EM302 Yöneylem Araştırması 2 Doğrusal Olmayan Programlamaya Giriş. Dr. Özgür Kabak

Benzer belgeler
YÖNEYLEM ARAŞTIRMASI - I

YÖNEYLEM ARAŞTIRMASI - III

YÖNEYLEM ARAŞTIRMASI - III

YÖNEYLEM ARAŞTIRMASI - III

İÇİNDEKİLER ÖNSÖZ Bölüm 1 SAYILAR 11 Bölüm 2 KÜMELER 31 Bölüm 3 FONKSİYONLAR

EM302 Yöneylem Araştırması 2 Çok değişkenli DOP ların çözümü. Dr. Özgür Kabak

YÖNEYLEM ARAŞTIRMASI - III

TÜREV VE UYGULAMALARI

OPTİMİZASYON TEKNİKLERİ. Kısıtsız Optimizasyon

EM302 Yöneylem Araştırması 2. Dr. Özgür Kabak

OPTİMİZASYON TEKNİKLERİ-2. Hafta

Temelleri. Doç.Dr.Ali Argun Karacabey

KONU 4: DOĞRUSAL PROGRAMLAMA MODELİ İÇİN ÇÖZÜM YÖNTEMLERİ I

HESSİEN MATRİS QUADRATİK FORM MUTLAK ve BÖLGESEL MAKS-MİN NOKTALAR

DOĞRUSAL OLMAYAN PROGRAMLAMA -I-

Çalışma Soruları 1. a) x > 5 b) y < -3 c) xy > 0 d) x 3 < y e) (x-2) 2 + y 2 > 1. ( ) 2x

Optimizasyon İçin Kök(Generic) Model (Doğrusal-Olmayan Programlama Modeli)

DOĞRUSAL OLMAYAN PROGRAMLAMA -II- Tek değişkenli doğrusal olmayan karar modelinin çözümü

ALTIN ORAN ARAMA (GOLDEN SECTION SEARCH) METODU

Zeki Optimizasyon Teknikleri

Bir Doğrusal Programlama Modelinin Genel Yapısı


DOĞRUSAL PROGRAMLAMADA DUALİTE (DUALITY)

ÖĞRENME ALANI TEMEL MATEMATİK BÖLÜM TÜREV. ALT ÖĞRENME ALANLARI 1) Türev 2) Türev Uygulamaları TÜREV

Yöneylem Araştırması II

x e göre türev y sabit kabul edilir. y ye göre türev x sabit kabul edilir.

Altın Oran Arama Metodu(Golden Search)

Türev Uygulamaları ÜNİTE. Amaçlar. İçindekiler. Yazar Prof.Dr. Vakıf CAFEROV

Kısıtsız Optimizasyon OPTİMİZASYON Kısıtsız Optimizasyon

KONU 3: DOĞRUSAL PROGRAMLAMA PROBLEMLERİ İLE İLGİLİ ÖRNEKLER

Çalışma Soruları 1. a) x > 5 b) y < -3 c) xy > 0 d) x 3 < y e) (x-2) 2 + y 2 > 1. ( ) 2x

Simpleks Yönteminde Kullanılan İlave Değişkenler (Eşitliğin yönüne göre):

Modelleme bir sanattan çok bir Bilim olarak tanımlanabilir. Bir model kurucu için en önemli karar model seçiminde ilişkileri belirlemektir.

TİPİK MODELLEME UYGULAMALARI

2(1+ 5 ) b = LYS MATEMATİK DENEMESİ. işleminin sonucu kaçtır? A)2 5 B)3 5 C)2+ 5 D)3+ 5 E) işleminin sonucu kaçtır?

KISITLI OPTİMİZASYON

Genetik Algoritmalar. Bölüm 1. Optimizasyon. Yrd. Doç. Dr. Adem Tuncer E-posta:

TÜREV VE UYGULAMALARI

YÖNEYLEM ARAŞTIRMASI - III

doğrusal programlama DOĞRUSAL PROGRAMLAMA (GENEL)

7.2 Fonksiyon ve Fonksiyon Tanımları (I) Fonksiyon ve Fonksiyon Tanımları (II)

Analiz II Çalışma Soruları-3


METASEZGİSEL YÖNTEMLER

EŞİTLİK KISITLI TÜREVLİ YÖNTEMLER

TÜREVİN UYGULAMALARI. Maksimum ve Minimum Değerler. Tanım : f bir fonksiyon ve D, f nin tanım kümesi olsun.

