MAT223 AYRIK MATEMATİK

Benzer belgeler
MAT223 AYRIK MATEMATİK

MAT223 AYRIK MATEMATİK

( ) (, ) Kombinasyon. Tanım: r n olmak üzere n elemanlı bir kümenin r elemanlı her alt kümesine bu n elemanın r li kombinasyonu denir.

2. K 6 tam çizgesinde kaç farklı mükemmel eşleme vardır? 4. Düzlemsel kodu (planar code) olan ağacın kaç köşe noktası vardır?

MAT223 AYRIK MATEMATİK

MAT223 AYRIK MATEMATİK

MAT223 AYRIK MATEMATİK

OLİMPİK GEOMETRİ ALTIN NOKTA YAYINEVİ MATEMATİK OLİMPİYATLARINA HAZIRLIK ÖMER GÜRLÜ KONU ANLATIMLI - ÖRNEK ÇÖZÜMLÜ

MAT223 AYRIK MATEMATİK

MAT223 AYRIK MATEMATİK

A GRUBU Her bir yüzü düzgün beşgen olan düzgün 12-yüzlünün kaç ayrıtı vardır? A) 30 B) 24 C) 12 D) 36 E) 48

SINAV YÖNERGESİ. Numarası : CEVAP. Adı Soyadı : ANAHTARI A) 512 B) 513 C) 256 D) 1024 E) 1025 A) 252 B) 256 C) 3024 D) 126 E) =?

Geometrik Örüntüler. Geometrik Cisimlerin Yüzeyleri Geometrik Cisimler Prizmaların Benzer ve Farklı Yönleri Geometrik Şekiller. Geometrik Örüntüler

TEST. Düzgün Çokgenler. 4. Bir iç açısı 140 olan düzgün çokgenin iç açılar 5. A B. 2. Bir dış açısı Çevresi. toplamı kaç derecedir?

MAT223 AYRIK MATEMATİK

XII. Ulusal Matematik Olimpiyatı Birinci Aşama Sınavı

Geometrik Örüntüler. Geometride Temel Kavramlar Uzamsal İlişkiler

MAT223 AYRIK MATEMATİK

ÜÇGEN VE KENARLARI ARASINDA BAĞINTILAR

6. ABCD dikdörtgeninde

A) 1 B) 10 C) 100 D) 1000 E) Sonsuz. öğrencinin sinemaya tam bir kez birlikte gidecek şekilde ayarlanabilmesi aşağıdaki n

GEOMETRİ. Tüm geometrik şekiller, elemanları noktalar olan kümeler olduğundan, biz de noktadan başlayarak gezimize çıkalım.

MAT223 AYRIK MATEMATİK

Dik koordinat sisteminde yatay eksen x ekseni (apsis ekseni), düşey eksen ise y ekseni (ordinat ekseni) dir.

9. ÜNİTE ÜÇGENLER, ÇOKGENLER VE MESLEKÎ UYGULAMALARI

1. BÖLÜM DÜZLEM GEOMETRİNİN TEMEL KAVRAMLARI İÇİNDEKİLER

Ders 8: Konikler - Doğrularla kesişim

MAT223 AYRIK MATEMATİK

2. Aşağıdaki pseudocode ile verilen satırlar işletilirse, cnt isimli değişkenin son değeri ne olur?

noktaları alınıyor. ABC üçgeninin alanı S ise, A1 B1C 1 5) Dışbükey ABCD dörtgeninde [DA], [AB], [BC], [CD] kenarlarının uzantıları üzerinden

A GRUBU Noktaları adlandırılmış K 6 tam çizgesinin tam olarak 3 noktalı kaç tane alt çizgesi vardır? A) 9 B) 20 C) 24 D) 60 E) 160

MAT223 AYRIK MATEMATİK

Problem 1. Problem 2. Problem 3. Problem 4. Problem 5. PURPLE COMET MATEMATİK BULUŞMASI Nisan c Copyright Titu Andreescu and Jonathan Kane

ÖSYM. 1. Bu testte 40 soru vardır. 2. Cevaplarınızı, cevap kâğıdının Matematik Testi için ayrılan kısmına işaretleyiniz AYT/Matematik

EVVET ARKADAŞLAR HOŞGELDİNİZ BU DERSİMİZDE ÜÇGENLER VE ÖZELLİKLERİNE GÖZ ATACAĞIZ.

UZAY KAVRAMI VE UZAYDA DOĞRULAR

Bir Doğrusal Programlama Modelinin Genel Yapısı

Ders 10: Düzlemde cebirsel eğriler

2. Matematiksel kavramları organize bir şekilde sunarak, bu kavramları içselleştirmenizi sağlayacak pedagojik bir alt yapı ile yazılmıştır.

1986 ÖYS. 1. Aşağıdaki ABC üçgeninde. BD kaç cm dir? C) 3 A) 11 B) 10 C) 3 D) 8 E) 7 E) 2

MAT 103 ANALİTİK GEOMETRİ I FİNAL ÇALIŞMA SORULARI

= 646 ] (n+2) 2 1 = n 2 + 4n+4 1 = (n 2 1)+4(n+1) MAT223 AYRIK MATEMATİK DERSİ 2.ARA SINAVI ÇÖZÜMLER

ÜÇGENDE AÇILAR. Doğrusal olmayan üç noktayı birleştiren üç doğru parçasının birleşimine üçgen denir. AB] [AC] [BC] = ABC dir.

ÜNİTE. MATEMATİK-1 Yrd.Doç.Dr.Ömer TARAKÇI İÇİNDEKİLER HEDEFLER DOĞRULAR VE PARABOLLER

Teknik Resim TEKNİK BİLİMLER MESLEK YÜKSEKOKULU. 3. Geometrik Çizimler. Yrd. Doç. Dr. Garip GENÇ

SORULAR. 2. Noktaları adlandırılmamış 6 noktalı kaç ağaç vardır? Çizerek cevaplayınız.

X. Ulusal İlköğretim Matematik Olimpiyatı

X. Ulusal İlköğretim Matematik Olimpiyatı

Örnek: Eş doğru parçalarının uzunlukları eşittir. Örnek:

İç bükey Dış bükey çokgen

İSTANBUL İL MİLLİ EĞİTİM MÜDÜRLÜĞÜ İSTANBUL BİLİM OLİMPİYATLARI 2017 LİSE MATEMATİK SINAVI. 10 Mayıs 2017 Çarşamba,

1. TEMEL ÇİZİMLER. Pergel Yardımıyla Dik Doğru Çizmek. 1. Doğru üzerindeki P noktası merkez olmak üzere çizilen yaylarla D ve G noktaları işaretlenir.

Sivas Fen Lisesi Ortaokul 2. Matematik Olimpiyatı Sınavı A A) 55 B) 50 C) 45 D) 40 E) 35

TEOREMLER İSPATLAR SONUÇLAR

kişi biri 4 kişilik, üçü ikişer kişilik 4 takıma kaç farklı şekilde ayrılabilir? (3150)

Geometrik şekillerin çizimi

1986 ÖYS. 3 b. 2 b C) a= 1. Aşağıdaki ABC üçgeninde. BD kaç cm dir? C) 3 D) 8 E)

TEST. Eşlik ve Benzerlik. 1. I. Eşit açıların karşısındaki kenarların oranı birbirine 4. A 5. A. 2. Benzer çokgenlerin açıları...i...

T.C. ANADOLU ÜNİVERSİTESİ FEN FAKÜLTESİ MATEMATİK BÖLÜMÜ ÇİZGELERİ BOYAMAK HAZIRLAYAN FERHAN ÇİFTCİ DANIŞMAN Doç. Dr.

