Şekil 7.1 Bir tankta sıvı birikimi
|
|
|
- Fidan Memiş
- 10 yıl önce
- İzleme sayısı:
Transkript
1 6 7. DİFERENSİYEL DENKLEMLERİN SAYISAL ÇÖZÜMLERİ Diferensiyel denklemlerin sayısal integrasyonunda kullanılabilecek bir çok yöntem vardır. Tecrübeler dördüncü mertebe (Runge-Kutta) yönteminin hemen hemen her duruma uygulanabildiğini ve pek çok durumda ikinci ve birinci mertebe yöntemlerin yeterli olduğunu göstermektedir. Bu bölümde en basit düzeyden başlanarak üç sayısal integrasyon yöntemi ele alınacaktır. Adi Diferensiyel Denklemler Adi diferensiyel denklemler sadece bir bağımsız değişken bulundurur. Bir eş zamanlı adi diferensiyel denklemler takımında bağımsız değişken (genellikle zaman veya uzaklık) bütün denklemlerde ortaktır. Bu denklemlerin amacı bağımsız değişkenle bağımlı sistem değişkenleri arasında ilişki sağlamaktır. Denklemlerin çözümü sistem değişkenlerinin bağımsız değişkene bağlı değerlerini verir. Bu ilişki genellikle sayısal ya da grafiksel şekilde ifade edilir. Bir örnek bu terimlerin anlaşılmasına yardımcı olacaktır. Aşağıdaki şekil içerisine Q i hızı ile bir sıvı akan bir tankı göstermektedir. Bu akım sabit olabilir. Daha özel olarak zamanla değişebilir. Bu durumda Q i (t) şeklinde yazılır. Bunun anlamı Q i nün; t nin fonksiyonu olması, yani zamanla değişmesidir. Tanktan dışarı musluktan Qo(t) hızı ile sıvının aktığını düşünelim. Qo(t) hızı tank içerisindeki sıvının H yüksekliğine bağlıdır. Qo ile H yüksekliği arasındaki ilişki Şekil 7. Bir tankta sıvı birikimi Q 0 = C v H ile verilir. Burada Cv sıvının aktığı kesitin karakteristiğidir. Birikim=giren-çıkan İfadesi kullanılarak sistem için bir diferensiyel denklem oluşturulabilir. dv dt = Q V=A.H i Q 0
2 6 Bu denklem bağımsız değişken t ve bağımlı değişken V ye göre lineer olmayan bir adi diferensiyel denklemdir. V nin türevi eşitliğin sağ tarafındaki ifadesidir. Sistem parametreleri A ve C v dir. Buna karşılık Q i ; girişi bazen zorlayıcı fonksiyon olarak ele alınır. Denklemin her iki tarafı t zamanına göre integrallenirse, dv dt dt V = Q = Q dt ( i 0 ) yani V hacmi giren akım ile çıkan akım farkının integralidir. Doğal olarak söylendiğinde, tank içindeki sıvı hacmi giren akımla çıkan akım farkının t süresi içerisindeki birikimidir. Açıkça görüldüğü gibi integrasyon birikim olayının matematik eşdeğeridir. Bununla birlikte doğal proseslerin sadece birikme şeklinde olabildiği diferensiyellenmedikleri hatırdan çıkarılmamalıdır. Değişkenler arasındaki ilişkiler en iyi diferensiyel denklemlerle belirtilir. Ancak, diferensiyel denklemlerin çözümü daima integrasyonla yapılır. Buna göre bütün fiziksel sistemler diferensiyel denklemlerden ziyade integral eşitliklerine göre tanımlanabilir. Bir diferensiyel denklemi integral şekline değiştirirken integrasyon sınırları ve başlangıç şartı ortaya konulmalıdır. Örneğin "herhangi bir zamanda V hacminin değişim hızı giren ve çıkan akımlar arasındaki farktır." şekildeki bir belirtme daha fazla açıklama gerektirmeyen tam bir ifadedir. Buna karşılık, " V hacmi giren ve çıkan akımlar arasındaki farkın integralidir" şeklindeki ifade integrasyon sınırlarının tanımını, yani ne zamandan ne zamana zamanın değiştirildiğini ve V nin başlanğıç değerinin belirtilmesini gerektirir. Bu yüzden integralin tam olarak ifadesi V t) = V ( t ) + ( Q Q ) dt ( i 0 t t t deki toplam hacim = t deki başlangıç hacmi + t den t ye birikme Bu yüzden sayısal integrasyonla bir veya daha fazla denklem çözüleceği zaman aşağıdaki iki kural uygulanmalıdır. a. Herbir integrasyon değişkeni için bir başlama şartı veya başlangıç değeri sağlanmalıdır. b. İntegrasyon sınırları yani bağımsız değişkenin başlangıç ve son değerleri belirtilmelidir.
3 63 7. Birinci Mertebe Yöntemi (Basit Euler) yöntemidir. Genellikle basit Euler olarak bilinen bu yöntem mevcut en basit sayısal integrasyon V = V dt V, V nin türevi veya değişim hızıdır. V(t) için belirli şartlarda aşağıdaki çözüm olsun V nin türevi V eğrisinin eğimidir. Zaman ekseni boyunca Dt dar bölgesinde V türevi V den V ye değişir. Bu aralıkta V de V den V ye değişir. Şekil 7. Basit Euler yönteminin prensibi Birinci mertebe yöntemi zaman aralığının t başlangıcında aralığında t zamanına kadar sabit olduğunu farzeder ve bu takdirde V deki değişim V = V. Dt V = V V. Dt + V türevini çıkarır. Dt yani t deki V değeri V ile V eğrisinin t deki eğiminin Dt aralığı ile çarpımının toplamına eşittir. Bu şekilde bulunan V doğru V değerine sadece bir yaklaşımdır. Çünkü V in Dt aralığında sabit olduğu kabulüne dayanır. Gerçekte V den V ye V deki küçük bir değişim V -V hatasına neden olur. İntegrasyonun gerçekleştirilme işlemi şöyledir. Bağımsız değişken artma değeri Dt belirtilir. İntegrasyonun başlangıcında i türevi çıkarılır ve sonra i+ e Dt kadar tek bir adım atılır. Böylece bağımlı değişken, V i+ = V i + V.Dt i
4 64 t = t i+ için V tekrar bulunur ve adımlama işlemi tekrarlanır. Bu işlem alt sınırdan üst sınıra i+ bütün integral geçişleri tamamlanıncaya kadar sürer. İntegrasyon işlemi sırasında kısaltmalardan gelen hata büyüyüp gerçek değerlerle hesaplanan değerler arasında önemli farklar oluşabilir. Hata İle Artma Büyüklüğü Arasındaki İlişki Dt adım büyüklüğünün değeri azaldıkça doğru değere daha fazla yaklaşılır. Aşağıdaki şekil bunu göstermektedir. Şekil 7.3 Basit Euler yönteminde hata t deki V türevinden başlayıp ta ya kadar yarım adım gerçekleştirildikten sonra burada tekrar V çıkarılırsa bununla ta dan t ye ikinci yarım adım yapıldığında bulunan V değeri V a a değerine V den daha yakındır. Görüldüğü gibi V -V hatası, yaklaşık olarak adım değerini yarıya düşürmekle yarıya indirilebilmektedir. Buradan birinci mertebe yöntemiyle integrasyonda sayısal hataların kademe büyüklüğü ile orantılı olduğu sonucuna varılabilir. Bu yüzden istenen tolerans veya müsade edilen maksimum hata kullanılan kademe büyüklüğüne bağlıdır. Hata kullanılan değişken değerinin % si % =.00 V veya mutlak bir değer olarak alınır. Bunun nedeni V 0 olduğunda % hata tanımı v çalışmaz. Matematiksel olarak bu tanımlar oldukça hassas olabilir. Ancak bilgisayarda yanlış bir seçim işlem süresini uzatabilir. Mesela aşağıdaki şekil bir diferensiyel denklemler takımının iki çözümünü göstermektedir. Pratik amaçlar yönünden yaklaşık çözümün oldukça yeterli olduğu görülmektedir.
