4.3. Türev ile İlgili Teoremler



Benzer belgeler
Artan-Azalan Fonksiyonlar Ekstremumlar. Yard. Doç. Dr. Mustafa Akkol

2 şeklindeki bütün sayılar. 2 irrasyonel sayısı. 2 irrasyonel sayısından elde etmekteyiz. Benzer şekilde 3 irrasyonel sayısı

1.4. KISMİ SIRALAMA VE DENKLİK BAĞINTILARI

sayıların kümesi N 1 = { 2i-1: i N } ve tüm çift doğal sayıların kümesi N 2 = { 2i: i N } şeklinde gösterilebilecektir. Hiç elemanı olmayan kümeye

İleri Diferansiyel Denklemler

Şimdi de [ ] vektörünün ile gösterilen boyu veya büyüklüğü Pisagor. teoreminini iki kere kullanarak

TÜREV VE UYGULAMALARI

BÖLÜM 4 4- TÜREV KAVRAMI 4- TÜREV KAVRAMI. Tanım y = fonksiyonunda x değişkeni x. artımını alırken y de. kadar artsın. = x.

Bu tanım aralığı pozitif tam sayılar olan f(n) fonksiyonunun değişim aralığı n= 1, 2, 3,, n,

için Örnek 7.1. simetri grubunu göz önüne alalım. Şu halde dür. Şimdi kalan sınıflarını göz önüne alalım. Eğer ve olarak alırsak işlemini kullanarak

kavramını tanımlayıp bazı özelliklerini inceleyeceğiz. Ayrıca bir grup üzerinde tanımlı

DOĞRUSAL OLMAYAN PROGRAMLAMA -I-

İleri Diferansiyel Denklemler

1.GRUPLAR. c (Birleşme özelliği) sağlanır. 2) a G için a e e a a olacak şekilde e G. vardır. 3) a G için denir) vardır.

10. DİREKT ÇARPIMLAR

Ankara Üniversitesi Kütüphane ve Dokümantasyon Daire Başkanlığı Açık Ders Malzemeleri. Ders izlence Formu

SORU 1: Herbir A R kümesi için A G ve λ (A) = λ (G) olacak şekilde. ÇÖZÜM 1: B sayılabilir bir küme olsun. Bu durumda λ (B) = 0 gerçeklenir.

İleri Diferansiyel Denklemler

14.Konu Reel sayılarının topolojisi. 1.Tanım:, verilsin. açık aralığına noktasının -komşuluğu denir. { } kümesine nın delinmiş -komşuluğu denir.

TÜREVİN UYGULAMALARI. Maksimum ve Minimum Değerler. Tanım : f bir fonksiyon ve D, f nin tanım kümesi olsun.

13. Karakteristik kökler ve özvektörler

8. HOMOMORFİZMALAR VE İZOMORFİZMALAR

Türev Uygulamaları ÜNİTE. Amaçlar. İçindekiler. Yazar Prof.Dr. Vakıf CAFEROV

SÜREKLİLİK. 9.1 Süreklilik ve Süreksizlik Kavramları

BÖLÜM IV. olsa r s(mod p) bulunur ki, bu mümkün değildir. Ayrıca bu sayı takımındaki hiçbir sayı p tarafından bölünmez.

GENELLEŞTİRİLMİŞ FUZZY KOMŞULUK SİSTEMİ ÜZERİNE

Grup Homomorfizmaları ve

EŞİTLİK KISITLI TÜREVLİ YÖNTEMLER

için doğrudur. olmak üzere tüm r mertebeli gruplar için lemma nın doğru olduğunu kabul edelim. G grubunun mertebesi n olsun. ve olsun.