7. ÜNİTE DOĞRUDA VE ÜÇGENDE AÇILAR

İNS1101 MÜHENDİSLİK ÇİZİMİ. Bingöl Üniversitesi İnşaat Mühendisliği Bölümü 2018

25. f: R { 4} R 28. ( ) 3 2 ( ) 26. a ve b reel sayılar olmak üzere, 27. ( ) eğrisinin dönüm noktasının ordinatı 10 olduğuna göre, m kaçtır?

TEMEL GEOMETRİK KAVRAMLAR VE ÇİZİMLER

PERMÜTASYON, KOMBİNASYON. Örnek: Örnek: Örnek:

Ders 2: RP 1 ve RP 2 - Reel izdüşümsel doğru ve

Öğrenci Seçme Sınavı (Öss) / 15 Haziran Matematik I Soruları ve Çözümleri

Türkiye Ulusal Matematik Olimpiyatları DENEME SINAVI. 4. Deneme

T.C. Ölçme, Seçme ve Yerleştirme Merkezi

Özdeğer ve Özvektörler

ÖRNEK: Öteleme ile oluşturulmuş bir süsleme. ÖRNEK: 2)GEOMETRİK HAREKETLER

NİSAN 2010 DENEMESİ A)75 B)80 C)85 D)90 E)95 A)0 B)1 C)2 D)3 E)4

BİRLİKTE ÇÖZELİM. ayırdığı parçalardan birinin uzunluğuna. Şekildeki ABC dik üçgeninde [AB] ^ [BC], G noktası ağırlık merkezi,

TEST: 1. Şekilde verilenlere göre x kaç derecedir? Şekilde verilenlere göre x kaç derecedir? A) 100 B) 110 C) 120 D) 130 E) 140

ESKİŞEHİR FATİH FEN LİSESİ GEOMETRİ OLİMPİYAT NOTLARI. Çemberler 1

Okul kantininde 6 değişik türde yemek vardır. İki değişik türlü yemek, yemek isteyen bir öğrenci kaç seçim yapabilir? A) 30 B) 15 C) 10 D) 6 E) 3

EĞİTİM - ÖĞRETİM YILI 10. SINIF MATEMATİK DERSİ DESTEKLEME VE YETİŞTİRME KURSU KAZANIMLARI VE TESTLERİ

TEST: 6. Verilenlere göre EF =? A) 1 B) 2 C) 3 D) 4 E) 5 A) 7 B) 8 C) 10 D) 11 E) 12. x eksenini 5 te, y eksenini 7 de kesen doğrunun denklemi

YGS GEOMETRİ DENEME 1

ULUSAL MATEMATİK OLİMPİYATLARI DENEMESİ ( ŞUBAT 2010 )

deneme onlineolimpiyat.wordpress.com

DARÜŞŞAFAKA LİSESİ SALİH ZEKİ MATEMATİK YARIŞMASI

Örnek...1 : Örnek...2 : DÜZGÜN BEŞGEN DÜZGÜN BEŞGEN ÖZELLİK 3 TANIM VE ÖZELLİKLERİ ÖZELLİK 1 ÖZELLİK 2. A Köşe. köşeleri A, B, C, D ve E dir, β θ

Ö.S.S MATEMATĐK I SORULARI ve ÇÖZÜMLERĐ

1999 ULUSAL ANTALYA MATEMAT IK OL IMP IYATI B IR INC I AŞAMA SORULARI

1. Analitik düzlemde P(-4,3) noktasının eksenlerden ve O başlangıç noktasından uzaklığı kaç birimdir?

LYS 2016 GEOMETRİ ÇÖZÜMLERİ

T I M U R K A R A Ç AY - H AY D A R E Ş C A L C U L U S S E Ç K I N YAY I N C I L I K A N K A R A

EĞİTİM ÖĞRETİM YILI. FEN LİSESİ 10.SINIF MATEMATİK DERSİ ÜNİTELENDİRİLMİŞ YILLIK PLANI 10.SINIF KAZANIM VE SÜRE TABLOSU

1995 ÖSS. 6. Toplamları 621 olan iki pozitif tamsayıdan büyüğü küçüğüne bölündüğünde bölüm 16, kalan ise 9 dur. Buna göre, büyük sayı kaçtır?

SERİMYA 2003 I. MATEMATİK YARIŞMASI I. AŞAMA SORULARI

1. Hem % 15 i, hem de % 33 ü tam sayı olan en küçük pozitif sayı nedir? c)

9. SINIF Geometri TEMEL GEOMETRİK KAVRAMLAR

A.4.a.1 Herhangi bir köşesinin koordinatıyla genişlik ve yüksekliği verilen bir dikdörtgenin yaratılması:

2012 YGS MATEMATİK Soruları

Doğada ki en belirgin özelliklerine; İnsan vücudunda Deniz kabuklarında Ağaç dallarında rastlanır.

KATI CİSİMLER DİK PRİZMALARIN ALAN VE HACİMLERİ 1. DİKDÖRTGENLER PRİZMASI. Uyarı PRİZMA. Üst taban. Ana doğru. Yanal. Yanal Alan. yüz. Yanal.

İlkokulu - 3/ Sınıfı *** Matematik *** Geometrik şekiller - 3

Tanım 2.1. X boş olmayan bir küme olmak üzere X den X üzerine bire-bir fonksiyona permütasyon denir.

ÜNİTELENDİRME ŞEMASI

Transkript:

MAT223 AYRIK MATEMATİK Geometride Kombinatorik 11. Bölüm Doç. Dr. Emrah Akyar Anadolu Üniversitesi Fen Fakültesi Matematik Bölümü, ESKİŞEHİR 2011 2012 Güz Dönemi

Köşegenlerin Arakesiti Geometride Kombinatorik Köşegenlerin Arakesiti Geometri ve Kombinatoriğin birbiri ile bağlantısı nedir? Kombinatoryal yöntemler yardımıyla çözülen birçok geometri sorusu olduğu gibi, kombinatoryal problemler de geometri yardımıyla çözülebilir. 2/20 AYRIK MATEMATİK 2011 2012 Güz Dönemi Anadolu Üniversitesi

Köşegenlerin Arakesiti Geometride Kombinatorik Köşegenlerin Arakesiti Geometri ve Kombinatoriğin birbiri ile bağlantısı nedir? Kombinatoryal yöntemler yardımıyla çözülen birçok geometri sorusu olduğu gibi, kombinatoryal problemler de geometri yardımıyla çözülebilir. Konveks (Tüm iç açıları 180 küçük) 2/20 AYRIK MATEMATİK 2011 2012 Güz Dönemi Anadolu Üniversitesi

Köşegenlerin Arakesiti Geometride Kombinatorik Köşegenlerin Arakesiti Geometri ve Kombinatoriğin birbiri ile bağlantısı nedir? Kombinatoryal yöntemler yardımıyla çözülen birçok geometri sorusu olduğu gibi, kombinatoryal problemler de geometri yardımıyla çözülebilir. Konveks (Tüm iç açıları 180 küçük) Konveks değil 2/20 AYRIK MATEMATİK 2011 2012 Güz Dönemi Anadolu Üniversitesi

Köşegenlerin Arakesiti Geometride Kombinatorik Köşegenlerin Arakesiti Geometri ve Kombinatoriğin birbiri ile bağlantısı nedir? Kombinatoryal yöntemler yardımıyla çözülen birçok geometri sorusu olduğu gibi, kombinatoryal problemler de geometri yardımıyla çözülebilir. Konveks (Tüm iç açıları 180 küçük) n köşesi olan konveks bir çokgeni ele alalım: Konveks değil 2/20 AYRIK MATEMATİK 2011 2012 Güz Dönemi Anadolu Üniversitesi

