DOĞRUSAL DENKLEMLER VE KOORDİNAT SİSTEMİ

Save this PDF as:
 WORD  PNG  TXT  JPG

Ebat: px
Şu sayfadan göstermeyi başlat:

Download "DOĞRUSAL DENKLEMLER VE KOORDİNAT SİSTEMİ"

Transkript

1 DOĞRUSAL DENKLEMLER VE KOORDİNAT SİSTEMİ

2 Örnek : Taksi ile yapılan yolculukların ücreti taksimetre ile belirlenir Bir taksimetrenin açılış ücreti 2 TL, sonraki her kilometre başına 1 TL ücret ödendiğine göre; a) Ödenecek ücret ile alınan yol arasındaki ilişkiyi tabloda gösterelim b) Bu ilişkinin denklemini sayı örüntüsünün kuralını kullanarak bulalım c) Tablodaki değerleri kullanarak bir çizgi grafiği çizelim Alınan yol(x) (km) İlişki Ödenen ücret(tl) (ü) Grafik : Gidilen yol ve ücret ilişkisi Ödenen ücret(tl) ü = x x 2 + x1 ü= x ı ı ı ı ı Yol (km)

3 Örnek : Arılar, 1 kg balmumu üretmek için 22 kg bal tüketirler a) Üretilen balmumu ile tüketilen bal arasındaki ilişkiyi tabloda gösterelim b) Bu ilişkinin denklemini sayı örüntüsünün kuralını kullanarak bulalım c) Tablodaki değerleri kullanarak bir çizgi grafiği çizelim Balmumu (kg) x x Bal (kg) y x Üretilen balmumu ile tüketilen bal arasında doğrusal bir ilişki vardır y=22x Not : Doğrusal denklemler katsayılı iki değişken ve bir sabit sayı içerir a ve b katsayıları aynı anda sıfır olmamak üzere ax + by + c = 0 şeklinde gösterilirler

4 Grafik : Balmumu ile bal ilişkisi Bal (kg) y = 22x I 1 I 2 I 3 I 4 I 5 Balmumu (kg)

5 Örnek : Aşağıdaki grafiklerden hangileri doğrusal ilişki gösterir? Doğrusal ilişki Doğrusal ilişki Doğrusal ilişki değil Doğrusal ilişki değil Doğrusal ilişki Doğrusal ilişki değil

6 Örnek : Aşağıdakilerden hangileri doğrusal denklemdir? a) 2x + 4y = 1 Doğrusal denklem b) 3x + 2xy - 1 = 0 Doğrusal denklem değil c) y x 2 1 Doğrusal denklem değil d) x 2 y 3 0 Doğrusal denklem değil e) x = y f) x = 5 g) y = -2 Doğrusal denklem Doğrusal denklem Doğrusal denklem

7 NOT:

8 NOT: Noktanın koordinatları A(x,y) apsis ordinat

9 x y 1Bölge + + 2Bölge - + 3Bölge - - 4Bölge + -

10 Örnek : A (1,4), B(-4,3), C(-2,-3), D(4,-2), K(-6,-2), L(0,1), M(1,0), N(4,5) K(-6,-2) B(-4,3) C(-2,-3) y 1 L(0,1) M(1,0) Not: Apsisi 0 olan noktalar y ekseni, ordinatı sıfır olan noktalar x ekseni üzerindedirler A(1,4) N(4,5) D(4,-2) x

11 Örnek : A(-4,0), B(2,0), C(-1,3) noktaları ile gösterilen üçgeni çiziniz Alanını bulunuz A(-4,0) C(-1,3) y A A tabanyüks eklik B(2,0) x

12 Örnek: A(2,4) noktasının önce y eksenine göre simetriği olan B noktasını, B noktasının x eksenine göre simetriği olan C noktasını ve C noktasının y eksenine göre simetriği olan D noktasının koordinatlarını bulalım B(-2,4) C(-2,-4) y A(2,4) D(2,-4) x

13 1) Eksenlere Paralel Doğru Grafikleri: a) y Eksenine Paralel Doğru Grafiği : Not: x = a (sabit) denklemi ile verilen doğrunun grafiği, apsisi a olan noktadan geçen ve y eksenine paralel olan bir doğrudur

14 Örnek: x= 3, x= -3, x= 1 ve x = 0 1 x doğrularını çizelim 2 x= y -5 x= x=1 Not: x = 0 doğrusu y eksenidir x= x

15 b) x Eksenine Paralel Doğru Grafiği : Not: y = b (sabit) denklemi ile verilen doğrunun grafiği, ordinatı b olan noktadan geçen ve x eksenine paralel olan bir doğrudur

16 Örnek: y = 3, y = -3, y = 1 ve y = 0 doğrularını çizelim y Not: y = 0 doğrusu x eksenidir y=3 2 1 y= y=0 y=-3 x

17 2) Orijinden Geçen Doğru Grafiği : Not: y = ax denklemi ile verilen doğru grafikleri orijinden geçen bir doğruyu belirtir Örneğin, y = x, y = 2x, y = -3x gibi Örnek: y = 2x doğrusunu çizelim Not: Doğru grafikleri çizilirken, doğruya ait iki nokta bulunarak bu noktalar birleştirilir ve uzatılır x = 0 için y = 20 = 0 x = 1 için y = 21 = 2 A(0,0) B(1,2)

18 A(0,0) y B(1,2) Not: Doğrusal denklemlerin grafiği bir doğru modelidir Bu doğruyu oluşturan sıralı ikililere karşılık gelen noktalar doğrudaştır A B y=2x x

19 3) Eksenleri Birer Noktada Kesen Doğru Grafiği : Not: y = ax + b denklemi ile verilen doğru grafikleri eksenleri birer noktada kesen doğruyu belirtir Örnek: y = x + 2 doğrusunu çizelim x = 0 için y = = 2 x = -1 için y = = 1 A(0,2) B(-1,1)

20 A(0,2) y B(-1,1) B A y = x x

21 Örnek: y= 3x-5 denklemindeki değişkenlerin katsayılarını ve sabit sayıyı bulalım y = 3x-5 y - 3x + 5 = 0 y nin katsayısı 1, x in katsayısı -3 ve sabit sayı 5 tir 1y - 3x + 5 = 0

22 Örnek: 4x - 5y = 20 doğrusu ile eksenler arasında kalan bölgenin alanı kaç birim karedir? x = 0 için 40 5y = 20 y = -4 A(0,-4) Y = 0 için 4x 50 = 20 4x = 20 x = 5 B(5,0) A br 7/C A 4x-5y=20 B

23 Örnek: A(-1,3) ve B(1,2) noktalarından hangileri 3x + 2y -3 = 0 doğrusuna aittir? A(-1,3) için ; 3x + 2y -3 = 0 3(-1) = = = 0 0 = 0 olduğundan A noktası verilen doğruya aittir B(1,2) için ; 3x + 2y -3 = = = olduğundan B noktası verilen doğruya ait değildir

24 Örnek: A(-2,k) noktası 3x - y + 7 = 0 doğrusu üzerinde olduğuna göre k kaçtır? A(-2,k) için ; 3x - y + 7 = 0 3(-2) - k + 7 = k + 7 = = k k = 1

25 Not: x eksenini a noktasında, y eksenini b noktasında kesen doğrunun denklemi; x a y b 1 Örnek: Aşağıdaki doğrunun denklemini yazınız şeklindedir d 4 x 3 y x 3 (4) y 1 4x 3y (3) 4x 3y 12 4x 3y 12 0

26 Örnek: x 5 y 3 1 doğrusunu çizelim Örnek: x 4 y 3 1 doğrusunu çizelim x 5 y 3 1 B x 4 y 3 1 A A B

27 2010 SBS SORUSU

28 2008 SBS SORUSU

29 y x

30 2009 SBS SORUSU

31 2011 SBS SORUSU

32 ÖDEV : Ders Kitabı Çalışma Kitabı 22-23

33 DERS KİTABI (SAYFA : 77-78)

34

35

36

37

38

39 ÇALIŞMA KİTABI (SAYFA : 22-23)

40

41

42

43

d) x - y = 0 e) 5x -3y = 0 f) 4x -2y = 0 g) 2x +5y = 0

d) x - y = 0 e) 5x -3y = 0 f) 4x -2y = 0 g) 2x +5y = 0 Koordinat sistemi Orijinden geçen doğrular Aşağıda koordinat sisteminde orijinden geçen doğruyu inceleyelim. Tanım: Orijinden geçen doğrular eksenlere dokunmaz. Orijin bir nokta olduğu için sonsuz doğru

Detaylı

DOĞRUNUN ANALİTİK İNCELEMESİ

DOĞRUNUN ANALİTİK İNCELEMESİ Koordinatlar DOĞRUNUN ANALİTİK İNCELEMESİ Bilindiği gibi, düzlemdeki her bir noktaya bir (a,b) sıralı ikilisi, her bir (a,b) sıralı ikilisine bir nokta karşılık gelir. Eğer bir A noktasına karşılık gelen

Detaylı

Dik koordinat sisteminde yatay eksen x ekseni (apsis ekseni), düşey eksen ise y ekseni (ordinat ekseni) dir.