1. GRUPLAR. c (Birleşme özelliği) sağlanır. 2) a G için a e e a a olacak şekilde e G (e ye birim eleman denir) vardır.

1 (c) herhangi iki kompleks sayı olmak üzere

olsun. Bu halde g g1 g1 g e ve g g2 g2 g e eşitlikleri olur. b G için a b b a değişme özelliği sağlanıyorsa

0.1 Küme Cebri. Teorem 1 A ve B iki küme olmak üzere i) (A B) c = A c B c ii) (A B) c = A c B c

ÜNİTE. MATEMATİK-1 Doç.Dr.Murat SUBAŞI İÇİNDEKİLER HEDEFLER TÜREV UYGULAMALARI-I

Temel Kavramlar. (r) Sıfırdan farklı kompleks sayılar kümesi: C. (i) Rasyonel sayılar kümesi: Q = { a b

Prof.Dr.Ünal Ufuktepe

İleri Diferansiyel Denklemler

13.Konu Reel sayılar

ANADOLU ÜNİVERSİTESİ AÇIKÖĞRETİM FAKÜLTESİ İLKÖĞRETİM ÖĞRETMENLİĞİ LİSANS TAMAMLAMA PROGRAMI. Analiz. Cilt 2. Ünite 8-14

MAT MATEMATİK I DERSİ

8. HOMOMORFİZMALAR VE İZOMORFİZMALAR

VEKTÖR UZAYLARI 1.GİRİŞ

Çalışma Soruları 1. a) x > 5 b) y < -3 c) xy > 0 d) x 3 < y e) (x-2) 2 + y 2 > 1. ( ) 2x

SORU 1: En az iki elemana sahip bir X kümesi ile bunun P (X) kuvvet. kümesi veriliyor. P (X) üzerinde 0 ; A = 1 ; A

HESSİEN MATRİS QUADRATİK FORM MUTLAK ve BÖLGESEL MAKS-MİN NOKTALAR

fonksiyonu için in aralığındaki bütün değerleri için sürekli olsun. in bu aralıktaki olsun. Fonksiyonda meydana gelen artma miktarı

MUTLAK DEĞER. Örnek...6 : 1 x > 1 y > 1 z. Örnek...7 : x=1 5, y= 5 2, ise x+y y x x =? Örnek...1 : =? Örnek...8 : Örnek...2 : =?

Ders 2: RP 1 ve RP 2 - Reel izdüşümsel doğru ve

Soru 1. Soru 5. Soru 2. Soru 6. Soru 3. Soru 7.

İktisat bilimi açısından optimizasyon, amacımıza en uygun olan. seçeneğin belirlenmesidir. Örneğin bir firmanın kârını

MIT OpenCourseWare Ekonomide İstatistiksel Yöntemlere Giriş Bahar 2009

1 Primitif Kökler. [Fermat ] p asal, p a a p 1 1 (mod p) a Z, a p a (mod p) [Euler] ebob(a, m) = 1, a φ(m) 1 (mod m) φ(1) := 1

İleri Diferansiyel Denklemler

MAT223 AYRIK MATEMATİK

f fonksiyonuna bir üç değişkenli fonksiyon adı verilir. Daha çok değişkenli fonksiyonlar benzer şekilde tanımlanır.

Cebirsel Fonksiyonlar

Öğrenim Kazanımları Bu programı başarı ile tamamlayan öğrenci;

İÇİNDEKİLER ÖNSÖZ Bölüm 1 SAYILAR 11 Bölüm 2 KÜMELER 31 Bölüm 3 FONKSİYONLAR

HOMOGEN OLMAYAN DENKLEMLER

Bir değişkenin bir sabite mümkün olduğu kadar çok yaklaşması durumu ancak onun limitiyle ifade edilebilir.

İleri Diferansiyel Denklemler

ÇUKUROVA ÜNİVERSİTESİ FEN BİLİMLERİ ENSTİTÜSÜ

x e göre türev y sabit kabul edilir. y ye göre türev x sabit kabul edilir.

Bu kısımda işlem adı verilen özel bir fonksiyon çeşidini ve işlemlerin önemli özelliklerini inceleyeceğiz.

