Parametrik Olmayan İstatistiksel Yöntemler IST

Save this PDF as:
 WORD  PNG  TXT  JPG

Ebat: px
Şu sayfadan göstermeyi başlat:

Download "Parametrik Olmayan İstatistiksel Yöntemler IST"

Transkript

1 Parametrik Olmayan İstatistiksel Yöntemler IST EÜ İstatistik Bölümü 08 Güz Non-Parametric Statistics Nominal Ordinal Interval One Sample Tests Binomial test Run test Kolmogrov-Smirnov test X test Sign test Wilcoxon Rank test Related Mc Nemar test Sign test Walsh Test Wilcoxon Signed Rank test Randomization test Two Sample Tests Unrelated Fisher Exact Probability test X test Median test Mann-Whitney U test Kolmogrov-Smirnov test Ansari-Bradley Mood Testi test Moses test Related Cochran Q test Friedman F test Page test k - Samples Tests Unrelated X test Kruskal-Wallis test Median test Jonckheere-Terpstra test

2 İki Bağımlı (Eşleştirilmiş) Örneklem İçin Testler İki bağımlı örnekleme ilişkin veri genel olarak iki şekilde elde edilir. Birincisi işlem öncesi-işlem sonrası tasarımıdır. Bu tasarımda önce örnekleme seçilen birimlerin ilgili bağımlı değişken bakımından aldıkları değerler ölçülür. Sonra bu birimlere ilgili deneysel işlem uygulanır ve uygulama sonrası bağımlı değişkenin değeri tekrar ölçülür. 3 İki Bağımlı (Eşleştirilmiş) Örneklem İçin Testler İkinci tasarım eşleştirme dir. Bu tasarımda örnekleme çekilen birimler önce belirli bir değişken bakımından eşlere ayrılır. Bu değişken bağımlı değişken üzerinden etkisi arındırılmak istenen değişkendir. Eşler, ya da çiftler oluşturulurken etkisi arındırılmak istenen değişken bakımından aynı değeri ya da birbirine en yakın olan iki birim eş olarak alınır. 4

3 İki Bağımlı (Eşleştirilmiş) Örneklem İçin Testler Sonra eşlerdeki birimler rassal olarak iki gruptan birine atılır. Gruplardan biri kontrol diğeri deney grubu olabilir ya da iki teknik arasındaki fark belirlenmek isteniyor ise iki gruba farklı teknikler uygulanabilir. 5 İki Bağımlı Örneklem İçin İşaret Testi Tek örneklem işaret testinden farkı verilere bir dönüştürme yapılması gerekmesidir. 6 3

4 Eşleştirilmiş İşaret Testi/Varsayımlar Veriler (X,Y ),( X,Y ),,( X n,y n )gibinsayıdaeştenelde edilen ölçümlerden oluşur. Eşlerdeki ölçümler ya aynı birimden alınmıştır ya da etkisi arındırılan değişken bakımından aynı değerli olan iki birimden alınmıştır. İlgilenilen değişkenin ölçme düzeyi en az sıralı ölçektedir. İlgilenilen değişken süreklidir. n gözlem çifti birbirinden bağımsızdır. 7 Eşleştirilmiş İşaret Testi/Hipotezler 8 4

5 Eşleştirilmiş İşaret Testi/Test İstatistiği i =X i -Y i, i=,,,n farkları bulunur. X i =Y i ise i =0 dır. Bu durumda i. gözlem çifti veri setinden çıkartılır, n azaltılır. Farklar bulunduktan sonra işaretlerine göre + ve sayıları bulunur. Test istatistiği (k) hipoteze göre ; A + veya işaretlerden küçük olanın sayısıdır. B - işaretlerin sayısı C + işaretlerin sayısı k n k n n f ( k) k,,..., n k k n 9 Eşleştirilmiş İşaret Testi/Karar Kuralı Hipotezleri işaretlerin olasılıkları ile şöyle ifade edebiliriz. A P(K k n, 0.50) α/ ise H 0 reddedilir. B ve C P(K k n, 0.50) α ise H 0 reddedilir. 0 5