HOMOGEN OLMAYAN DENKLEMLER

Çok değişkenli fonksiyonlar. Maksimum- Minimum

Matematiksel modellerin elemanları

Üç Boyutlu Uzayda Koordinat sistemi

İleri Yöneylem Araştırması Uygulamaları Tam Sayılı Programlama

Genel Graf Üzerinde Mutlak 1-merkez

Doğrusal Programlamada Grafik Çözüm

ULAŞTIRMA MODELİ VE ÇEŞİTLİ ULAŞTIRMA MODELLERİ

YÖNEYLEM ARAŞTIRMASI - I

Çözümlemeleri" adlı yüksek lisans tezini başarıyla tamamlayarak 2001'de mezun oldu.

Mühendislik Mekaniği Statik. Yrd.Doç.Dr. Akın Ataş

MAT101 MATEMATİK I BÖLÜM 3 FONKSİYONLAR

Ders Çözümler: 9.2 Alıştırmalar Prof.Dr.Haydar Eş. 2. Prof.Dr.Timur Karaçay /1a: Kritik noktalar:

OPTIMIZASYON Bir Değişkenli Fonksiyonların Maksimizasyonu...2

Doğrusal Programlama. Prof. Dr. Ferit Kemal Sönmez

Yöneylem Araştırması I Dersi 2. Çalışma Soruları ve Cevapları/

Kübik Spline lar/cubic Splines

EŞİTSİZLİKLER. 5. x 2 + 4x + 4 > x 2 0. eşitsizliğinin çözüm kümesi. eşitsizliğinin çözüm kümesi. aşağıdakilerden hangisidir?

MAT MATEMATİK I DERSİ

Türev Uygulamaları. 4.1 Bağımlı Hız

Prof. Dr. Mahmut Koçak.

3.2. DP Modellerinin Simpleks Yöntem ile Çözümü Primal Simpleks Yöntem

İktisat bilimi açısından optimizasyon, amacımıza en uygun olan. seçeneğin belirlenmesidir. Örneğin bir firmanın kârını

MAT MATEMATİK I DERSİ

Bu bölümde; Çok ölçütlü karar verme yöntemlerinden biri olan TOPSİS yöntemi anlatılacaktır.

İleri Diferansiyel Denklemler

DOĞU AKDENİZ ÜNİVERSİTESİ MATEMATİK BÖLÜMÜ 23. LİSELERARASI MATEMATİK YARIŞMASI

Başlangıç Temel Programının Bilinmemesi Durumu

DERS İÇERİKLERİ, KAZANIMLAR, DERSLER ARASI İLİŞKİ Çizelge 2.

f fonksiyonuna bir üç değişkenli fonksiyon adı verilir. Daha çok değişkenli fonksiyonlar benzer şekilde tanımlanır.

ÜNİTE. MATEMATİK-1 Doç.Dr.Murat SUBAŞI İÇİNDEKİLER HEDEFLER TÜREV UYGULAMALARI-II

YÖNEYLEM ARAŞTIRMASI İLE İLGİLİ ÇÖZÜMLÜ ÖRNEKLER

fonksiyonu aralığında sürekli bir fonksiyon ve için ise olur. Eğer bu aralıktaki bütün x ler için ise bu fonksiyonun noktasında bir minimumu vardır.

ULAŞTIRMA MODELİ VE ÇEŞİTLİ ULAŞTIRMA MODELLERİ

Örnek 1: 2 x = 3 x = log 2 3. Örnek 2: 3 2x 1 = 2 2x 1 = log 3 2. Örnek 3: 4 x 1 = 7 x 1 = log 4 7. Örnek 4: 2 x = 3 2 x 2 = 3

4.1. Gölge Fiyat Kavramı

Final sınavı konularına aşağıdaki sorular dahil değildir: 1, 2, 3, 4, 5, 6, 7, 19, 20, 21, 25, 27, 28, 29, 30, 33-b.

2) Bir mağazada, bir ürüne satış fiyatı üzerinden %7 indirim yapılmış. Eğer yeni fiyatı 372 TL ise, kaç liralık indirim yapılmıştır?

