümesi aşağıdakilerden A) {(, 4)} B) {(, )} C) {(, 4)} D) {( 4, )} E) {(, )}./ y = / y = 6 5 = 5 = = için y
DetaylıMühendislik Mekaniği Statik. Yrd.Doç.Dr. Akın Ataş
Mühendislik Mekaniği Statik Yrd.Doç.Dr. Akın Ataş Bölüm 10 Eylemsizlik Momentleri Kaynak: Mühendislik Mekaniği: Statik, R. C.Hibbeler, S. C. Fan, Çevirenler: A. Soyuçok, Ö. Soyuçok. 10. Eylemsizlik Momentleri
DetaylıLYS MATEMATÝK II - 10
ÝREY DERSHNELERÝ SINIF ÝÇÝ DERS UYGULM FÖYÜ (MF-TM) DERSHNELERÝ LYS MTEMTÝK II - 0 PRL - I Ders anlatým föleri öðrenci tarafýndan dersten sonra tekrar çalýþýlmalýdýr. dý Soadý :... u kitapçýðýn her hakký
DetaylıDüzlemde Dönüşümler: Öteleme, Dönme ve Simetri. Not 1: Buradaki A noktasına dönme merkezi denir.
Düzlemde Dönüşümler: Öteleme, Dönme ve Simetri Düzlemin noktalarını, düzlemin noktalarına eşleyen bire bir ve örten bir fonksiyona düzlemin bir dönüşümü denir. Öteleme: a =(a 1,a ) ve u =(u 1,u ) olmak
DetaylıKUTUPSAL KOORDİNATLAR
KUTUPSAL KOORDİNATLAR Geometride, bir noktanın konumunu belirtmek için değişik yöntemler uygulanır. Örnek olarak çok kullanılan Kartezyen (Dik ) Koordinat sistemini anımsatarak çalışmamıza başlayalım.
Detaylı1986 ÖYS. 3 b. 2 b C) a= 1. Aşağıdaki ABC üçgeninde. BD kaç cm dir? C) 3 D) 8 E)
ÖYS. Aşağıdaki ABC üçgeninde. BD kaç cm dir? 0. Aşağıdaki şekilde ABCD bir yamuk ve AECD bir paralel kenardır.. Aşağıdaki şekilde EAB ve FBC eşkenar üçgendir. AECD nin alanı cm Buna göre CEB üçgeninin
DetaylıÖğr. Gör. Serkan AKSU
Öğr. Gör. Serkan AKSU www.serkanaksu.net İki nokta arasındaki yerdeğiştirme, bir noktadan diğerine yönelen bir vektördür, ve bu vektörün büyüklüğü, bu iki nokta arasındaki doğrusal uzaklık olarak alınır.
Detaylıa) Çıkarma işleminin; eksilen ile çıkanın ters işaretlisinin toplamı anlamına geldiğini kavrar.
7. SINIF KAZANIM VE AÇIKLAMALARI M.7.1. SAYILAR VE İŞLEMLER M.7.1.1. Tam Sayılarla Toplama, Çıkarma, Çarpma ve Bölme İşlemleri M.7.1.1.1. Tam sayılarla toplama ve çıkarma işlemlerini yapar; ilgili problemleri
DetaylıDeğişken içeren ve değişkenlerin belli değerleri için doğru olan cebirsel eşitliklere denklem denir.
1 DENKLEMLER: Değişken içeren ve değişkenlerin belli değerleri için doğru olan cebirsel eşitliklere denklem denir. Bir denklemde eşitliği sağlayan(doğrulayan) değerlere; verilen denklemin kökleri veya
Detaylı2. Dereceden Denklem ve Eşitsizlikler x 2 2x + 2m + 1 = 0 denkleminin kökleri x 1 ve x 2 dir. 4x 1 + 5x 2 = 7 ise m aşağıdakilerden hangisidir?