Dik koordinat sisteminde yatay eksen x ekseni (apsis ekseni), düşey eksen ise y ekseni (ordinat ekseni) dir. ANALĐTĐK GEOMETRĐ 1. Analitik Düzlem Bir düzlemde dik kesişen iki sayı doğrusunun oluşturduğu sisteme analitik düzlem denir. Analitik düzlem, dik koordinat sistemi veya dik koordinat düzlemi olarak da

Detaylı

TEST. Doğrusal Denklemler kg domates ile 2 kg salça yapılmaktadır. 2. Aşağıda verilen, 5. Cebinde 50 si bulunan Nehir babasından her

TEST. Doğrusal Denklemler kg domates ile 2 kg salça yapılmaktadır. 2. Aşağıda verilen, 5. Cebinde 50 si bulunan Nehir babasından her Doğrusal Denklemler 7. Sınıf Matematik Soru Bankası TEST. t Zaman (sn) 0 0 0 0 Yol (m) 0 00 0 00 Yukarıdaki tabloda bir koşucunun metre cinsinden aldığı ol ile sanie cinsinden harcadığı zaman verilmiştir.

Detaylı

Koordinat sistemi. Eksenlere paralel doğrular: y eksenine paralel doğrular. Koordinat ekseninde doğrular. Çanta. Kalem. Doğru

Koordinat sistemi. Eksenlere paralel doğrular: y eksenine paralel doğrular. Koordinat ekseninde doğrular. Çanta. Kalem. Doğru Koordinat sistemi Koordinat ekseninde doğrular Eksenlere paralel doğrular: y eksenine paralel doğrular Çanta Kalem Doğru Söylediğimiz somut nesnelerin resmini çizebildiğimiz gibi cebirsel ifadelerinde

Detaylı

Bir Doğrusal Programlama Modelinin Genel Yapısı

Bir Doğrusal Programlama Modelinin Genel Yapısı Bir Doğrusal Programlama Modelinin Genel Yapısı Amaç Fonksiyonu Kısıtlar M i 1 N Z j 1 N j 1 a C j x j ij x j B i Karar Değişkenleri x j Pozitiflik Koşulu x j >= 0 Bu formülde kullanılan matematik notasyonların

Detaylı

İÇİNDEKİLER. Ön Söz...2. Noktanın Analitik İncelenmesi...3. Doğrunun Analitiği Analitik Düzlemde Simetri...25

İÇİNDEKİLER. Ön Söz...2. Noktanın Analitik İncelenmesi...3. Doğrunun Analitiği Analitik Düzlemde Simetri...25 İÇİNDEKİLER Ön Söz...2 Noktanın Analitik İncelenmesi...3 Doğrunun Analitiği...11 Analitik Düzlemde Simetri...25 Analitik Sistemde Eşitsizlikler...34 Çemberin Analitik İncelenmesi...40 Elips...58 Hiperbol...70

Detaylı

PARABOL Test -1. y x 2x m 1 parabolü x eksenini kesmiyorsa m nin alabileceği değerler kümesi aşağıdakilerden hangisidir?

PARABOL Test -1. y x 2x m 1 parabolü x eksenini kesmiyorsa m nin alabileceği değerler kümesi aşağıdakilerden hangisidir? PROL est -. m parabolü eksenini kesmiorsa m nin alabileceği değerler kümesi aşağıdakilerden hangisidir?. f a b c (, ) ) (, ) (, ) (, ) ( 6, ). m parabolü eksenini iki farklı noktada kesmektedir. una göre,

Detaylı

1. O(0,0) merkezli, 3 birim yarıçaplı. 2. x 2 +y 2 =16 denklemi ile verilen. 3. O(0,0) merkezli ve A(3,4)

1. O(0,0) merkezli, 3 birim yarıçaplı. 2. x 2 +y 2 =16 denklemi ile verilen. 3. O(0,0) merkezli ve A(3,4) HAZİNE-1 Düzlemde sabit M(a,b) noktasından eşit uzaklıkta bulunan noktaların geometrik yeri, M merkezli R yarıçaplı çemberdir. HAZİNE-2 O(0,0) merkezli, R yarıçaplı çemberin denklemi; x 2 +y 2 =R 2 dir.

Detaylı

1. Analitik düzlemde P(-4,3) noktasının eksenlerden ve O başlangıç noktasından uzaklığı kaç birimdir?

1. Analitik düzlemde P(-4,3) noktasının eksenlerden ve O başlangıç noktasından uzaklığı kaç birimdir? HAZİNE- HAZİNE-2 O başlangıç noktasında dik kesişen iki sayı ekseninin oluşturduğu sisteme koordinat sistemi denir. Bir noktanın x-eksenindeki dik izdüşümüne karşılık gelen x sayısına noktanın apsis i

Detaylı

- 2-1 0 1 2 + 4a a 0 a 4a

- 2-1 0 1 2 + 4a a 0 a 4a İKİNCİ DERECEDEN FNKSİYNLARIN GRAFİKLERİ a,b,c,z R ve a 0 olmak üzere, F : R R f() = a + b + c şeklinde tanımlanan fonksionlara ikinci dereceden bir değişkenli fonksionlar denir. Bu tür fonksionların grafikleri

Detaylı

Parametrik doğru denklemleri 1

Parametrik doğru denklemleri 1 Parametrik doğru denklemleri 1 A noktasından geçen, doğrultman (doğrultu) vektörü w olan d doğrusunun, k parametresine göre parametrik denklemi: AP k w P A k w P A k w P A k W (P değişken nokta) A w P

Detaylı

Matematikte karşılaştığınız güçlükler için endişe etmeyin. Emin olun benim karşılaştıklarım sizinkilerden daha büyüktür.

Matematikte karşılaştığınız güçlükler için endişe etmeyin. Emin olun benim karşılaştıklarım sizinkilerden daha büyüktür. - 1 - ÖĞRENME ALANI CEBİR BÖLÜM KARMAŞIK SAYILAR ALT ÖĞRENME ALANLARI 1) Karmaşık Sayılar Karmaşık Sayıların Kutupsal Biçimi KARMAŞIK SAYILAR Kazanım 1 : Gerçek sayılar kümesini genişletme gereğini örneklerle

Detaylı

alalım. O noktasına, bu eksenlerin sıfır noktası(orijin, merkez) denir. Pozitif sayılar, yatay

alalım. O noktasına, bu eksenlerin sıfır noktası(orijin, merkez) denir. Pozitif sayılar, yatay 1 DİK (KARTEZYEN) KOORDİNAT SİSTEMİ: Bir O noktasında dik olarak kesişen ata ve düşe doğrultudaki iki saı eksenini ele alalım. O noktasına, u eksenlerin sıfır noktası(orijin, merkez) denir. Pozitif saılar,

Detaylı

NOKTANIN ANALİTİK İNCELEMESİ NOKTANIN ANALİTİK İNCELEMESİ

NOKTANIN ANALİTİK İNCELEMESİ NOKTANIN ANALİTİK İNCELEMESİ NKTANIN ANALİTİK İNCELEMESİ NKTANIN ANALİTİK İNCELEMESİ Başlangıç noktasında birbirine dik olan iki saı doğrusunun oluşturduğu sisteme "Dik Koordinat Sistemi" denir. Dik Koordinat Sisteminin belirttiği

