Kalite Geliştirmede İstatistiksel Yöntemler ve Six Sigma

Ebat: px
Şu sayfadan göstermeyi başlat:

Download "Kalite Geliştirmede İstatistiksel Yöntemler ve Six Sigma"

Transkript

1 Kalite Geliştirmede İstatistiksel Yöntemler ve Six Sigma - 1

2 Ödevler 5 er kişilik 7 grup Hayali bir şirket kurulacak Bu şirketin kalite kontrol süreçleri raporlanacak Kalite sistem dokümantasyonu oluşturulacak Gruplar en geç 29 Mart tarihine kadar mail atmalı - 2

3 İstatistiksel Kalite Kontrol Üretim ve hizmet süreçlerinin ölçülebilir veriler yardımıyla istatistiksel yöntemler kullanılarak izlenmesi, kontrol edilmesi İzleme, kontrol etme ile üretim sırasında ortaya çıkabilecek bozuklukların önceden tahmin edilerek buna göre düzeltici önlemlerin alınması - 3

4 İstatistiksel Kalite Kontrolün Önemi Üretim maliyetlerinin düşürülmesi İşgücü verimliliğinin artırılması Tüketicinin korunması - 4

5 Ortaya Çıkışı Artan tüketici ihtiyaçları Genişleyen üretim hacmi Küresel rekabet - 5

6 Ne Amaçla Yapılır? Üretim sürecinin ve üretim sonunda elde edilen ürünün kalitesini ölçmek Süreç/Proses kontrolü Ürünün üretimi aşamasında yapılan kalite kontrol Üretimde kalite kontrolü Kontrol grafikleri Ürün kontrolü İthalat/ihracat Kabul örneklemesi - 6

7 Süreç Kontrolünde Değişken Türleri Nicel Üretimleri makinayla yapılan vidaların uzunluklarının ölçülmesi Nitel Ampullerin kusurlu olup olmamasının ölçülmesi - 7

8 Kullanılan İstatistiksel Yöntemler Histogram Kontrol Tablosu Pareto Analizi Hata Yoğunluk Diyagramı Kontrol Grafikleri - 8

9 Kabul Örneklemesi Bir parti üründen rasgele alınan örneklerin incelenmesi ile o parti ürünün durumu hakkında karar verebilmek için kullanılan örnekleme yöntemi Karar kabul ya da red - 9

10 Neden Kabul Örneklemesi? Tüm evren üzerinden inceleme yapmak, Ürüne zarar verir Yüksek maliyetlidir Çok zaman alır - 10

11 - 11

12 Kabul Örneklemesi Türleri Tek aşamalı örnekleme planı İki aşamalı örnekleme planı Çok aşamalı örnekleme planı Ardışık örnekleme planı - 12

13 Tek Aşamalı Örnekleme Planı N: Partideki ürün sayısı n: Örnekteki ürün sayısı c: Örnekte kabul edilebilir kusurlu ürün sayısı k: Kusurlu ürün sayısı - 13

14 İki Aşamalı Örnekleme Planı Tek aşamalıya benzer İki farklı örnekleme - 14

15 Çok Aşamalı Örnekleme Planı - 15

16 Ardışık Örnekleme Planı - 16

17 Kontrol Grafikleri Üretimden belirli ve eşit zaman aralıklarında alınan örneklerden elde edilen ölçüm değerlerinin zaman içerisinde gösterdikleri değişimlerin grafiği Verilerin türüne göre, Nicel kontrol grafikleri Nitel kontrol grafikleri - 17

18 Kontrol Grafikleri - II - 18

19 Kontrol Grafikleri - III - 19

20 Kontrol Grafiklerinin Bileşenleri Merkez Hattı/Orta Çizgi (MH/OÇ) Kontrolün hedef değerini gösterir Kontrol sınırları Kontrol alanını gösterir Üst kontrol sınırı (ÜKS) (+3σ) Alt kontrol sınırı (AKS) (-3σ) Simetrik - 20

21 Six Sigma Σ / σ nedir? Standart sapma - 21

22 Six Sigma Normal Dağılım Normal dağılım modeli oluşturabilen süreçte, gözlenen değerlerin %99,7'sinin kontrol sınırlarının içinde yer alması beklenir. Süreçte gözlenen değerlerin kontrol limitlerinin dışına düşme olasılığı %0,3 tür. - 22

23 Süreç Performansı Müşteri pizzasının erken teslim edilmesini ister Peki ya ortalama teslimat süresi 23 dakika ise?? Teslim performansı iyi midir? Müşteriler hizmetten memnun mudur? - 23

24 Ortalama Yeterli Mi? - 24

25 Sigma Ölçeği * DPMO: Milyonda bir hata sayısı - 25

26 Kontrol Grafiği Oluşturma Adımları İncelenecek olan kalite özelliği belirlenir Hangi kontrol grafiğinin kullanılacağı belirlenir Uygun bir örnekleme yöntemi ile örneklem seçilir ve bu örneklemden incelenen kalite özelliğine ilişkin ölçüm değerleri kaydedilir Ortalama ve standart sapma hesaplanarak, merkez çizgisi ile alt ve üst sınırlar belirlenir (six sigma) Kontrol sınırlarının dışındaki ölçümler saptanır Bu ölçümlerin kontrol sınırlarının dışına çıkma (kusurlu/hatalı olma) nedenleri araştırılıp, uygun önlemler alınır - 26

27 Örnek 1 Bir buzdolabı üretim süreci Örneklem, n=20 Her bir buzdolabına ilişkin yüzey hata sayıları Kontrol grafiği türü: Birim başına kusur sayısı grafiği Nitel/nicel? - 27

28 Örnek 1 Buzdolabı no Yüzey hatası Buzdolabı no Yüzey hatası

29 Örnek 1-29

30 Örnek 1-30

31 Örnek 2 Sıcak daldırma yöntemi ile galvaniz kaplama yapan bir firma Üretilen parçaların galvaniz kalınlıkları için saatte 1 kez ölçüm Her ölçümde parça yüzeyinden farklı noktalardan 3 adet tekil ölçüm Min. 50, maks. 100, hedef 75 Nitel/nicel? - 31

32 - 32

33 Örnek 2-33

34 Örnek 2 Kontrol grafiklerine göre ölçümlerin hiçbiri beklentilerin (min. 50, maks. 100) dışında değil Son 6 saatlik ölçümün sürekli olarak alt sınıra yaklaşması dikkat çekici 1 veya 2 saat sonra sınırların dışına çıkılacağı öngörüsü Yapılması gereken? Neyin yanlış gittiği araştırılıp, hatalı üretimin önüne geçilmeli - 34

35 İstatistiksel Kalite Kontrolde Başarısızlık Nedenleri Veri toplama tekniklerinin yetersizliği Veri iletiminden doğan hatalar Hatalı matematiksel işlemler Verilerin gerçek dışı olması Uygun istatistiksel tekniklerin kullanılmaması Deneyimsiz kişilerin yaptıkları yanlışlar Anormal değerlerin kullanılması - 35

36 Kaynakça Işığıçok, E. (2012). Toplam kalite yönetimi bakış açısıyla istatistiksel kalite kontrol. Bursa: Ezgi Kitabevi. TÜİK. (2011). İstatistiksel kalite kontrol: Sorularla resmi istatistikler dizisi. TÜİK: Ankara.http://www.tuik.gov.tr/IcerikGetir.do?istab_id=245 Yıldız, M.S. (2014). Six sigma ya giriş. giris?qid=71e18bb1-38cd-4135-a4a8-387a93c5a84c&v=default&b=&from_search=2

37 Kalite Geliştirmede İstatistiksel Yöntemler ve Six Sigma - 37

İstatistiksel Kalite Kontrol BBY 374 TOPLAM KALİTE YÖNETİMİ 18 NİSAN 2014

İstatistiksel Kalite Kontrol BBY 374 TOPLAM KALİTE YÖNETİMİ 18 NİSAN 2014 İstatistiksel Kalite Kontrol BBY 374 TOPLAM KALİTE YÖNETİMİ 18 NİSAN 2014 İstatistiksel kalite kontrol o Üretim ve hizmet süreçlerinin ölçülebilir veriler yardımıyla istatistiksel yöntemler kullanılarak

Detaylı

Prof.Dr.Nihal ERGİNEL Anadolu Üniversitesi

Prof.Dr.Nihal ERGİNEL Anadolu Üniversitesi İSTATİSTİKSEL SÜREÇ KONTROLÜNE GİRİŞ Prof.Dr.Nihal ERGİNEL Anadolu Üniversitesi İstatistiksel Süreç Kontrolü Bir üretim/ hizmet sürecinin kontrol altında olup olmadığına karar vermek için kullanılan teknikler

Detaylı

Bir ürün yada hizmetin belirlenen yada olabilecek ihtiyaçları karşılama yeterliğine dayanan özelliklerinin toplamıdır.