Tek Değişkenli Optimizasyon OPTİMİZASYON. Gradient Tabanlı Yöntemler. Bisection (İkiye Bölme) Yöntemi

Karar değişkenlere ilişkin fonksiyonların ve bu fonksiyonlara ilişkin sınırlamaların tanımlanması

Mat Matematik II / Calculus II

12. SINIF. Fonksiyonlar - 1 TEST. 1. kx + 6 fonksiyonu sabit fonksiyon olduğuna göre aşağıdakilerden hangisidir? k. = 1 olduğuna göre k. kaçtır?

İbrahim Küçükkoç Arş. Gör.

Lys x 2 + y 2 = (6k) 2. (x 2k) 2 + y 2 = (2k 5) 2 olduğuna göre x 2 y 2 =? Cevap: 14k 2

Artan-Azalan Fonksiyonlar Ekstremumlar. Yard. Doç. Dr. Mustafa Akkol

MATEMATiKSEL iktisat

Yrd. Doç. Dr. A. Burak İNNER

Bir değişkenin bir sabite mümkün olduğu kadar çok yaklaşması durumu ancak onun limitiyle ifade edilebilir.

Cebirsel Fonksiyonlar

İleri Diferansiyel Denklemler

yöneylem araştırması Nedensellik üzerine diyaloglar I

Örnek. Aşağıdaki veri setlerindeki X ve Y veri çiftlerini kullanarak herbir durumda X=1,5 için Y nin hangi değerleri alacağını hesaplayınız.

DENİZ HARP OKULU ENDÜSTRİ MÜHENDİSLİĞİ BÖLÜM BAŞKANLIĞI DERS TANITIM BİLGİLERİ

Transkript:

EM302 Yöneylem Araştırması 2 Doğrusal Olmayan Programlamaya Giriş Dr. Özgür Kabak

Doğrusal Olmayan Programlama Eğer bir Matematiksel Programlama modelinin amaç fonksiyonu ve/veya kısıtları doğrusal değil ise bu tip modellere Doğrusal Olmayan Programlama (DOP) denir. DOP un çözümü DP ye göre çok daha zordur. DOP ta esas çaba problemin çözümü için harcanır.

Diferansiyel Analiz Limit: lim x a f ( x) c x, a ya yaklaşırken (ama eşit değil), f(x) in değeri c ye yaklaşmaktadır. f(x) fonksiyonu a nokasında sürekli olması için lim f ( x) f ( a) x a olmalıdır. Eğer f(x), x=a da sürekli değil ise a noktasında süreksiz denir.

Diferansiyel Analiz f(x) in x = a noktasındaki türevi [f (a) olarak ifade eidlir] aşağıdaki gibi tanımlanır: f ( a x) f ( a) lim 0 x x f (a), f(x) in x = a daki eğimidir. Eğer x = a dan başlayarak x çok küçük bir miktar, Δ kadar (Δ pozitif veya negatif olabilir), arttırılırsa, f(x) teki artış yaklaşık olarak Δf (a) olacaktır. Eğer f (a)>0 ise f(x), x = a da artandır. Eğer f (a)<0 ise f(x), x = a da azalandır.

Diferansiyel Analiz f (x) fonksiyonun x = a daki türevi (eğer varsa) f (2) (a) = f (a) şeklinde tanımlanır. Benzer şekilde daha yüksek dereceli türevler şu şekilde tanımlanabilir. f (n) (a) : f (n-1) (x) nın x = a daki türevi

Diferansiyel Analiz Parçalı Türev f(x 1, x 2, x n ) in x i ye göre parçalı türevi: f x i f ( x,..., x x,..., 1 i i n 1 lim xi 0 xi x ) f ( x,..., x i,... x n ) İkinci derece parçalı türevniçin aşağıdaki notasyonu kullanacağız. 2 f x i x j

Diferansiyel Analiz İikinci derece parçalı türev alabilmek için önce f(x 1, x 2, x n ) fonksiyonunun x i ye göre parçalı türevi alınır, sonra ortaya çıkan fonksiyonun x j ye göre parçalı türevi alınır. Eğer bir fonksiyon için ikinci derece parçalı türev var ve tüm tanımlı noktalarda sürekli ise aşağıdaki ifade doğrudur: 2 2 f f x x x x i j j i

Doğrusal Olmayan Programlama Genel olarak doğrudal olmayan programlama (DOP) aşağıdaki gibi ifade edilebilir: x 1, x 2, x n karar değişkenleri olmak üzere; maks (veya min) z = f(x 1, x 2,,x n ) s.t. g 1 (x 1, x 2,,x n ) (, = veya ) b 1 g 2 (x 1, x 2,,x n ) (, = veya ) b 2 g m (x 1, x 2,,x n ) (, = veya ) b m DP, DOP nın özel bir durumudur.