Köşegenlerin Arakesiti Geometride Kombinatorik Köşegenlerin Arakesiti Geometri ve Kombinatoriğin birbiri ile bağlantısı nedir? Kombinatoryal yöntemler yardımıyla çözülen birçok geometri sorusu olduğu gibi, kombinatoryal problemler de geometri yardımıyla çözülebilir. Konveks (Tüm iç açıları 180 küçük) n köşesi olan konveks bir çokgeni ele alalım: Konveks değil 2/20 AYRIK MATEMATİK 2011 2012 Güz Dönemi Anadolu Üniversitesi

Köşegenlerin Arakesiti Geometride Kombinatorik Köşegenlerin Arakesiti Geometri ve Kombinatoriğin birbiri ile bağlantısı nedir? Kombinatoryal yöntemler yardımıyla çözülen birçok geometri sorusu olduğu gibi, kombinatoryal problemler de geometri yardımıyla çözülebilir. Konveks (Tüm iç açıları 180 küçük) n köşesi olan konveks bir çokgeni ele alalım: Soru Konveks değil Bu çokgenin köşegenleri kaç farklı noktada kesişir? 2/20 AYRIK MATEMATİK 2011 2012 Güz Dönemi Anadolu Üniversitesi

Köşegenlerin Arakesiti Geometride Kombinatorik Köşegenlerin Arakesiti Geometri ve Kombinatoriğin birbiri ile bağlantısı nedir? Kombinatoryal yöntemler yardımıyla çözülen birçok geometri sorusu olduğu gibi, kombinatoryal problemler de geometri yardımıyla çözülebilir. Konveks (Tüm iç açıları 180 küçük) n köşesi olan konveks bir çokgeni ele alalım: Soru Konveks değil Bu çokgenin köşegenleri kaç farklı noktada kesişir? Köşeleri kesişim noktası olarak almıyoruz ve çokgenin dışında kesişen köşegenleri saymıyoruz. 2/20 AYRIK MATEMATİK 2011 2012 Güz Dönemi Anadolu Üniversitesi

Köşegenlerin Arakesiti İlk akla gelen yöntem her bir köşegenin üzerindeki kesişim noktalarını sayıp, toplamak olacaktır. 3/20 AYRIK MATEMATİK 2011 2012 Güz Dönemi Anadolu Üniversitesi

Köşegenlerin Arakesiti İlk akla gelen yöntem her bir köşegenin üzerindeki kesişim noktalarını sayıp, toplamak olacaktır. Örneğin, altıgen için inceleyecek olursak, C D B E İki tip köşegen var: A F 3/20 AYRIK MATEMATİK 2011 2012 Güz Dönemi Anadolu Üniversitesi

Köşegenlerin Arakesiti İlk akla gelen yöntem her bir köşegenin üzerindeki kesişim noktalarını sayıp, toplamak olacaktır. Örneğin, altıgen için inceleyecek olursak, C D B E İki tip köşegen var: A AC köşegeni gibi Bu köşegenden 6 tane olduğundan ve her biri 3 kesişim noktası bulundurduğundan 6 3 = 18 kesişim noktası F 3/20 AYRIK MATEMATİK 2011 2012 Güz Dönemi Anadolu Üniversitesi

Köşegenlerin Arakesiti İlk akla gelen yöntem her bir köşegenin üzerindeki kesişim noktalarını sayıp, toplamak olacaktır. Örneğin, altıgen için inceleyecek olursak, C D B E İki tip köşegen var: A AC köşegeni gibi Bu köşegenden 6 tane olduğundan ve her biri 3 kesişim noktası bulundurduğundan 6 3 = 18 kesişim noktası AD köşegeni gibi Bu köşegenden 3 tane olduğundan ve her birinin üzerinde 4 kesişim noktası olduğundan 3 4 = 12 kesişim noktası F 3/20 AYRIK MATEMATİK 2011 2012 Güz Dönemi Anadolu Üniversitesi

Köşegenlerin Arakesiti İlk akla gelen yöntem her bir köşegenin üzerindeki kesişim noktalarını sayıp, toplamak olacaktır. Örneğin, altıgen için inceleyecek olursak, C D B E İki tip köşegen var: A AC köşegeni gibi Bu köşegenden 6 tane olduğundan ve her biri 3 kesişim noktası bulundurduğundan 6 3 = 18 kesişim noktası AD köşegeni gibi Bu köşegenden 3 tane olduğundan ve her birinin üzerinde 4 kesişim noktası olduğundan 3 4 = 12 kesişim noktası Bu iki sayıyı toplarsak, 12+18 = 30 olur. F 3/20 AYRIK MATEMATİK 2011 2012 Güz Dönemi Anadolu Üniversitesi

Köşegenlerin Arakesiti İlk akla gelen yöntem her bir köşegenin üzerindeki kesişim noktalarını sayıp, toplamak olacaktır. Örneğin, altıgen için inceleyecek olursak, C D B E İki tip köşegen var: A AC köşegeni gibi Bu köşegenden 6 tane olduğundan ve her biri 3 kesişim noktası bulundurduğundan 6 3 = 18 kesişim noktası AD köşegeni gibi Bu köşegenden 3 tane olduğundan ve her birinin üzerinde 4 kesişim noktası olduğundan 3 4 = 12 kesişim noktası Bu iki sayıyı toplarsak, 12+18 = 30 olur. Ancak, her noktayı iki kez saydık. O halde cevap 30/2 = 15 olur. F 3/20 AYRIK MATEMATİK 2011 2012 Güz Dönemi Anadolu Üniversitesi

Köşegenlerin Arakesiti İlk akla gelen yöntem her bir köşegenin üzerindeki kesişim noktalarını sayıp, toplamak olacaktır. Örneğin, altıgen için inceleyecek olursak, C D B E İki tip köşegen var: A AC köşegeni gibi Bu köşegenden 6 tane olduğundan ve her biri 3 kesişim noktası bulundurduğundan 6 3 = 18 kesişim noktası AD köşegeni gibi Bu köşegenden 3 tane olduğundan ve her birinin üzerinde 4 kesişim noktası olduğundan 3 4 = 12 kesişim noktası Bu iki sayıyı toplarsak, 12+18 = 30 olur. Ancak, her noktayı iki kez saydık. O halde cevap 30/2 = 15 olur. Bu yöntem herhangi bir n sayısı için genelleştirilmeye uygun değil! F 3/20 AYRIK MATEMATİK 2011 2012 Güz Dönemi Anadolu Üniversitesi

Köşegenlerin Arakesiti Bir başka yöntem: 4/20 AYRIK MATEMATİK 2011 2012 Güz Dönemi Anadolu Üniversitesi

Geometride Kombinatorik Köşegenlerin Arakesiti Bir başka yöntem: B C A D F E Köşegenlerin kesişim noktalarını köşegenlerin uç noktaları ile adlandıralım. 4/20 AYRIK MATEMATİK 2011 2012 Güz Dönemi Anadolu Üniversitesi

Geometride Kombinatorik Köşegenlerin Arakesiti Bir başka yöntem: B C A D F E Köşegenlerin kesişim noktalarını köşegenlerin uç noktaları ile adlandıralım. Örneğin, AC ve BD köşegenlerinin kesişim noktasını ABCD ile AD ve CE köşegenlerinin kesişim noktasını ise ACDE ile adlandıralım. 4/20 AYRIK MATEMATİK 2011 2012 Güz Dönemi Anadolu Üniversitesi

