Bölüm-4 İki Boyutta Hareket
Bölüm 4: İki Boyutta Hareket Konu İçeriği 4-1 Yer değiştirme, Hız ve İvme Vektörleri 4-2 Sabit İvmeli İki Boyutlu Hareket 4-3 Eğik Atış Hareketi 4-4 Bağıl Hız ve Bağıl İvme Bu bölümde, bir boyutta türettiğimiz hareket denklemlerini iki boyutta hareket eden parçacık için genelleştireceğiz ve parçacığın hareketini düzlemde tanımlayacağız. Önce, iki boyutta (düzlemde) hareket eden bir cismin yer değiştirme, hız ve ivmesini tanımlayıp bu nicelikleri vektörel olarak ifade edeceğiz. Daha sonra düzlem üzerinde sabit ivme ile hareket eden cismin hareket denklemlerini ayrıntılı olarak yazıp, sabit ivmeli harekete güzel bir örnek olan eğik atış problemini inceleyeceğiz.
Yer değiştirme, Hız ve İvme Vektörleri Bir boyutta hareketi incelerken hareketli cismin bir boyutta yer değiştirmesini, hızını ve ivmesini bulmuştuk. Eğer cisim sadece bir boyutta hareket etmeyip bir düzlem üzerinde hareket ediyor ise yapacağımız iş, cismin hareketini dik koordinat sistemi kullanarak her bir eksen üzerinde (x ve y) ayrı ayrı incelemek ve hareketin her bir eksendeki izdüşümlerini kullanarak yer değiştirme, hız ve ivme niceliklerini vektörel olarak en genel bir şekilde ifade etmek olacaktır. Her bir eksen üzerindeki hareket diğer eksen üzerindeki hareketi etkilemeyeceği için eksenler üzerindeki izdüşümler birbirlerinden bağımsız olacaktır.
Bir ve iki boyuttaki harekete ilişkin fiziksel niceliklerimizi özetlersek:
İki Boyutta Sabit İvmeli Hareket Aşağıdaki şekilde noktasal bir parçacık düzlemsel bir yolda hareket etmektedir. Parçacık t i zamanda r i ile gösterilen ilk konumdadır ve t f zamanında ise parçacığın konumu son konum olan r f konumudur (Konum vektörlerinde yazılan i ve f alt indisleri ilk ve son konumlar anlamına gelmektedir). Bu parçacığın her hangi bir t anındaki konumu aşağıdaki gibi ifade edilebilir.
Parçacığın x- ve y-eksenlerindeki izdüşümleri, parçacığın hareketine bağlı olarak zaman içersinde değişir. Dolayısı ile konumun zamanla nasıl değiştiğine bakarsak cismin hızını bulabiliriz. Parçacığın hızını vektörel olarak aşağıdaki gibi tanımlayabiliriz; Buradaki v x ve v y parçacığın hızının x ve y eksenlerindeki izdüşümleridir (bileşenleridir). Aynı şekilde hızın zaman içeresindeki değişimine bakarsak hareketli cismin ivmesini vektörel olarak aşağıdaki gibi tanımlayabiliriz. a = a x i + a y j
Parçacığın ivmesi sabit olarak kabul edildiği için ivmenin a x ve a y bileşenleri de sabit olacaktır. Bu nedenle Bölüm 2 de türettiğimiz kinematik denklemlerini hız vektörünün hem x hem de y bileşenlerine uyarlayabiliriz. Hız v = v xf i + v yf j x-bileşeni v xf = v ix + a x t y-bileşeni v yf = v iy + a y t
Vektörel olarak yazarsak; Elde edilen bu ifadeye göre; sabit ivmeli düzlemsel hareket eden bir parçacığın belirli bir t anındaki hızı (v f ), ilk hızı (v i ) ile at nin toplamına eşittir.
Aynı şekilde sabit ivme ile hareket eden bir parçacığın x ve y konum denklemleri aşağıdaki gibi tanımlanmaktadır.
Eğik Atış Hareketi İki boyutta sabit ivmeli harekete en güzel örnek eğik atış problemidir. Serbest düşme bir boyutta olmasına rağmen eğik atış iki boyutta gerçekleşmektedir. Çünkü eğik atışta cisim sadece y-ekseni boyunca hareket etmeyip xy düzleminde hareket etmektedir. Dolayısı ile eğik atış problemini y-ekseni boyunca sabit ivmeli hareket (a y =-g) ve x-ekseni boyunca ivmenin sıfır olduğu ( a x =0) bir boyutlu iki hareketin bileşkesi olarak düşünebiliriz. Eğik atış problemini daha ayrıntılı olarak incelerken yapacağımız kabuller: a) Yerçekimi ivmesinin sabittir, b) Hava direncinin etkisi ihmal edilecektir. c) İvme değerleri a x =0 a y =-g d) t=0 başlangıç anında eğik atılan cismin konum değerleri x i = 0, y i = 0 dır.