DOP DP Oransallık Toplanabilirlik DOP

DOP f(x 1, x 2,,x n ) amaç fonksiyonu g 1 (x 1, x 2,,x n ) (, =, or )b 1,, g m (x 1, x 2,,x n ) (, =, or )b m kısıtlar DOP ta doğrusal olmayan kısıt ve amaç fonksiyonlarına izin verilir. Hiç kısıt içermeyen DOP a kısıtsız DOP denir.

DOP DOP un olurlu bölgesi tüm m kısıtı sağlayan (x 1, x 2,,x n ) noktalarının kümesidir. Eğer DOP enbüyükleme (maksimizasyon) problemi ise, tüm olurlu x noktaları için f(x*) f(x) koşulunu sağlayan olurlu x* noktasına DOP un en iyi çözümü denir. Eğer DOP enküçükleme (minimizasyon) problemi ise, tüm olurlu x noktaları için f(x*) f(x) koşulunu sağlayan olurlu x* noktasınına DOP un en iyi çözümü denir.

DOP Bir A noktası lokal (yerel) en büyük (maksimum) veya en küçük (minimum) ise bu noktaya lokal uç değer denir. DOP un olurlu bölgesi konveks olsa bile en iyi çözüm bir uç nokta olmak zorunda değildir.

DOP x = (x 1, x 2,..., x n ) bir olurlu çözüm olsun, Eğer x e yeterince yakın x noktaları (x j -e<x j <x j +e tüm j ve çok küçük e) için f(x) f(x ) ise x bir lokal maksimumdur. z = f(x) z A B C maks f(x) s.t. 0 x 1 0 Birden çok lokal maksimum olabilir: A, B ve C noktaları. Fakat DOP un çözümü tektir: C noktası (global maksimum) to NLP 1 x

Örnek 1. Grafik Analizi Min [(x - 14) 2 + (y - 15) 2 ] 1/2 Öyle ki; (x - 8) 2 + (y - 9) 2 49 x 2 x 13 x + y 24

Örnek 1. Cevap 18 16 14 12 10 8 6 4 2 0 y 0 2 4 6 8 10 12 14 16 18 Uyarı: en iyi çözüm bir köşe noktası değildir. isokonturun olurlu bölgeyi ilk kestiği noktadır. x

Örnek 2. Grafik Çözüm Min [(x - 8) 2 + (y - 8) 2 ] 1/2 Öyle ki (x - 8) 2 + (y - 9) 2 49 x 2 x 13 x + y 24

Örnek 2. Çözüm 18 16 14 12 10 8 6 4 2 0 y 0 2 4 6 8 10 12 14 16 18 En iyi çözüm olurlu bölgenin sınırında değildir. x

DOP modelleme En yaygın DOP uygulamaları lokasyon problemleri, portföy yönetimi, regresyon DOP çok geneldir ve çözümü oldukça zordur.

Örnek 3. Kısıtsız tesis yeri seçimi Deponun yeri x-y koordinatlarında herhangi bir yer olabilir. Depo yerini müşterilerin ağırlıklı uzaklıklarının toplamını en küçükleyecek şekilde belirlemek için DOP modelini kurunuz. Koordinat Talep A: (8,2) 19 B: (3,10) 7 C: (8,15) 2 D: (14,13) 5 P:? 16 14 12 10 8 6 4 y B (7) C (2) P? D (5) 2 0 A (19) 0 2 4 6 8 10 12 14 16 x

Örnek 3. Cevap Maliyet mesafeye göre orantılıdır Taleplere göre ağırlıklandırılır d(p,a) = d(p,d) = ( x 8) ( y 2) 2 2 ( x 14) ( y 13) 2 2 min 19 d(p,a) + + 5 d(p,d) Öyle ki; P kısıtsızdır.