Geometride Kombinatorik Köşegenlerin Arakesiti Bir başka yöntem: B C A D F E Köşegenlerin kesişim noktalarını köşegenlerin uç noktaları ile adlandıralım. Örneğin, AC ve BD köşegenlerinin kesişim noktasını ABCD ile AD ve CE köşegenlerinin kesişim noktasını ise ACDE ile adlandıralım. Bu adlandırma ile farklı kesişim noktaları farklı adlandırmalara sahip olur. Ayrıca, farklı 4 harf ile yapılan her adlandırma da bize bir kesişim noktası verir. 4/20 AYRIK MATEMATİK 2011 2012 Güz Dönemi Anadolu Üniversitesi

Geometride Kombinatorik Köşegenlerin Arakesiti Bir başka yöntem: B C A D F E Köşegenlerin kesişim noktalarını köşegenlerin uç noktaları ile adlandıralım. Örneğin, AC ve BD köşegenlerinin kesişim noktasını ABCD ile AD ve CE köşegenlerinin kesişim noktasını ise ACDE ile adlandıralım. Bu adlandırma ile farklı kesişim noktaları farklı adlandırmalara sahip olur. Ayrıca, farklı 4 harf ile yapılan her adlandırma da bize bir kesişim noktası verir. Yani kesişim noktaları ile 4 harf kullanılarak yapılan adlandırmalar arasında birebir bir eşleme vardır. 4/20 AYRIK MATEMATİK 2011 2012 Güz Dönemi Anadolu Üniversitesi

Geometride Kombinatorik Köşegenlerin Arakesiti Bir başka yöntem: B C A D F E Köşegenlerin kesişim noktalarını köşegenlerin uç noktaları ile adlandıralım. Örneğin, AC ve BD köşegenlerinin kesişim noktasını ABCD ile AD ve CE köşegenlerinin kesişim noktasını ise ACDE ile adlandıralım. Bu adlandırma ile farklı kesişim noktaları farklı adlandırmalara sahip olur. Ayrıca, farklı 4 harf ile yapılan her adlandırma da bize bir kesişim noktası verir. Yani kesişim noktaları ile 4 harf kullanılarak yapılan adlandırmalar arasında birebir bir eşleme vardır. n farklı harften 4 harf ( n 4) farklı şekilde seçilebileceğinden kesişim noktalarının sayısı ( n 4) bulunur. 4/20 AYRIK MATEMATİK 2011 2012 Güz Dönemi Anadolu Üniversitesi

Bölgelerin Sayısı Geometride Kombinatorik Bölgelerin Sayısı Soru Düzleme çizilen n farklı doğru düzlemi kaç bölgeye ayırır? 5/20 AYRIK MATEMATİK 2011 2012 Güz Dönemi Anadolu Üniversitesi

Bölgelerin Sayısı Geometride Kombinatorik Bölgelerin Sayısı Soru Düzleme çizilen n farklı doğru düzlemi kaç bölgeye ayırır? 1 2 n = 1 ise 2 bölge 5/20 AYRIK MATEMATİK 2011 2012 Güz Dönemi Anadolu Üniversitesi

Bölgelerin Sayısı Geometride Kombinatorik Bölgelerin Sayısı Soru Düzleme çizilen n farklı doğru düzlemi kaç bölgeye ayırır? 1 2 n = 1 ise 2 bölge 1 2 4 3 5/20 AYRIK MATEMATİK 2011 2012 Güz Dönemi Anadolu Üniversitesi

Bölgelerin Sayısı Geometride Kombinatorik Bölgelerin Sayısı Soru Düzleme çizilen n farklı doğru düzlemi kaç bölgeye ayırır? 1 2 n = 1 ise 2 bölge 1 2 4 3 1 2 3 n = 2 ise 4 ya da 3 bölge 5/20 AYRIK MATEMATİK 2011 2012 Güz Dönemi Anadolu Üniversitesi

n = 3 ise Geometride Kombinatorik Doğrular aynı noktada kesişmiyorsa, Bölgelerin Sayısı 1 2 3 7 6 5 4 6/20 AYRIK MATEMATİK 2011 2012 Güz Dönemi Anadolu Üniversitesi

n = 3 ise Geometride Kombinatorik Doğrular aynı noktada kesişmiyorsa, Bölgelerin Sayısı Üçü aynı noktada kesişiyorsa, 1 7 2 3 6 1 2 6 5 4 5 4 3 6/20 AYRIK MATEMATİK 2011 2012 Güz Dönemi Anadolu Üniversitesi

n = 3 ise Geometride Kombinatorik Doğrular aynı noktada kesişmiyorsa, Bölgelerin Sayısı Üçü aynı noktada kesişiyorsa, 1 7 2 3 6 1 2 6 5 4 5 4 3 Üçü paralel ise, 1 2 3 4 6/20 AYRIK MATEMATİK 2011 2012 Güz Dönemi Anadolu Üniversitesi

Bölgelerin Sayısı Uyarı Bundan sonra herhangi ikisi paralel olmayan ve herhangi üçü aynı noktada kesişmeyen doğrularla ilgileneceğiz. 7/20 AYRIK MATEMATİK 2011 2012 Güz Dönemi Anadolu Üniversitesi

Bölgelerin Sayısı Uyarı Bundan sonra herhangi ikisi paralel olmayan ve herhangi üçü aynı noktada kesişmeyen doğrularla ilgileneceğiz. Buna göre n = 4 ise, 2 1 3 10 11 9 8 4 5 6 7 11 bölge elde edilir. 7/20 AYRIK MATEMATİK 2011 2012 Güz Dönemi Anadolu Üniversitesi

Bölgelerin Sayısı Tüm bu değerleri bir tabloda toplayacak olursak, 8/20 AYRIK MATEMATİK 2011 2012 Güz Dönemi Anadolu Üniversitesi

Bölgelerin Sayısı Tüm bu değerleri bir tabloda toplayacak olursak, n 0 1 2 3 4 5 Bölge Sayısı 1 2 4 7 11? 8/20 AYRIK MATEMATİK 2011 2012 Güz Dönemi Anadolu Üniversitesi

Bölgelerin Sayısı Tüm bu değerleri bir tabloda toplayacak olursak, n 0 1 2 3 4 5 Bölge Sayısı 1 2 4 7 11? İddia Düzlemde herhangi ikisi paralel olmayan ve herhangi üçü aynı noktada kesişmeyen n 1 doğru bulunsun. Yeni bir doğru daha çizersek (yine herhangi iki doğru paralel olmayacak ve herhangi üçü aynı noktada kesişmeyecek şekilde) doğruların belirlediği bölgelerin sayısı n kadar artar. 8/20 AYRIK MATEMATİK 2011 2012 Güz Dönemi Anadolu Üniversitesi

Bölgelerin Sayısı n. doğru n 1 doğru 9/20 AYRIK MATEMATİK 2011 2012 Güz Dönemi Anadolu Üniversitesi

Bölgelerin Sayısı n. doğru n 1 doğru n 1 doğru varken yeni bir doğru daha çizelim. 9/20 AYRIK MATEMATİK 2011 2012 Güz Dönemi Anadolu Üniversitesi

Bölgelerin Sayısı n. doğru n 1 doğru n 1 doğru varken yeni bir doğru daha çizelim. Bu yeni çizilen doğru geçtiği her bölgeyi iki parçaya ayıracaktır. 9/20 AYRIK MATEMATİK 2011 2012 Güz Dönemi Anadolu Üniversitesi