Bir ürün yada hizmetin belirlenen yada olabilecek ihtiyaçları karşılama yeterliğine dayanan özelliklerinin toplamıdır. KALİTE KONTROL Kalite: Bir ürün yada hizmetin belirlenen yada olabilecek ihtiyaçları karşılama yeterliğine dayanan özelliklerinin toplamıdır. Kontrol: Mevcut sonuçlarla hedefleri ve amaçları kıyaslama

Detaylı

İstatistiksel Süreç Kontrolu. Doç.Dr.Nihal ERGİNEL Anadolu Üniversitesi

İstatistiksel Süreç Kontrolu. Doç.Dr.Nihal ERGİNEL Anadolu Üniversitesi İstatistiksel Süreç Kontrolu Doç.Dr.Nihal ERGİNEL Anadolu Üniversitesi İstatistiksel Süreç Kontrolü Bir üretim/ hizmet sürecinin kontrol altında olup olmadığına karar vermek için kullanılan teknikler bütünüdür.

Detaylı

İÇİNDEKİLER ÖN SÖZ...

İÇİNDEKİLER ÖN SÖZ... İÇİNDEKİLER ÖN SÖZ... v GİRİŞ... 1 1. İSTATİSTİK İN TARİHÇESİ... 1 2. İSTATİSTİK NEDİR?... 3 3. SAYISAL BİLGİDEN ANLAM ÇIKARILMASI... 4 4. BELİRSİZLİĞİN ELE ALINMASI... 4 5. ÖRNEKLEME... 5 6. İLİŞKİLERİN

Detaylı

İstatistiksel Süreç Kontrolü Statistical Process Control (SPC) Dr. Musa KILIÇ

İstatistiksel Süreç Kontrolü Statistical Process Control (SPC) Dr. Musa KILIÇ İstatistiksel Süreç Kontrolü Statistical Process Control (SPC) Dr. Musa KILIÇ KALİTE VE KALİTE KONTROLÜ Kalitenin Tanımı Kalite, kullanıma uygunluktur (Juran). Kalite, bir ürünün gerekliliklere uygunluk

Detaylı

Dr. Mehmet AKSARAYLI

Dr. Mehmet AKSARAYLI Dr. Mehmet AKSARAYLI Şans Değişkeni: Bir dağılışı olan ve bu dağılışın yapısına uygun frekansta oluşum gösteren değişkendir. Şans Değişkenleri KESİKLİ RASSAL DEĞİŞKENLER ve OLASILIK DAĞILIMLARI Kesikli

Detaylı

İstatistiksel proses kontrol ve kontrol diyagramı. 3. hafta

İstatistiksel proses kontrol ve kontrol diyagramı. 3. hafta İstatistiksel proses kontrol ve kontrol diyagramı 3. hafta İstatistiksel proses kontrol Prosesteki değişkenliği ölçerek ve analiz ederek istatistiksel kontrolünü sağlamak ve sürdürmek için istatistiksel

Detaylı

ELYAF İŞLETMELERİNDE İSTATİSTİKSEL SÜREÇ KONTROLÜNÜN UYGULANMASI * An Application of Statistical Process Control in Polyester factory

ELYAF İŞLETMELERİNDE İSTATİSTİKSEL SÜREÇ KONTROLÜNÜN UYGULANMASI * An Application of Statistical Process Control in Polyester factory ELYAF İŞLETMELERİNDE İSTATİSTİKSEL SÜREÇ KONTROLÜNÜN UYGULANMASI * An Application of Statistical Process Control in Polyester factory Tuğba ÇOLAK İstatistik Anabilim Dalı Fikri AKDENİZ İstatistik Anabilim

Detaylı

RASSAL DEĞİŞKENLER VE OLASILIK DAĞILIMLARI. Yrd. Doç. Dr. Emre ATILGAN

RASSAL DEĞİŞKENLER VE OLASILIK DAĞILIMLARI. Yrd. Doç. Dr. Emre ATILGAN RASSAL DEĞİŞKENLER VE OLASILIK DAĞILIMLARI Yrd. Doç. Dr. Emre ATILGAN 1 RASSAL DEĞİŞKENLER VE OLASILIK DAĞILIMLARI Olasılığa ilişkin olayların çoğunluğunda, deneme sonuçlarının bir veya birkaç yönden incelenmesi

Detaylı

BİYOİSTATİSTİK Uygulama 4 Yrd. Doç. Dr. Aslı SUNER KARAKÜLAH

BİYOİSTATİSTİK Uygulama 4 Yrd. Doç. Dr. Aslı SUNER KARAKÜLAH BİYOİSTATİSTİK Uygulama 4 Yrd. Doç. Dr. Aslı SUNER KARAKÜLAH Ege Üniversitesi, Tıp Fakültesi, Biyoistatistik ve Tıbbi Bilişim AD. Web: www.biyoistatistik.med.ege.edu.tr 1 Örnek Senaryo İmplant üreten İMPLANTDENT

Detaylı

veriler elde edebilmek için bilgilerin toplanması, düzenlenmesi, değerlendirilmesi ve alternatif çözümler

veriler elde edebilmek için bilgilerin toplanması, düzenlenmesi, değerlendirilmesi ve alternatif çözümler 911-00-TA 004 10.12.22 1/5 1.Amaç Bu talimatin amacı; ürün tedarikinden başlayarak müşteri şikayetlerine kadar olan tüm aşamalarda sağlıklı veriler elde edebilmek için bilgilerin toplanması, düzenlenmesi,

Detaylı

SÜREKLİ ŞANS DEĞİŞKENLERİ. Üstel Dağılım Normal Dağılım

SÜREKLİ ŞANS DEĞİŞKENLERİ. Üstel Dağılım Normal Dağılım SÜREKLİ ŞANS DEĞİŞKENLERİ Üstel Dağılım Normal Dağılım 1 Üstel Dağılım Meydana gelen iki olay arasındaki geçen süre veya bir başka ifadeyle ilgilenilen olayın ilk defa ortaya çıkması için geçen sürenin

Detaylı

İstatistik ve Olasılık

İstatistik ve Olasılık İstatistik ve Olasılık Örnekleme Planlar ve Dağılımları Prof. Dr. İrfan KAYMAZ Tanım İncelenen olayın ait olduğu anakütlenin bütünüyle dikkate alınması zaman, para, ekipman ve bunun gibi nedenlerden dolayı

Detaylı

Faktöriyel: 1'den n'ye kadar olan tüm pozitif tamsayıların çarpımına, biçiminde gösterilir. Aynca; 0! = 1 ve 1!=1 1 dir. [Bunlar kabul değildir,

Faktöriyel: 1'den n'ye kadar olan tüm pozitif tamsayıların çarpımına, biçiminde gösterilir. Aynca; 0! = 1 ve 1!=1 1 dir. [Bunlar kabul değildir, 14. Binom ve Poisson olasılık dağılımları Faktöriyeller ve kombinasyonlar Faktöriyel: 1'den n'ye kadar olan tüm pozitif tamsayıların çarpımına, n! denir ve n! = 1.2.3...(n-2).(n-l).n biçiminde gösterilir.