5 65 Şekil 7.4 Basit Euler yönteminde yaklaşık çözüm Ancak matematiksel olarak sayısal çözümün hata kesri eğimin hızlı değiştiği yerlerde teorik olarak kabul edilemez düzeylerdedir. Bu yüzden belirtilen hata toleransı bazen yanıltıcı ve zaman kaybettirici olabilir. Bunlardan dolayı ilk olarak problem denklemlerinde verilen bilgiye dayanan nominal bir kademe büyüklüğü kullanılarak denklemler sayısal olarak çözülür. Sonuçlar kararlı görünüyorsa kademe büyüklüğü ikiye bölünerek hesap tekrarlanır. Sonuçlar karşılaştırılır. Eğer ilk kademe büyüklüğü yeterli görünüyorsa nominal kademe büyüklüğü artması sürdürülür. Bundan sonra yeterli duyarlık sağlanıncaya kadar kademe büyüklüğü azaltılır. Genellikle uygun bir optimum kademe büyüklüğü bulmak için birkaç deneme çözümü gerekir. Fortran Programı Önceki bölümde açıklanan tanktaki sıvı düzeyi değişimini (H) tanka giren Qi, ve tanktan çıkan sıvı akım hızlarının fonksiyonu olarak yazalım. dh i 0 dt Q Q = A H, Q i ve Q 0 değişkenlerini tek bir eşitlikte toplamak yerine herbirini ayrı tanımlamak daha uygundur. bu denklemlerin çözümü için C v, A ve H ın başlangıç şartı (t = 0 H = 0 gibi) gerekmektedir. Diğer gerekli veri Q(t) dir. Bu ise t nin keyfi bir fonksiyonudur. Şekil 7.5 Q(t) nin düzensiz bir fonksiyon şeklinde verilmesi
6 66 Eğriyi oluşturan noktaları birleştiren bir dizi lineer denklem yazılabilir. Programdaki bilgi akışı aşağıdaki şekilde gösterilebilir. Şekil 7.6 Sayısal integrasyonda bilgi akışı Bu denklemlerin çözüm programı üç bölüme ayrılabilir. Başlangıç Bölümü: Ön hesaplamlar ve gerekli icra deyimlerinden, keyfi fonksiyon ve çözüm için gerekli veri girişlerinden oluşur. C BIRINCI MERTEBE INTEGRASYON 0 FORMAT(F0.3,3X,F0.3,3X,F0.3,3X,F0.3,3X,F0.3) DIMENSION AT(5),AQ(5) C BASLANGIC BOLUMU DATA(AT(N),N=,)/0.,.5,.,.,3.,4.,5.,6.,7.,8.,9.,0./ DATA(AQ(N),N=,)/0,0,34,5,63,70,70,6,48,4,4,40/ OPEN(4,FILE=BIRCIKTI,STATUS=OLD,ACCESS=SEQUENTIAL) WRITE(,0) WRITE(4,0) 0 FORMAT(7X, T H DH Q, / Q0,/, /4X,======= ======== ======== ======== ========) DT=0. A=5 T=0 H=0 TPRNT=0
7 67 Türev Bölümü: Bu bölüm sonuç olarak türevin hesaplayan cebirsel ifadeler veya birden fazla denklem çözülecekse türevler bulundurur. Hiçbir değişken önceden bir deyimle belirtilmeden kullanılamaz. Mesala dh türevi için denklem Qi ve Qo ın tanımından sonra yazılmalıdır. C TUREV BOLUMU 7 Q0=7.SQRT(H) Q=FUN(T,,AT,AQ) DH=(Q-Q0)/A Burada giriş QI değeri FUN den alınır. Bu noktada bütün integrasyon değişkenleri (T,H) belirtilmekte ve türev (DH), ara ve diğer bağımlı değişkenler hesaplanmaktadır. Bu bölümün altında ilgili değişkenlerin bağıl durumları ile bilgi yazılmalıdır. Bu yüzden türev bölümünü yazma bölümü izlemelidir. Yazma bölümü: Genellikle bu bilgi belirli aralıklarda istenir. Bu yüzden t zamanının bir sonraki yazma zamanını gösteren bir yazma indeksi (TPRNT) ile karşılaştırmak için programa bir test dahil edilmelidir. C YAZMA VE BITIRME ICIN TEST BOLUMU IF(T.GE.TPRNT) WRITE(,0) T,H,DH,Q,Q0 IF(T.GE.TPRNT) WRITE(4,0) T,H,DH,Q,Q0 IF(T.GE.TPRNT) TPRNT=TPRNT+ IF(T.GE.0.) GOTO 8 İntegrasyon Bölümü: Bu bölüm son bölüm olup, bağımsız değişken ekseni boyunca düzenli bir biçimde adımlama işlemini içerir. C INTEGRASYON BOLUMU T=T+DT H=H+DHDT GO TO 7 8 STOP END Yukarıdaki programın çıktısı aşağıdaki gibi olacaktır. T H DH Q Q0 ======= ======== ======== ======== ========
8 68 Çok sayıda diferensiyel eşitlikler durumunda integrasyon adımları herhangi bir sırada yazılabilir. Bu kademeli integrasyonun yapılmasından sonra hesaplama, tekrar çevirme girmek, türevleri tekrar çıkarmak ve devam etmek üzere, türev bölümünün ilk satırına yöneltilir. Çevrim tekrar tekrar bağımsız değişken T önceden belirlenen sınıra ulaşıncaya kadar sürer. Bunun testi print deyiminden hemen sonra yapılır. Yazma bölümündeki son satırdaki deyim bunu göstermektedir. Bu deyim yerine getirildikten sonra bilgisayar yeni bir DT değerine yöneltilebilir veya bitirilebilir. Bu 8 numaralı deyimdir. Gerçekte hesaplamayı durdurmak üzere diğer herhangi bir problem şartı kullanılabilir. Örneğin H ın önceden belirlenen bir düzeye gelmesi durumunu ifade etmek için uygun bir bitirme deyimi şu sekilde olabilir. IF(H.GE.6.5.) GOTO 8
Şekil 6.2 Çizgisel interpolasyon
45 Yukarıdaki şekil düzensiz bir X,Y ilişkisini göstermektedir. bu fonksiyon eğri üzerindeki bir dizi noktayı birleştiren bir seri düzgün çizgi halindeki bölümlerle açıklanabilir. Noktaların sayısı ne
YAVAŞ DEĞİŞEN ÜNİFORM OLMAYAN AKIM
YAVAŞ DEĞİŞEN ÜNİFORM OLMAYAN AKIM Yavaş değişen akımların analizinde kullanılacak genel denklem bir kanal kesitindeki toplam enerji yüksekliği: H = V g + h + z x e göre türevi alınırsa: dh d V = dx dx
Şekil 8.6 Bilgi akışının sistem içinde düzenlenmesi
97 Bu denkle takıının çözüü belirli bir P1(t) ve P3(t) rejii için Z düzeyinin değişiini verir. Bu çözüün ateatiksel tekniklerle gerçekleştirilesi güçtür. Ancak noral progralaa bilen biri tarafından kolayca
Kaynaklar Shepley L. Ross, Differential Equations (3rd Edition), 1984.