MC www.matematikclub.com, 006 Cebir Notları Gökhan DEMĐR, gdemir3@ahoo.com.tr. Dereceden Denklem ve Eşitsizlikler- TEST I A) 1 B) C) 3 D) 4 E) 5 1. 1/ = 0 denkleminin köklerinin toplamı aşağıdakilerden
DetaylıAralıklar, Eşitsizlikler, Mutlak Değer
ARALIKLAR Gerçel sayıların, aralık olarak adlandırılan bazı kümeleri kalkülüste sık sık kullanılır ve geometrik olarak doğru parçalarına karşılık gelir. Örneğin, a < b ise, a dan b ye açık aralık, a ile
DetaylıMatematik Yarıyıl Tatili Etkinliği
Matematik Yarıyıl Tatili Etkinliği 1) Sayı doğrusunda, 4 ile 3 arasında olan tam sayıların çarpımı kaçtır? A) 12 B) 0 C) 12 D) 144 2) İkisi pozitif, biri negatif olan üç tane tam sayının çarpımı için aşağıdakilerden
DetaylıÖğr. Elemanı: Dr. Mustafa Cumhur AKBULUT
Ünite 10: Regresyon Analizi Öğr. Elemanı: Dr. Mustafa Cumhur AKBULUT 10.Ünite Regresyon Analizi 2 Ünitede Ele Alınan Konular 10. Regresyon Analizi 10.1. Basit Doğrusal regresyon 10.2. Regresyon denklemi
DetaylıKoordinat sistemi. a) x = 2 için 3x -2y =14 y =? b) x = 2 için 2y =10-4x y =? c) x = -3 için 3y +5x = 3 y =? d) x = -1 için -3x = 5-2y y =?
Koordinat sistemi Bağımlı bağımsız değişken Denklemlerde iki bilinmeyen varsa bunları bulmak için bilinmeyenlerden birine değer verilir diğeri bulunur. Burada değer verilen bilinmeyene, bağımsız değişken
Detaylı8. SINIF YANSIMA, ÖTELEME VE DÖNME
07 8. SINIF YANSIMA, ÖTELEME VE DÖNME YANSIMA x eksenine göre yansıma: x eksenine göre yansıma işleminde, yansıma sonrası apsisler değişmez iken ordinat değeri işaret değiştirir.(x kendini korur, y ile
Detaylı4. BÖLÜM DOĞRUSAL DENKLEM SİSTEMLERİ
4. BÖLÜM DOĞRUSAL DENKLEM SİSTEMLERİ Doğrusal Denklem Sistemi x 1,x 2,,x n ler bilinmeyenler olmak üzere, doğrusal denklemlerin oluşturduğu; a x a x a x b 11 1 12 2 1n n 1 a x a x a x b 21 1 22 2 2n n
DetaylıDenklemler İkinci Dereceden Denklemler. İkinci dereceden Bir Bilinmeyenli Denklemler. a,b,c IR ve a 0 olmak üzere,
Bölüm 33 Denklemler 33.1 İkinci Dereceden Denklemler İkinci dereceden Bir Bilinmeyenli Denklemler a,b,c IR ve a 0 olmak üzere, ax 2 + bx + c = 0 biçimindeki her açık önermeye ikinci dereceden bir bilinmeyenli
DetaylıEKSTREMUM PROBLEMLERİ. Örnek: Çözüm: Örnek: Çözüm:
EKSTREMUM PROBLEMLERİ Ekstremum Problemleri Bu tür problemlerde bir büyüklüğün (çokluğun alabileceği en büyük (maksimum değer ya da en küçük (minimum değer bulunmak istenir. İstenen çokluk bir değişkenin
DetaylıTÜREVİN GEOMETRİK YORUMU