Detaylı

Otomotiv Sertifika Programı

Otomotiv Sertifika Programı Otomotiv Sertifika Programı Otomotiv ana sanayi ve yan sanayinde kabul gören, geleneksel iş modelleri artık günümüzde uluslararası standartlar olarak zorunluluklar haline gelmiştir. Bu eğitimde birçok

Detaylı

Doküman No Revizyon No Yayın Tarihi Sayfa No PROSES FMEA TALİMATI

Doküman No Revizyon No Yayın Tarihi Sayfa No PROSES FMEA TALİMATI 1.0 AMAÇ VE KAPSAM Bu talimatın amacı; ürün veya proseste karşılaşabilecek potansiyel hataları ve bunların neden olabileceği sonuçları önceden analiz ederek, gerekli önlemlerin alınması için kullanılan

Detaylı

İstatistik ve Olasılık

İstatistik ve Olasılık İstatistik ve Olasılık Ders 2: Prof. Dr. İrfan KAYMAZ Tanım İnceleme sonucu elde edilen ham verilerin istatistiksel yöntemler kullanılarak özetlenmesi açıklayıcı istatistiği konusudur. Açıklayıcı istatistikte

Detaylı

İstatistiksel Süreç Kontrol KAZIM KARABOĞA

İstatistiksel Süreç Kontrol KAZIM KARABOĞA İstatistiksel Süreç Kontrol KAZIM KARABOĞA KALİTENİN TARİHSEL KİMLİK DEĞİŞİMİ Muayene İstatistiksel Kalite Kontrol Toplam Kalite Kontrol Toplam Kalite Yönetimi İSTATİSTİKSEL KALİTE KONTROL İstatistiksel

Detaylı

Mühendislikte İstatistiksel Yöntemler

Mühendislikte İstatistiksel Yöntemler Mühendislikte İstatistiksel Yöntemler BÖLÜM 2 AÇIKLAYICI (BETİMLEYİCİ) İSTATİSTİK Yrd. Doç. Dr. Fatih TOSUNOĞLU 1-Açıklayıcı (Betimleyici) İstatistik İnceleme sonucu elde edilen ham verilerin istatistiksel

Detaylı

ANALİTİK YÖNTEMLERİN DEĞERLENDİRİLMESİ. Doç.Dr. Mustafa ALTINIŞIK ADÜTF Biyokimya AD 2004

ANALİTİK YÖNTEMLERİN DEĞERLENDİRİLMESİ. Doç.Dr. Mustafa ALTINIŞIK ADÜTF Biyokimya AD 2004 ANALİTİK YÖNTEMLERİN DEĞERLENDİRİLMESİ Doç.Dr. Mustafa ALTINIŞIK ADÜTF Biyokimya AD 2004 1 Laboratuvarlarda yararlanılan analiz yöntemleri performans kalitelerine göre üç sınıfta toplanabilir: -Kesin yöntemler

Detaylı

Değer Frekans

Değer Frekans Veri Rasgelelik içeren olgulardan elde edilen ölçüm (gözlem) değerlerine istatistiksel veri veya kısaca veri (data) diyelim. Verilerin deneyler sonucu veya doğal şartlarda olguları gözlemekle elde edildiğini

Detaylı

İstatistik ve Olasılık

İstatistik ve Olasılık İstatistik ve Olasılık Ders 2: Prof. Dr. İrfan KAYMAZ Tanım İnceleme sonucu elde edilen ham verilerin istatistiksel yöntemler kullanılarak özetlenmesi açıklayıcı istatistiği konusudur. Açıklayıcı istatistikte

Detaylı

İSTATİSTİKTE TEMEL KAVRAMLAR

İSTATİSTİKTE TEMEL KAVRAMLAR İSTATİSTİKTE TEMEL KAVRAMLAR 1. ve 2. Hafta İstatistik Nedir? Bir tanım olarak istatistik; belirsizlik altında bir konuda karar verebilmek amacıyla, ilgilenilen konuya ilişkin verilerin toplanması, düzenlenmesi,

Detaylı

HİPOTEZ TESTLERİ. Yrd. Doç. Dr. Emre ATILGAN

HİPOTEZ TESTLERİ. Yrd. Doç. Dr. Emre ATILGAN HİPOTEZ TESTLERİ Yrd. Doç. Dr. Emre ATILGAN Hipotez Nedir? HİPOTEZ: parametre hakkındaki bir inanıştır. Parametre hakkındaki inanışı test etmek için hipotez testi yapılır. Hipotez testleri sayesinde örneklemden

Detaylı

HACCP SÜT İŞLETMELERİNDE KRİTİK KONTROL NOKTALARINDA TEHLİKE ANALİZ SİSTEMİ HAZARD ANALYSIS CRITICAL CONTROL POINT

HACCP SÜT İŞLETMELERİNDE KRİTİK KONTROL NOKTALARINDA TEHLİKE ANALİZ SİSTEMİ HAZARD ANALYSIS CRITICAL CONTROL POINT HACCP SÜT İŞLETMELERİNDE KRİTİK KONTROL NOKTALARINDA TEHLİKE ANALİZ SİSTEMİ HAZARD ANALYSIS CRITICAL CONTROL POINT Prof.Dr. Muammer GÖNCÜOĞLU HACCP Tüketici sağlığını tehdit edebilecek fiziksel, kimyasal

Detaylı

2 Hata Hesabı. Hata Nedir? Mutlak Hata. Bağıl Hata

2 Hata Hesabı. Hata Nedir? Mutlak Hata. Bağıl Hata Hata Hesabı Hata Nedir? Herhangi bir fiziksel büyüklüğün ölçülen değeri ile gerçek değeri arasındaki farka hata denir. Ölçülen bir fiziksel büyüklüğün sayısal değeri, yapılan deneysel hatalardan dolayı

Detaylı

Kitle: Belirli bir özelliğe sahip bireylerin veya birimlerin tümünün oluşturduğu topluluğa kitle denir.

Kitle: Belirli bir özelliğe sahip bireylerin veya birimlerin tümünün oluşturduğu topluluğa kitle denir. BÖLÜM 1: FREKANS DAĞILIMLARI 1.1. Giriş İstatistik, rasgelelik içeren olaylar, süreçler, sistemler hakkında modeller kurmada, gözlemlere dayanarak bu modellerin geçerliliğini sınamada ve bu modellerden

Detaylı

İSTATİSTİKSEL TAHMİNLEME. Örneklem istatistiklerinden hareketle ana kütle parametreleri hakkında genelleme yapmaya istatistiksel tahminleme denir.