6 Eşleştirilmiş İşaret Testi/Örnek EÜ iyabet merkezine gelen ve rassal olarak seçilen 0 kadının ağırlıkları ölçülmüş (X i ), sonra bu 0 kadına bir zayıflama diyeti uygulanmıştır. iyet sonrası ağırlıkları ölçülerek (Y i ) aşağıdaki tabloda verilmiştir. %5 önem düzeyinde yaptırılan diyetin etkili olduğunu araştırınız. Eşleştirilmiş İşaret Testi/Örnek H 0 : M H : M Test istatistiği (-) işaretlerin sayısı k= ve n=9 (aynı değerde olan çift var) alınır P( K ) P( K ) P( K ) ( 9) p=0.0<0.05 olduğunda H 0 reddedilir. %95 güvenle diyet etkili olmuştur. 6

7 Eşleştirilmiş İşaret Testi/Örnek Kobay hayvanların birlikte yaşamasının kalp atış hızına etkisi araştırılmak isteniyor. Bu amaçla tek başına yaşayan 0 kobay ile başka bir kobay ile yaşayan 0 kobaya ait ölçümler tabloda verilmektedir. kobayların diğer özellikleri bakımından benzer olduğu varsayımından hareketle %5 önem düzeyinde kalp atış hızı arasında fark olup olmadığını araştırınız. 3 Eşleştirilmiş İşaret Testi/Örnek H 0 : M H : M Test istatistiği (+) işaretlerin sayısı, (-) işaretlerin sayısı 8, bu durumda k= ve n=0 alınır P( K ) P( K ) P( K ) P( K ) 0 ( 0 45).(0,000977) p=0.0547>0.05 olduğundan H 0 reddedilemez. 4 7

8 İki Bağımlı Örneklem için Wilcoxon İşaretlenmiş Sıra Sayıları Testi İşaret testinde gözlem çiftlerinin analizinde kullanılan tek bilgi X in Y den büyük veya küçük olduğu ile eşit olup olmadığıdır. Ölçek türü çok düşük ise uygun bir test olmasına rağmen verinin daha çok bilgi içerdiği durumlarda istatistiksel analiz olarak daha güçlü olan testlerin kullanımı önerilir. Bu testte işareti kadar farkların büyüklükleri de dikkate alınır. İki Bağımlı (Eşleştirilmiş) Örneklem için Wilcoxon İşaretlenmiş Sıra Sayıları Testi: EWISST 5 EWISST/Varsayımlar Veriler (X,Y ),( X,Y ),,(X n,y n )gibinsayıdaeştenelde edilen ölçümlerden oluşur. Eşlerdeki ölçümler ya aynı birimden alınmıştır ya da etkisi arındırılan değişken bakımından aynı değerli olan iki birimden alınmıştır. Analiz için kullanılan veriler i =X i -Y i olmak üzere n sayıda farktan oluşur. Farklar en az aralıklı ölçektedir. Farklar sürekli bir rassal değişkendir. Farklar birbirinden bağımsızdır. Farkların kitle dağılımı medyan değerine (M) göre simetriktir. 6 8

9 EWISST/Hipotezler 7 EWISST/Test İstatistiği Test istatistiği aşağıdaki yöntemle hesaplanır. i =X i -Y i i farkların mutlak değerleri küçükten büyüğe ranklanır. Rank değerlerine farkın işareti verilir. T+ ve T- hesaplanır. (İlgili işaretin rank toplamları.) Test istatistiği hipoteze göre T+ ve T- alınır. Ties (aynı değerlerin olması) : ilk durum i =X i -Y i =0 olmasıdır. Bu çift değerlendirmeden çıkartılır ve n azaltılır. İkinci durum i değerlerinin eşit olmasıdır. Bu durumda rank değeri olarak aynı değerdeki mutlak farkların ranklarının ortalaması verilir. 8 9