TÜREVİN GEOMETRİK YORUMU f :R R, =f ( fonksionuna düzlemde A karşılık gelen f( +h eğri anda ki =f( P gibi olsun. f( Eğrinin P(,f( noktasındaki teğetlerini +h araştıralım. Bunun için P(,f( noktasının sağıda
DetaylıUZAYDA VEKTÖRLER ve DOĞRU DÜZLEM
UD VEKTÖRLER ve DĞRU DÜLEM. ir küpün ayrıtlarını taşıyan doğrular kaç farklı doğrultu oluşturur? ) ) ) D) 7 E) 8. ir düzgün altıgenin en uzun köşegeni ile aynı doğrultuda kaç farklı kenar vardır?. şağıdaki
DetaylıANALİTİK GEOMETRİ KARMA / TEST-1
NLİTİK GEMETRİ KRM / TEST-. (, ) noktasından geçen ve + = 0 doğrusuna paralel olan doğrunun eksenini kestiği noktanın ordinatı ) ) 7 ) 9 ). = (k 6) + b k = k doğrularının ekseni üzerinde dik kesişmeleri
DetaylıLYS Y OĞRU MTMTİK TSTİ LYS-. u testte Matematik ile ilgili soru vardır.. evaplarınızı, cevap kâğıdının Matematik Testi için ayrılan kısmına işaretleyiniz.. u testteki süreniz 7 dakikadır.. a ve b asal
Detaylı2001 ÖSS. A) a-1 B) a 2 +1 C) a 2 +a D) a 2-2a+1 E) a <x<y olduğuna göre, aşağıdakilerden hangileri yanlıştır? y x
00 ÖSS. 0, 0,0 0,0 0,00 0,00 0,000 Đşleminin sonucu kaçtır? A) 0, B) 0, C) 0 D) 0 E) 00 6. a bir tamsayı olduğuna göre, aşağıdakilerden hangisinin sonucu kesinlikle çift sayıdır? A) a- B) a C) a a D) a
DetaylıDERSİN ADI: MATEMATİK II MAT II (12) KUTUPSAL KOORDİNATLAR VE UYGULAMALARI 1. KUTUPSAL KOORDİNATLAR 2. EĞRİ ÇİZİMLERİ
DERSİN ADI: MATEMATİK II MAT II (1) ÜNİTE: KUTUPSAL KOORDİNATLAR VE UYGULAMALARI 1. KUTUPSAL KOORDİNATLAR. EĞRİ ÇİZİMLERİ GEREKLİ ÖN BİLGİLER 1. Trigonometrik fonksiyonlar. İntegral formülleri KONU ANLATIMI
Detaylı6 II. DERECEDEN FONKSÝYONLAR 2(Parabol) (Grafikten Parabolün Denklemi-Parabol ve Doðru) LYS MATEMATÝK. y f(x) f(x)
6 II. DERECEDEN FNKSÝYNLR (Parabol) (Grafikten Parabolün Denklemi-Parabol ve Doðru) LYS MTEMTÝK 1. f(). f() 6 8 T Yukarıda grafiği verilen = f() parabolünün denklemi nedir?( = 6) Yukarıda grafiği verilen
DetaylıBÝREY DERSHANELERÝ SINIF ÝÇÝ DERS ANLATIM FÖYÜ MATEMATÝK - II
ÝREY DERSHNELERÝ SINIF ÝÇÝ DERS NLTIM FÖYÜ DERSHNELERÝ Konu Ders dý ölüm Sýnav DF No. MTEMTÝK - II PRL - I MF TM LYS 09 Ders anlatým föleri öðrenci tarafýndan dersten sonra tekrar çalýþýlmalýdýr. dý Soadý
Detaylısayısının tamkare olmasını sağlayan kaç p asal sayısı vardır?(88.32) = n 2 ise, (2 p 1
TAM KARELER 1. Bir 1000 basamaklı sayıda bir tanesi dışında tüm basamaklar 5 tir. Bu sayının hiçbir tam sayının karesi olamayacağını kanıtlayınız. (2L44) Çözüm: Son rakam 5 ise, bir önceki 2 olmak zorunda.