Eğik atış problemlerinde kinematik denklemleri belirlemek için aşağıdaki şekilde gösterildiği gibi t = 0 başlangıç anında bir cismin v i hızıyla eğik atıldığını düşünüyoruz. v i hız vektörü yatayla θ i açısı yapmakta olup bu açıya atış açısı adı verilmektedir. Kosinüs ve sinüs fonksiyonlarının tanımından; dır Böylece, ilk hızın x ve y bileşenleri; ile tanımlanmaktadır.
x-ekseni boyunca alınan yol: (ekseni boyunca cismin ivmesi sıfır olacağından hızın x bileşeni (v ix ) zamanla değişmez)..1 y-ekseni boyunca alınan yol: (y-ekseni boyunca sabit ivmeli hareket (a y =-g) )..2 Eğik atış hareketinin yörüngesini nasıl olacağını öğrenmek istersek: Uçuş süresini 1. eşitlikten bulunup 2. eşitlikte yerine koyarsak elde ederiz
Görüldüğü gibi bu en genel olarak bu denklem y = ax bx 2 şeklinde tanımlanan bir parabol denklemidir. Yani eğik atışta cismin izlediği yol xy düzleminde her zaman bir parabol şeklindedir.
v ix = 20 m/sn, a x = 0 v iy = 40 m/sn, a y = 9,8 m/sn 2 Hız vektörünün; Top tam tepe noktasındaki iken hızın y bileşeni sıfır olduğundan hız vektörü aşağıdaki gibi yazılabilir. v x i + 0 j = v ix i + v iy j + (a x i + a y j)t Burada yatay hız (v x ) sabit olup değeri ilk hıza eşittir (v x =v ix ). Değerler yerine yazılır ve t çekilirse; 20 i + 0 j = 20 i + 40 j + 0 i 9,8 j t t = 40/9,8 = 4 saniye
Topun tepeye ulaşma zamanı 4 saniye olduğundan topun toplam uçuş zaman 4*2=8 saniyedir. t=8 saniye süresince x yer değiştirmesi: x f = 20 8 = 160 metre
Eğik atışta cismin menzili ve maksimum yüksekliği: Cismin şekildeki gibi, pozitif v iy bileşeniyle, t i = 0 anında orijinden atıldığını varsayalım. Şekilde gösterilen R uzaklığı cismin menzili, h uzunluğuna ise cismin maksimum yüksekliği denir. Tepe noktasında cismin yatay hız bileşeni sıfır olduğundan v ya = 0, cismin maksimum yüksekliğe ulaştığında geçen zamanı (t A ) aşağıdaki gibi bulabiliriz.
Eğik atış problemlerinde y-ekseni boyunca alınan yol aşağıdaki gibi tanımlanmaktaydı; Bu denklemde y f yerine maksimum yükseklik (h), t yerine ise biraz önce elde ettiğimiz maksimum yüksekliğe ulaşma süresini ( t A ) yazarsak, cismin maksimum yüksekliği aşağıdaki gibi elde ederiz.
Cismin R menzili, cismin tepe noktasına ulaşmak için geçen zamanın iki katında yani, t B = 2t A zamanı içinde alınan yatay uzaklıktır. Eğik atış problemlerinde x-ekseni boyunca alınan yol aşağıdaki gibi tanımlanmaktaydı; Bu denklemde x f yerine cismin menzili (R), t yerine ise biraz önce elde ettiğimiz maksimum yüksekliğe ulaşma süresinin 2 katını (2t A ) yazarsak, cismin R menzili aşağıdaki gibi elde ederiz.
sin2θ = 2sinθcosθ özdeşliği kullanılarak menzil ifadesi aşağıdaki gibi elde ifade edilebilir. Elde edilen maksimum yükseklik ve menzil denklemleri incelendiğinde sadece v i ve θ i değerlerinin bilinmesiyle hesaplanması istenilebilecek maksimum yükseklik ve menzil değerleri kolayca bulunabilir.
Örnek: Uzun atlama yapan bir sporcu, yatayla 20 açı altında 11 m/sn lik hızla fırlıyor. Sporcu ne kadar yatay uzaklığa sıçrayabilir? Sporcunu ulaştığı maksimum yükseklik nedir? Tepe noktasında sporcunun yatay hız bileşeni sıfır olduğundan v ya = 0, sporcunun maksimum yüksekliğe ulaştığında geçen zamanı ( t A ) aşağıdaki gibi bulabiliriz.
B noktasına ulaştığında geçen süre maksimum yüksekliğe ulaşılan sürenini iki katı olduğundan; Sporcu ulaşabileceği maksimum yatay uzaklık; Ulaşılan maksimum yükseklik ise; Not: Bu problemi elde edilen maksimum yükseklik ve menzil formülleriyle yeniden çözerek karşılaştırınız.
Örnek: Bir taş şekilde gösterildiği gibi, bir binanın tepesinden yatayla 30 derecelik bir açı altında ve 20 m/sn lik bir ilk hızla yukarıya doğru fırlatılmaktadır. Binanın yüksekliği 45 m ise, taş ne kadar sürede havada kalır? Zemine çarpmadan hemen önce taşın hızının büyüklüğü nedir? Çözüm: Taşın ne kadar sürede havada kaldığını bulmak için eğik atış problemlerinde y-ekseni boyunca alınan yol denklemini kullanabiliriz. *Çizilen koordinat sistemine göre y f değeri -45 metredir. 45 m = 20 m/sn sin30 t 1 2 9,8 t2 Bu ikinci dereceden denklemin pozitif kökü alınırsa; t=4,22 saniye elde edilir.
Taşın zemine çarpmadan hemen önce, hızının y bileşenini elde etmek için; v yf = v yi + a y = v i sinθ i + a y = 20 sin30 9,8 4,22 = 31,4 Taşın zemine çarpmadan hemen önce, hızının x bileşenini elde etmek için; v xf = v xi = v i cosθ i = 20 cos30 = 17,3
ÖDEV: Bir kayak sporcusu, kayak pistini şekildeki gibi 25 m/sn lik hızla yatay doğrultuda giderek terk eder. Aşağı inişinde 35 derecelik bir eğimle düşer. Sporcunun tepeden aşağıya nereye düştüğünü (x, y koordinatlarını) bulunuz.
Kaynak: Bu ders notları, R. A. Serway ve R. J. Beichner (Çeviri Editörü: K. Çolakoğlu), Fen ve Mühendislik için FİZİK-I (Mekanik), Palme Yayıncılık, 2005. kitabından derlenmiştir.