İSTATİSTİKSEL TAHMİNLEME. Örneklem istatistiklerinden hareketle ana kütle parametreleri hakkında genelleme yapmaya istatistiksel tahminleme denir. İSTATİSTİKSEL TAHMİNLEME Örneklem istatistiklerinden hareketle ana kütle parametreleri hakkında genelleme yapmaya istatistiksel tahminleme denir. 1 ŞEKİL: Evren uzay-örneklem uzay İstatistiksel tahmin

Detaylı

KARŞILAŞTIRMA İSTATİSTİĞİ, ANALİTİK YÖNTEMLERİN KARŞILAŞTIRILMASI, BİYOLOJİK DEĞİŞKENLİK. Doç.Dr. Mustafa ALTINIŞIK ADÜTF Biyokimya AD 2005

KARŞILAŞTIRMA İSTATİSTİĞİ, ANALİTİK YÖNTEMLERİN KARŞILAŞTIRILMASI, BİYOLOJİK DEĞİŞKENLİK. Doç.Dr. Mustafa ALTINIŞIK ADÜTF Biyokimya AD 2005 KARŞILAŞTIRMA İSTATİSTİĞİ, ANALİTİK YÖNTEMLERİN KARŞILAŞTIRILMASI, BİYOLOJİK DEĞİŞKENLİK Doç.Dr. Mustafa ALTINIŞIK ADÜTF Biyokimya AD 2005 1 Karşılaştırma istatistiği Temel kavramlar: Örneklem ve evren:

Detaylı

SPORDA STRATEJİK YÖNETİM

SPORDA STRATEJİK YÖNETİM SPORDA STRATEJİK YÖNETİM 8.Ders Yrd.Doç.Dr. Uğur ÖZER 1 STRATEJİK YÖNETİM 2 STRATEJİ DEĞERLENDİRME VE KONTROL Stratejik yönetim sürecinin son evresi seçilen stratejinin değerlendirilmesi, değerlendirme

Detaylı

SÜREKLĠ OLASILIK DAĞILIMLARI

SÜREKLĠ OLASILIK DAĞILIMLARI SÜREKLĠ OLASILIK DAĞILIMLARI Sayı ekseni üzerindeki tüm noktalarda değer alabilen değişkenler, sürekli değişkenler olarak tanımlanmaktadır. Bu bölümde, sürekli değişkenlere uygun olasılık dağılımları üzerinde

Detaylı

T TESTİ: ORTALAMALAR ARASI FARKLARIN TEST EDİLMESİ. Yrd. Doç. Dr. C. Deha DOĞAN

T TESTİ: ORTALAMALAR ARASI FARKLARIN TEST EDİLMESİ. Yrd. Doç. Dr. C. Deha DOĞAN T TESTİ: ORTALAMALAR ARASI FARKLARIN TEST EDİLMESİ Yrd. Doç. Dr. C. Deha DOĞAN Gruplara ait ortalamalar elde edildiğinde, farklı olup olmadıkları ilk bakışta belirlenemez. Ortalamalar arsında bulunan

Detaylı

BÖLÜM-1.BİLİM NEDİR? Tanımı...1 Bilimselliğin Ölçütleri...2 Bilimin İşlevleri...3

BÖLÜM-1.BİLİM NEDİR? Tanımı...1 Bilimselliğin Ölçütleri...2 Bilimin İşlevleri...3 KİTABIN İÇİNDEKİLER BÖLÜM-1.BİLİM NEDİR? Tanımı...1 Bilimselliğin Ölçütleri...2 Bilimin İşlevleri...3 BÖLÜM-2.BİLİMSEL ARAŞTIRMA Belgesel Araştırmalar...7 Görgül Araştırmalar Tarama Tipi Araştırma...8

Detaylı

Su Ürünlerinde Temel İstatistik. Ders 2: Tanımlar

Su Ürünlerinde Temel İstatistik. Ders 2: Tanımlar Su Ürünlerinde Temel İstatistik Ders 2: Tanımlar Karakter Araştırma yada istatistiksel analizde ele alınan ünitenin yapısal (morfolojik, fizyolojik, psikolojik, estetik, vb.) özellikleridir. Tüm karakterler

Detaylı

KALİTE KAVRAMI VE KALİTENİN BOYUTLARI

KALİTE KAVRAMI VE KALİTENİN BOYUTLARI KALİTE YÖNETİMİ KALİTE KAVRAMI VE KALİTENİN BOYUTLARI Hizmet veya üründe kalite kavramı için farklı tanımlar kullanılmaktadır. En genel hâliyle ihtiyaçlara uygunluk (Crosby), ürün veya hizmetin değeri

Detaylı

HACCP Sistem Tetkikine Ait Resmi Form Resmi Kontrol Rapor No:

HACCP Sistem Tetkikine Ait Resmi Form Resmi Kontrol Rapor No: EK-5 HACCP Sistem Tetkikine Ait Resmi Form Resmi Kontrol Rapor No: TARİH: İNCELENECEK HUSUSLAR A) GENEL 1. İşyeri teknik ve hijyenik açıdan bu yönetmelikte belirtilen koşullara sahip mi? 2. El kitabı ön

Detaylı

Oluşturulan evren listesinden örnekleme birimlerinin seçkisiz olarak çekilmesidir

Oluşturulan evren listesinden örnekleme birimlerinin seçkisiz olarak çekilmesidir Bilimsel Araştırma Yöntemleri Prof. Dr. Şener Büyüköztürk Doç. Dr. Ebru Kılıç Çakmak Yrd. Doç. Dr. Özcan Erkan Akgün Doç. Dr. Şirin Karadeniz Dr. Funda Demirel Örnekleme Yöntemleri Evren Evren, araştırma

Detaylı

1. Süreç nedir? 2. Süreç nedir? 3. Temel süreç unsurları nelerdir? 4. Süreçler nasıl sınıflandırılabilir? Süreç tipleri nelerdir?

1. Süreç nedir? 2. Süreç nedir? 3. Temel süreç unsurları nelerdir? 4. Süreçler nasıl sınıflandırılabilir? Süreç tipleri nelerdir? 1. Süreç nedir? Girdileri çıktı haline getiren birbiriyle ilgili ve etkileşimli faaliyetler takımı dır. 2. Süreç nedir? Tanımlanabilirlik Tekrarlanır olması Ölçülebilirlik Bir sahibi ve sorumluları olması

Detaylı

Altı Sigma Kara Kuşak Yetiştirme Programı

Altı Sigma Kara Kuşak Yetiştirme Programı Altı Sigma Kara Kuşak Yetiştirme Programı R D M A I C S Recognize - Gör Define - Tanımla Measure - Ölç Analyze - Analiz Et Improve - İyileştir Control - Kontrol Et Sustain - Sürdür Altı Sigma DMAIC Metodolojisine

Detaylı

Biyoistatistik (Ders 4: Bağımsız Gruplarda İki Örneklem Testleri)

Biyoistatistik (Ders 4: Bağımsız Gruplarda İki Örneklem Testleri) İKİ ÖRNEKLEM TESTLERİ BAĞIMSIZ GRUPLARDA İKİ ÖRNEKLEM TESTLERİ Yrd. Doç. Dr. Ünal ERKORKMAZ Sakarya Üniversitesi Tıp Fakültesi Biyoistatistik Anabilim Dalı uerkorkmaz@sakarya.edu.tr İKİ ÖRNEKLEM TESTLERİ

Detaylı

EVREN, ÖRNEK, TEMSİLİYET. Prof. Mustafa Necmi İlhan

EVREN, ÖRNEK, TEMSİLİYET. Prof. Mustafa Necmi İlhan EVREN, ÖRNEK, TEMSİLİYET Prof. Mustafa Necmi İlhan MD, PhD, PhD, MBA Gazi Üniversitesi Tıp Fakültesi Halk Sağlığı AbD mnilhan@gazi.edu.tr 1 Neden Araştırma Yaparız? Bilimsel gerçeğe ulaşmak Bilinenlerin

Detaylı

Görev çubuğu. Ana ölçek. Şekil 1.1: Verniyeli kumpas

Görev çubuğu. Ana ölçek. Şekil 1.1: Verniyeli kumpas Deney No : M0 Deney Adı : ÖLÇME VE HATA HESABI Deneyin Amacı : Bazı uzunluk ölçü aletlerini tanımak ve ölçme hataları hakkında ön bilgiler elde etmektir. Teorik Bilgi : VERNİYELİ KUMPAS Uzunluk ölçümü