Detaylı9. BÖLÜM. Özel Tanımlı Fonksiyonlar ÇİFT VE TEK FONKSİYONLAR: ÖRNEK ÖRNEK ÇÖZÜM ÇÖZÜM. M A T E M A T İ K
M A T E M A T İ K www.akademitemellisesi.com ÇİFT VE TEK FONKSİYONLAR: f:ar (A R) fonksionu için, 9. BÖLÜM ) Her A için f( ) = f() ise f e çift fonksion denir. olduğundan ne tek nede çifttir. MUTL AK DEĞER
DetaylıÖrnek...1 : f (x)=2x 2 5x+6 parabolü K(2,p) noktasından geçiyorsa p kaçtır? Örnek...2 : Aşağıda çeşitli parabol grafikleri verilmiştir incele yi niz.
a, b,c R,a 0 olmak koşulula f ()=a 2 +b+c fonksionuna ikinci dereceden bir değişkenli fonksion ve bu fonksionun belirttiği eğrie de parabol denir. Uarı ir parabolün grafiği başkatsaı olan a saısına bağlı
DetaylıÖRNEK: Öteleme ile oluşturulmuş bir süsleme. ÖRNEK: 2)GEOMETRİK HAREKETLER
ÖTELEME: Bir şeklin duruşunun, biçiminin, boyutlarının bozulmadan yer değiştirmesine o şekli öteleme denir. Ötelemede biçim, boyut, yön değişmez. Yer değişir. Bir şekil ötelendiği zaman şekil üzerindeki
Detaylı4. y=-2 doğrusundan 5 birim uzaklıkta. 5. O(0,0) başlangıç noktasından 3 birim. 6. A(1,2) ve B(5,8) noktalarından eşit. 7. x=-2 doğrusundan ve A(2,0)
GEOMETRİK YER HAZİNE-1 Analitik düzlemde, verilen bir ortak özelliği sağlayan P(x,y) noktalarının apsis ve ordinatı arasındaki bağıntıya Geometrik yer denklemi denir. Geometrik yer üzerindeki noktalar
DetaylıÜç Boyutlu Uzayda Koordinat sistemi
Üç Boyutlu Uzayda Koordinat sistemi Uzayda bir noktayı ifade edebilmek için ilk önce O noktasını (başlangıç noktası) ve bu noktadan geçen ve birbirine dik olan üç yönlü doğruyu seçerek sabitlememiz gerekir.
DetaylıTaşkın, Çetin, Abdullayeva
BÖLÜM Taşkın, Çetin, Abdullaeva FONKSİYONLAR.. FONKSİYON KAVRAMI Tanım : A ve B boş olmaan iki küme a A ve b B olmak üzere ( ab, ) sıralı eleman çiftine sıralı ikili denir. ( ab, ) sıralı ikilisinde a
DetaylıSİDRE 2000 ORTAOKULU EĞİTİM-ÖĞRETİM YILI 7. SINIFLAR MATEMATİK DERSİ ÜNİTELENDİRİLMİŞ YILLIK PLAN
SİDRE 000 ORTAOKULU 06-07 EĞİTİM-ÖĞRETİM YILI 7. SINIFLAR MATEMATİK DERSİ ÜNİTELENDİRİLMİŞ YILLIK PLAN ÜNİTE ÖĞRENME ALANI ALT ÖĞRENME ALANI Ders Saati 9.09.06/.09.06 Tam Sayılarla Çarpma ve Bölme i 7...
Detaylı25. f: R { 4} R 28. ( ) 3 2 ( ) 26. a ve b reel sayılar olmak üzere, 27. ( ) eğrisinin dönüm noktasının ordinatı 10 olduğuna göre, m kaçtır?