Çankırı Karatekin Üniversitesi Matematik Bölümü 2015 Kaynaklar Shepley L. Ross, Differential Equations (3rd Edition), 1984. (Adi ) Bir ya da daha fazla bağımsız değişkenden oluşan bağımlı değişken ve türevlerini
Birinci Mertebeden Adi Diferansiyel Denklemler
Birinci Mertebeden Adi Diferansiyel Denklemler Bir veya daha çok bağımlı değişken, bir veya daha çok bağımsız değişken ve bağımlı değişkenin bağımsız değişkene göre (diferansiyel) türevlerini içeren bağıntıya
bir sonraki deneme değerinin tayin edilmesi için fonksiyonun X e göre türevi kullanılır. Aşağıdaki şekil X e karşı f(x) i göstermektedir.
37 Newton-Raphson Yöntemi İle Çözüme Ulaşma Bu yöntem özellikle fonksiyonun türevinin analitik olarak elde edilebildiği durumlarda kullanışlıdır. Fonksiyonel ilişkinin ifade edilmesinde daha uygun bir
Math 322 Diferensiyel Denklemler Ders Notları 2012
1 Genel Tanımlar Bir veya birden fazla fonksiyonun türevlerini içeren denklemlere diferensiyel denklem denmektedir. Diferensiyel denklemler Adi (Sıradan) diferensiyel denklemler ve Kısmi diferensiyel denklemler
Mühendislik Mekaniği Statik. Yrd.Doç.Dr. Akın Ataş
Mühendislik Mekaniği Statik Yrd.Doç.Dr. Akın Ataş Bölüm 10 Eylemsizlik Momentleri Kaynak: Mühendislik Mekaniği: Statik, R. C.Hibbeler, S. C. Fan, Çevirenler: A. Soyuçok, Ö. Soyuçok. 10. Eylemsizlik Momentleri
fonksiyonunun [-1,1] arasındaki grafiği hesaba katılırsa bulunan sonucun
. UŞAK FEN EDEBİYAT FAKÜLTESİ MATEMATİK BÖLÜMÜ ANALİZ II FİNAL SORULARI ÇÖZÜMLERİ d belirli integralinin aşağıdaki çözümünün doğru olup olmadığını belirtiniz. Eğer çözüm yanlış ise sebebini açıklayınız.
Copyright The McGraw-Hill Companies, Inc. Permission required for reproduction or display. BÖLÜM 7. Adi Diferansiyel Denklemlerin Sayısal Çözümü
Copyright The McGraw-Hill Companies, Inc. Permission required for reproduction or display. BÖLÜM 7 Adi Diferansiyel Denklemlerin Sayısal Çözümü Copyright The McGraw-Hill Companies, Inc. Permission required
18.034 İleri Diferansiyel Denklemler
MIT AçıkDersSistemi http://ocw.mit.edu 18.034 İleri Diferansiyel Denklemler 2009 Bahar Bu bilgilere atıfta bulunmak veya kullanım koşulları hakkında bilgi için http://ocw.mit.edu/terms web sitesini ziyaret
SAYISAL ÇÖZÜMLEME. Sayısal Çözümleme
SAYISAL ÇÖZÜMLEME 1 SAYISAL ÇÖZÜMLEME 4. Hafta DENKLEM ÇÖZÜMLERİ 2 İÇİNDEKİLER Denklem Çözümleri Doğrusal Olmayan Denklem Çözümleri Grafik Yöntemleri Kapalı Yöntemler İkiye Bölme (Bisection) Yöntemi Adım
BÖLÜM 1: TEMEL KAVRAMLAR
BÖLÜM 1: TEMEL KAVRAMLAR Hal Değişkenleri Arasındaki Denklemler Aralarında sıfıra eşitlenebilen en az bir veya daha fazla denklem kurulabilen değişkenler birbirine bağımlıdır. Bu denklemlerden bilinen
İleri Diferansiyel Denklemler
MIT AçıkDersSistemi http://ocw.mit.edu 18.034 İleri Diferansiyel Denklemler 2009 Bahar Bu bilgilere atıfta bulunmak veya kullanım koşulları hakkında bilgi için http://ocw.mit.edu/terms web sitesini ziyaret
Mühendislik Mekaniği Statik. Yrd.Doç.Dr. Akın Ataş
Mühendislik Mekaniği Statik Yrd.Doç.Dr. Akın Ataş Bölüm 9 Ağırlık Merkezi ve Geometrik Merkez Kaynak: Mühendislik Mekaniği: Statik, R. C. Hibbeler, S. C. Fan, Çevirenler: A. Soyuçok, Ö. Soyuçok. 9. Ağırlık
MAK 210 SAYISAL ANALİZ
MAK 10 SAYISAL ANALİZ BÖLÜM 9-DİFERANSİYEL DENKLEMLERİN SAYISAL ÇÖZÜMÜ 1 GİRİŞ Diferansiyel denklemler, mühendislikte fiziksel olayların modellenmesinde sık karşılaşılan denklemlerdendir. Dolayısıyla bu
MAK 210 SAYISAL ANALİZ
MAK 210 SAYISAL ANALİZ BÖLÜM 6- İSTATİSTİK VE REGRESYON ANALİZİ Doç. Dr. Ali Rıza YILDIZ 1 İSTATİSTİK VE REGRESYON ANALİZİ Bütün noktalardan geçen bir denklem bulmak yerine noktaları temsil eden, yani
Akışkan Kinematiği 1
Akışkan Kinematiği 1 Akışkan Kinematiği Kinematik, akışkan hareketini matematiksel olarak tanımlarken harekete sebep olan kuvvetleri ve momentleri gözönüne almadan; Yerdeğiştirmeler Hızlar ve İvmeler cinsinden
MAK 210 SAYISAL ANALİZ
MAK 210 SAYISAL ANALİZ BÖLÜM 7- SAYISAL TÜREV Doç. Dr. Ali Rıza YILDIZ 1 GİRİŞ İntegral işlemi gibi türev işlemi de mühendislikte çok fazla kullanılan bir işlemdir. Basit olarak bir fonksiyonun bir noktadaki
9. Güç ve Enerji Ölçümü
9. Güç ve Enerji Ölçümü Güç ve Güç Ölçümü: Doğru akım devrelerinde, sürekli halde sadece direnç etkisi mevcuttur. Bu yüzden doğru akım devrelerinde sadece dirence ait olan güçten bahsedilir. Sürekli halde
Şekilde görülen integralin hesaplanmasında, fonksiyonun her verilen bir noktası için kümülatif alan hesabı yapılır.