Detaylı

Örneklem Dağılımları ve Merkezi Limit Teoremi

Örneklem Dağılımları ve Merkezi Limit Teoremi Örneklem Dağılımları ve Merkezi Limit Teoremi Çıkarımsal İstatistik (Inferential Statistics) : Örneklemden yola çıkarak ana kütleyle (popülasyonla) ilgili çıkarımlarda bulunmak (Smidt, 2001) İstatistiksel

Detaylı

OLASILIK TEORİSİ VE İSTATİSTİK

OLASILIK TEORİSİ VE İSTATİSTİK OLASILIK TEORİSİ VE İSTATİSTİK İstatistik: Derslerimiz içinde bu sözcük iki anlamda kullanılacaktır. İlki ve en yaygın kullanılan biçimi rakamla elde edilen bilgilerin belli kuralarla anlaşılır ve yorumlanabilir

Detaylı

Hazır Beton Fabrikasında (Adana) İstatistiksel Kalite Kontrol Uygulaması Practice of Statistical Control at Ready Mixed Concrete Plant in Adana

Hazır Beton Fabrikasında (Adana) İstatistiksel Kalite Kontrol Uygulaması Practice of Statistical Control at Ready Mixed Concrete Plant in Adana 4. Maden Makinaları Sempozyumu, 23-24 Mayıs 2013, İzmir, Türkiye 4 th Mining Machinery Symposium, May 23-24 2013, İzmir, Turkey Hazır Beton Fabrikasında (Adana) İstatistiksel Kalite Kontrol Uygulaması

Detaylı

KALİTE YÖNETİMİ SİSTEMLERİ

KALİTE YÖNETİMİ SİSTEMLERİ Kalite Yönetimi Sistemleri Posta Hizmetleri Ön Lisans Programı KALİTE YÖNETİMİ SİSTEMLERİ 1 Kalite Yönetimi Sistemleri İçindekiler 1.1. Dersin Amacı... 3 1.2. Öğrenme Çıktıları... 3 1.3. Ders kaynakları...

Detaylı

Ders 1 Minitab da Grafiksel Analiz-I

Ders 1 Minitab da Grafiksel Analiz-I ENM 5210 İSTATİSTİK VE YAZILIMLA UYGULAMALARI Ders 1 Minitab da Grafiksel Analiz-I İstatistik Nedir? İstatistik kelimesi ilk olarak Almanyada devlet anlamına gelen status kelimesine dayanılarak kullanılmaya

Detaylı

ALTI SİGMA VE BİR UYGULAMA. Six Sigma And An Application

ALTI SİGMA VE BİR UYGULAMA. Six Sigma And An Application Ç.Ü. Fen Bilimleri Enstitüsü Yıl:21 Cilt:22-1 ALTI SİGMA VE BİR UYGULAMA Six Sigma And An Application Murat YİĞİT İstatistik Anabilim Dalı Sadullah SAKALLIOĞLU İstatistik Anabilim Dalı ÖZET Bu çalışmanın

Detaylı

SÜREÇ YÖNETİMİ PROSEDÜRÜ

SÜREÇ YÖNETİMİ PROSEDÜRÜ 1.0 AMAÇ Ahi Evran Üniversitesi nde uygulanacak süreç yönetim sistemi ile ilgili temel esasları tanımlamaktır. 2.0 KAPSAM Ahi Evran Üniversitesi nde uygulanmakta olan tüm süreçleri kapsar. 3.0 TANIMLAR

Detaylı

Laboratuvar 3. Yrd.Doç.Dr.Beyazıt Ocaktan. Elektronik Montaj ve Test Örneği

Laboratuvar 3. Yrd.Doç.Dr.Beyazıt Ocaktan. Elektronik Montaj ve Test Örneği 1 SİSTEM SİMULASYONU Laboratuvar 3 Yrd.Doç.Dr.Beyazıt Ocaktan Elektronik Montaj ve Test Örneği 2 Bir elektronik devre üreticisinin kaplama atölyesini ele alalım. Bu isletmede A ve B parcaları farklı atölyelerde

Detaylı

SEÇKİSİZ OLMAYAN ÖRNEKLEME YÖNTEMLERİ

SEÇKİSİZ OLMAYAN ÖRNEKLEME YÖNTEMLERİ SEÇKİSİZ OLMAYAN ÖRNEKLEME YÖNTEMLERİ SEÇKİSİZ OLMAYAN ÖRNEKLEME YÖNTEMLERİ Seçkisiz olmayan örnekleme yöntemleri Fraenkel ve Wallen(2006) ın sınıflandırmasıyla tutarlı olarak ; Sistematik Örnekleme Amaçsal

Detaylı

Kesikli Şans Değişkenleri İçin; Olasılık Dağılımları Beklenen Değer ve Varyans Olasılık Hesaplamaları

Kesikli Şans Değişkenleri İçin; Olasılık Dağılımları Beklenen Değer ve Varyans Olasılık Hesaplamaları Kesikli Şans Değişkenleri İçin; Olasılık Dağılımları Beklenen Değer ve Varyans Olasılık Hesaplamaları 1 Şans Değişkeni: Bir dağılışı olan ve bu dağılışın yapısına uygun frekansta oluşum gösteren değişkendir.

Detaylı

NORMAL ÖĞRETİM DERS PROGRAMI

NORMAL ÖĞRETİM DERS PROGRAMI NORMAL ÖĞRETİM DERS PROGRAMI 1. Yarıyıl 1. Hafta ( 19.09.2011-23.09.2011 ) Modern Pazarlama ve Pazar Yönlülük Sosyal Bilimlerde Araştırmaya Giriş Tüketici Araştırmaları dersine giriş Giriş : Temel kavram

Detaylı

Nicel / Nitel Verilerde Konum ve Değişim Ölçüleri. BBY606 Araştırma Yöntemleri 2013-2014 Bahar Dönemi 13 Mart 2014

Nicel / Nitel Verilerde Konum ve Değişim Ölçüleri. BBY606 Araştırma Yöntemleri 2013-2014 Bahar Dönemi 13 Mart 2014 Nicel / Nitel Verilerde Konum ve Değişim Ölçüleri BBY606 Araştırma Yöntemleri 2013-2014 Bahar Dönemi 13 Mart 2014 1 Konum ölçüleri Merkezi eğilim ölçüleri Verilerin ortalamaya göre olan gruplanması nasıl?

Detaylı

KESİKLİ ŞANS DEĞİŞKENLERİNİN OLASILIK DAĞILIMLARI. Bernoulli Dağılımı Binom Dağılımı Poisson Dağılımı

KESİKLİ ŞANS DEĞİŞKENLERİNİN OLASILIK DAĞILIMLARI. Bernoulli Dağılımı Binom Dağılımı Poisson Dağılımı KESİKLİ ŞANS DEĞİŞKENLERİNİN OLASILIK DAĞILIMLARI Bernoulli Dağılımı Binom Dağılımı Poisson Dağılımı 1 Bernoulli Dağılımı Bir şans değişkeninin bernoulli dağılımı göstermesi için ilgilenilen süreçte bernoulli

Detaylı

İSTATİSTİK STATISTICS (2+0) Yrd.Doç.Dr. Nil TOPLAN SAÜ.MÜH. FAK. METALURJİ VE MALZEME MÜH. BÖLÜMÜ ÖĞRETİM ÜYESİ ÖĞRETİM YILI

İSTATİSTİK STATISTICS (2+0) Yrd.Doç.Dr. Nil TOPLAN SAÜ.MÜH. FAK. METALURJİ VE MALZEME MÜH. BÖLÜMÜ ÖĞRETİM ÜYESİ ÖĞRETİM YILI İSTATİSTİK STATISTICS (+) Yrd.Doç.Dr. Nil TOPLAN SAÜ.MÜH. FAK. METALURJİ VE MALZEME MÜH. BÖLÜMÜ ÖĞRETİM ÜYESİ ÖĞRETİM YILI KONU BAŞLIKLARI :. İSTATİSTİĞE GİRİŞ. VERİLERİN DÜZENLENMESİ. MERKEZİ EĞİLİM ÖLÇÜLERİ.