. f: R { 4} R, > ise ( ) 4 f =, ise 6 8. ( ) f = 6 + m + 4 eğrisinin dönüm noktasının ordinatı olduğuna göre, m kaçtır? ) 7 ) 8 ) 9 ) E) fonksiyonu aşağıdaki değerlerinin hangisinde süreksizdir? ) ) )
Detaylıİkinci Mertebeden Lineer Diferansiyel Denklemler
A(x)y + B(x)y + C(x)y = F (x) (5) Denklem (5) in sağ tarafında bulunan F (x) fonksiyonu, I aralığı üzerinde sıfıra özdeş ise, (5) denklemine lineer homogen; aksi taktirde lineer homogen olmayan denklem
DetaylıMAKSİMUM-MİNİMUM PROBLEMLERİ
1 MAKSİMUM-MİNİMUM PROBLEMLERİ En büyük veya en küçük olması istenen değer (uzunluk, alan, hacim, vb.) tek değişkene bağlı bir fonksiyon olacak şekilde düzenlenir. Bu fonksiyonun türevinden ekstremum noktasının
Detaylı7.2 Fonksiyon ve Fonksiyon Tanımları (I) Fonksiyon ve Fonksiyon Tanımları (II)
7.2 Fonksiyon ve Fonksiyon Tanımları (I) Tanım kümesindeki her elemanın değer kümesinde bir ve yalnız bir görüntüsü varsa, tanım kümesinden değer kümesine olan bağıntıya fonksiyon denir. Fonksiyonu f ile
DetaylıÖZEL EGE LİSESİ EGE BÖLGESİ OKULLAR ARASI 15.MATEMATİK YARIŞMASI 8. SINIFLAR FİNAL SORULARI
EGE BÖLGESİ OKULLAR ARASI 5.MATEMATİK YARIŞMASI 8. SINIFLAR FİNAL SORULARI. (a n ) bir geometrik dizidir. a5+a 6 a+a 8 olduğuna göre, kaçtır? a. Bir ABC dik üçgeninde [AB] [BC] dir. [AB] kenarı üzerinde
DetaylıMAT355 Kompleks Fonksiyonlar Teorisi I Hafta Kompleks Sayıların Cebirsel ve Geometrik Özellikleri
1. KOMPLEKS SAYILAR 1.1. Kompleks Sayıların Cebirsel ve Geometrik Özellikleri Tanım 1. x, y R olmak üzere (x, y) sıralı ikililerine kompleks sayı denir. Burada x, z nin reel kısmı, ve y, z nin imajiner
Detaylı1995 ÖSS. 6. Toplamları 621 olan iki pozitif tamsayıdan büyüğü küçüğüne bölündüğünde bölüm 16, kalan ise 9 dur. Buna göre, büyük sayı kaçtır?
99 ÖSS.. 0, 0, 0,44. işleminin sonucu A) 0, B) 0,4 C) D) 4 E) 0 6. Toplamları 6 olan iki pozitif tamsayıdan büyüğü küçüğüne bölündüğünde bölüm 6, kalan ise 9 dur. Buna göre, büyük sayı A) 70 B) 7 C) 80
DetaylıÖrnek...1 : Örnek...3 : Örnek...2 :
FONKSİYONLR FONKSİYONUN EKSENLERİ KESİM NOKTLRI fonksionunun ekseninin kestiği k noktaların m apsisleri b, c, e dir. u noktalar a b c f()= denkleminin n kök leridir p in eksenini kestiği nokta ise (,p)
DetaylıA A A A A A A A A A A
LYS 1 GOMTRİ TSTİ 1. u testte sırasıyla Geometri (1 ) nalitik Geometri (3 30) ile ilgili 30 soru vardır.. evaplarınızı, cevap kâğıdının Geometri Testi için ayrılan kısmına işaretleyiniz. 1. [ [ [ [] []
DetaylıViyana İmam Hatip Lisesi Öğrenci Seçme Sınavı - Matematik