Objective value Örnek 3. Cevap 55 farklı nokta için maliyet fonksiyon değerleri 350 300 250 200 150 100 50 x = 0 x = 2 x = 4 x = 6 x = 8 x = 10 x = 12 0 values for y

Örnek 4. Kısıtlı Tesis yeri seçimi Depo yeri için belirli bir bölge şartı varsa? y 16 C (2) 14 12 10 8 6 B (7) P? D (5) 4 2 0 A (19) 0 2 4 6 8 10 12 14 16 x

Örnek 4. Cevap minimize subject to: 19 d(p,a) + + 5 d(p,d) x 7 5 y 11 x + y 24

Örnek 5. Lastik üretimi (Winston 11.2, p. 624) Firerock lastiklerde kullanılan kauçuğu uç hammadde kullanarak üretmektedir: ham kauçuk, petrol ve siyah karbon. Her içeriğin birim maliyeti 4, 1 ve 7 TL dir. Üretilecek lastiğin aşağıdaki özellikleri olmalıdır: Sertlik 25 ile 35 arasında olmadır. Esnekliği en az 16 olmalıdır Gerilim kuvveti en az 12 olmalıdır. Bir lastiği üretmek için 100 birim hammadde gerekir. İçerikte ham kauçuk 25 ile 60 birim arasında olmalıdır, siyah karbon ise en az 50 birim olmalıdır. R = bir lastik üretiminde kullanılan ham kauçuk miktarı O = bir lastik üretiminde kullanılan petrol miktarı C = bir lastik üretiminde kullanılan siyah karbon miktarı İstatistik analizler bir lastik üretiminde kullanılan hammaddelere göre lastiğin sertlik, esneklik ve gerilim kuvveti formülleri aşağıda verilmiştir. Gerilim kuvveti = 12.5 -.10O -.001O 2 Esneklik = 17 +.35R -.04O -.002R 2 Sertlik = 34 +.1R +.06O -.3C +.001RO +.005O 2 +.001C 2

Örnek 5. Cevap Ek karar değişkenleri: TS (gerilim kuvveri), E (Esneklik), H (sertlik) min 4R + O + 7C TS = 12.5 -.10O -.001O 2 E = 17 +.35R -.04O -.002R 2 H = 34 +.1R +.06O -.3C +.001RO +.005O 2 +.001C 2 R + O + C = 100 25 < R < 60 O > 0 C > 50 TS > 12 E > 16 25 < H < 35

Örnek 6. Mühendislik Tasarımı (Rardin 14.1, p. 794) Kapalı silindirik bir bidon tasarlanacaktır. Bidona 20 m 3 kimyasal madde konulacaktır. Bidonun üstü ve yanı için kullanılacak metalin maliyeti $2/m 2 dir. Bidonun altı için daha sağlam ve kalın bir metal kullanılmaktadır ve maliyeti $8/m 2 dir. Ayrıca, bidonun yüksekliği çapının iki katından fazla olmamalıdır. En küçük maliyetli tasarımı bulmak için DOP modelini kurunuz.

Örnek 6. Cevap Karar değişkenleri: d: bidonun çapı h: bidonun yüksekliği DOP: min 2(pdh+pd 2 /4) + 8(pd 2 /4) öyle ki; phd 2 /4 20 h 2d h, d 0 [metal maliyeti] [hacim] [yükseklik çap oranı]

Tek değişkenli DOP lerin çözümü Aşağıdaki DOP un çözümü max ( veya min) f ( x) s.t. x [ a, b] Çözüm için tüm lokal maksimumlar (veya minimumlar) bulunur. Lokal maksimum veya local minimum noktalarına lokal uç noktalar denir. En iyi çözüm; en büyük (veya en küçük) f(x) değerine sahip lokal maksimum (veya minimum) noktadır.

Tek değişkenli DOP lerin çözümü DOP da lokal maksimum veya minimum olabilecek üç tip nokta vardır (uç nokta adayları): DURUM 1. a < x < b içerisindeki f (x) = 0 olan noktalar DURUM 2. f (x) in tanımlı olmadığı noktalar DURUM 3. [a,b] aralığının a ve b noktaları

Tek değişkenli DOP lerin çözümü Durum 1

Tek değişkenli DOP lerin çözümü Durum 2

Tek değişkenli DOP lerin çözümü Durum 3

Örnek DURUM 1. a < x < b içerisindeki f (x) = 0 olan noktalar DURUM 2. f (x) in tanımlı olmadığı noktalar DURUM 3. [a,b] aralığının a ve b noktaları

Altın Kesit Araması (Golden Section Search) f (x) tanımlı olmadığında veya f (x) = 0 denklemini çözmesi zor ise Altın Kesit Araması Yöntemi ile DOP çözülebilir. Bu yöntemi kullanabilmek için DOP fonksiyonunun tekdoruklu (unimodal) olması gerekir.