Bölgelerin Sayısı n. doğru n 1 doğru n 1 doğru varken yeni bir doğru daha çizelim. Bu yeni çizilen doğru geçtiği her bölgeyi iki parçaya ayıracaktır. O halde yeni eklenen bölge sayısı bu yeni çizilen doğrunun kestiği bölge sayısı kadar olacaktır. 9/20 AYRIK MATEMATİK 2011 2012 Güz Dönemi Anadolu Üniversitesi

Bölgelerin Sayısı n. doğru n 1 doğru n 1 doğru varken yeni bir doğru daha çizelim. Bu yeni çizilen doğru geçtiği her bölgeyi iki parçaya ayıracaktır. O halde yeni eklenen bölge sayısı bu yeni çizilen doğrunun kestiği bölge sayısı kadar olacaktır. Yeni çizilen doğru kaç bölgeyi keser? 9/20 AYRIK MATEMATİK 2011 2012 Güz Dönemi Anadolu Üniversitesi

Bölgelerin Sayısı n. doğru n 1 doğru Yeni çizilen doğrunun kaç bölge ile kesiştiğini bulalım: 10/20 AYRIK MATEMATİK 2011 2012 Güz Dönemi Anadolu Üniversitesi

Bölgelerin Sayısı n. doğru A n 1 doğru Yeni çizilen doğrunun kaç bölge ile kesiştiğini bulalım: Doğrunun üzerinde çok uzaklardan başlayarak yürüdüğümüzü düşünelim. 10/20 AYRIK MATEMATİK 2011 2012 Güz Dönemi Anadolu Üniversitesi

Bölgelerin Sayısı n. doğru A n 1 doğru Yeni çizilen doğrunun kaç bölge ile kesiştiğini bulalım: Doğrunun üzerinde çok uzaklardan başlayarak yürüdüğümüzü düşünelim. Karşılaştığımız bir doğrunun üzerinden atlayınca yeni bir bölgeye ulaşmış oluruz. 10/20 AYRIK MATEMATİK 2011 2012 Güz Dönemi Anadolu Üniversitesi

Bölgelerin Sayısı n. doğru A n 1 doğru Yeni çizilen doğrunun kaç bölge ile kesiştiğini bulalım: Doğrunun üzerinde çok uzaklardan başlayarak yürüdüğümüzü düşünelim. Karşılaştığımız bir doğrunun üzerinden atlayınca yeni bir bölgeye ulaşmış oluruz. Bu doğrulardan n 1 tane olduğuna göre n 1 tane bölgeden geçeceğiz demektir. 10/20 AYRIK MATEMATİK 2011 2012 Güz Dönemi Anadolu Üniversitesi

Bölgelerin Sayısı n. doğru A n 1 doğru Yeni çizilen doğrunun kaç bölge ile kesiştiğini bulalım: Doğrunun üzerinde çok uzaklardan başlayarak yürüdüğümüzü düşünelim. Karşılaştığımız bir doğrunun üzerinden atlayınca yeni bir bölgeye ulaşmış oluruz. Bu doğrulardan n 1 tane olduğuna göre n 1 tane bölgeden geçeceğiz demektir. İlk başladığımız bölgeyi de hesaba katarsak, toplam n bölge görmüş oluruz. 10/20 AYRIK MATEMATİK 2011 2012 Güz Dönemi Anadolu Üniversitesi

Bölgelerin Sayısı Böylece artık başlangıçta sorduğumuz sorunun cevabını, yani bölge sayısını verebiliriz: 11/20 AYRIK MATEMATİK 2011 2012 Güz Dönemi Anadolu Üniversitesi

Bölgelerin Sayısı Böylece artık başlangıçta sorduğumuz sorunun cevabını, yani bölge sayısını verebiliriz: 0 doğru için 1 bölgemizin olduğunu düşünürsek, bölge sayısına her seferinde 1, 2, 3,..., n bölge ekleneceğine göre cevap 11/20 AYRIK MATEMATİK 2011 2012 Güz Dönemi Anadolu Üniversitesi

Bölgelerin Sayısı Böylece artık başlangıçta sorduğumuz sorunun cevabını, yani bölge sayısını verebiliriz: 0 doğru için 1 bölgemizin olduğunu düşünürsek, bölge sayısına her seferinde 1, 2, 3,..., n bölge ekleneceğine göre cevap olur. 1+(1+2+3+ +n) = 1+ n(n+1) 2 11/20 AYRIK MATEMATİK 2011 2012 Güz Dönemi Anadolu Üniversitesi

Bölgelerin Sayısı Böylece artık başlangıçta sorduğumuz sorunun cevabını, yani bölge sayısını verebiliriz: 0 doğru için 1 bölgemizin olduğunu düşünürsek, bölge sayısına her seferinde 1, 2, 3,..., n bölge ekleneceğine göre cevap 1+(1+2+3+ +n) = 1+ n(n+1) 2 olur. Bu sonucu bir teorem şeklinde ifade edelim. 11/20 AYRIK MATEMATİK 2011 2012 Güz Dönemi Anadolu Üniversitesi

Bölgelerin Sayısı Böylece artık başlangıçta sorduğumuz sorunun cevabını, yani bölge sayısını verebiliriz: 0 doğru için 1 bölgemizin olduğunu düşünürsek, bölge sayısına her seferinde 1, 2, 3,..., n bölge ekleneceğine göre cevap 1+(1+2+3+ +n) = 1+ n(n+1) 2 olur. Bu sonucu bir teorem şeklinde ifade edelim. Teorem Herhangi ikisi paralel olmayan ve herhangi üçü aynı noktada kesişmeyen n farklı doğru düzlemi 1+ n(n+1) 2 bölgeye ayırır. 11/20 AYRIK MATEMATİK 2011 2012 Güz Dönemi Anadolu Üniversitesi

Bölgelerin Sayısı Kanıt. Tümevarım yöntemi ve yukarıda anlatılanlar yardımıyla kanıtı kolayca yapabiliriz. 12/20 AYRIK MATEMATİK 2011 2012 Güz Dönemi Anadolu Üniversitesi

Bölgelerin Sayısı Kanıt. Tümevarım yöntemi ve yukarıda anlatılanlar yardımıyla kanıtı kolayca yapabiliriz. n = 1 için doğru olduğu açık. 12/20 AYRIK MATEMATİK 2011 2012 Güz Dönemi Anadolu Üniversitesi

Bölgelerin Sayısı Kanıt. Tümevarım yöntemi ve yukarıda anlatılanlar yardımıyla kanıtı kolayca yapabiliriz. n = 1 için doğru olduğu açık. n 1 için doğru olduğunu kabul edelim. 12/20 AYRIK MATEMATİK 2011 2012 Güz Dönemi Anadolu Üniversitesi

Bölgelerin Sayısı Kanıt. Tümevarım yöntemi ve yukarıda anlatılanlar yardımıyla kanıtı kolayca yapabiliriz. n = 1 için doğru olduğu açık. n 1 için doğru olduğunu kabul edelim. n > 1 için de doğru olduğunu kanıtlayalım. 12/20 AYRIK MATEMATİK 2011 2012 Güz Dönemi Anadolu Üniversitesi

Bölgelerin Sayısı Kanıt. Tümevarım yöntemi ve yukarıda anlatılanlar yardımıyla kanıtı kolayca yapabiliriz. n = 1 için doğru olduğu açık. n 1 için doğru olduğunu kabul edelim. n > 1 için de doğru olduğunu kanıtlayalım. Doğrulardan bir tanesini çıkaralım. 12/20 AYRIK MATEMATİK 2011 2012 Güz Dönemi Anadolu Üniversitesi