Viyana İmam Hatip Lisesi Öğrenci Seçme Sınavı - Matematik 1. Ünite: Geometriden Olasılığa 1. Bölüm: Yansıyan ve Dönen Şekiller, Fraktallar Yansıma, Öteleme, Dönme Fraktallar 2. Bölüm: Üslü Sayılar Tam
DetaylıTÜREV VE UYGULAMALARI
TÜREV VE UYGULAMALARI 1-TÜREVİN TANIMI VE GÖSTERİLİŞİ a,b R olmak üzere, f:[a,b] R fonksiyonu verilmiş olsun. x 0 (a,b) için lim x X0 f(x)-f( x 0 ) limiti bir gerçel sayı ise bu limit değerine f fonksiyonunun
DetaylıT I M U R K A R A Ç AY - H AY D A R E Ş C A L C U L U S S E Ç K I N YAY I N C I L I K A N K A R A
T I M U R K A R A Ç AY - H AY D A R E Ş C A L C U L U S S E Ç K I N YAY I N C I L I K A N K A R A Contents Bibliography 9 Index 13 CONTENTS 5 0.1 Doğru, Düzlem, Uzay Bu derste sık sık doğru, düzlem ve
DetaylıSAY 203 MİKRO İKTİSAT
SAY 203 MİKRO İKTİSAT Esneklikler YRD. DOÇ. DR. EMRE ATILGAN SAY 203 MİKRO İKTİSAT - YRD. DOÇ. DR. EMRE ATILGAN 1 ESNEKLİKLER Talep Esneklikleri Talep esneklikleri: Bir malın talebinin talebi etkileyen
DetaylıSaat Yönünde 90 Derecelik Dönme Hareketi. Saatin Tersi Yönünde 90 Derecelik Dönme Hareketi
Saat Yönünde 9 Derecelik Dönme Hareketi Saatin Tersi Yönünde 9 Derecelik Dönme Hareketi çizilmiş olan üçgenin orjin etrafında saat yönünde 9 lik dönme hareketine ait görüntüsünü çizip bu üçgenin köşe koordinatlarını
Detaylı9SINIF MATEMATİK. Denklemler ve Eşitsizlikler
9SINIF MATEMATİK Denklemler ve Eşitsizlikler YAYIN KOORDİNATÖRÜ Oğuz GÜMÜŞ EDİTÖR Hazal ÖZNAR - Uğurcan AYDIN DİZGİ Muhammed KARATAŞ SAYFA TASARIM - KAPAK F. Özgür OFLAZ Eğer bir gün sözlerim bilim ile
DetaylıÖRNEK : x. y = 1 biçiminde verilen fonksiyonun grafiğini. çiziniz. Çizim : x. y = 1 olması ancak x =1ve y =1 yada x =-1ve. x =1ve x =-1ve ÖRNEK :
MC www.matematikclub.com, 6 Cebir Notları Gökhan DEMĐR, gdemir@ahoo.com.tr Özel Tanımlı Fonksionlar. Tam değer fonksionu: Tanım: Tamsaı ise kendisi, tamsaı değilse kendinden önce gelen ilk tamsaı (kendinden
Detaylı12-B. Polinomlar - 1 TEST. olduğuna göre P(x - 2, y + 4) polinomunun katsayılar toplamı kaçtır? olduğuna göre A B kaçtır? A) 78 B) 73 C) 62 D 58 E) 33
-B TEST Polinomlar -. Py _, i= y- y + 5y- olduğuna göre P( -, y + ) polinomunun katsayılar toplamı. - 6 = A - 5 + - + B - olduğuna göre A B 78 B) 7 6 D 58 E) B) D) - E) -. -a- b = _ + -5i_ -ci eşitliğine
Detaylı8. SINIF MATEMATİK. Asal Çarpanlar Test sayısının kaç tane asal çarpanı vardır?
8. SINIF MTEMTİ sal Çarpanlar Test. 84 sayısının kaç tane asal çarpanı vardır? ) 2 ) 3 ) 4 ) 5 5. İki basamaklı 9m sayısı asal sayıdır. una göre m yerine kaç farklı rakam yazılabilir? ) ) 2 ) 3 ) 4 2.