İleri Diferansiyel Denklemler

KANUNLAR : Bir iletkenin iki ucu arasındaki potansiyel farkının,iletkenden geçen akım şiddetine oranı sabittir.

EM302 Yöneylem Araştırması 2 Doğrusal Olmayan Programlamaya Giriş. Dr. Özgür Kabak

Sonsuz Diziler ve Seriler

MAT MATEMATİK I DERSİ

Uzayda iki doğrunun ortak dikme doğrusunun denklemi

İleri Diferansiyel Denklemler

MAT355 Kompleks Fonksiyonlar Teorisi I Hafta 3

İleri Diferansiyel Denklemler

İleri Diferansiyel Denklemler

Bir özvektörün sıfırdan farklı herhangi bri sabitle çarpımı yine bir özvektördür.

V 2 = J 2,1 J 2,2 = aşamada ise atılanlar = 27. ve kalanlar. kümeleridir. aralıklar 2 n 1 tanedir ve. V n = J n,1 J n,2 n 1 = tanedir ve

TÜREV TANIMI TÜREV ALMA KURALLARI FEN LĠSESĠ ÖĞRETĠM PROGRAMINA GÖRE DERS ANLATIM FÖYÜ 1

5. Salih Zeki Matematik Araştırma Projeleri Yarışması. PROJE ADI Düzensizlikten Düzene: Çeşitkenar Üçgen Üzerinde Eşkenar Üçgen

3. işleminin birim elemanı vardır, yani her x A için x e = e x = x olacak şekilde e A vardır.

Bu bölümde cebirsel yapıların temelini oluşturan Grup ve özelliklerini inceleyeceğiz.

İÇİNDEKİLER. Önsöz...2. Önermeler ve İspat Yöntemleri...3. Küme Teorisi Bağıntı Fonksiyon İşlem...48

İleri Diferansiyel Denklemler

Normal Alt Gruplar ve Bölüm Grupları...37

YÖNEYLEM ARAŞTIRMASI - III

Ders 8: Konikler - Doğrularla kesişim

LİMİT. lim f(x) = L yazılır. lim. lim x a dır. lim g( clim

B Ö L Ü M. ve kitaplar yayınlamış olan bir bilim adamıdır. 2 JULIUS WILHELM RICHARD DEDEKIND ( ), Gauss un öğrencilerinden biridir.

x 2i + A)( 1 yj 2 + B) u (v + B), y 1

Salih Zeki Matematik Araştırma Projeleri

Türev Uygulamaları. 4.1 Bağımlı Hız

ÜNİTE. MATEMATİK-1 Prof.Dr.Hüseyin AYDIN İÇİNDEKİLER HEDEFLER TÜREVİN İKTİSADİ UYGULAMALARI. Marjinal Maliyet Marjinal Gelir Marjinal Kâr

Ç.Ü Fen ve Mühendislik Bilimleri Dergisi Yıl:2012 Cilt:28-2

TAM DEĞER ARDIŞIK TOPLAMLAR

İleri Diferansiyel Denklemler

İleri Diferansiyel Denklemler

LĐMĐT ÖSS ÖYS YILLAR SAĞDAN VE SOLDAN LĐMĐT. ÇÖZÜM: x=2 f(x) de yerine yazılır cevap:7

Özdeğer ve Özvektörler

ANADOLU ÜNİVERSİTESİ AÇIKÖĞRETİM FAKÜLTESİ İLKÖĞRETİM ÖĞRETMENLİĞİ LİSANS TAMAMLAMA PROGRAMI. Lineer. Cebir. Ünite

MAT 101, MATEMATİK I, FİNAL SINAVI 08 ARALIK (10+10 p.) 2. (15 p.) 3. (7+8 p.) 4. (15+10 p.) 5. (15+10 p.) TOPLAM

6. Ders. Mahir Bilen Can. Mayıs 16, 2016

Transkript:

4.. Türev ile İlgili Teoremler Bu kesimde ortalama değer teoremini vereceğiz. Ortalama değer teoremini ispatlarken kullanılacak olan Fermat teoremini ve diğer bazı teoremleri ispat edeceğiz. 4...Teorem [ a, kapalı aralığından IR e bir onksiyonu ] a, açık aralığındaki bir c noktasında sıırdan arklı bir türeve saipse er x ] c, c [ ( ( ile ( aynı işarette olacak biçimde [ a, aralığının x c kapsadığı bir ] c, c [ aralığı İspat. Önce ( >0 kabul edelim. onksiyonu c noktasında türevlenebilir ( ( olduğundan er poziti sayısı x c olduğunda ( x c olacak şekilde sayısına bağlı bir poziti sayısı Özel olarak, ( ( ( poziti sayısı de x c olduğunda ( x c olacak şekilde ( sayısına bağlı bir poziti sayısı Buna göre ( ( x c olduğunda ( ( ( ( olur. Buradan x c ( ( x c olduğunda ( ( olur. O alde x c ( ( x ] c, c [ ] a, olduğunda 0 elde edilir.. Burada x c ] c, c [ aralığı [ a, aralığının alt kümesi olacak şekilde bir nın seçilebileceği de görülmektedir. Böylece ispat tamamlanmış olur. (Burada min{, c a, b } olarak alınabilir. c 4...Teorem [ a, den reel sayılar kümesi e bir onksiyonu ] a, nin bir c noktasında türevlenebir olsun. Bu takdirde eğer ( 0 ise c nin öyle bir ] c, c [ komşuluğu vardır ki bu komşulukta onsiyonu artandır. İspat. ( 0 olduğunu kabul edelim. Teorem 4.. den dolayı c noktasının bir komşuluğundaki bütün x ler ( ( 0 x c 98

olur. Buna göre x c olduğunda ( ( olur c olduğunda ( ( olur. Bu da onksiyonunun bu ] c, c [ komşuluğunda artan olduğunu verir. Böylece teoremin ispatı tamamlanmış olur. 4...Teorem [ a, den reel sayılar kümesi e bir onksiyonu ] a, nin bir c noktasında türevlenebir olsun. Bu takdirde eğer ( 0 ise c nin öyle bir ] c, c [ komşuluğu vardır ki bu komşulukta onsiyonu azalandır. İspat. ( 0 olduğunu kabul edelim. Teorem 4.. den dolayı c noktasının bir komşuluğundaki bütün x ler ( ( 0 x c olur. Buna göre x c olduğunda ( ( olur c olduğunda ( ( olur. Bu da onksiyonunun bu ] c, c [ komşuluğunda azalan olduğunu verir. Böylece teoremin ispatı tamamlanmış olur. 4..4.Teorem (Fermat Teoremi. Kapalı bir [a, aralığından IR ye bir onksiyonunun ]a, açık aralığının bir c noktasında bir yerel maksimumu ya da yerel minimumu varsa ve onksiyonu c noktasında türevlenebiliyorsa ( 0 dır. İspat. onksiyonunun c noktasında bir yerel maksimumunun olduğunu kabul edelim. Bu takdirde er x ] c, c [ ( ( olacak şekilde bir poziti sayısı özelliğini sağlayan er sayısı ( c ( ve dolayısıyla ( c ( 0 dır. Poziti lar ( c ( 0 dır ve negati lar ( c dir. Buradan ve ( lim 0 ( 0 ( c ( 0 99