Tekdoruklu fonksiyon Bir f fonksiyonun en çok tek bir lokal maksimumu (veya en çok tek bir lokal minimumu) varsa bu fonksiyona tekdoruklu (unimodal) denir Tekdorukluluk konvekslik ve konkavlıktan daha gevşek bir gerekliliktir. Bir tekdoruklu amaç fonksiyonu konveks veya konkav olmak zorunda değildir. Minimizasyon problemlerindeki katı konveks amaç fonksiyonları ve maksimizasyon problemlerindeki katı konkav amaç fonksiyonları tekdorukludur.

Altın kesit arama Bir f(x) fonksiyonu [a,b] aralığında tekdorukludur; eğer [a,b] deki x noktası için, f(x) [a,x ] aralığında artan ve [x,b] aralığında azalan (maksimizasyon problemi için) ise. x DOP nin en iyi çözümünü gösterir. DOP un en iyi çözümü [a,b] aralığındadır. f(x) in [a,b] aralığındaki x 1 ve x 2 noktalarındaki (x 1 <x 2 olduğu varsayılır) değerlerini bularak, DOP un çözümünün olduğu aralığın boyutunu daraltabiliriz.

Altın kesit arama (maks problemi için) f(x 1 ) ve f(x 2 ) değerlerine göre en iyi çözümün [a,b] aralığının bir alt kümesinde olduğu sonucuna varılabilir: Durum 1: f(x 1 ) < f(x 2 ) ve x (x 1,b] Durum 2: f(x 1 ) = f(x 2 ) ve x [a,x 2 ] Durum 3: f(x 1 ) > f(x 2 ) ve x [a,x 2 ) x in yer alması gerektiği aralık - [a,x 2 ) veya (x 1, b] - belirsizlik aralığı olarak adlandırılır.

Altın kesit arama Belirsizlik aralığını daraltmaya dayalı bir çok arama yöntemi vardır. Bu yöntemlerin çoğu şu şekilde çalışır: 1. X için belirsizlik aralığını [a,b] olarak belirleyerek başla. Yöntemin mantığına göre seçilen x 1 ve x 2 noktalarının f(x) değerlerini bul. 2. Durum 1-3 ten hangisinin geçerli olduğunu belirle ve daraltılmış belirsizlik aralığını bul. 3. f(x) i yeni iki noktada değerlendir (yeni iki nokta yönteme göre belirlenir). Belirsizlik aralığı yeterince küçük ise dur. Değil ise 2. adıma git.

Altın kesit arama Altın kesit arama yönteminde x 1 ve x 2 aşağıdaki gibi belirlenir. x 1 = b r (b a) x 2 = a + r (b a) burada r = 0.618 [r 2 +r=1 in tek kökü] Altın oran Fibonacci sayıları

Altın kesit arama Altın kesit arama yönteminde iki yeni nokta aşağıdaki gibi belirlenir: Yeni Sol Taraf noktası: mevcut belirsizlik aralığının sağ sınırından mevcut belirsizlik aralığının r oranı kadar solunda. Yeni Sağ Taraf noktası: mevcut belirsizlik aralığının sol sınırından mevcut belirsizlik aralığının r oranı kadar sağında

Örnek 13. Altın kesit arama (Winston 11.5, p. 652) Altın kesit arama ile aşağıdaki DOP yi çözünüz. maks x 2 1 öyle ki 1 x 0.75 belirsizlik aralığı ¼ ten daha az oluncaya kadar ilerleyiniz.

Örnek 13. Cevap a = 1, b = 0.75, b a = 1.75 İterasyon sayısı bulabilmek için 1.75(0.618 k )<0.25. denklemi çözülür. Her iki tarafın ln i alınırsa; k>4.06 olarak bulunur. Bu yüzden yöntem beş adım çalıştırılmalıdır. En iyi çözüm ( 0.0762,0.0815] aralığındadır (gerçek çözüm: x = 0) a b b-a x1 x2 fx1 fx2-1,000 0,750 1,750-0,332 0,081-1,110-1,007-0,332 0,750 1,082 0,082 0,337-1,007-1,113-0,332 0,337 0,668-0,076 0,082-1,006-1,007-0,332 0,082 0,413-0,174-0,076-1,030-1,006-0,174 0,082 0,255-0,076-0,016-1,006-1,000-0,076 0,082 0,158-0,016 0,021-1,000-1,000