Detaylı

eğim Örnek: Koordinat sisteminde bulunan AB doğru parçasının

eğim Örnek: Koordinat sisteminde bulunan AB doğru parçasının eğim Doğrunun eğimi Eğim konusunu koordinat sistemine ve doğrunun eğimine taşımadan önce kareli zemindeki doğru parçalarının eğimini bulmaya çalışalım. Koordinat sisteminde bulunan AB doğru parçasının

Detaylı

PARABOL. çözüm. kavrama sorusu. çözüm. kavrama sorusu

PARABOL. çözüm. kavrama sorusu. çözüm. kavrama sorusu PARABL Bu bölümde birinci dereceden fonksion =f()=a+b ve ikinci dereceden fonksion =f()=a +b+c grafiklerini üzesel olarak inceleeceğiz. f()=a +b+c ikinci dereceden bir bilinmeenli polinom fonksionun grafiği

Detaylı

4. y=-2 doğrusundan 5 birim uzaklıkta. 5. O(0,0) başlangıç noktasından 3 birim. 6. A(1,2) ve B(5,8) noktalarından eşit. 7. x=-2 doğrusundan ve A(2,0)

4. y=-2 doğrusundan 5 birim uzaklıkta. 5. O(0,0) başlangıç noktasından 3 birim. 6. A(1,2) ve B(5,8) noktalarından eşit. 7. x=-2 doğrusundan ve A(2,0) GEOMETRİK YER HAZİNE-1 Analitik düzlemde, verilen bir ortak özelliği sağlayan P(x,y) noktalarının apsis ve ordinatı arasındaki bağıntıya Geometrik yer denklemi denir. 4. y=-2 doğrusundan 5 birim uzaklıkta

Detaylı

Örnek...1 : mx+3y+12=0 ve 2x 5y+3=0 doğruları para - lelse m kaçtır?

Örnek...1 : mx+3y+12=0 ve 2x 5y+3=0 doğruları para - lelse m kaçtır? İKİ DOĞRUNUN BİRBİRİNE GÖRE DURUMU DURUM 1 PARALEL DOĞRULAR ve doğruları paralel doğrular ise eğimleri eşittir. Yani / / m 1 =m 2 Ayr ıca : a 1 x+b 1 y+c 1 =0 =0} / / a 1 a 2 = b 1 c 1 c 2 Örnek...1 :

Detaylı

ÜN TE I. ANAL T K DÜZLEM

ÜN TE I. ANAL T K DÜZLEM ÜN TE I. ANAL T K DÜZLEM 1. G R fi. SAYI DO RUSU. ANAL T K DÜZLEM 4. K NOKTA ARASINDAK UZAKLIK 5. B R DO RU PARÇASININ ORTA NOKTASININ KOORD NATLARI 6. B R DO RU PARÇASINI, VER LEN B R ORANDA BÖLEN NOKTALARIN

Detaylı

ÜNİTE. MATEMATİK-1 Yrd.Doç.Dr.Ömer TARAKÇI İÇİNDEKİLER HEDEFLER DOĞRULAR VE PARABOLLER

ÜNİTE. MATEMATİK-1 Yrd.Doç.Dr.Ömer TARAKÇI İÇİNDEKİLER HEDEFLER DOĞRULAR VE PARABOLLER HEDEFLER İÇİNDEKİLER DOĞRULAR VE PARABOLLER Birinci Dereceden Polinom Fonksiyonlar ve Doğru Doğru Denklemlerinin Bulunması İkinci Dereceden Polinom Fonksiyonlar ve Parabol MATEMATİK-1 Yrd.Doç.Dr.Ömer TARAKÇI

Detaylı

1. BÖLÜM Polinomlar BÖLÜM II. Dereceden Denklemler BÖLÜM II. Dereceden Eşitsizlikler BÖLÜM Parabol

1. BÖLÜM Polinomlar BÖLÜM II. Dereceden Denklemler BÖLÜM II. Dereceden Eşitsizlikler BÖLÜM Parabol ORGANİZASYON ŞEMASI . BÖLÜM Polinomlar... 7. BÖLÜM II. Dereceden Denklemler.... BÖLÜM II. Dereceden Eşitsizlikler... 9. BÖLÜM Parabol... 5 5. BÖLÜM Trigonometri... 69 6. BÖLÜM Karmaşık Sayılar... 09 7.

Detaylı

İLKÖĞRETİM MATEMATİK ÖĞRETMENLERİ ZÜMRESİ WWW.OGRETMENFORUMU.COM YAKLAŞAN SINAVDA KORKUYU SEVİNCE DÖNÜŞTÜREN GRUP UNUTMAYIN SİZLER İÇİN BİZ HERŞEYE HAZIRIZ! Sadece MATEMATİK Öğretmenlerine Özel Grubumuz

Detaylı

EĞİM, BİR DOĞRUNUN DENKLEMİ VE EĞİMİ ARASINDAKİ İLİŞKİ

EĞİM, BİR DOĞRUNUN DENKLEMİ VE EĞİMİ ARASINDAKİ İLİŞKİ Özgür EKER EĞİM, BİR DOĞRUNUN DENKLEMİ VE EĞİMİ ARASINDAKİ İLİŞKİ Eğim: ETKİNLİK : Bir bisiklet arışındaki iki farklı parkur aşağıdaki gibidir. I. parkurda KL 00 metre ve II. parkurda AB 00 metre olduğuna

Detaylı

ÖZEL EGE LİSESİ EGE BÖLGESİ OKULLAR ARASI 16. MATEMATİK YARIŞMASI 10. SINIF ELEME SINAVI TEST SORULARI

ÖZEL EGE LİSESİ EGE BÖLGESİ OKULLAR ARASI 16. MATEMATİK YARIŞMASI 10. SINIF ELEME SINAVI TEST SORULARI EGE BÖLGESİ OKULLAR ARASI. MATEMATİK YARIŞMASI 0. SINIF ELEME SINAVI TEST SORULARI 5. sayısının virgülden sonra 9 99 999 5. basamağındaki rakam kaçtır? A) 0 B) C) 3 D) E) 8!.!.3!...4! 4. A= aşağıdaki hangi

Detaylı

2. HAFTA DERS NOTLARI İKTİSADİ MATEMATİK MİKRO EKONOMİK YAKLAŞIM. Yazan SAYIN SAN

2. HAFTA DERS NOTLARI İKTİSADİ MATEMATİK MİKRO EKONOMİK YAKLAŞIM. Yazan SAYIN SAN 2. HAFTA DERS NOTLARI İKTİSADİ MATEMATİK MİKRO EKONOMİK YAKLAŞIM Yazan SAYIN SAN SAN / İKTİSADİ MATEMATİK / 2 C.1.2. Piyasa Talep Fonksiyonu Bireysel talep fonksiyonlarının toplanması ile bir mala ait

Detaylı

DENEYSELVERİLERİN GRAFİĞE AKTARILMASI

DENEYSELVERİLERİN GRAFİĞE AKTARILMASI DENEYSELVERİLERİN GRAFİĞE AKTARILMASI 1 Değişken (variable): Miktarı, yani sayısal bir değeri ifade etmektedir. Cebirsel eşitliklerde değişkenler, Latin alfabesinin başlangıç ve son harfleri ile ifade

Detaylı

T I M U R K A R A Ç AY, H AY D A R E Ş, O R H A N Ö Z E R K A L K U L Ü S N O B E L

T I M U R K A R A Ç AY, H AY D A R E Ş, O R H A N Ö Z E R K A L K U L Ü S N O B E L T I M U R K A R A Ç AY, H AY D A R E Ş, O R H A N Ö Z E R K A L K U L Ü S N O B E L 1 Denklemler 1.1 Doğru deklemleri İki noktası bilinen ya da bir noktası ile eğimi bilinen doğruların denklemlerini yazabiliriz.