Bölgelerin Sayısı Kanıt. Tümevarım yöntemi ve yukarıda anlatılanlar yardımıyla kanıtı kolayca yapabiliriz. n = 1 için doğru olduğu açık. n 1 için doğru olduğunu kabul edelim. n > 1 için de doğru olduğunu kanıtlayalım. Doğrulardan bir tanesini çıkaralım. Bu durumda tümevarım hipotezinden 1+(n 1)n/2 tane bölge vardır. 12/20 AYRIK MATEMATİK 2011 2012 Güz Dönemi Anadolu Üniversitesi

Bölgelerin Sayısı Kanıt. Tümevarım yöntemi ve yukarıda anlatılanlar yardımıyla kanıtı kolayca yapabiliriz. n = 1 için doğru olduğu açık. n 1 için doğru olduğunu kabul edelim. n > 1 için de doğru olduğunu kanıtlayalım. Doğrulardan bir tanesini çıkaralım. Bu durumda tümevarım hipotezinden 1+(n 1)n/2 tane bölge vardır. Şimdi çıkardığımız doğruyu tekrar eklersek, eklenen doğru bu bölgelerden n tanesi ikişer bölgeye ayıracaktır. 12/20 AYRIK MATEMATİK 2011 2012 Güz Dönemi Anadolu Üniversitesi

Bölgelerin Sayısı Kanıt. Tümevarım yöntemi ve yukarıda anlatılanlar yardımıyla kanıtı kolayca yapabiliriz. n = 1 için doğru olduğu açık. n 1 için doğru olduğunu kabul edelim. n > 1 için de doğru olduğunu kanıtlayalım. Doğrulardan bir tanesini çıkaralım. Bu durumda tümevarım hipotezinden 1+(n 1)n/2 tane bölge vardır. Şimdi çıkardığımız doğruyu tekrar eklersek, eklenen doğru bu bölgelerden n tanesi ikişer bölgeye ayıracaktır. Yani n bölge daha gelecektir (yukarıda yazılanları tekrar okuyunuz). Böylece toplam bölge sayısı 12/20 AYRIK MATEMATİK 2011 2012 Güz Dönemi Anadolu Üniversitesi

Bölgelerin Sayısı Kanıt. Tümevarım yöntemi ve yukarıda anlatılanlar yardımıyla kanıtı kolayca yapabiliriz. n = 1 için doğru olduğu açık. n 1 için doğru olduğunu kabul edelim. n > 1 için de doğru olduğunu kanıtlayalım. Doğrulardan bir tanesini çıkaralım. Bu durumda tümevarım hipotezinden 1+(n 1)n/2 tane bölge vardır. Şimdi çıkardığımız doğruyu tekrar eklersek, eklenen doğru bu bölgelerden n tanesi ikişer bölgeye ayıracaktır. Yani n bölge daha gelecektir (yukarıda yazılanları tekrar okuyunuz). Böylece toplam bölge sayısı olur. 1+ (n 1)n 2 + n = 1+ n(n+1) 2 12/20 AYRIK MATEMATİK 2011 2012 Güz Dönemi Anadolu Üniversitesi

Bölgelerin Sayısı Bir başka kanıt daha verelim: n tane doğrunun doğruların tüm kesişim noktalarını içine alacak genişlikte bir yazı tahtasına çizildiğini düşünelim ve doğrulardan hiç birisinin yatay olmadığını kabul edelim (aksi halde tahtayı biraz döndürebiliriz). 13/20 AYRIK MATEMATİK 2011 2012 Güz Dönemi Anadolu Üniversitesi

Bölgelerin Sayısı Bir başka kanıt daha verelim: n tane doğrunun doğruların tüm kesişim noktalarını içine alacak genişlikte bir yazı tahtasına çizildiğini düşünelim ve doğrulardan hiç birisinin yatay olmadığını kabul edelim (aksi halde tahtayı biraz döndürebiliriz). Ayrıca, yazı tahtasının, tüm doğruların tahtanın alt kenarı ile kesişecek kadar geniş olduğunu kabul edelim. 13/20 AYRIK MATEMATİK 2011 2012 Güz Dönemi Anadolu Üniversitesi

Bölgelerin Sayısı Bir başka kanıt daha verelim: n tane doğrunun doğruların tüm kesişim noktalarını içine alacak genişlikte bir yazı tahtasına çizildiğini düşünelim ve doğrulardan hiç birisinin yatay olmadığını kabul edelim (aksi halde tahtayı biraz döndürebiliriz). Ayrıca, yazı tahtasının, tüm doğruların tahtanın alt kenarı ile kesişecek kadar geniş olduğunu kabul edelim. Son olarak, yazı tahtasının sol alt köşesinin biraz daha aşağıda olduğunu varsayalım (tahtayı sağdan biraz yukarı kaldırıyoruz). 13/20 AYRIK MATEMATİK 2011 2012 Güz Dönemi Anadolu Üniversitesi

Geometride Kombinatorik Bölgelerin Sayısı Tahtanın üzerindeki her bir bölgenin yere en yakın olduğu noktayı ele alalım. Tüm bölgeler sınırlı ve doğrular yere paralel olmadığından her bölgenin bu şekilde bir tek noktası vardır. 14/20 AYRIK MATEMATİK 2011 2012 Güz Dönemi Anadolu Üniversitesi

Geometride Kombinatorik Bölgelerin Sayısı Tahtanın üzerindeki her bir bölgenin yere en yakın olduğu noktayı ele alalım. Tüm bölgeler sınırlı ve doğrular yere paralel olmadığından her bölgenin bu şekilde bir tek noktası vardır. Yere en yakın nokta ya iki doğrunun kesişim noktası, ya bir doğru ile tahtanın alt kısmının kesişim noktası, ya da tahtanın sol alt köşesi olabilir. 14/20 AYRIK MATEMATİK 2011 2012 Güz Dönemi Anadolu Üniversitesi

Geometride Kombinatorik Bölgelerin Sayısı Tahtanın üzerindeki her bir bölgenin yere en yakın olduğu noktayı ele alalım. Tüm bölgeler sınırlı ve doğrular yere paralel olmadığından her bölgenin bu şekilde bir tek noktası vardır. Yere en yakın nokta ya iki doğrunun kesişim noktası, ya bir doğru ile tahtanın alt kısmının kesişim noktası, ya da tahtanın sol alt köşesi olabilir. Ayrıca, her nokta sadece bir tek bölge için yere en yakın nokta olabilir. 14/20 AYRIK MATEMATİK 2011 2012 Güz Dönemi Anadolu Üniversitesi

Geometride Kombinatorik Bölgelerin Sayısı Tahtanın üzerindeki her bir bölgenin yere en yakın olduğu noktayı ele alalım. Tüm bölgeler sınırlı ve doğrular yere paralel olmadığından her bölgenin bu şekilde bir tek noktası vardır. Yere en yakın nokta ya iki doğrunun kesişim noktası, ya bir doğru ile tahtanın alt kısmının kesişim noktası, ya da tahtanın sol alt köşesi olabilir. Ayrıca, her nokta sadece bir tek bölge için yere en yakın nokta olabilir. O halde bu tür noktaları sayarsak tüm bölgelerin sayısını da bulmuş oluruz. 14/20 AYRIK MATEMATİK 2011 2012 Güz Dönemi Anadolu Üniversitesi

Geometride Kombinatorik Bölgelerin Sayısı Tahtanın üzerindeki her bir bölgenin yere en yakın olduğu noktayı ele alalım. Tüm bölgeler sınırlı ve doğrular yere paralel olmadığından her bölgenin bu şekilde bir tek noktası vardır. Yere en yakın nokta ya iki doğrunun kesişim noktası, ya bir doğru ile tahtanın alt kısmının kesişim noktası, ya da tahtanın sol alt köşesi olabilir. Ayrıca, her nokta sadece bir tek bölge için yere en yakın nokta olabilir. O halde bu tür noktaları sayarsak tüm bölgelerin sayısını da bulmuş oluruz. 1 }{{} sol alt köşe 14/20 AYRIK MATEMATİK 2011 2012 Güz Dönemi Anadolu Üniversitesi