DetaylıÖrnek. Aşağıdaki veri setlerindeki X ve Y veri çiftlerini kullanarak herbir durumda X=1,5 için Y nin hangi değerleri alacağını hesaplayınız.
Örnek Aşağıdaki veri setlerindeki X ve Y veri çiftlerini kullanarak herbir durumda X=1,5 için Y nin hangi değerleri alacağını hesaplayınız. i. ii. X 1 2 3 4 1 2 3 4 Y 2 3 4 5 4 3 2 1 Örnek Aşağıdaki veri
Detaylı2012 LYS MATEMATİK SORU VE ÇÖZÜMLERİ Niyazi Kurtoğlu
.SORU 8 sayı tabanında verilen (5) 8 sayısının sayı tabanında yazılışı nedir?.soru 6 3 3 3 3 4 6 8? 3.SORU 3 ise 5? 5 4.SORU 4 5 olduğuna göre, ( )? 5.SORU (y z) z(y ) y z yz bulunuz. ifadesinin en sade
Detaylı(a,b) şeklindeki ifadelere sıralı ikili denir. Burada a'ya 1. bileşen b'ye 2. bileşen denir.
BĞANTI - FONKSİYON 1. Sıralı İkili : (a,b) şeklindeki ifadelere sıralı ikili denir. Burada a'ya 1. bileşen b'ye 2. bileşen denir.! (x 1,x 2, x 3,x 4,...x n ) : sıralı n li denir. Örnek, (a,b,c) : sıralı
DetaylıOrtak Akıl MATEMATİK DENEME SINAVI
Ortak Akıl LYS MATEMATİK DENEME SINAVI 0505- Ortak Akıl Adem ÇİL Ali Can GÜLLÜ Ayhan YANAĞLIBAŞ Barbaros GÜR Barış DEMİR Celal İŞBİLİR Deniz KARADAĞ Engin POLAT Erhan ERDOĞAN Ersin KESEN Fatih TÜRKMEN
DetaylıMAT 103 ANALİTİK GEOMETRİ I FİNAL ÇALIŞMA SORULARI
MAT 103 ANALİTİK GEOMETRİ I FİNAL ÇALIŞMA SORULARI SORU 1. Köşeleri (1,4) (3,0) (7,2) noktaları olan ABC üçgeninin bir ikizkenar dik üçgen (İpucu:, ve vektörlerinden yararlanın) SORU 2. Bir ABC üçgeninin
DetaylıB) ile Matematiği çok seveceksiniz.(www.matematikportali.com)
1 Soru tipi:f5 3 2mm 2 5mm 8m 5m 2m 50mm 18mm Şekilde farenin peynire uluşması için verilen yolu takip edip gerekmektedir. Buna göre gideceğin yolun uzunluğu kaç m metredir. A) 14 2+3 5 B) 12 2+3 5 10
DetaylıÖrnek...17 : 1) EKSENLERİ KESTİĞİ NOKTALAR BİLİNEN DOĞRUNUN DENKLEMİ
C) ÖZEL DOĞRU DENKLEMLERİ Örnek...17 : A ( 3, 6 ) n ok t a s ı n a n v e o r i j i n e n g e ç e n o ğ r u n u n e n k l em i n e i r? 1) EKSENLERİ KESTİĞİ NOKTALAR BİLİNEN DOĞRUNUN DENKLEMİ eksenini A(a,0)
DetaylıGrafik kağıtları. Daha önce değinildiği gibi, grafik, bağımlı ve bağımsız değişkenler arasındaki ilişkiyi gösteren bir araçtır.
Grafik kağıtları Daha önce değinildiği gibi, grafik, bağımlı ve bağımsız değişkenler arasındaki ilişkiyi gösteren bir araçtır. Bu amaçla yaygın olarak 3 farklı ölçekte (skalada) grafik kağıtları kullanılmaktadır.