Detaylı

Örnek...4 : İlk iki sınavında 75 ve 82 alan bir öğrencinin bu dersin ortalamasını 5 yapabilmek için son sınavdan kaç alması gerekmektedir?

Örnek...4 : İlk iki sınavında 75 ve 82 alan bir öğrencinin bu dersin ortalamasını 5 yapabilmek için son sınavdan kaç alması gerekmektedir? İSTATİSTİK Bir sonuç çıkarmak ya da çözüme ulaşabilmek için gözlem, deney, araştırma gibi yöntemlerle toplanan bilgiye veri adı verilir. Örnek...4 : İlk iki sınavında 75 ve 82 alan bir öğrencinin bu dersin

Detaylı

1. ÖRNEKLEME VE ARAŞTIRMA PROBLEMİNE UYGUN ÖRNEKLEME YAPMA

1. ÖRNEKLEME VE ARAŞTIRMA PROBLEMİNE UYGUN ÖRNEKLEME YAPMA 1. ÖRNEKLEME VE ARAŞTIRMA PROBLEMİNE UYGUN ÖRNEKLEME YAPMA Araştırmacı kişi ya da kurumlar birinci el veri elde etye yönelik araştırma yapmaya karar verdiklerinde çoğu zaman araştırma yapacağı grubun tüm

Detaylı

BakNET İstatistiksel Kalite Kontrol Sistemi KULLANIM KILAVUZU

BakNET İstatistiksel Kalite Kontrol Sistemi KULLANIM KILAVUZU BakNET İstatistiksel Kalite Kontrol Sistemi KULLANIM KILAVUZU ÇALIŞMA PROSESİ: 1) Öncelikle veri tabanındaki ürün listesinden ürün seçmek için ÜRÜN butonuna basılır. Ekranda, tartım istasyonuna atanmış

Detaylı

İstatistik ve Olasılık

İstatistik ve Olasılık İstatistik ve Olasılık -II Prof. Dr. İrfan KAYMAZ İki Ortalama Farkının Güven Aralığı Anakütle Varyansı Biliniyorsa İki ortalama arasındaki farkın dağılımına ilişkin Z değişkeni: Güven aralığı ifadesinde

Detaylı

KANTİTATİF TEKNİKLER - Temel İstatistik -

KANTİTATİF TEKNİKLER - Temel İstatistik - KANTİTATİF TEKNİKLER - Temel İstatistik - 1 İstatistik Nedir? Belirli bir amaçla verilerin toplanması, düzenlenmesi, analiz edilerek yorumlanmasını sağlayan yöntemler topluluğudur. 2 İstatistik Kullanım

Detaylı

PARÇA MEKANİĞİ UYGULAMA 1 ŞEKİL FAKTÖRÜ TAYİNİ

PARÇA MEKANİĞİ UYGULAMA 1 ŞEKİL FAKTÖRÜ TAYİNİ PARÇA MEKANİĞİ UYGULAMA 1 ŞEKİL FAKTÖRÜ TAYİNİ TANIM VE AMAÇ: Bireyselliklerini koruyan birbirlerinden farklı özelliklere sahip çok sayıda parçadan (tane) oluşan sistemlere parçalı malzeme denilmektedir.

Detaylı

Hazır Beton Fabrikasında (Adana) İstatistiksel Kalite Kontrol Uygulaması Practice of Statistical Control at Ready Mixed Concrete Plant in Adana

Hazır Beton Fabrikasında (Adana) İstatistiksel Kalite Kontrol Uygulaması Practice of Statistical Control at Ready Mixed Concrete Plant in Adana Hazır Beton Fabrikasında (Adana) İstatistiksel Kalite Kontrol Uygulaması Practice of Statistical Control at Ready Mixed Concrete Plant in Adana O. Bayat a, Z. Altınçelep b, B. Kaymakoğlu c, M. Altıner

Detaylı

TOPLAM KALİTE YÖNETİMİ

TOPLAM KALİTE YÖNETİMİ TOPLAM KALİTE YÖNETİMİ 3.Ders Yrd.Doç.Dr. Uğur ÖZER Kalite Maliyetleri Hizmet Kalitesi ve Müşterinin Kalite Algısı Kalite Yönetim Sistemi KALİTE MALİYETLERİ Kalite maliyetleri meydana gelebilecek hataları

Detaylı

NİTELİKSEL KONTROL GRAFİKLERİ

NİTELİKSEL KONTROL GRAFİKLERİ NİTELİKSEL KONTROL GRAFİKLERİ Prof. Dr. Nihal ERGİNEL Ölçülemeyen ancak hatalı / hatasız, geçer / geçmez, tekstil sektöründe leke sayısı, dokuma kaçağı vb nin analiz edilmesi için oluşturulan kontrol grafikleridir.

Detaylı

6σ Temel bilgilendirme

6σ Temel bilgilendirme 6σ Temel bilgilendirme Müşteri odaklılık Süreç Yönetimi Veri 6σ Tanımlar Değişkenlik =Prosesin her zaman aynı sonucu (çıktıyı Y ) elde etmemesidir. Bazı değişkenlikler her proseste yer almaktadır. Değişkenlik

Detaylı

Hata /Kaza. İstenen sonuca gidiş istenen performans

Hata /Kaza. İstenen sonuca gidiş istenen performans HASTA GÜVENLİĞİ Sağlık hizmetlerinde hasta güvenliği, sağlık bakım hizmetlerinin sunum süresince hastaya zarar verilmesini önlemek amacıyla kuruluş ve çalışanlar tarafından alınan önlemlerdir Amaç hataları

Detaylı

PANEL RADYATÖR VE HAVLUPAN 2017

PANEL RADYATÖR VE HAVLUPAN 2017 PANEL RADYATÖR VE HAVLUPAN 2017 warmhaus.com.tr 1 Metal Sac Dilimleme Hattı Tamamen otomatik olarak yönetilen yeni nesil metal sac dilimleme hattımız, 0,2mm

Detaylı

İSTATİSTİKSEL VERİ ANALİZİ

İSTATİSTİKSEL VERİ ANALİZİ İSTATİSTİKSEL VERİ ANALİZİ Prof. Dr. Gül ERGÜN Hacettepe Üniversitesi Kasım 2013 İstatistik Nedir? İSTATİSTİK Belirli bir konuda toplanan sayısal değerlerdir. Buna göre, 2012 yılında Türkiye de kayıtlı

Detaylı

İşgücü Talebinin Tahmininde Sayısal ve. ve Ayrıntılı Yöntemler. İnsan Kaynakları Planlamasında Sayısal

İşgücü Talebinin Tahmininde Sayısal ve. ve Ayrıntılı Yöntemler. İnsan Kaynakları Planlamasında Sayısal İşgücü Talebinin Tahmininde Sayısal ve Sayısal Yrd. Doç. Dr. Rıza DEMİR İstanbul Üniversitesi İşletme Fakültesi İnsan Kaynakları Planlaması ve Seçimi Dersi 2017 Talep Tahmin i İnsan kaynakları talebi veya

Detaylı

C C C C C C C. Restoran zincirleri için dijital kalite yönetim sistemi

C C C C C C C. Restoran zincirleri için dijital kalite yönetim sistemi C C C C C C C Restoran zincirleri için dijital kalite yönetim sistemi testo Saveris Restaurant dijital çözüm sistemi ile - gıda standartlarının yerine getirilmesi, kalitenin artırılması ve maliyetlerin

Detaylı

BMÜ-421 Benzetim ve Modelleme Kesikli Olay Benzetimi. İlhan AYDIN

BMÜ-421 Benzetim ve Modelleme Kesikli Olay Benzetimi. İlhan AYDIN BMÜ-421 Benzetim ve Modelleme Kesikli Olay Benzetimi İlhan AYDIN KESİKLİ-OLAY BENZETİMİ Kesikli olay benzetimi, durum değişkenlerinin zaman içinde belirli noktalarda değiştiği sistemlerin modellenmesi

Detaylı

YAZILIM PROJE YÖNETİMİ. Yrd.Doç.Dr.Hacer KARACAN

YAZILIM PROJE YÖNETİMİ. Yrd.Doç.Dr.Hacer KARACAN YAZILIM PROJE YÖNETİMİ Yrd.Doç.Dr.Hacer KARACAN İçerik Proje İzleme ve Kontrol Kapsam Kontrolü Takvim Kontrolü Maliyet Kontrolü Kalite Kontrolü Tedarik Kontrolü Değişikliklerin İzlenmesi ve Kontrolü Proje

Detaylı

Genel Katılıma Açık Eğitimlerimiz Başlıyor!