NÜMERİK İNTEGRASYON Şekilde görülen integralin hesaplanmasında, onksiyonun her verilen bir noktası için kümülati alan hesabı yapılır. Nümerik integrasyonda, integralin analitik değerine, çeşitli yöntemlerle
Bernoulli Denklemi, Basınç ve Hız Yükleri Borularda Piezometre ve Enerji Yükleri Venturi Deney Sistemi
Bernoulli Denklemi, Basınç ve Hız Yükleri Borularda Piezometre ve Enerji Yükleri Venturi Deney Sistemi Akışkanlar dinamiğinde, sürtünmesiz akışkanlar için Bernoulli prensibi akımın hız arttıkça aynı anda
Diferensiyel denklemler sürekli sistemlerin hareketlerinin ifade edilmesinde kullanılan denklemlerdir.
.. Diferensiyel Denklemler y f (x) de F ( x, y, y, y,...) 0 veya y f ( x, y, y,...) x ve y değişkenlerinin kendileri ve türevlerini içinde bulunduran denklemlerdir. (Türevler; "Bağımlı değişkenin değişiminin
BÖLÜM 1: MADDESEL NOKTANIN KİNEMATİĞİ
BÖLÜM 1: MADDESEL NOKTANIN KİNEMATİĞİ 1.1. Giriş Kinematik, daha öncede vurgulandığı üzere, harekete sebep olan veya hareketin bir sonucu olarak ortaya çıkan kuvvetleri dikkate almadan cisimlerin hareketini
T.C. DÜZCE ÜNİVERSİTESİ TEKNOLOJİ FAKÜLTESİ BİLGİSAYAR MÜHENDİSLİĞİ BÖLÜMÜ BMT103 ELEKTRİK DEVRE TEMELLERİ DERSİ LABORATUVARI DENEY NO: 3
T.C. DÜZCE ÜNİVERSİTESİ TEKNOLOJİ FAKÜLTESİ BİLGİSAYAR MÜHENDİSLİĞİ BÖLÜMÜ BMT103 ELEKTRİK DEVRE TEMELLERİ DERSİ LABORATUVARI DENEY NO: 3 ÇEVRE (GÖZ) AKIMLARI YÖNTEMİ Arş. Gör. Sümeyye BAYRAKDAR Arş. Gör.
DENEY 5 RC DEVRELERİ KONDANSATÖRÜN YÜKLENMESİ VE BOŞALMASI
DENEY 5 R DEVRELERİ KONDANSATÖRÜN YÜKLENMESİ VE BOŞALMAS Amaç: Deneyin amacı yüklenmekte/boşalmakta olan bir kondansatörün ne kadar hızlı (veya ne kadar yavaş) dolmasının/boşalmasının hangi fiziksel büyüklüklere
MAK 210 SAYISAL ANALİZ
MAK 210 SAYISAL ANALİZ BÖLÜM 5- SONLU FARKLAR VE İNTERPOLASYON TEKNİKLERİ Doç. Dr. Ali Rıza YILDIZ MAK 210 - Sayısal Analiz 1 İNTERPOLASYON Tablo halinde verilen hassas sayısal değerler veya ayrık noktalardan
MAK 210 SAYISAL ANALİZ
MAK 210 SAYISAL ANALİZ BÖLÜM 8- SAYISAL İNTEGRASYON 1 GİRİŞ Mühendislikte sık karşılaşılan matematiksel işlemlerden biri integral işlemidir. Bilindiği gibi integral bir büyüklüğün toplam değerinin bulunması
İleri Diferansiyel Denklemler
MIT AçıkDersSistemi http://ocw.mit.edu 18.034 İleri Diferansiyel Denklemler 2009 Bahar Bu bilgilere atıfta bulunmak veya kullanım koşulları hakkında bilgi için http://ocw.mit.edu/terms web sitesini ziyaret
İleri Diferansiyel Denklemler
MIT AçıkDersSistemi http://ocw.mit.edu 18.034 İleri Diferansiyel Denklemler 2009 Bahar Bu bilgilere atıfta bulunmak veya kullanım koşulları hakkında bilgi için http://ocw.mit.edu/terms web sitesini ziyaret
ÇEV 2006 Mühendislik Matematiği (Sayısal Analiz) DEÜ Çevre Mühendisliği Bölümü Doç.Dr. Alper ELÇĐ
Giriş ÇEV 2006 Mühendislik Matematiği (Sayısal Analiz) DEÜ Çevre Mühendisliği Bölümü Doç.Dr. Alper ELÇĐ Sayısal Analiz Nedir? Mühendislikte ve bilimde, herhangi bir süreci tanımlayan karmaşık denklemlerin
4. HAFTA BLM323 SAYISAL ANALİZ. Okt. Yasin ORTAKCI.
4. HAFTA BLM33 SAYISAL ANALİZ Okt. Yasin ORTAKCI [email protected] Karabük Üniversitesi Uzaktan Eğitim Uygulama ve Araştırma Merkezi BLM33 DOĞRUSAL OLMAYAN (NONLINEAR) DENKLEM SİSTEMLERİ Mühendisliğin
Selçuk Üniversitesi. Mühendislik-Mimarlık Fakültesi. Kimya Mühendisliği Bölümü. Kimya Mühendisliği Laboratuvarı. Venturimetre Deney Föyü
Selçuk Üniversitesi Mühendislik-Mimarlık Fakültesi Kimya Mühendisliği Bölümü Kimya Mühendisliği Laboratuvarı Venturimetre Deney Föyü Hazırlayan Arş.Gör. Orhan BAYTAR 1.GİRİŞ Genellikle herhangi bir akış
B: Bu şekildeki her bir nokta dikdörtgenin noktalarını temsil eder.