Detaylı

Cebirsel Fonksiyonlar

Cebirsel Fonksiyonlar Cebirsel Fonksiyonlar Yazar Prof.Dr. Vakıf CAFEROV ÜNİTE 4 Amaçlar Bu üniteyi çalıştıktan sonra; polinom, rasyonel ve cebirsel fonksiyonları tanıyacak ve bu türden bazı fonksiyonların grafiklerini öğrenmiş

Detaylı

İLKÖĞRETİM MATEMATİK ÖĞRETMENLERİ ZÜMRESİ WWW.OGRETMENFORUMU.COM YAKLAŞAN SINAVDA KORKUYU SEVİNCE DÖNÜŞTÜREN GRUP UNUTMAYIN SİZLER İÇİN BİZ HERŞEYE HAZIRIZ! Sadece MATEMATİK Öğretmenlerine Özel Grubumuz

Detaylı

8. SINIF EGİM. Dikeyuzunluk Eğim(m) Yatayuzunluk. ÖR: AĢağıdaki doğruların eğimleri yüzde kaçtır? ÖR: AĢağıdaki AB doğrularının eğimlerini bulunuz.

8. SINIF EGİM. Dikeyuzunluk Eğim(m) Yatayuzunluk. ÖR: AĢağıdaki doğruların eğimleri yüzde kaçtır? ÖR: AĢağıdaki AB doğrularının eğimlerini bulunuz. 8. SINIF EGİM Dikeyuzunluk Eğim(m) Yatayuzunluk Ģağıdaki doğruların eğimleri yüzde kaçtır? Ģağıdaki doğrularının eğimlerini bulunuz. cm cm m= cm m= 0cm cm Yukarıdaki dik üçgende doğru parçasının eğimi

Detaylı

8. SINIF 2 BiLiNMEYENLi DENKLEM SiSTEMLERi

8. SINIF 2 BiLiNMEYENLi DENKLEM SiSTEMLERi 14 8. SINIF 2 BiLiNMEYENLi DENKLEM SiSTEMLERi İçerisinde 2 tane bilinmeyen bulunan ve bilinmeyenlerin derecesi en fazla 1 olan eşitliklere birinci dereceden iki bilinmeyenli denklem sistemleri denir. Çözüm

Detaylı

ÖSS MATEMATİK TÜREV FASİKÜLÜ

ÖSS MATEMATİK TÜREV FASİKÜLÜ ÖSS MATEMATİK TÜREV FASİKÜLÜ GRAFİK ÇİZİMİ Bir fonksiyonun denklemi verilip grafiği istendiğinde aşağıdaki yolu izlemeliyiz. ) Fonksiyonun en geniş tanım kümesi bulunur. ) ± için fonksiyonun limiti bulunur.

Detaylı

13. 2x y + z = 3 E) 1. (Cevap B) 14. Dikdörtgen biçimindeki bir tarlanın boyu 10 metre, eni 5 metre. Çözüm Yayınları

13. 2x y + z = 3 E) 1. (Cevap B) 14. Dikdörtgen biçimindeki bir tarlanın boyu 10 metre, eni 5 metre. Çözüm Yayınları Doğrusal Denklem Sistemlerinin Çözümleri BÖLÜM 04 Test 0. y = y = 6 denklem sisteminin çözüm kümesi aşağıdakilerden A) {(, 4)} B) {(, )} C) {(, 4)} D) {( 4, )} E) {(, )}./ y = / y = 6 5 = 5 = = için y

Detaylı

Mühendislik Mekaniği Statik. Yrd.Doç.Dr. Akın Ataş

Mühendislik Mekaniği Statik. Yrd.Doç.Dr. Akın Ataş Mühendislik Mekaniği Statik Yrd.Doç.Dr. Akın Ataş Bölüm 10 Eylemsizlik Momentleri Kaynak: Mühendislik Mekaniği: Statik, R. C.Hibbeler, S. C. Fan, Çevirenler: A. Soyuçok, Ö. Soyuçok. 10. Eylemsizlik Momentleri

Detaylı

LYS MATEMATÝK II - 10

LYS MATEMATÝK II - 10 ÝREY DERSHNELERÝ SINIF ÝÇÝ DERS UYGULM FÖYÜ (MF-TM) DERSHNELERÝ LYS MTEMTÝK II - 0 PRL - I Ders anlatým föleri öðrenci tarafýndan dersten sonra tekrar çalýþýlmalýdýr. dý Soadý :... u kitapçýðýn her hakký

Detaylı

Düzlemde Dönüşümler: Öteleme, Dönme ve Simetri. Not 1: Buradaki A noktasına dönme merkezi denir.

Düzlemde Dönüşümler: Öteleme, Dönme ve Simetri. Not 1: Buradaki A noktasına dönme merkezi denir. Düzlemde Dönüşümler: Öteleme, Dönme ve Simetri Düzlemin noktalarını, düzlemin noktalarına eşleyen bire bir ve örten bir fonksiyona düzlemin bir dönüşümü denir. Öteleme: a =(a 1,a ) ve u =(u 1,u ) olmak

Detaylı

KUTUPSAL KOORDİNATLAR

KUTUPSAL KOORDİNATLAR KUTUPSAL KOORDİNATLAR Geometride, bir noktanın konumunu belirtmek için değişik yöntemler uygulanır. Örnek olarak çok kullanılan Kartezyen (Dik ) Koordinat sistemini anımsatarak çalışmamıza başlayalım.

Detaylı

1986 ÖYS. 3 b. 2 b C) a= 1. Aşağıdaki ABC üçgeninde. BD kaç cm dir? C) 3 D) 8 E)

1986 ÖYS. 3 b. 2 b C) a= 1. Aşağıdaki ABC üçgeninde. BD kaç cm dir? C) 3 D) 8 E) ÖYS. Aşağıdaki ABC üçgeninde. BD kaç cm dir? 0. Aşağıdaki şekilde ABCD bir yamuk ve AECD bir paralel kenardır.. Aşağıdaki şekilde EAB ve FBC eşkenar üçgendir. AECD nin alanı cm Buna göre CEB üçgeninin

Detaylı

Öğr. Gör. Serkan AKSU

Öğr. Gör. Serkan AKSU Öğr. Gör. Serkan AKSU www.serkanaksu.net İki nokta arasındaki yerdeğiştirme, bir noktadan diğerine yönelen bir vektördür, ve bu vektörün büyüklüğü, bu iki nokta arasındaki doğrusal uzaklık olarak alınır.

Detaylı

a) Çıkarma işleminin; eksilen ile çıkanın ters işaretlisinin toplamı anlamına geldiğini kavrar.

a) Çıkarma işleminin; eksilen ile çıkanın ters işaretlisinin toplamı anlamına geldiğini kavrar. 7. SINIF KAZANIM VE AÇIKLAMALARI M.7.1. SAYILAR VE İŞLEMLER M.7.1.1. Tam Sayılarla Toplama, Çıkarma, Çarpma ve Bölme İşlemleri M.7.1.1.1. Tam sayılarla toplama ve çıkarma işlemlerini yapar; ilgili problemleri

Detaylı

Değişken içeren ve değişkenlerin belli değerleri için doğru olan cebirsel eşitliklere denklem denir.

Değişken içeren ve değişkenlerin belli değerleri için doğru olan cebirsel eşitliklere denklem denir. 1 DENKLEMLER: Değişken içeren ve değişkenlerin belli değerleri için doğru olan cebirsel eşitliklere denklem denir. Bir denklemde eşitliği sağlayan(doğrulayan) değerlere; verilen denklemin kökleri veya

Detaylı

2. Dereceden Denklem ve Eşitsizlikler x 2 2x + 2m + 1 = 0 denkleminin kökleri x 1 ve x 2 dir. 4x 1 + 5x 2 = 7 ise m aşağıdakilerden hangisidir?