( lim 0 ( c ( 0 bulunur. onksiyonunun c noktasında türevi var olduğundan dolayı soldan türevi ve sağdan türevi vardır ve biribirine eşittir. Dolayısıyla ( ( 0 ve ( ( 0 dır. Buradan ( 0 elde edilir. Şimdi de onksiyonunun c noktasında bir yerel minimumunun olduğunu kabul edelim. Bu takdirde er x ] c, c [ ( ( olacak şekilde bir poziti sayısı özelliğini sağlayan er sayısı ( c ( ve dolayısıyla ( c ( 0 dır. Poziti lar ( c ( 0 dır ve negati lar ( c dir. Buradan ve ( lim 0 ( lim 0 ( 0 ( c ( 0 ( c ( 0 bulunur. onksiyonunun c noktasında türevi var olduğundan dolayı soldan türevi ve sağdan türevi vardır ve biribirine eşittir. Dolayısıyla ( ( 0 ve ( ( 0 dır. Buradan ( 0 elde edilir. Böylece teoremin ispatı tamamlanmış olur. Bu teoremin karşıtı er zaman doğru olmak zorunda değildir. Diğer bir deyişle, bir onksiyonunun bir c noktasında türevinin sıır olması o c noktasında bir yerel maksimum ya da bir yerel minimumunun olmasını gerektirmez. Bunu aşağıdaki örnekte görüyoruz. Örnek. ( x şeklinde verilen onksiyonun 0 noktasında türevi 0 dır ancak 0 noktasında bu onksiyonun ne yerel maksimumu ne de yerel minimumu 00

4..5.Tanım. Reel sayılar kümesinin bir alt kümesinden reel sayılar kümesi e bir onksiyonu verilsin. Eğer ( 0 oluyorsa c ye onksiyonunun bir kritik noktası denir. Buna göre ( 0 eşitliğini sağlayan x ler onksiyonunun kritik noktaları olacaktır. Örnek. :] 0,5[ IR, ( x x onksiyonunun kritik noktalarını bulalım. ( x olduğundan dolayı ( 0 ise x dir. x. noktası bir kritik noktadır. 4..6. Teorem (İkinci türev testi. onksiyonu [ a, kapalı aralığında sürekli ve ] a, açık aralığında türevlenebilir olsun ve c noktası onksiyonunun bir kritik noktası olsun ve ( türevi var olsun ve sıırdan arklı olsun. Bu takdirde eğer ( 0 ise c de bir yerel minimum vardır ve eğer ( 0 ise c de bir yerel maksimum İspat. onksiyonu [ a, kapalı aralığında sürekli ve ] a, açık aralığında türevlenebilir olsun ve c noktası onksiyonunun bir kritik noktası olsun ve ( türevi var olsun ve ( 0 bulunsun. ( yazalım. Kabulümüzden g ( 0 dır. Teorem 4.. den dolayı ] c, c [ komşuluğunda g onksiyonu artan olacak şekilde poziti bir sayısı Buna göre er x ] c ve er x ] c, c [ dir. g ( ( 0 olduğundan dolayı er x ] c g ( 0 ve er x ] c, c [ 0 dir. ( olduğundan dolayı x ] c ( 0 ve er x ] c, c [ 0 ( dir. Dolayısıyla onksiyonu ] c aralığında azalan ve ] c, c [ aralığında artandır. O alde onksiyonunun c noktasında bir yerel minimumu Şimdi de [ a, kapalı aralığında sürekli ve ] a, açık aralığında türevlenebilir olan ve c noktası da kritik noktası olan ve ( türevi var olan onksiyonunun c de ikinci türevi negati bulunsun yani ( 0 bulunsun. ( yazalım. Kabulümüzden dolayı g ( 0 dır. Teorem 4.. den dolayı ] c, c [ komşuluğunda g onksiyonu azalan olacak şekilde poziti bir sayısı Buna göre er x ] c 0