2. ÇOK KATLI İNTEGRALLER, DİFERENSİYEL DENKLEMLERE GİRİŞ 2.1. Çok Katlı İntegraller 2.1.1. İki Katlı İntegraller Fonksiyonu bir B bölgesinde sınırlı yani için olsun. B bölgesi alt bölgelere ayrılırsa;
İleri Diferansiyel Denklemler
MIT AçıkDersSistemi http://ocw.mit.edu 18.034 İleri Diferansiyel Denklemler 2009 Bahar Bu bilgilere atıfta bulunmak veya kullanım koşulları hakkında bilgi için http://ocw.mit.edu/terms web sitesini ziyaret
BÖLÜM I GİRİŞ (1.1) y(t) veya y(x) T veya λ. a t veya x. Şekil 1.1 Dalga. a genlik, T peryod (veya λ dalga boyu)
BÖLÜM I GİRİŞ 1.1 Sinyal Bir sistemin durum ve davranış bilgilerini taşıyan, bir veya daha fazla değişken ile tanımlanan bir fonksiyon olup veri işlemde dalga olarak adlandırılır. Bir dalga, genliği, dalga
EEM211 ELEKTRİK DEVRELERİ-I
EEM211 ELEKTRİK DEVRELERİ-I Prof. Dr. Selçuk YILDIRIM Siirt Üniversitesi Elektrik-Elektronik Mühendisliği Kaynak (Ders Kitabı): Fundamentals of Electric Circuits Charles K. Alexander Matthew N.O. Sadiku
EŞİTLİK KISITLI TÜREVLİ YÖNTEMLER
EŞİTLİK KISITLI TÜREVLİ YÖNTEMLER LAGRANGE YÖNTEMİ Bu metodu incelemek için Amaç fonksiyonu Min.z= f(x) Kısıtı g(x)=0 olan problemde değişkenler ve kısıtlar genel olarak şeklinde gösterilir. fonksiyonlarının
Mühendislikte Sayısal Çözüm Yöntemleri NÜMERİK ANALİZ. Prof. Dr. İbrahim UZUN
Mühendislikte Sayısal Çözüm Yöntemleri NÜMERİK ANALİZ Prof. Dr. İbrahim UZUN Yayın No : 2415 İşletme-Ekonomi Dizisi : 147 5. Baskı Eylül 2012 - İSTANBUL ISBN 978-605 - 377-438 - 9 Copyright Bu kitabın
18.034 İleri Diferansiyel Denklemler
MIT AçıkDersSistemi http://ocw.mit.edu 18.034 İleri Diferansiyel Denklemler 2009 Bahar Bu bilgilere atıfta bulunmak veya kullanım koşulları hakkında bilgi için http://ocw.mit.edu/terms web sitesini ziyaret
FONKSİYONLARIN TABLO ŞEKLİNDE HESAPLANMASI
FONKSİYONLARIN TABLO ŞEKLİNDE HESAPLANMASI Bu kısımda bir fonksiyon değerlerinin tablo şeklinde hesaplanması incelenecektir. İncelenecek fonksiyon y=f(x) şeklinde bir değişenli veya z=f(x,y) şeklinde iki
Bölüm 4 KAPALI SİSTEMLERİN ENERJİ ANALİZİ. Bölüm 4: Kapalı Sistemlerin Enerji Analizi
Bölüm 4 KAPALI SİSTEMLERİN ENERJİ ANALİZİ 1 Amaçlar Özellikle otomobil motoru ve kompresör gibi pistonlu makinelerde yaygın olarak karşılaşılan hareketli sınır işi veya PdV işi olmak üzere değişik iş biçimlerinin
1203608-SIMÜLASYON DERS SORUMLUSU: DOÇ. DR. SAADETTIN ERHAN KESEN. Ders No:5 Rassal Değişken Üretimi
1203608-SIMÜLASYON DERS SORUMLUSU: DOÇ. DR. SAADETTIN ERHAN KESEN Ders No:5 RASSAL DEĞIŞKEN ÜRETIMI Bu bölümde oldukça yaygın bir biçimde kullanılan sürekli ve kesikli dağılımlardan örneklem alma prosedürleri
Alıştırmalar 1. 1) Aşağıdaki diferansiyel denklemlerin mertebesini ve derecesini bulunuz. Bağımlı ve bağımsız değişkenleri belirtiniz.
Alıştırmalar 1 1) Aşağıdaki diferansiyel denklemlerin mertebesini ve derecesini bulunuz. Bağımlı ve bağımsız değişkenleri belirtiniz. Denklem Mertebe Derece a) 2 1 ( ) 4 6 c) 2 1 d) 2 2 e) 3 1 f) 2 4 g)
EDUCATIONAL MATERIALS
PROBLEM SET 1. (2.1) Mükemmel karıştırılmış, sabit hacimli tank, aynı sıvıyı içeren iki giriş akımına sahiptir. Her akımın sıcaklığı ve akış hızı zamanla değişebilir. a) Geçiş işlemini ifade eden dinamik
Diferansiyel denklemler uygulama soruları
. Aşağıdaki diferansiyel denklemleri sınıflandırınız. a) d y d d + y = 0 b) 5 d dt + 4d + 9 = cos 3t dt Diferansiyel denklemler uygulama soruları 0.0.3 c) u + u [ ) ] d) y + = c d. y + 3 = 0 denkleminin,
MAK 210 SAYISAL ANALİZ
MAK 210 SAYISAL ANALİZ BÖLÜM 4- LİNEER OLMAYAN DENKLEMLERİN ÇÖZÜMÜ Doç. Dr. Ali Rıza YILDIZ MAK 210 - Sayısal Analiz 1 LİNEER OLMAYAN DENKLEMLERİN ÇÖZÜMÜ Matematikte veya hidrolik, dinamik, mekanik, elektrik
İstatistik ve Olasılık
İstatistik ve Olasılık KORELASYON ve REGRESYON ANALİZİ Doç. Dr. İrfan KAYMAZ Tanım Bir değişkenin değerinin diğer değişkendeki veya değişkenlerdeki değişimlere bağlı olarak nasıl etkilendiğinin istatistiksel
İleri Diferansiyel Denklemler
MIT AçıkDersSistemi http://ocw.mit.edu 18.034 İleri Diferansiyel Denklemler 2009 Bahar Bu bilgilere atıfta bulunmak veya kullanım koşulları hakkında bilgi için http://ocw.mit.edu/terms web sitesini ziyaret
Akışkanların Dinamiği
Akışkanların Dinamiği Akışkanların Dinamiğinde Kullanılan Temel Prensipler Gaz ve sıvı akımıyla ilgili bütün problemlerin çözümü kütlenin korunumu, enerjinin korunumu ve momentumun korunumu prensibe dayanır.