2. Dereceden Denklem ve Eşitsizlikler x 2 2x + 2m + 1 = 0 denkleminin kökleri x 1 ve x 2 dir. 4x 1 + 5x 2 = 7 ise m aşağıdakilerden hangisidir? MC www.matematikclub.com, 006 Cebir Notları Gökhan DEMĐR, gdemir3@ahoo.com.tr. Dereceden Denklem ve Eşitsizlikler- TEST I A) 1 B) C) 3 D) 4 E) 5 1. 1/ = 0 denkleminin köklerinin toplamı aşağıdakilerden

Detaylı

Aralıklar, Eşitsizlikler, Mutlak Değer

Aralıklar, Eşitsizlikler, Mutlak Değer ARALIKLAR Gerçel sayıların, aralık olarak adlandırılan bazı kümeleri kalkülüste sık sık kullanılır ve geometrik olarak doğru parçalarına karşılık gelir. Örneğin, a < b ise, a dan b ye açık aralık, a ile

Detaylı

Matematik Yarıyıl Tatili Etkinliği

Matematik Yarıyıl Tatili Etkinliği Matematik Yarıyıl Tatili Etkinliği 1) Sayı doğrusunda, 4 ile 3 arasında olan tam sayıların çarpımı kaçtır? A) 12 B) 0 C) 12 D) 144 2) İkisi pozitif, biri negatif olan üç tane tam sayının çarpımı için aşağıdakilerden

Detaylı

4. BÖLÜM DOĞRUSAL DENKLEM SİSTEMLERİ

4. BÖLÜM DOĞRUSAL DENKLEM SİSTEMLERİ 4. BÖLÜM DOĞRUSAL DENKLEM SİSTEMLERİ Doğrusal Denklem Sistemi x 1,x 2,,x n ler bilinmeyenler olmak üzere, doğrusal denklemlerin oluşturduğu; a x a x a x b 11 1 12 2 1n n 1 a x a x a x b 21 1 22 2 2n n

Detaylı

Öğr. Elemanı: Dr. Mustafa Cumhur AKBULUT

Öğr. Elemanı: Dr. Mustafa Cumhur AKBULUT Ünite 10: Regresyon Analizi Öğr. Elemanı: Dr. Mustafa Cumhur AKBULUT 10.Ünite Regresyon Analizi 2 Ünitede Ele Alınan Konular 10. Regresyon Analizi 10.1. Basit Doğrusal regresyon 10.2. Regresyon denklemi

Detaylı

8. SINIF YANSIMA, ÖTELEME VE DÖNME

8. SINIF YANSIMA, ÖTELEME VE DÖNME 07 8. SINIF YANSIMA, ÖTELEME VE DÖNME YANSIMA x eksenine göre yansıma: x eksenine göre yansıma işleminde, yansıma sonrası apsisler değişmez iken ordinat değeri işaret değiştirir.(x kendini korur, y ile

Detaylı

Koordinat sistemi. a) x = 2 için 3x -2y =14 y =? b) x = 2 için 2y =10-4x y =? c) x = -3 için 3y +5x = 3 y =? d) x = -1 için -3x = 5-2y y =?

Koordinat sistemi. a) x = 2 için 3x -2y =14 y =? b) x = 2 için 2y =10-4x y =? c) x = -3 için 3y +5x = 3 y =? d) x = -1 için -3x = 5-2y y =? Koordinat sistemi Bağımlı bağımsız değişken Denklemlerde iki bilinmeyen varsa bunları bulmak için bilinmeyenlerden birine değer verilir diğeri bulunur. Burada değer verilen bilinmeyene, bağımsız değişken

Detaylı

Denklemler İkinci Dereceden Denklemler. İkinci dereceden Bir Bilinmeyenli Denklemler. a,b,c IR ve a 0 olmak üzere,

Denklemler İkinci Dereceden Denklemler. İkinci dereceden Bir Bilinmeyenli Denklemler. a,b,c IR ve a 0 olmak üzere, Bölüm 33 Denklemler 33.1 İkinci Dereceden Denklemler İkinci dereceden Bir Bilinmeyenli Denklemler a,b,c IR ve a 0 olmak üzere, ax 2 + bx + c = 0 biçimindeki her açık önermeye ikinci dereceden bir bilinmeyenli

Detaylı

TÜREVİN GEOMETRİK YORUMU

TÜREVİN GEOMETRİK YORUMU TÜREVİN GEOMETRİK YORUMU f :R R, =f ( fonksionuna düzlemde A karşılık gelen f( +h eğri anda ki =f( P gibi olsun. f( Eğrinin P(,f( noktasındaki teğetlerini +h araştıralım. Bunun için P(,f( noktasının sağıda

Detaylı

EKSTREMUM PROBLEMLERİ. Örnek: Çözüm: Örnek: Çözüm:

EKSTREMUM PROBLEMLERİ. Örnek: Çözüm: Örnek: Çözüm: EKSTREMUM PROBLEMLERİ Ekstremum Problemleri Bu tür problemlerde bir büyüklüğün (çokluğun alabileceği en büyük (maksimum değer ya da en küçük (minimum değer bulunmak istenir. İstenen çokluk bir değişkenin

Detaylı

UZAYDA VEKTÖRLER ve DOĞRU DÜZLEM

UZAYDA VEKTÖRLER ve DOĞRU DÜZLEM UD VEKTÖRLER ve DĞRU DÜLEM. ir küpün ayrıtlarını taşıyan doğrular kaç farklı doğrultu oluşturur? ) ) ) D) 7 E) 8. ir düzgün altıgenin en uzun köşegeni ile aynı doğrultuda kaç farklı kenar vardır?. şağıdaki

Detaylı

LYS Y OĞRU MTMTİK TSTİ LYS-. u testte Matematik ile ilgili soru vardır.. evaplarınızı, cevap kâğıdının Matematik Testi için ayrılan kısmına işaretleyiniz.. u testteki süreniz 7 dakikadır.. a ve b asal

Detaylı

2001 ÖSS. A) a-1 B) a 2 +1 C) a 2 +a D) a 2-2a+1 E) a <x<y olduğuna göre, aşağıdakilerden hangileri yanlıştır? y x

2001 ÖSS. A) a-1 B) a 2 +1 C) a 2 +a D) a 2-2a+1 E) a <x<y olduğuna göre, aşağıdakilerden hangileri yanlıştır? y x 00 ÖSS. 0, 0,0 0,0 0,00 0,00 0,000 Đşleminin sonucu kaçtır? A) 0, B) 0, C) 0 D) 0 E) 00 6. a bir tamsayı olduğuna göre, aşağıdakilerden hangisinin sonucu kesinlikle çift sayıdır? A) a- B) a C) a a D) a

Detaylı

DERSİN ADI: MATEMATİK II MAT II (12) KUTUPSAL KOORDİNATLAR VE UYGULAMALARI 1. KUTUPSAL KOORDİNATLAR 2. EĞRİ ÇİZİMLERİ

DERSİN ADI: MATEMATİK II MAT II (12) KUTUPSAL KOORDİNATLAR VE UYGULAMALARI 1. KUTUPSAL KOORDİNATLAR 2. EĞRİ ÇİZİMLERİ DERSİN ADI: MATEMATİK II MAT II (1) ÜNİTE: KUTUPSAL KOORDİNATLAR VE UYGULAMALARI 1. KUTUPSAL KOORDİNATLAR. EĞRİ ÇİZİMLERİ GEREKLİ ÖN BİLGİLER 1. Trigonometrik fonksiyonlar. İntegral formülleri KONU ANLATIMI

Detaylı

ANALİTİK GEOMETRİ KARMA / TEST-1

ANALİTİK GEOMETRİ KARMA / TEST-1 NLİTİK GEMETRİ KRM / TEST-. (, ) noktasından geçen ve + = 0 doğrusuna paralel olan doğrunun eksenini kestiği noktanın ordinatı ) ) 7 ) 9 ). = (k 6) + b k = k doğrularının ekseni üzerinde dik kesişmeleri

Detaylı

6 II. DERECEDEN FONKSÝYONLAR 2(Parabol) (Grafikten Parabolün Denklemi-Parabol ve Doðru) LYS MATEMATÝK. y f(x) f(x)

6 II. DERECEDEN FONKSÝYONLAR 2(Parabol) (Grafikten Parabolün Denklemi-Parabol ve Doðru) LYS MATEMATÝK. y f(x) f(x) 6 II. DERECEDEN FNKSÝYNLR (Parabol) (Grafikten Parabolün Denklemi-Parabol ve Doðru) LYS MTEMTÝK 1. f(). f() 6 8 T Yukarıda grafiği verilen = f() parabolünün denklemi nedir?( = 6) Yukarıda grafiği verilen

Detaylı

BÝREY DERSHANELERÝ SINIF ÝÇÝ DERS ANLATIM FÖYÜ MATEMATÝK - II

BÝREY DERSHANELERÝ SINIF ÝÇÝ DERS ANLATIM FÖYÜ MATEMATÝK - II ÝREY DERSHNELERÝ SINIF ÝÇÝ DERS NLTIM FÖYÜ DERSHNELERÝ Konu Ders dý ölüm Sýnav DF No. MTEMTÝK - II PRL - I MF TM LYS 09 Ders anlatým föleri öðrenci tarafýndan dersten sonra tekrar çalýþýlmalýdýr. dý Soadý

Detaylı

sayısının tamkare olmasını sağlayan kaç p asal sayısı vardır?(88.32) = n 2 ise, (2 p 1

sayısının tamkare olmasını sağlayan kaç p asal sayısı vardır?(88.32) = n 2 ise, (2 p 1 TAM KARELER 1. Bir 1000 basamaklı sayıda bir tanesi dışında tüm basamaklar 5 tir. Bu sayının hiçbir tam sayının karesi olamayacağını kanıtlayınız. (2L44) Çözüm: Son rakam 5 ise, bir önceki 2 olmak zorunda.