ve er x ] c, c [ dir. Kabulümüzden g ( ( 0 olduğundan dolayı er x ] c g ( 0 ve er x ] c, c [ g ( 0 dir. ( olduğundan dolayı x ] c ( 0 ve er x ] c, c [ ( 0 dir. Dolayısıyla onksiyonu ] c aralığında artan ve ] c, c [ aralığında azalandır. O alde onksiyonunun c noktasında bir yerel maksimumu Bu da teoremin ispatını tamamlar. Örnek ( x x onksiyonunun kritik noktalarını bulunuz varsa yerel maksimum ve yerel minimum değerlerini bulunuz. Örnek. x ( x onksiyonunun kritik noktalarını bulunuz varsa yerel maksimum ve yerel minimum değerlerini bulunuz. Aşağıda ikinci türev testinin genelleştirmesini ispatsız olarak veriyoruz. 4..7. Teorem (n inci türev testi. onksiyonunun ] a, açık aralığında n inci türevi var ve bu ninci türev [ a, kapalı aralığında sürekli ve ( (... ( n ( 0 ( n ve ( 0 olsun. Bu takdirde (i Eğer n çit ve ( n ( 0 (ii Eğer n çit ve ( n ( 0 oluyorsa c de bir yerel minimum oluyorsa c de bir yerel maksimum (iii Eğer n tek ise c de ne yerel maksimum ne de yerel minimum 4..8.Teorem (Rolle Teoremi. Eğer bir onksiyonu [ a, kapalı aralığında sürekli, ] a, açık aralığında türevlenebilirse ve ( oluyorsa bu takdirde ( 0 olacak şekilde bir c ] a, İspat. onksiyonu [ a, kapalı aralığında sürekli olduğundan en büyük değerini ve en küçük değerini alır. min x [ a, ( m ( x ve max x [ a, ( M ( olacak şekilde x x [a, elemanları, Eğer M m ise er x [ a, m ( M eşitsizliğinden onksiyonunun sabit bir onksiyon olduğu elde edilir ki bu durumda sabit onksiyonun türevi 0 olduğundan dolayı ( 0 olur ki c olarak 0

aralıkda angi noktayı alırsak alalım ( 0 olur. m M durumunu inceleyelim. Bu durumda m M olacaktır. ( olduğundan onksiyon m ile M den en az birini aralığın uç noktalarında almaz, yani, aralığın de alır. Kabul edelim ki m değerini aralığın de alsın. Ara değer teoremini kullanırsak, ( x 0 olur. Eğer M değerini aralığın de alırsa yine ara değer teoremini kullanırsak, ( x 0 olacakdır. Bu da teoremin ispatını tamamlar. 4..9.Sonuç. Eğer bir onksiyonu [ a, kapalı aralığında sürekli, ] a, açık aralığında türevlenebilirse bu takdirde ( 0 eşitliğini sağlayan iki arklı x değerleri arasında in türevini sıır yapan bir değer vardır, yani ( 0 olacak şekilde x c x özelliğini sağlayan bir c sayısı İspat. Rolle teoreminde a x, b x ve ( 0 alınırsa ispat emen görülür. Örnek 4..0.Teorem (Dierensiyel Hesabın Ortalama Değer Teoremi. Eğer bir onksiyonu [ a, kapalı aralığında sürekli, ] a, açık aralığında ( türevlenebilirse bu takdirde ( b a c ] a, olacak şekilde en az bir İspat. Her x [ a, b x G( ( [ ( ] b a onksiyonunu tanımlayalım. G ( G( 0 dır ve G onksiyonu [ a, kapalı aralığında sürekli ve ] a, açık aralığında türevlenebilirdir. Rolle teoreminden dolayı G ( 0 olacak şekilde bir c ] a, G ( ( [ ( ] b a olduğundan dolayı ( [ b a ve dolayısıyla ( ] 0 0