Genel Katılıma Açık Eğitimlerimiz Başlıyor! Genel Katılıma Açık Eğitimlerimiz Başlıyor! Mavi Akademi, bünyesinde barındırdığı yetki belgeleri ve alanında uzman akademisyenler, sektör tecrübesine sahip baş denetçiler ve uzmanlardan oluşan kadrosuyla

Detaylı

SORU 1. Eleman nedir, temel özellikleri nelerdir? İşlere ilişkin elemanları örnek de vererek yazınız.

SORU 1. Eleman nedir, temel özellikleri nelerdir? İşlere ilişkin elemanları örnek de vererek yazınız. Öğrenci Numarası Adı ve Soyadı İmzası: SORU. Eleman nedir, temel özellikleri nelerdir? İşlere ilişkin elemanları örnek de vererek yazınız. SORU. İş ölçümünde ölçülen bileşenleri (insan/makine) yazınız

Detaylı

LOJİSTİK REGRESYON ANALİZİ

LOJİSTİK REGRESYON ANALİZİ LOJİSTİK REGRESYON ANALİZİ Lojistik Regresyon Analizini daha kolay izleyebilmek için bazı terimleri tanımlayalım: 1. Değişken (incelenen özellik): Bireyden bireye farklı değerler alabilen özellik, fenomen

Detaylı

VERİLERİN SINIFLANDIRILMASI

VERİLERİN SINIFLANDIRILMASI VERİLERİN SINIFLANDIRILMASI Yrd. Doç. Dr. Ünal ERKORKMAZ Sakarya Üniversitesi Tıp Fakültesi Biyoistatistik Anabilim Dalı uerkorkmaz@sakarya.edu.tr NİTEL VE NİCEL VERİLERİN SINIFLANDIRMASI Sınıflandırma

Detaylı

SPICE TS ISO/IEC 15504. Kerem Kemaneci 05.12.2012 Ankara

SPICE TS ISO/IEC 15504. Kerem Kemaneci 05.12.2012 Ankara SPICE TS ISO/IEC 15504 Kerem Kemaneci 05.12.2012 Ankara Süreç Planla Salı Kaynakları Hazırla Uygula Test Et Cuma Pazartesi Perşembe Girdilerin kontrollü şekilde çeşitli kazanımlara dönüştürüldüğü faaliyetler

Detaylı

Evren (Popülasyon) Araştırma kapsamına giren tüm elemanların oluşturduğu grup. Araştırma sonuçlarının genelleneceği grup

Evren (Popülasyon) Araştırma kapsamına giren tüm elemanların oluşturduğu grup. Araştırma sonuçlarının genelleneceği grup Evren (Popülasyon) Araştırma kapsamına giren tüm elemanların oluşturduğu grup Araştırma sonuçlarının genelleneceği grup Evrendeğer (Parametre): Değişkenlerin evrendeki değerleri µ : Evren Ortalaması σ

Detaylı

ÇEVİRİ İŞLETMELERİ DERNEĞİ

ÇEVİRİ İŞLETMELERİ DERNEĞİ ÇEVİRİ İŞLETMELERİ DERNEĞİ ÇEVİRİDE KALİTE. AHMET ÇALLI ES Dil Hizmetleri ve Danışmanlık A.Ş. 1 Kalite Tanımları TDK sözlük karşılığı: Nitelik 2 Kalite Tanımları Kökeni: Latince qualis, nasıl oluştuğu

Detaylı

4. BÖLÜM: İŞ ETÜDÜ 4.1. Giriş İş etüdü, çalışan insanın ihtiyaçları ve verim yeteneklerini dikkate alarak işletmenin ekonomikliğini iyileştirme

4. BÖLÜM: İŞ ETÜDÜ 4.1. Giriş İş etüdü, çalışan insanın ihtiyaçları ve verim yeteneklerini dikkate alarak işletmenin ekonomikliğini iyileştirme 4. BÖLÜM: İŞ ETÜDÜ 4.1. Giriş İş etüdü, çalışan insanın ihtiyaçları ve verim yeteneklerini dikkate alarak işletmenin ekonomikliğini iyileştirme amacını güden ve bu amaca erişmek için iş sistemlerinin incelenmesi

Detaylı

Türkiye Halk Sağlığı Kurumu Çalışan Sağlığı ve Bilimsel Kapasitenin Güçlendirilmesi Projesi

Türkiye Halk Sağlığı Kurumu Çalışan Sağlığı ve Bilimsel Kapasitenin Güçlendirilmesi Projesi Türkiye Halk Sağlığı Kurumu Çalışan Sağlığı ve Bilimsel Kapasitenin Güçlendirilmesi Projesi Şu anki sunumun yapılmasına imkan tanıyan bu proje, 692188 sayılı anlaşma kapsamındaki AB Horizon 2020 Araştırma

Detaylı

DENEY 0. Bölüm 1 - Ölçme ve Hata Hesabı

DENEY 0. Bölüm 1 - Ölçme ve Hata Hesabı DENEY 0 Bölüm 1 - Ölçme ve Hata Hesabı Amaç: Ölçüm metodu ve cihazına bağlı hata ve belirsizlikleri anlamak, fiziksel bir niceliği ölçüp hata ve belirsizlikleri tespit etmek, nedenlerini açıklamak. Genel

Detaylı

İÇİNDEKİLER. Önsöz... iii 1. BÖLÜM: STANDARDİZASYON 1. STANDARDİZASYON... 3

İÇİNDEKİLER. Önsöz... iii 1. BÖLÜM: STANDARDİZASYON 1. STANDARDİZASYON... 3 İÇİNDEKİLER Önsöz... iii 1. BÖLÜM: STANDARDİZASYON 1. STANDARDİZASYON... 3 1.1. STANDARD VE STANDARDİZASYON... 3 1.1.1. Standardizasyonun Gelişim Süreci... 4 1.1.2. Standardizasyonun Amaçları... 4 1.1.3.