Detaylı

9. BÖLÜM. Özel Tanımlı Fonksiyonlar ÇİFT VE TEK FONKSİYONLAR: ÖRNEK ÖRNEK ÇÖZÜM ÇÖZÜM. M A T E M A T İ K

9. BÖLÜM. Özel Tanımlı Fonksiyonlar ÇİFT VE TEK FONKSİYONLAR: ÖRNEK ÖRNEK ÇÖZÜM ÇÖZÜM. M A T E M A T İ K M A T E M A T İ K www.akademitemellisesi.com ÇİFT VE TEK FONKSİYONLAR: f:ar (A R) fonksionu için, 9. BÖLÜM ) Her A için f( ) = f() ise f e çift fonksion denir. olduğundan ne tek nede çifttir. MUTL AK DEĞER

Detaylı

Örnek...1 : f (x)=2x 2 5x+6 parabolü K(2,p) noktasından geçiyorsa p kaçtır? Örnek...2 : Aşağıda çeşitli parabol grafikleri verilmiştir incele yi niz.

Örnek...1 : f (x)=2x 2 5x+6 parabolü K(2,p) noktasından geçiyorsa p kaçtır? Örnek...2 : Aşağıda çeşitli parabol grafikleri verilmiştir incele yi niz. a, b,c R,a 0 olmak koşulula f ()=a 2 +b+c fonksionuna ikinci dereceden bir değişkenli fonksion ve bu fonksionun belirttiği eğrie de parabol denir. Uarı ir parabolün grafiği başkatsaı olan a saısına bağlı

Detaylı

Yanda verilen ABCD dikdörtgeninde AB = 5x br ve BC = 6x br'dir. Buna göre, bu dikdörtgenin alanı kaç br 2 'dir?

Yanda verilen ABCD dikdörtgeninde AB = 5x br ve BC = 6x br'dir. Buna göre, bu dikdörtgenin alanı kaç br 2 'dir? Ders 0 CEBİRSEL İFADELER + 5 + cebirsel ifadesinde Değişken:, Terimler:, 5,, Katsaılar:, 5,, Sabit terim: 'tür. 5 A B 6 D C Yanda verilen ABCD dikdörtgeninde AB = 5 br ve BC = 6 br'dir. Buna göre, bu dikdörtgenin

Detaylı

ÖRNEK: Öteleme ile oluşturulmuş bir süsleme. ÖRNEK: 2)GEOMETRİK HAREKETLER

ÖRNEK: Öteleme ile oluşturulmuş bir süsleme. ÖRNEK: 2)GEOMETRİK HAREKETLER ÖTELEME: Bir şeklin duruşunun, biçiminin, boyutlarının bozulmadan yer değiştirmesine o şekli öteleme denir. Ötelemede biçim, boyut, yön değişmez. Yer değişir. Bir şekil ötelendiği zaman şekil üzerindeki

Detaylı

4. y=-2 doğrusundan 5 birim uzaklıkta. 5. O(0,0) başlangıç noktasından 3 birim. 6. A(1,2) ve B(5,8) noktalarından eşit. 7. x=-2 doğrusundan ve A(2,0)

4. y=-2 doğrusundan 5 birim uzaklıkta. 5. O(0,0) başlangıç noktasından 3 birim. 6. A(1,2) ve B(5,8) noktalarından eşit. 7. x=-2 doğrusundan ve A(2,0) GEOMETRİK YER HAZİNE-1 Analitik düzlemde, verilen bir ortak özelliği sağlayan P(x,y) noktalarının apsis ve ordinatı arasındaki bağıntıya Geometrik yer denklemi denir. Geometrik yer üzerindeki noktalar

Detaylı

1982 ÖYS. c d. ifadesinin sadeleştirilmiş biçimi aşağıdakilerden hangisidir? çarpımının değeri nedir? B) 2 C) 2 A) 2 D) 2 E) 2. A) a B) 1 C) E) a+12

1982 ÖYS. c d. ifadesinin sadeleştirilmiş biçimi aşağıdakilerden hangisidir? çarpımının değeri nedir? B) 2 C) 2 A) 2 D) 2 E) 2. A) a B) 1 C) E) a+12 8 ÖYS a c. olduğuna göre b d çarpımının değeri nedir? A). B) C) 7 a b b D) 5 c d c E) a a 5. a a ifadesinin sadeleştirilmiş biçimi aşağıdakilerden hangisidir? A) a B) C) E) a+ a a D) a 6. 5 kız, 5 erkek

Detaylı

Üç Boyutlu Uzayda Koordinat sistemi

Üç Boyutlu Uzayda Koordinat sistemi Üç Boyutlu Uzayda Koordinat sistemi Uzayda bir noktayı ifade edebilmek için ilk önce O noktasını (başlangıç noktası) ve bu noktadan geçen ve birbirine dik olan üç yönlü doğruyu seçerek sabitlememiz gerekir.

Detaylı

Üç Boyutlu Uzayda Koordinat Sistemi

Üç Boyutlu Uzayda Koordinat Sistemi Üç Boyutlu Uzayda Koordinat Sistemi Yrd. Doç. Dr. Didem COŞKAN MAT 1010 Matematik II 1/ 104 Üç Boyutlu Uzayda Koordinat Sistemi Uzayda bir noktayı ifade edebilmek için ilk önce O noktasını (başlangıç noktası)

Detaylı

SİDRE 2000 ORTAOKULU EĞİTİM-ÖĞRETİM YILI 7. SINIFLAR MATEMATİK DERSİ ÜNİTELENDİRİLMİŞ YILLIK PLAN

SİDRE 2000 ORTAOKULU EĞİTİM-ÖĞRETİM YILI 7. SINIFLAR MATEMATİK DERSİ ÜNİTELENDİRİLMİŞ YILLIK PLAN SİDRE 000 ORTAOKULU 06-07 EĞİTİM-ÖĞRETİM YILI 7. SINIFLAR MATEMATİK DERSİ ÜNİTELENDİRİLMİŞ YILLIK PLAN ÜNİTE ÖĞRENME ALANI ALT ÖĞRENME ALANI Ders Saati 9.09.06/.09.06 Tam Sayılarla Çarpma ve Bölme i 7...

Detaylı

Taşkın, Çetin, Abdullayeva

Taşkın, Çetin, Abdullayeva BÖLÜM Taşkın, Çetin, Abdullaeva FONKSİYONLAR.. FONKSİYON KAVRAMI Tanım : A ve B boş olmaan iki küme a A ve b B olmak üzere ( ab, ) sıralı eleman çiftine sıralı ikili denir. ( ab, ) sıralı ikilisinde a

Detaylı

25. f: R { 4} R 28. ( ) 3 2 ( ) 26. a ve b reel sayılar olmak üzere, 27. ( ) eğrisinin dönüm noktasının ordinatı 10 olduğuna göre, m kaçtır?