Diferensiyel Denklemler I Uygulama Notları
2004 Diferensiyel Denklemler I Uygulama Notları Mustafa Özdemir İçindekiler Temel Bilgiler...................................................................... 2 Tam Diferensiyel Denklemler........................................................4
DÜZENLİ AKIMLARDA ENERJİ DENKLEMİ VE UYGULAMALARI
DÜZENLİ AKIMLARDA ENERJİ DENKLEMİ VE UYGULAMALARI, iş yapabilme yeteneği olarak tanımlanır(kg.m yada Kwh). Bir sıvının enerjisi, sıvı birim ağırlığının sahip olduğu iş yapabilme yeteneğidir. 1. Potansiyel
Uzayda iki doğrunun ortak dikme doğrusunun denklemi
Uzayda iki doğrunun ortak dikme doğrusunun denklemi Uzayda verilen d 1 ve d aykırı doğrularının ikisine birden dik olan doğruya ortak dikme doğrusu denir... olmak üzere bu iki doğru denkleminde değilse
Devre Teorisi Ders Notu Dr. Nurettin ACIR ve Dr. Engin Cemal MENGÜÇ
BÖLÜM I İNDÜKTANS VE KAPASİTANS Bu bölümde, tek bir bağımsız kaynak kullanılarak indüktör ve kapasitörlerin tek başına davranışları incelenecektir. İndüktörler, manyetik alanla ilişkin olaylar üzerine
İleri Diferansiyel Denklemler
MIT AçıkDersSistemi http://ocw.mit.edu 18.034 İleri Diferansiyel Denklemler 2009 Bahar Bu bilgilere atıfta bulunmak veya kullanım koşulları hakkında bilgi için http://ocw.mit.edu/terms web sitesini ziyaret
Çukurova Üniversitesi Biyomedikal Mühendisliği
Çukurova Üniversitesi Biyomedikal Mühendisliği BMM309 Elektronik-2 Laboratuarı Deney Föyü Deney#6 İşlemsel Kuvvetlendiriciler (OP-AMP) - 2 Doç. Dr. Mutlu AVCI Arş. Gör. Mustafa İSTANBULLU ADANA, 2015 DENEY
Akışkanların Dinamiği
Akışkanların Dinamiği Akışkanların Dinamiğinde Kullanılan Temel Prensipler Gaz ve sıvı akımıyla ilgili bütün problemlerin çözümü kütlenin korunumu, enerjinin korunumu ve momentumun korunumu prensibe dayanır.
MTK467 Nesneye Yönelik Programlama. Hafta 4 - Döngüler Zümra Kavafoğlu https://zumrakavafoglu.github.io/
MTK467 Nesneye Yönelik Programlama Hafta 4 - Döngüler Zümra Kavafoğlu https://zumrakavafoglu.github.io/ while döngüsü while(koşul){ } döngü ifadeleri Koşul boolean değerli olmalıdır. Koşulun değeri true
Bilgisayar Programlamaya Giriş I KAREKÖK BULMA Acaba hesap makinesi bir sayının karekökünü nasıl buluyor? başlangıç değeri olmak üzere,
KAREKÖK BULMA Acaba hesap makinesi bir sayının karekökünü nasıl buluyor? başlangıç değeri olmak üzere, dizisi değerine yakınsar. Yani; olur. Burada birinci sorun başlangıç değerinin belirlenmesidir. İkinci
OTOMATİK KONTROL SİSTEMLERİ İŞARET AKIŞ DİYAGRAMLARI SIGNAL FLOW GRAPH
OTOMATİK KONTROL SİSTEMLERİ İŞARET AKIŞ DİYAGRAMLARI SIGNAL FLOW GRAPH İŞARET AKIŞ DİYAGRAMLARI İşaret akış diyagramları blok diyagramlara bir alternatiftir. Fonksiyonel bloklar, işaretler, toplama noktaları
18.034 İleri Diferansiyel Denklemler
MIT AçıkDersSistemi http://ocw.mit.edu 18.034 İleri Diferansiyel Denklemler 2009 Bahar Bu bilgilere atıfta bulunmak veya kullanım koşulları hakkında bilgi için http://ocw.mit.edu/terms web sitesini ziyaret
Ders İçerik Bilgisi. Sistem Davranışlarının Analizi. Dr. Hakan TERZİOĞLU. 1. Geçici durum analizi. 2. Kalıcı durum analizi. MATLAB da örnek çözümü
Dr. Hakan TERZİOĞLU Ders İçerik Bilgisi Sistem Davranışlarının Analizi 1. Geçici durum analizi 2. Kalıcı durum analizi MATLAB da örnek çözümü 2 Dr. Hakan TERZİOĞLU 1 3 Geçici ve Kalıcı Durum Davranışları
TERMODİNAMİĞİN BİRİNCİ YASASI
İç Enerji Fonksiyonu ve C v Isınma Isısı Kimyasal tepkimelerin olmadığı kapalı sistemlerde kütle yanında molar miktar da sabit kalmaktadır. Madde miktarı n mol olan kapalı bir ideal gaz sistemi düşünelim.
İleri Diferansiyel Denklemler
MIT AçıkDersSistemi http://ocw.mit.edu 18.034 İleri Diferansiyel Denklemler 2009 Bahar Bu bilgilere atıfta bulunmak veya kullanım koşulları hakkında bilgi için http://ocw.mit.edu/terms web sitesini ziyaret
TERMODİNAMİĞİN BİRİNCİ YASASI
İzotermal ve Adyabatik İşlemler Sıcaklığı sabit tutulan sistemlerde yapılan işlemlere izotermal işlem, ısı alışverişlerine göre yalıtılmış sistemlerde yapılan işlemlere ise adyabatik işlem adı verilir.