DetaylıMustafa YAĞCI, Parabol ile Eğrilerin Kesişimi
www.mustafaagci.com.tr, 11 Ceir Notları Mustafa YAĞCI, agcimustafa@ahoo.com Paraol ile Eğrilerin Kesişimi P araol İle Doğrunun Birirlerine Göre Durumları. Aslında sadece paraol ve doğru çifti için değil,
DetaylıLYS Matemat k Deneme Sınavı
LYS Matematk Deneme Sınavı. abba dört basamaklı, ab iki basamaklı doğal saıları için, abba ab. a b eşitliğini sağlaan kaç farklı (a, b) doğal saı ikilisi vardır? 7 olduğuna göre, a b toplamı kaçtır? 9.,,
DetaylıMustafa YAĞCI, yagcimustafa@yahoo.com Parabol Denkleminin Yazılması
www.mustafaagci.com.tr, 11 Cebir Notları Mustafa YAĞCI, agcimustafa@ahoo.com Parabol Denkleminin Yazılması B ir doğru kaç noktasıla bellidi? İki, değil mi Çünkü tek bir noktadan geçen istediğimiz kadar
DetaylıDoğrusal Fonksiyonlar, Karesel Fonksiyonlar, Polinomlar ve Rasyonel Fonksiyonlar, Fonksiyon Çizimleri
Doğrusal Fonksionlar, Karesel Fonksionlar, Polinomlar ve Rasonel Fonksionlar, Fonksion Çizimleri Bir Fonksionun Koordinat Kesişimleri(Intercepts). Bir fonksionun grafiğinin koordinat eksenlerini kestiği
Detaylı1986 ÖYS. 1. Aşağıdaki ABC üçgeninde. BD kaç cm dir? C) 3 A) 11 B) 10 C) 3 D) 8 E) 7 E) 2
8 ÖYS. Aşağıdaki ABC üçgeninde. BD kaç cm dir? 8 7. Aşağıdaki şekilde ABCD bir yamuk ve AECD bir paralel kenardır.. Aşağıdaki şekilde EAB ve FBC eşkenar üçgendir. AECD nin alanı 8 cm Buna göre CEB üçgeninin
Detaylı1) BU TESTTE TEMEL MATEMATİK VE GEOMETRİ OLMAK ÜZERE, TOPLAM 40 ADET SORU VARDIR. 2) BU TESTİN CEVAPLANMASI İÇİN TAVSİYE EDİLEN SÜRE 40 DAKİKADIR.
1) U ESE EMEL MEMİK VE GEOMERİ OLMK ÜZERE, OPLM 0 DE SORU VRDIR. ) U ESİN CEVPLNMSI İÇİN VSİYE EDİLEN SÜRE 0 DKİKDIR. 1) 1 1 1 işleminin sonucu kaçtır? ) 0, ) 1 C) 1,5 D) 1,5 E) 5) I. İki çift sayının
DetaylıÖĞRENME ALANI TEMEL MATEMATİK BÖLÜM TÜREV. ALT ÖĞRENME ALANLARI 1) Türev 2) Türev Uygulamaları TÜREV
- 1 - ÖĞRENME ALANI TEMEL MATEMATİK BÖLÜM TÜREV ALT ÖĞRENME ALANLARI 1) Türev 2) Türev Uygulamaları TÜREV Kazanım 1 : Türev Kavramını fiziksel ve geometrik uygulamalar yardımıyla açıklar, türevin tanımını
Detaylıx 1,x 2,,x n ler bilinmeyenler olmak üzere, doğrusal denklemlerin oluşturduğu;
4. BÖLÜM DOĞRUSAL DENKLEM SİSTEMLERİ Doğrusal Denklem Sistemi x,x,,x n ler bilinmeyenler olmak üzere, doğrusal denklemlerin oluşturduğu; a x + a x + L + a x = b n n a x + a x + L + a x = b n n a x + a
Detaylı