25. f: R { 4} R 28. ( ) 3 2 ( ) 26. a ve b reel sayılar olmak üzere, 27. ( ) eğrisinin dönüm noktasının ordinatı 10 olduğuna göre, m kaçtır? . f: R { 4} R, > ise ( ) 4 f =, ise 6 8. ( ) f = 6 + m + 4 eğrisinin dönüm noktasının ordinatı olduğuna göre, m kaçtır? ) 7 ) 8 ) 9 ) E) fonksiyonu aşağıdaki değerlerinin hangisinde süreksizdir? ) ) )

Detaylı

İkinci Mertebeden Lineer Diferansiyel Denklemler

İkinci Mertebeden Lineer Diferansiyel Denklemler A(x)y + B(x)y + C(x)y = F (x) (5) Denklem (5) in sağ tarafında bulunan F (x) fonksiyonu, I aralığı üzerinde sıfıra özdeş ise, (5) denklemine lineer homogen; aksi taktirde lineer homogen olmayan denklem

Detaylı

7.2 Fonksiyon ve Fonksiyon Tanımları (I) Fonksiyon ve Fonksiyon Tanımları (II)

7.2 Fonksiyon ve Fonksiyon Tanımları (I) Fonksiyon ve Fonksiyon Tanımları (II) 7.2 Fonksiyon ve Fonksiyon Tanımları (I) Tanım kümesindeki her elemanın değer kümesinde bir ve yalnız bir görüntüsü varsa, tanım kümesinden değer kümesine olan bağıntıya fonksiyon denir. Fonksiyonu f ile

Detaylı

ÖZEL EGE LİSESİ EGE BÖLGESİ OKULLAR ARASI 15.MATEMATİK YARIŞMASI 8. SINIFLAR FİNAL SORULARI

ÖZEL EGE LİSESİ EGE BÖLGESİ OKULLAR ARASI 15.MATEMATİK YARIŞMASI 8. SINIFLAR FİNAL SORULARI EGE BÖLGESİ OKULLAR ARASI 5.MATEMATİK YARIŞMASI 8. SINIFLAR FİNAL SORULARI. (a n ) bir geometrik dizidir. a5+a 6 a+a 8 olduğuna göre, kaçtır? a. Bir ABC dik üçgeninde [AB] [BC] dir. [AB] kenarı üzerinde

Detaylı

MAKSİMUM-MİNİMUM PROBLEMLERİ

MAKSİMUM-MİNİMUM PROBLEMLERİ 1 MAKSİMUM-MİNİMUM PROBLEMLERİ En büyük veya en küçük olması istenen değer (uzunluk, alan, hacim, vb.) tek değişkene bağlı bir fonksiyon olacak şekilde düzenlenir. Bu fonksiyonun türevinden ekstremum noktasının

Detaylı

MAT355 Kompleks Fonksiyonlar Teorisi I Hafta Kompleks Sayıların Cebirsel ve Geometrik Özellikleri

MAT355 Kompleks Fonksiyonlar Teorisi I Hafta Kompleks Sayıların Cebirsel ve Geometrik Özellikleri 1. KOMPLEKS SAYILAR 1.1. Kompleks Sayıların Cebirsel ve Geometrik Özellikleri Tanım 1. x, y R olmak üzere (x, y) sıralı ikililerine kompleks sayı denir. Burada x, z nin reel kısmı, ve y, z nin imajiner

Detaylı

1995 ÖSS. 6. Toplamları 621 olan iki pozitif tamsayıdan büyüğü küçüğüne bölündüğünde bölüm 16, kalan ise 9 dur. Buna göre, büyük sayı kaçtır?

1995 ÖSS. 6. Toplamları 621 olan iki pozitif tamsayıdan büyüğü küçüğüne bölündüğünde bölüm 16, kalan ise 9 dur. Buna göre, büyük sayı kaçtır? 99 ÖSS.. 0, 0, 0,44. işleminin sonucu A) 0, B) 0,4 C) D) 4 E) 0 6. Toplamları 6 olan iki pozitif tamsayıdan büyüğü küçüğüne bölündüğünde bölüm 6, kalan ise 9 dur. Buna göre, büyük sayı A) 70 B) 7 C) 80

Detaylı

A A A A A A A A A A A

A A A A A A A A A A A LYS 1 GOMTRİ TSTİ 1. u testte sırasıyla Geometri (1 ) nalitik Geometri (3 30) ile ilgili 30 soru vardır.. evaplarınızı, cevap kâğıdının Geometri Testi için ayrılan kısmına işaretleyiniz. 1. [ [ [ [] []

Detaylı

Viyana İmam Hatip Lisesi Öğrenci Seçme Sınavı - Matematik

Viyana İmam Hatip Lisesi Öğrenci Seçme Sınavı - Matematik Viyana İmam Hatip Lisesi Öğrenci Seçme Sınavı - Matematik 1. Ünite: Geometriden Olasılığa 1. Bölüm: Yansıyan ve Dönen Şekiller, Fraktallar Yansıma, Öteleme, Dönme Fraktallar 2. Bölüm: Üslü Sayılar Tam

Detaylı

Örnek...1 : Örnek...3 : Örnek...2 :

Örnek...1 : Örnek...3 : Örnek...2 : FONKSİYONLR FONKSİYONUN EKSENLERİ KESİM NOKTLRI fonksionunun ekseninin kestiği k noktaların m apsisleri b, c, e dir. u noktalar a b c f()= denkleminin n kök leridir p in eksenini kestiği nokta ise (,p)

Detaylı

TÜREV VE UYGULAMALARI

TÜREV VE UYGULAMALARI TÜREV VE UYGULAMALARI 1-TÜREVİN TANIMI VE GÖSTERİLİŞİ a,b R olmak üzere, f:[a,b] R fonksiyonu verilmiş olsun. x 0 (a,b) için lim x X0 f(x)-f( x 0 ) limiti bir gerçel sayı ise bu limit değerine f fonksiyonunun

Detaylı

T I M U R K A R A Ç AY - H AY D A R E Ş C A L C U L U S S E Ç K I N YAY I N C I L I K A N K A R A

T I M U R K A R A Ç AY - H AY D A R E Ş C A L C U L U S S E Ç K I N YAY I N C I L I K A N K A R A T I M U R K A R A Ç AY - H AY D A R E Ş C A L C U L U S S E Ç K I N YAY I N C I L I K A N K A R A Contents Bibliography 9 Index 13 CONTENTS 5 0.1 Doğru, Düzlem, Uzay Bu derste sık sık doğru, düzlem ve

Detaylı

SAY 203 MİKRO İKTİSAT

SAY 203 MİKRO İKTİSAT SAY 203 MİKRO İKTİSAT Esneklikler YRD. DOÇ. DR. EMRE ATILGAN SAY 203 MİKRO İKTİSAT - YRD. DOÇ. DR. EMRE ATILGAN 1 ESNEKLİKLER Talep Esneklikleri Talep esneklikleri: Bir malın talebinin talebi etkileyen

Detaylı

Saat Yönünde 90 Derecelik Dönme Hareketi. Saatin Tersi Yönünde 90 Derecelik Dönme Hareketi

Saat Yönünde 90 Derecelik Dönme Hareketi. Saatin Tersi Yönünde 90 Derecelik Dönme Hareketi Saat Yönünde 9 Derecelik Dönme Hareketi Saatin Tersi Yönünde 9 Derecelik Dönme Hareketi çizilmiş olan üçgenin orjin etrafında saat yönünde 9 lik dönme hareketine ait görüntüsünü çizip bu üçgenin köşe koordinatlarını

Detaylı

9SINIF MATEMATİK. Denklemler ve Eşitsizlikler

9SINIF MATEMATİK. Denklemler ve Eşitsizlikler 9SINIF MATEMATİK Denklemler ve Eşitsizlikler YAYIN KOORDİNATÖRÜ Oğuz GÜMÜŞ EDİTÖR Hazal ÖZNAR - Uğurcan AYDIN DİZGİ Muhammed KARATAŞ SAYFA TASARIM - KAPAK F. Özgür OFLAZ Eğer bir gün sözlerim bilim ile

Detaylı

2018/2019 EĞİTİM ÖĞRETİM YILI.ORTAOKULU 8. SINIFLAR MATEMATİK DERSİ 2. DÖNEM 1. YAZILI SINAVI

2018/2019 EĞİTİM ÖĞRETİM YILI.ORTAOKULU 8. SINIFLAR MATEMATİK DERSİ 2. DÖNEM 1. YAZILI SINAVI AD/SOYAD: NO: 2018/2019 EĞİTİM ÖĞRETİM YILI.ORTAOKULU 8. SINIFLAR MATEMATİK DERSİ 2. DÖNEM 1. YAZILI SINAVI PUAN: 1) 6 İrrasonel saısı hangisi ile çarpılırsa rasonel saı elde edilir? a) 12 b) 2 c) 12 d)