EEM211 ELEKTRİK DEVRELERİ-I
EEM211 ELEKTRİK DEVRELERİ-I Prof. Dr. Selçuk YILDIRIM Siirt Üniversitesi Elektrik-Elektronik Mühendisliği Kaynak (Ders Kitabı): Fundamentals of Electric Circuits Charles K. Alexander Matthew N.O. Sadiku
2. HAFTA DERS NOTLARI İKTİSADİ MATEMATİK MİKRO EKONOMİK YAKLAŞIM. Yazan SAYIN SAN
2. HAFTA DERS NOTLARI İKTİSADİ MATEMATİK MİKRO EKONOMİK YAKLAŞIM Yazan SAYIN SAN SAN / İKTİSADİ MATEMATİK / 2 C.1.2. Piyasa Talep Fonksiyonu Bireysel talep fonksiyonlarının toplanması ile bir mala ait
BİRİNCİ DERECEDEN BİR BİLİNMEYENLİ DENKLEMLER
YILLAR 00 00 00 00 00 00 007 008 009 00 ÖSS-YGS - - - - - - - - BİRİNCİ DERECEDEN BİR BİLİNMEYENLİ DENKLEMLER a,b R ve a 0 olmak üzere ab=0 şeklindeki denklemlere Birinci dereceden bir bilinmeyenli denklemler
DĐRENÇ DEVRELERĐNDE KIRCHOFF UN GERĐLĐMLER ve AKIMLAR YASASI
DENEY NO: DĐRENÇ DEVRELERĐNDE KIRCHOFF UN GERĐLĐMLER ve AKIMLAR YASASI Bu deneyde direnç elamanını tanıtılması,board üzerinde devre kurmayı öğrenilmesi, avometre yardımıyla direnç, dc gerilim ve dc akım
TERMODİNAMİĞİN TEMEL EŞİTLİKLERİ
Serbest İç Enerji (Helmholtz Enerjisi) Ve Serbest Entalpi (Gibbs Enerjisi) Fonksiyonları İç enerji ve entalpi fonksiyonları yalnızca termodinamiğin birinci yasasından tanımlanır. Entropi fonksiyonu yalnızca
DENEY NO: 2 KIRCHHOFF UN AKIMLAR YASASI. Malzeme ve Cihaz Listesi:
DENEY NO: 2 KIRCHHOFF UN AKIMLAR YASASI Malzeme ve Cihaz Listesi: 1. 12 k direnç 1 adet 2. 15 k direnç 1 adet 3. 18 k direnç 1 adet 4. 2.2 k direnç 1 adet 5. 8.2 k direnç 1 adet 6. Breadboard 7. Dijital
MAK 210 SAYISAL ANALİZ
MAK 210 SAYISAL ANALİZ BÖLÜM 2- HATA VE HATA KAYNAKLARI Doç. Dr. Ali Rıza YILDIZ 1 GİRİŞ Bir denklemin veya problemin çözümünde kullanılan sayısal yöntem belli bir giriş verisini işleme tabi tutarak sayısal
<fn> FORMAT (a1,a2,a3,...) : format deyiminin satır numarasıdır READ, WRITE deyimleri ile verilir. : alan bildirim deyimleridir.
FORMAT deyimi Değişkenlere ait bilgilerin yazılması veya değişkenlere değer okunması sırasında, gerekli tür ve uzunlukların belirtildiği yani giriş ve çıkış işlemlerinin hangi düzende olması gerektiğini
NOT: Toplam 5 soru çözünüz, sınav süresi 90 dakikadır. SORULAR VE ÇÖZÜMLER
Adı- Soyadı: Fakülte No : Gıda Mühendisliği Bölümü, 2016/2017 Öğretim Yılı, Güz Yarıyılı 00391-Termodinamik Dersi, Dönem Sonu Sınavı Soru ve Çözümleri 13.01.2017 Soru (puan) 1 (20) 2 (20) 3 (20) 4 (20)
İleri Diferansiyel Denklemler
MIT AçıkDersSistemi http://ocw.mit.edu 18.034 İleri Diferansiyel Denklemler 2009 Bahar Bu bilgilere atıfta bulunmak veya kullanım koşulları hakkında bilgi için http://ocw.mit.edu/terms web sitesini ziyaret
Geometrik nivelmanda önemli hata kaynakları Nivelmanda oluşabilecek model hataları iki bölümde incelenebilir. Bunlar: Aletsel (Nivo ve Mira) Hatalar Çevresel Koşullardan Kaynaklanan Hatalar 1. Aletsel
OTOMATİK KONTROL SİSTEMLERİ. DİNAMİK SİSTEMLERİN MODELLENMESİ ve ANALİZİ
OTOMATİK KONTROL SİSTEMLERİ DİNAMİK SİSTEMLERİN MODELLENMESİ ve ANALİZİ 1) İdeal Sönümleme Elemanı : a) Öteleme Sönümleyici : Mekanik Elemanların Matematiksel Modeli Basit mekanik elemanlar, öteleme hareketinde;
MATLAB DA SAYISAL ANALİZ DOÇ. DR. ERSAN KABALCI
MATLAB DA SAYISAL ANALİZ DOÇ. DR. ERSAN KABALCI Konu Başlıkları Lineer Denklem Sistemlerinin Çözümü İntegral ve Türev İntegral (Alan) Türev (Sayısal Fark ) Diferansiyel Denklem çözümleri Denetim Sistemlerinin
MAK 210 SAYISAL ANALİZ
MAK 210 SAYISAL ANALİZ BÖLÜM 1- GİRİŞ Doç. Dr. Ali Rıza YILDIZ 1 Mühendislikte, herhangi bir fiziksel sistemin matematiksel modellenmesi sonucu elde edilen karmaşık veya analitik çözülemeyen denklemlerin
T.C RECEP TAYYİP ERDOĞAN ÜNİVERSİTESİ MÜHENDİSLİK FAKÜLTESİ MAKİNE MÜHENDİSLİĞİ BÖLÜMÜ MAKİNE LABORATUVARI 1 DERSİ TERMAL İLETKENLİK DENEYİ DENEY FÖYÜ
T.C RECEP TAYYİP ERDOĞAN ÜNİVERSİTESİ MÜHENDİSLİK FAKÜLTESİ MAKİNE MÜHENDİSLİĞİ BÖLÜMÜ MAKİNE LABORATUVARI 1 DERSİ TERMAL İLETKENLİK DENEYİ DENEY FÖYÜ Hazırlayan Arş. Gör. Hamdi KULEYİN RİZE 2018 TERMAL
Dizi Antenler. Özdeş anten elemanlarından oluşan bir dizi antenin ışıma diyagramını belirleyen faktörler şunlardır.