Geometride Kombinatorik Bölgelerin Sayısı Tahtanın üzerindeki her bir bölgenin yere en yakın olduğu noktayı ele alalım. Tüm bölgeler sınırlı ve doğrular yere paralel olmadığından her bölgenin bu şekilde bir tek noktası vardır. Yere en yakın nokta ya iki doğrunun kesişim noktası, ya bir doğru ile tahtanın alt kısmının kesişim noktası, ya da tahtanın sol alt köşesi olabilir. Ayrıca, her nokta sadece bir tek bölge için yere en yakın nokta olabilir. O halde bu tür noktaları sayarsak tüm bölgelerin sayısını da bulmuş oluruz. 1 }{{} sol alt köşe + }{{} n alttaki noktalar 14/20 AYRIK MATEMATİK 2011 2012 Güz Dönemi Anadolu Üniversitesi

Geometride Kombinatorik Bölgelerin Sayısı Tahtanın üzerindeki her bir bölgenin yere en yakın olduğu noktayı ele alalım. Tüm bölgeler sınırlı ve doğrular yere paralel olmadığından her bölgenin bu şekilde bir tek noktası vardır. Yere en yakın nokta ya iki doğrunun kesişim noktası, ya bir doğru ile tahtanın alt kısmının kesişim noktası, ya da tahtanın sol alt köşesi olabilir. Ayrıca, her nokta sadece bir tek bölge için yere en yakın nokta olabilir. O halde bu tür noktaları sayarsak tüm bölgelerin sayısını da bulmuş oluruz. 1 }{{} sol alt köşe ( ) n n! + }{{} n + = 1+n+ 2 (n 2)!2! alttaki noktalar iki doğrunun }{{} arakesiti = 1+ n(n+1) 2 14/20 AYRIK MATEMATİK 2011 2012 Güz Dönemi Anadolu Üniversitesi

Mutlu Son Problemi Geometride Kombinatorik Konveks Çokgenler Mutlu Son Problemi (Happy End Problem): Bu problem György Szekeres ile Ester Klein in evliliğine yol açtığı için Paul Erdös tarafından bu şekilde adlandırılmıştır. 15/20 AYRIK MATEMATİK 2011 2012 Güz Dönemi Anadolu Üniversitesi

Mutlu Son Problemi Geometride Kombinatorik Konveks Çokgenler Mutlu Son Problemi (Happy End Problem): Bu problem György Szekeres ile Ester Klein in evliliğine yol açtığı için Paul Erdös tarafından bu şekilde adlandırılmıştır. İddia Düzlemde herhangi üçü aynı doğru üzerinde olmayan keyfi beş nokta verildiğinde bu noktalardan konveks dörtgen elde edilecek şekilde dört nokta seçilebilir. 15/20 AYRIK MATEMATİK 2011 2012 Güz Dönemi Anadolu Üniversitesi

Mutlu Son Problemi Geometride Kombinatorik Konveks Çokgenler Mutlu Son Problemi (Happy End Problem): Bu problem György Szekeres ile Ester Klein in evliliğine yol açtığı için Paul Erdös tarafından bu şekilde adlandırılmıştır. İddia Düzlemde herhangi üçü aynı doğru üzerinde olmayan keyfi beş nokta verildiğinde bu noktalardan konveks dörtgen elde edilecek şekilde dört nokta seçilebilir. Eğer bir dörtgenin köşegenleri dörtgenin içinde kesişiyorsa bu dörtgene konveks dörtgen diyeceğiz. Konveks 15/20 AYRIK MATEMATİK 2011 2012 Güz Dönemi Anadolu Üniversitesi

Mutlu Son Problemi Geometride Kombinatorik Konveks Çokgenler Mutlu Son Problemi (Happy End Problem): Bu problem György Szekeres ile Ester Klein in evliliğine yol açtığı için Paul Erdös tarafından bu şekilde adlandırılmıştır. İddia Düzlemde herhangi üçü aynı doğru üzerinde olmayan keyfi beş nokta verildiğinde bu noktalardan konveks dörtgen elde edilecek şekilde dört nokta seçilebilir. Eğer bir dörtgenin köşegenleri dörtgenin içinde kesişiyorsa bu dörtgene konveks dörtgen diyeceğiz. Konveks Konveks değil 15/20 AYRIK MATEMATİK 2011 2012 Güz Dönemi Anadolu Üniversitesi

Konveks Zarf Geometride Kombinatorik Konveks Çokgenler Düzlemde n tane nokta verilmiş olsun. 16/20 AYRIK MATEMATİK 2011 2012 Güz Dönemi Anadolu Üniversitesi

Konveks Zarf Geometride Kombinatorik Konveks Çokgenler Düzlemde n tane nokta verilmiş olsun. Bu noktaları düzleme çakılmış birer çivi gibi düşünelim ve bu çivilerin etrafını bir lastik bant ile çevirelim. 16/20 AYRIK MATEMATİK 2011 2012 Güz Dönemi Anadolu Üniversitesi

Konveks Zarf Geometride Kombinatorik Konveks Çokgenler Düzlemde n tane nokta verilmiş olsun. Bu noktaları düzleme çakılmış birer çivi gibi düşünelim ve bu çivilerin etrafını bir lastik bant ile çevirelim. Bu durumda aşağıdaki şekildeki gibi konveks bir çokgen elde ederiz. Bu konveks çokgene verilen noktaların konveks zarfı denir. 16/20 AYRIK MATEMATİK 2011 2012 Güz Dönemi Anadolu Üniversitesi

Konveks Zarf Geometride Kombinatorik Konveks Çokgenler Düzlemde n tane nokta verilmiş olsun. Bu noktaları düzleme çakılmış birer çivi gibi düşünelim ve bu çivilerin etrafını bir lastik bant ile çevirelim. Bu durumda aşağıdaki şekildeki gibi konveks bir çokgen elde ederiz. Bu konveks çokgene verilen noktaların konveks zarfı denir. Verilen 8 noktanın konveks zarfı 16/20 AYRIK MATEMATİK 2011 2012 Güz Dönemi Anadolu Üniversitesi

Konveks Çokgenler Şimdi verilen iddianın doğruluğunu araştıralım. 17/20 AYRIK MATEMATİK 2011 2012 Güz Dönemi Anadolu Üniversitesi

Geometride Kombinatorik Konveks Çokgenler Şimdi verilen iddianın doğruluğunu araştıralım. Beş nokta verildiğinde bu beş noktanın konveks zarfı Beşgen olabilir. Bu durumda hangi dört nokta seçilirse seçilsin bir dörtgen elde edilir ve iddia doğru olur. 17/20 AYRIK MATEMATİK 2011 2012 Güz Dönemi Anadolu Üniversitesi

Geometride Kombinatorik Konveks Çokgenler Şimdi verilen iddianın doğruluğunu araştıralım. Beş nokta verildiğinde bu beş noktanın konveks zarfı Beşgen olabilir. Bu durumda hangi dört nokta seçilirse seçilsin bir dörtgen elde edilir ve iddia doğru olur. Dörtgen olabilir. O zaman bu dörtgen istenen dörtgen olarak seçilebilir yine iddia doğru olur. 17/20 AYRIK MATEMATİK 2011 2012 Güz Dönemi Anadolu Üniversitesi