( [ b a ( ] olacak şekilde bir c ] a, bulunmuş olur. Bu da teoremin ispatını tamamlar. a ile b arasındaki er bir c sayısı 0 eşitsizliğini sağlayan bir sayı olmak üzere c a ( b şeklinde yazılabileceğinden dolayı ortalama değer teoremini aşağıdaki şekilde iade edebiliriz: onksiyonu [ a, kapalı aralığında sürekli, ] a, açık ( aralığında türevlenebilirse bu takdirde ( a ( b olacak b a şekilde en az bir ]0, [ sayısı Örnek. :[,5] IR onksiyonu ( x olarak verildiğine göre bu onksiyonun ortalama değerini bulunuz. ( (5 ( 5 5 8 7 Çözüm. ( 9 olur. b a 5 O alde onksiyonunun ortalama değeri 9 dır. ( x olduğundan dolayı 7 c den 9c 7 ve buradan da c ve bundan da ortalama değer teoremindeki c sayısı olarak c bulunur 4...Sonuç Eğer er x [ a, ( 0 ise onksiyonu sabit onksiyondur. İspat. a x x b özelliğini sağlayan erangi iki x sayılarını alalım. Dierensiyel esabın ortalama değer teoreminden, ( x ( x x x ( olacak şekilde bir c x, x [ ( 0 ] ( x ( x olduğundan dolayı 0 x x bulunur. Buradan x ( x 0 ve ( dolayısıyla ( x ( bulunur. a x x b özelliğini sağlayan er x sayıları ( x ( bulunduğundan onksiyonunun sabit onksiyon olduğu elde edilir. Bu da sonucun ispatını tamamlar. 4...Sonuç. Eğer bir onksiyonu [ a, kapalı aralığında sürekli, ] a, açık aralığında türevlenebilirse ve er x ] a, ( 0 04

oluyorsa bu takdirde onksiyonu [ a, aralığında kesin olarak monoton artandır. İspat. a x x b özelliğini sağlayan erangi iki x sayılarını alalım. Dierensiyel esabın ortalama değer teoreminden, ( x ( x ( x x olacak şekilde bir c x, x [ ( 0 ] ( x ( x olduğundan dolayı 0 x x bulunur. Buradan x ( x 0 ve ( dolayısıyla ( x ( x bulunur. a x x b özelliğini sağlayan er x sayıları ( x ( x bulunduğundan onksiyonunun kesin olarak monoton artan onksiyon olduğu elde edilir. Bu da sonucun ispatını tamamlar. 4...Sonuç. Eğer bir onksiyonu [ a, kapalı aralığında sürekli, ] a, açık aralığında türevlenebilirse ve er x ] a, ( 0 oluyorsa bu takdirde onksiyonu [ a, aralığında kesin olarak monoton azalandır. İspat. a x x b özelliğini sağlayan erangi iki x sayılarını alalım. Dierensiyel esabın ortalama değer teoreminden, ( x ( x ( x x olacak şekilde bir c x, x [ ( 0 ] ( x ( x olduğundan dolayı 0 x x bulunur. Buradan x ( x 0 ve ( dolayısıyla ( ( x bulunur. a x x b özelliğini sağlayan er x sayıları ( x ( bulunduğundan onksiyonunun kesin olarak monoton azalan onksiyon olduğu elde edilir. Bu da sonucun ispatını tamamlar. 4..4.Teorem (Genelleştirilmiş Ortalama Değer Teoremi. Eğer ve g onksiyonları [ a, kapalı aralığında sürekli, ] a, açık aralığında ( türevlenebilirse bu takdirde olacak şekilde en az bir c ] a, ( İspat. Her x [ a, 05

( G( ( [ ] onksiyonunu tanımlayalım. G ( G( 0 dır ve G onksiyonu [ a, kapalı aralığında sürekli ve ] a, açık aralığında türevlenebilirdir. Rolle teoreminden dolayı G ( 0 olacak şekilde bir c ] a, G ( ( olduğundan dolayı G ( ( ve dolayısıyla ( ( ( ( olacak şekilde bir c ] a, bulunmuş olur. Bu da teoremin ispatını tamamlar. a ile b arasındaki er bir c sayısı 0 eşitsizliğini sağlayan bir sayı olmak üzere c a ( b şeklinde yazılabileceğinden dolayı genelleştirilmiş ortalama değer teoremini aşağıdaki şekilde iade edebiliriz: onksiyonu [ a, kapalı aralığında sürekli, ] a, açık aralığında türevlenebilirse bu takdirde ( ( a ( b a ( b olacak şekilde en az bir ]0, [ sayısı 06