Dizi Antenler Özdeş anten elemanlarından oluşan bir dizi antenin ışıma diyagramını belirleyen faktörler şunlardır. 1. Dizi antenin geometrik şekli (lineer, dairesel, küresel..vs.) 2. Dizi elemanları arasındaki
Bölüm 1. Elektriksel Büyüklükler ve Elektrik Devre Elemanları
Bölüm Elektriksel Büyüklükler ve Elektrik Devre Elemanları. Temel Elektriksel Büyüklükler: Akım, Gerilim, Güç, Enerji. Güç Polaritesi.3 Akım ve Gerilim Kaynakları F.Ü. Teknoloji Fak. EEM M.G. .. Temel
8.333 İstatistiksel Mekanik I: Parçacıkların İstatistiksel Mekaniği
MIT Açık Ders Malzemeleri http://ocw.mit.edu 8.333 İstatistiksel Mekanik I: Parçacıkların İstatistiksel Mekaniği 2007 Güz Bu materyallerden alıntı yapmak veya Kullanım Şartları hakkında bilgi almak için
ZEMİN SUYU Zeminde Su Akımı ve Akım Ağları. Y.Doç.Dr. Saadet A. Berilgen
ZEMİN SUYU Zeminde Su Akımı ve Akım Ağları Y.Doç.Dr. Saadet A. Berilgen 1 Zeminde Su Akımının Matematiksel İfadesi Laplace Denklemi ve iki boyutlu akım (2D- Seepage) Yer altı suyu akım bölgesi içinde bir
Sembolik Programlama1. Gün. Sembolik Programlama. 20 Eylül 2011
Sembolik Programlama 1. Gün Şenol Pişkin 20 Eylül 2011 Sunum Kapsamı MuPAD İçerik Başlangıç 1. Bölüm: Cebirsel işlemler 2. Bölüm: Denklem çözümleri MuPAD Kısaca MuPAD Bilgisi ve Tarihçesi MuPAD Diğer Araçlar
Geometriden kaynaklanan etkileri en aza indirmek için yük ve uzama, sırasıyla mühendislik gerilmesi ve mühendislik birim şekil değişimi parametreleri elde etmek üzere normalize edilir. Mühendislik gerilmesi
EŞANJÖR (ISI DEĞİŞTİRİCİSİ) DENEYİ FÖYÜ
EŞANJÖR (ISI DEĞİŞTİRİCİSİ) DENEYİ FÖYÜ Giriş Isı değiştiricileri (eşanjör) değişik tiplerde olup farklı sıcaklıktaki iki akışkan arasında ısı alışverişini temin ederler. Isı değiştiricileri başlıca yüzeyli
BİLECİK ŞEYH EDEBALİ ÜNİVERSİTESİ MÜHENDİSLİK FAKÜLTESİ MAKİNE VE İMALAT MÜHENDİSLİĞİ BÖLÜMÜ
BİLECİK ŞEYH EDEBALİ ÜNİVERSİTESİ MÜHENDİSLİK FAKÜLTESİ MAKİNE VE İMALAT MÜHENDİSLİĞİ BÖLÜMÜ MÜHENDİSLİKTE DENEYSEL METODLAR -I BERNOULLİ DENEYİ FÖYÜ 2014 1. GENEL BİLGİLER Bernoulli denklemi basınç, hız
ELEKTRİK-ELEKTRONİK MÜHENDİSLİĞİ DENETİM SİSTEMLERİ LABORATUVARI DENEY RAPORU. Deney No: 3 PID KONTROLÜ
TEKNOLOJİ FAKÜLTESİ ELEKTRİK-ELEKTRONİK MÜHENDİSLİĞİ DENETİM SİSTEMLERİ LABORATUVARI DENEY RAPORU Deney No: 3 PID KONTROLÜ Öğr. Gör. Cenk GEZEGİN Arş. Gör. Ayşe AYDIN YURDUSEV Öğrenci: Adı Soyadı Numarası
ISI TRANSFERİ LABORATUARI-1
ISI TRANSFERİ LABORATUARI-1 Deney Sorumlusu ve Uyg. Öğr. El. Prof. Dr. Vedat TANYILDIZI Prof. Dr. Mustafa İNALLI Doç. Dr. Aynur UÇAR Doç Dr. Duygu EVİN Yrd. Doç. Dr. Meral ÖZEL Yrd. Doç. Dr. Mehmet DURANAY
Bilgisayar Programlama MATLAB
What is a computer??? Bilgisayar Programlama MATLAB Prof. Dr. İrfan KAYMAZ What Konular is a computer??? MATLAB ortamının tanıtımı Matlab sistemi (ara yüzey tanıtımı) a) Geliştirme ortamı b) Komut penceresi
İstatistik ve Olasılık
İstatistik ve Olasılık Rastgele Değişkenlerin Dağılımları I Prof. Dr. İrfan KAYMAZ Ders konusu Bu derste; Rastgele değişkenlerin tanımı ve sınıflandırılması Olasılık kütle fonksiyonu Olasılık yoğunluk
İdeal Akışkanların 2 ve 3 Boyutlu Akımları
AKM 204 / Kısa Ders Notu H11-S1 İdeal Akışkanların 2 ve 3 Boyutlu Akımları Kütlenin Korunumu Prensibi : Süreklilik Denklemi Gözönüne alınan ortam ve akışkan özellikleri; Permanan olmayan akım ortamında
Elektrik ve Magnetizma
Elektrik ve Magnetizma 1.1. Biot-Sawart yasası Üzerinden akım geçen, herhangi bir biçime sahip iletken bir tel tarafından bir P noktasında üretilen magnetik alan şiddeti H iletkeni oluşturan herbir parçanın
Kinematik Modeller. Kesikli Hale Getirilmiş Sürekli Zaman Kinematik Modeller: Rastgele giriş yok ise hareketi zamanın bir polinomu karakterize eder.
1 Kinematik durum modelleri konumun belirli bir türevi sıfıra eşitlenerek elde edilir. Rastgele giriş yok ise hareketi zamanın bir polinomu karakterize eder. Böyle modeller polinom modeller olarak ta bilinir
KISITLI OPTİMİZASYON
KISITLI OPTİMİZASYON SİMPLEKS YÖNTEMİ Simpleks Yöntemi Simpleks yöntemi iteratif bir prosedürü gerektirir. Bu iterasyonlar ile gerçekçi çözümlerin olduğu bölgenin (S) bir köşesinden başlayarak amaç fonksiyonunun
EEM211 ELEKTRİK DEVRELERİ-I
EEM211 ELEKTRİK DEVRELERİ-I Prof. Dr. Selçuk YILDIRIM Siirt Üniversitesi Elektrik-Elektronik Mühendisliği Kaynak (Ders Kitabı): Fundamentals of Electric Circuits Charles K. Alexander Matthew N.O. Sadiku
Newton un F = ma eşitliğini SD den türete bilir miyiz?
burada yine kısmi integrasyon kullanıldı ve ± da Ψ ın yok olduğu kabul edildi. Sonuç olarak, p = p, yani p ˆ nin tüm beklenti değerleri gerçeldir. Bir özdeğer kendisine karşı gelen kararlı durumun beklenti