Detaylı

T.C. SAKARYA ÜNİVERSİTESİ SPOR BİLİMLERİ FAKÜLTESİ SPOR YÖNETİCİLİĞİ BÖLÜMÜ

T.C. SAKARYA ÜNİVERSİTESİ SPOR BİLİMLERİ FAKÜLTESİ SPOR YÖNETİCİLİĞİ BÖLÜMÜ T.C. SAKARYA ÜNİVERSİTESİ SPOR BİLİMLERİ FAKÜLTESİ SPOR YÖNETİCİLİĞİ BÖLÜMÜ ARAŞTIRMA PROJESİ BİTİRME ÇALIŞMASI HAZIRLAMA KILAVUZU (LİSANS ÖĞRENCİLERİ İÇİN) ARAŞTIRMA PROJESİ BİTİRME ÇALIŞMASI YÖNERGESİ

Detaylı

Bölüm 2 VERİLERİN DERLENMESİ VE SUNUMU

Bölüm 2 VERİLERİN DERLENMESİ VE SUNUMU Bölüm 2 VERİLERİN DERLENMESİ VE SUNUMU 1 Verilerin Derlenmesi ve Sunulması Anakütleden alınan örnek yardımıyla elde edilen veriler derlendikten sonra çizelgeler ve grafikler halinde bir diğer analize hazır

Detaylı

19 ve 29 cmlik PONCEBLOC HAFİF YAPI ELEMANI SES AZALMA İNDİSİ ÖLÇÜMÜ ÖN RAPORU

19 ve 29 cmlik PONCEBLOC HAFİF YAPI ELEMANI SES AZALMA İNDİSİ ÖLÇÜMÜ ÖN RAPORU 19 ve 29 cmlik PONCEBLOC HAFİF YAPI ELEMANI SES AZALMA İNDİSİ ÖLÇÜMÜ ÖN RAPORU HAZIRLAYAN : Y.DOÇ. DR. NURGÜN TAMER BAYAZIT İTÜ MİMARLIK FAKÜLTESİ YAPI BİLGİSİ ABD TAŞKIŞLA TAKSİM-34437 İST TEMMUZ, 2014

Detaylı

Beton için enjeksiyon tekniği Profesyonel uygulayıcılar için genleşme basınçsız ankrajlama.

Beton için enjeksiyon tekniği Profesyonel uygulayıcılar için genleşme basınçsız ankrajlama. AĞIR YÜK BAĞLANTILARI / KİMYA 101 Beton için enjeksiyon tekniği Profesyonel uygulayıcılar için genleşme basınçsız ankrajlama. GENEL BAKIŞ Vida dişli ankraj FIS A Çelik, galvanize çinko kaplama Enjeksiyon

Detaylı

Temel ve Uygulamalı Araştırmalar için Araştırma Süreci

Temel ve Uygulamalı Araştırmalar için Araştırma Süreci BÖLÜM 8 ÖRNEKLEME Temel ve Uygulamalı Araştırmalar için Araştırma Süreci 1.Gözlem Genel araştırma alanı 3.Sorunun Belirlenmesi Sorun taslağının hazırlanması 4.Kuramsal Çatı Değişkenlerin açıkça saptanması

Detaylı

TOPLAM KALİTE YÖNETİMİ

TOPLAM KALİTE YÖNETİMİ SAKARYA ÜNİVERSİTESİ TOPLAM KALİTE YÖNETİMİ Hafta 13 Yrd. Doç. Dr. Semra BORAN Bu ders içeriğinin basım, yayım ve satış hakları Sakarya Üniversitesi ne aittir. "Uzaktan Öğretim" tekniğine uygun olarak

Detaylı

17.10.2011. Türk Standartlari Enstitüsü'nün tanımladığı

17.10.2011. Türk Standartlari Enstitüsü'nün tanımladığı USABİLİTY ANALYSİS Kullanılabilirlik Nedir? Koray Metin 2008639026 Türk Standartlari Enstitüsü'nün tanımladığı ISO 9241 no'lu standardın bir bölümü olan "Kullanılabilirlik Kılavuzu"na göre; kullanılabilirlik,

Detaylı

İSTATİSTİK I. Giriş. Bölüm 1 Temel Terimler ve Tanımlar İSTATİSTİKLER

İSTATİSTİK I. Giriş. Bölüm 1 Temel Terimler ve Tanımlar İSTATİSTİKLER İSTATİSTİK I Bölüm 1 Temel Terimler ve Tanımlar 1 2 Giriş İSTATİSTİKLER Genel olarak araştırmalarda, büyük veri gruplarının içinden daha küçük veri grupları seçilerek büyük veri gruplarının hakkında bilgi

Detaylı

Doç.Dr. Özlem İpekgil Doğan Araş Gör. Mert Topoyan

Doç.Dr. Özlem İpekgil Doğan Araş Gör. Mert Topoyan Doç.Dr. Özlem İpekgil Doğan Araş Gör. Mert Topoyan Neden Süreç Yönetimi? Örgütlerin çoğu geleneksel olarak fonksiyonel temelde yapılandırılmıştır. Tüm çalışmalar bağlı olunan fonksiyon içinde başlatılmakta,

Detaylı

ISTKA TR10/14/YEN/0088 Yenilikçi ve Sürdürülebilir Elektrikli ve Hibrid Araç Teknolojileri Geliştirme ve Kümelenme Merkezi (E-HIKE) Ağustos 2015

ISTKA TR10/14/YEN/0088 Yenilikçi ve Sürdürülebilir Elektrikli ve Hibrid Araç Teknolojileri Geliştirme ve Kümelenme Merkezi (E-HIKE) Ağustos 2015 ISTKA TR10/14/YEN/0088 Yenilikçi ve Sürdürülebilir Elektrikli ve Hibrid Araç Teknolojileri Geliştirme ve Kümelenme Merkezi (E-HIKE) Ağustos 2015 Ezgi Akpolat 01.08.2015 MÜŞTERİ BEKLENTİLERİ Anket MÜŞTERİ

Detaylı

Hipotez Testleri. Mühendislikte İstatistik Yöntemler

Hipotez Testleri. Mühendislikte İstatistik Yöntemler Hipotez Testleri Mühendislikte İstatistik Yöntemler Hipotez Testleri Parametrik Testler ( z ve t testleri) Parametrik Olmayan Testler (χ 2 Testi) Hipotez Testleri Ana Kütle β( µ, σ ) Örnek Kütle b ( µ

Detaylı

BİYOİSTATİSTİK DERSLERİ AMAÇ VE HEDEFLERİ

BİYOİSTATİSTİK DERSLERİ AMAÇ VE HEDEFLERİ BİYOİSTATİSTİK DERSLERİ AMAÇ VE HEDEFLERİ DÖNEM I-I. DERS KURULU Konu: Bilimsel yöntem ve istatistik Amaç: Biyoistatistiğin tıptaki önemini kavrar ve sonraki dersler için gerekli terminolojiye hakim olur.

Detaylı

ÖRNEKLEME TEORİSİ. Prof.Dr.A.KARACABEY Doç.Dr.F.GÖKGÖZ

ÖRNEKLEME TEORİSİ. Prof.Dr.A.KARACABEY Doç.Dr.F.GÖKGÖZ ÖRNEKLEME TEORİSİ 1 Bir popülasyonu istatistiksel açıdan incelemek ve işlemler yapabilmek için popülasyon içerisinden seçilen örneklemlerden yararlandığımızı söylemiştik. Peki popülasyonun istatistiksel

Detaylı

İÇİNDEKİLER BİRİNCİ KISIM: TASARIM PAZARLAMA ARAŞTIRMASINA GİRİŞ

İÇİNDEKİLER BİRİNCİ KISIM: TASARIM PAZARLAMA ARAŞTIRMASINA GİRİŞ İÇİNDEKİLER ÖNSÖZ... v TEŞEKKÜR... vi İKİNCİ BASKIYA ÖNSÖZ VE TEŞEKKÜR... vii İÇİNDEKİLER... ix ŞEKİLLER LİSTESİ... xviii TABLOLAR LİSTESİ... xx BİRİNCİ KISIM: TASARIM BİRİNCI BÖLÜM PAZARLAMA ARAŞTIRMASINA

Detaylı

Mühendislikte İstatistiksel Yöntemler

Mühendislikte İstatistiksel Yöntemler Mühendislikte İstatistiksel Yöntemler BÖLÜM 9 VARYANS ANALİZİ Yrd. Doç. Dr. Fatih TOSUNOĞLU 1 Varyans analizi niçin yapılır? İkiden fazla veri grubunun ortalamalarının karşılaştırılması t veya Z testi

Detaylı