Detaylı

ÖRNEK : x. y = 1 biçiminde verilen fonksiyonun grafiğini. çiziniz. Çizim : x. y = 1 olması ancak x =1ve y =1 yada x =-1ve. x =1ve x =-1ve ÖRNEK :

ÖRNEK : x. y = 1 biçiminde verilen fonksiyonun grafiğini. çiziniz. Çizim : x. y = 1 olması ancak x =1ve y =1 yada x =-1ve. x =1ve x =-1ve ÖRNEK : MC www.matematikclub.com, 6 Cebir Notları Gökhan DEMĐR, gdemir@ahoo.com.tr Özel Tanımlı Fonksionlar. Tam değer fonksionu: Tanım: Tamsaı ise kendisi, tamsaı değilse kendinden önce gelen ilk tamsaı (kendinden

Detaylı

12-B. Polinomlar - 1 TEST. olduğuna göre P(x - 2, y + 4) polinomunun katsayılar toplamı kaçtır? olduğuna göre A B kaçtır? A) 78 B) 73 C) 62 D 58 E) 33

12-B. Polinomlar - 1 TEST. olduğuna göre P(x - 2, y + 4) polinomunun katsayılar toplamı kaçtır? olduğuna göre A B kaçtır? A) 78 B) 73 C) 62 D 58 E) 33 -B TEST Polinomlar -. Py _, i= y- y + 5y- olduğuna göre P( -, y + ) polinomunun katsayılar toplamı. - 6 = A - 5 + - + B - olduğuna göre A B 78 B) 7 6 D 58 E) B) D) - E) -. -a- b = _ + -5i_ -ci eşitliğine

Detaylı

8. SINIF MATEMATİK. Asal Çarpanlar Test sayısının kaç tane asal çarpanı vardır?

8. SINIF MATEMATİK. Asal Çarpanlar Test sayısının kaç tane asal çarpanı vardır? 8. SINIF MTEMTİ sal Çarpanlar Test. 84 sayısının kaç tane asal çarpanı vardır? ) 2 ) 3 ) 4 ) 5 5. İki basamaklı 9m sayısı asal sayıdır. una göre m yerine kaç farklı rakam yazılabilir? ) ) 2 ) 3 ) 4 2.

Detaylı

2012 LYS MATEMATİK SORU VE ÇÖZÜMLERİ Niyazi Kurtoğlu

2012 LYS MATEMATİK SORU VE ÇÖZÜMLERİ Niyazi Kurtoğlu .SORU 8 sayı tabanında verilen (5) 8 sayısının sayı tabanında yazılışı nedir?.soru 6 3 3 3 3 4 6 8? 3.SORU 3 ise 5? 5 4.SORU 4 5 olduğuna göre, ( )? 5.SORU (y z) z(y ) y z yz bulunuz. ifadesinin en sade

Detaylı

Örnek. Aşağıdaki veri setlerindeki X ve Y veri çiftlerini kullanarak herbir durumda X=1,5 için Y nin hangi değerleri alacağını hesaplayınız.

Örnek. Aşağıdaki veri setlerindeki X ve Y veri çiftlerini kullanarak herbir durumda X=1,5 için Y nin hangi değerleri alacağını hesaplayınız. Örnek Aşağıdaki veri setlerindeki X ve Y veri çiftlerini kullanarak herbir durumda X=1,5 için Y nin hangi değerleri alacağını hesaplayınız. i. ii. X 1 2 3 4 1 2 3 4 Y 2 3 4 5 4 3 2 1 Örnek Aşağıdaki veri

Detaylı

8.SINIF FİNAL MAÇI KONULARI 26 NİSAN 2019

8.SINIF FİNAL MAÇI KONULARI 26 NİSAN 2019 8.SINIF FİNAL MAÇI KONULARI 26 NİSAN 2019 1) ÇARPANLAR VE KATLAR M.8.1.1.1. Verilen pozitif tam sayıların pozitif tam sayı çarpanlarını bulur, pozitif tam sayıların pozitif tam sayı Çarpanlarını üslü ifadelerin

Detaylı

Ortak Akıl MATEMATİK DENEME SINAVI

Ortak Akıl MATEMATİK DENEME SINAVI Ortak Akıl LYS MATEMATİK DENEME SINAVI 0505- Ortak Akıl Adem ÇİL Ali Can GÜLLÜ Ayhan YANAĞLIBAŞ Barbaros GÜR Barış DEMİR Celal İŞBİLİR Deniz KARADAĞ Engin POLAT Erhan ERDOĞAN Ersin KESEN Fatih TÜRKMEN

Detaylı

(a,b) şeklindeki ifadelere sıralı ikili denir. Burada a'ya 1. bileşen b'ye 2. bileşen denir.

(a,b) şeklindeki ifadelere sıralı ikili denir. Burada a'ya 1. bileşen b'ye 2. bileşen denir. BĞANTI - FONKSİYON 1. Sıralı İkili : (a,b) şeklindeki ifadelere sıralı ikili denir. Burada a'ya 1. bileşen b'ye 2. bileşen denir.! (x 1,x 2, x 3,x 4,...x n ) : sıralı n li denir. Örnek, (a,b,c) : sıralı

Detaylı

MAT 103 ANALİTİK GEOMETRİ I FİNAL ÇALIŞMA SORULARI

MAT 103 ANALİTİK GEOMETRİ I FİNAL ÇALIŞMA SORULARI MAT 103 ANALİTİK GEOMETRİ I FİNAL ÇALIŞMA SORULARI SORU 1. Köşeleri (1,4) (3,0) (7,2) noktaları olan ABC üçgeninin bir ikizkenar dik üçgen (İpucu:, ve vektörlerinden yararlanın) SORU 2. Bir ABC üçgeninin

Detaylı

B) ile Matematiği çok seveceksiniz.(www.matematikportali.com)

B) ile Matematiği çok seveceksiniz.(www.matematikportali.com) 1 Soru tipi:f5 3 2mm 2 5mm 8m 5m 2m 50mm 18mm Şekilde farenin peynire uluşması için verilen yolu takip edip gerekmektedir. Buna göre gideceğin yolun uzunluğu kaç m metredir. A) 14 2+3 5 B) 12 2+3 5 10

Detaylı

Grafik kağıtları. Daha önce değinildiği gibi, grafik, bağımlı ve bağımsız değişkenler arasındaki ilişkiyi gösteren bir araçtır.

Grafik kağıtları. Daha önce değinildiği gibi, grafik, bağımlı ve bağımsız değişkenler arasındaki ilişkiyi gösteren bir araçtır. Grafik kağıtları Daha önce değinildiği gibi, grafik, bağımlı ve bağımsız değişkenler arasındaki ilişkiyi gösteren bir araçtır. Bu amaçla yaygın olarak 3 farklı ölçekte (skalada) grafik kağıtları kullanılmaktadır.

Detaylı

Örnek...17 : 1) EKSENLERİ KESTİĞİ NOKTALAR BİLİNEN DOĞRUNUN DENKLEMİ

Örnek...17 : 1) EKSENLERİ KESTİĞİ NOKTALAR BİLİNEN DOĞRUNUN DENKLEMİ C) ÖZEL DOĞRU DENKLEMLERİ Örnek...17 : A ( 3, 6 ) n ok t a s ı n a n v e o r i j i n e n g e ç e n o ğ r u n u n e n k l em i n e i r? 1) EKSENLERİ KESTİĞİ NOKTALAR BİLİNEN DOĞRUNUN DENKLEMİ eksenini A(a,0)

Detaylı

LYS Matemat k Deneme Sınavı

LYS Matemat k Deneme Sınavı LYS Matematk Deneme Sınavı. abba dört basamaklı, ab iki basamaklı doğal saıları için, abba ab. a b eşitliğini sağlaan kaç farklı (a, b) doğal saı ikilisi vardır? 7 olduğuna göre, a b toplamı kaçtır? 9.,,

Detaylı

Mustafa YAĞCI, Parabol ile Eğrilerin Kesişimi

Mustafa YAĞCI, Parabol ile Eğrilerin Kesişimi www.mustafaagci.com.tr, 11 Ceir Notları Mustafa YAĞCI, agcimustafa@ahoo.com Paraol ile Eğrilerin Kesişimi P araol İle Doğrunun Birirlerine Göre Durumları. Aslında sadece paraol ve doğru çifti için değil,

Detaylı