Geometride Kombinatorik Konveks Çokgenler Şimdi verilen iddianın doğruluğunu araştıralım. Beş nokta verildiğinde bu beş noktanın konveks zarfı Beşgen olabilir. Bu durumda hangi dört nokta seçilirse seçilsin bir dörtgen elde edilir ve iddia doğru olur. Dörtgen olabilir. O zaman bu dörtgen istenen dörtgen olarak seçilebilir yine iddia doğru olur. Üçgen olabilir. Bu üçgenin köşelerini yanda olduğu gibi A, B ve C harfleri ile gösterelim. Diğer iki nokta ise üçgenin içinde yer almak zorundadır bu noktaları da D ve E ile gösterelim. D ve E noktalarından geçen doğru üçgeni iki noktada kesecektir (genelliği bozmaksızın üçgenin AB ve AC kenarlarını kestiğini kabul edelim) dolayısıyla B, C, D ve E noktaları bir konveks dörtgen oluşturur. İddia yine doğrudur. B A D E 17/20 AYRIK MATEMATİK 2011 2012 Güz Dönemi Anadolu Üniversitesi C

Konveks Çokgenler Konveks dörtgen oluşturmak için beş noktanın yeterli olduğunu gördük. Peki konveks beşgen için durum nedir? 18/20 AYRIK MATEMATİK 2011 2012 Güz Dönemi Anadolu Üniversitesi

Konveks Çokgenler Konveks dörtgen oluşturmak için beş noktanın yeterli olduğunu gördük. Peki konveks beşgen için durum nedir? İddia Düzlemde herhangi üçü aynı doğru üzerinde olmayan dokuz nokta verildiğinde bu noktalardan konveks beşgen oluşturacak şekilde beş nokta seçilebilir. 18/20 AYRIK MATEMATİK 2011 2012 Güz Dönemi Anadolu Üniversitesi

Konveks Çokgenler Konveks dörtgen oluşturmak için beş noktanın yeterli olduğunu gördük. Peki konveks beşgen için durum nedir? İddia Düzlemde herhangi üçü aynı doğru üzerinde olmayan dokuz nokta verildiğinde bu noktalardan konveks beşgen oluşturacak şekilde beş nokta seçilebilir. Kanıt: Ödev! 18/20 AYRIK MATEMATİK 2011 2012 Güz Dönemi Anadolu Üniversitesi

Konveks Çokgenler Konveks dörtgen oluşturmak için beş noktanın yeterli olduğunu gördük. Peki konveks beşgen için durum nedir? İddia Düzlemde herhangi üçü aynı doğru üzerinde olmayan dokuz nokta verildiğinde bu noktalardan konveks beşgen oluşturacak şekilde beş nokta seçilebilir. Kanıt: Ödev! Alıştırma (11.3.1) Yukarıdaki iddianın 8 nokta için doğru olamayabileceğine bir örnek veriniz. 18/20 AYRIK MATEMATİK 2011 2012 Güz Dönemi Anadolu Üniversitesi

Konveks Çokgenler Konveks dörtgen oluşturmak için beş noktanın yeterli olduğunu gördük. Peki konveks beşgen için durum nedir? İddia Düzlemde herhangi üçü aynı doğru üzerinde olmayan dokuz nokta verildiğinde bu noktalardan konveks beşgen oluşturacak şekilde beş nokta seçilebilir. Kanıt: Ödev! Alıştırma (11.3.1) Yukarıdaki iddianın 8 nokta için doğru olamayabileceğine bir örnek veriniz. 18/20 AYRIK MATEMATİK 2011 2012 Güz Dönemi Anadolu Üniversitesi

Konveks Çokgenler Acaba konveks altıgen için en az kaç noktaya ihtiyaç vardır? 19/20 AYRIK MATEMATİK 2011 2012 Güz Dönemi Anadolu Üniversitesi

Konveks Çokgenler Acaba konveks altıgen için en az kaç noktaya ihtiyaç vardır? Herhangi üçü aynı doğru üzerinde olmayan 16 noktanın konveks altıgen oluşturmayabileceği gösterilmiştir. Ancak, 17 nokta ile buna bir ters örnek verilememiştir (aslında 17 noktadan her zaman konveks altıgen oluşturacak şekilde 6 nokta seçilebilir). 19/20 AYRIK MATEMATİK 2011 2012 Güz Dönemi Anadolu Üniversitesi

Konveks Çokgenler Acaba konveks altıgen için en az kaç noktaya ihtiyaç vardır? Herhangi üçü aynı doğru üzerinde olmayan 16 noktanın konveks altıgen oluşturmayabileceği gösterilmiştir. Ancak, 17 nokta ile buna bir ters örnek verilememiştir (aslında 17 noktadan her zaman konveks altıgen oluşturacak şekilde 6 nokta seçilebilir). Bu durumda akla şu soru gelebilir: 19/20 AYRIK MATEMATİK 2011 2012 Güz Dönemi Anadolu Üniversitesi

Konveks Çokgenler Acaba konveks altıgen için en az kaç noktaya ihtiyaç vardır? Herhangi üçü aynı doğru üzerinde olmayan 16 noktanın konveks altıgen oluşturmayabileceği gösterilmiştir. Ancak, 17 nokta ile buna bir ters örnek verilememiştir (aslında 17 noktadan her zaman konveks altıgen oluşturacak şekilde 6 nokta seçilebilir). Bu durumda akla şu soru gelebilir: Soru Düzlemde herhangi üçü aynı doğru üzerinde olmayan en az kaç nokta konveks n gen oluşturmayı garanti eder? 19/20 AYRIK MATEMATİK 2011 2012 Güz Dönemi Anadolu Üniversitesi

Konveks Çokgenler Acaba konveks altıgen için en az kaç noktaya ihtiyaç vardır? Herhangi üçü aynı doğru üzerinde olmayan 16 noktanın konveks altıgen oluşturmayabileceği gösterilmiştir. Ancak, 17 nokta ile buna bir ters örnek verilememiştir (aslında 17 noktadan her zaman konveks altıgen oluşturacak şekilde 6 nokta seçilebilir). Bu durumda akla şu soru gelebilir: Soru Düzlemde herhangi üçü aynı doğru üzerinde olmayan en az kaç nokta konveks n gen oluşturmayı garanti eder? Şimdiye kadar ki bilgilerimizi bir tabloda toplarsak, n gen 2 3 4 5 6 Gereken nokta sayısı- 1 2 4 8 16? nın bir eksiği 2 2 2 2 19/20 AYRIK MATEMATİK 2011 2012 Güz Dönemi Anadolu Üniversitesi

Konveks Çokgenler Sanı Düzlemde herhangi üçü aynı doğru üzerinde olmayan 2 n 2 nokta konveks n gen oluşturmayı garantilemez. 20/20 AYRIK MATEMATİK 2011 2012 Güz Dönemi Anadolu Üniversitesi

Konveks Çokgenler Sanı Düzlemde herhangi üçü aynı doğru üzerinde olmayan 2 n 2 nokta konveks n gen oluşturmayı garantilemez. Soru Peki 2 n 2 noktanın bir fazlası garantiler mi? 20/20 AYRIK MATEMATİK 2011 2012 Güz Dönemi Anadolu Üniversitesi

Konveks Çokgenler Sanı Düzlemde herhangi üçü aynı doğru üzerinde olmayan 2 n 2 nokta konveks n gen oluşturmayı garantilemez. Soru Peki 2 n 2 noktanın bir fazlası garantiler mi? Bu sorunun cevabı halen bilinmiyor. 20/20 AYRIK MATEMATİK 2011 2012 Güz Dönemi Anadolu Üniversitesi