10 EWISST/Karar Kuralı A test istatistiği T+ veya T- den küçük olandır. Wilcoxon işaretli sıra sayıları test tablosundan n ve α/ göre bakılan T tablo değeri kullanılır. T h T tablo ise H 0 reddedilir. B T- T tablo (n,α) ise H 0 reddedilir. C T+ T tablo (n, α) ise H 0 reddedilir. 9 EWISST/Örnek Akut akciğer damar tıkanıklığı olan hastaların hemodynamic değişimine ilişkin bir çalışmada 9 hastaya ilişkin enzim tedavisi öncesi ve 4 saat sonrası damar basınç değerleri ölçülerek aşağıda verilmiştir. %5 önem düzeyinde enzim tedavisinin basıncı düşürdüğü iddiasını test ediniz. 0 0

11 EWISST/Örnek H 0 : M H : M Test istatistiği T-=0 Tablo değeri n=8 ve α=0.05 T tablo =5 T- < T tablo olduğundan H 0 reddedilir. veya T-=0 ve n=8 için tablodan bakılan p= < 0.05 olduğundan H 0 reddedilir. EWISST/Örnek Zayıflamak için uygulanan bir diyet türünün kilo aldırdığı iddia edilmektedir. Rassal olarak seçilen 0 kişinin ağırlıkları ölçülmüş (Xi), sonra bu 0 kişiye bu zayıflama diyeti uygulanmıştır. iyet sonrası ağırlıkları ölçülerek (Yi) aşağıdaki tabloda verilmiştir. İddiayı %5 önem düzeyinde araştırınız. No Xi (kg) Yi (kg)

12 Test istatistiği T+=44 EWISST/Örnek Tablo değeri n=9 ve α=0.05 T tablo =8 T+>T tablo olduğundan H 0 reddedilemez. Bu diyetin kilo aldırdığı söylenemez. P-değeri??? H : M 0 H : M No Xi Yi i Rank i X EWISST/Örnek 3 (Eşleştirilmiş İşaret Testi/Örnek ) H : M 0 H : M No Yalnız Yaşayan Birarada yaşayan i Rank i Rank i

13 EWISST/Örnek 3 (Eşleştirilmiş İşaret Testi/Örnek ) H : M Test istatistiği T+=3 Tablo değeri n=0 ve α=0.05/ T tablo =8 T+<T tablo olduğundan H 0 reddedilir. P-değeri??? 0 H : M 5 EWISST/Örnek 4 Rasgele seçilen öğrenci kurs öncesi ve kurs sonrası iki kere yabancı dil sınavına girmişler ve aşağıda verilen puanları almışlardır. α=0,05 alınırsa kursun yabancı dil başarı puanını arttırdığı söylenebilir mi? No Kurs öncesi Kurs sonrası 6 3

14 McNemar Testi Bu test iki bağımlı örneklem durumunda ölçüm veya işlem sonucuna göre eşlerin kategorilere ayrıldığı durumlarda kullanılır (McNemar, 947). Eşleştirilmiş örneklemlerde yanıt değişkeninin aldığı değer iki kategoriden birine düşer. Evet-hayır, Pozitif-Negatif, Yaşıyor-Yaşamıyor, Sağladı-Sağlamadı vb. Burada sonuçlar x lik çapraz tablo şeklinde özetlenir. Yani i. birimin işlem öncesi ve işlem sonrası ölçüm sonucuna göre kategorilere ayrıldığı durumda McNemar testi kullanılır. 7 McNemar Testi N: eşleştirilmiş çiftlerin sayısı A: hem deney hem de kontrol grubunda ilgilenilen ölçüm sonucuna göre pozitif olan eşlerin sayısı : hem deney hem de kontrol grubunda ilgilenilen ölçüm sonucuna göre negatif olan eşlerin sayısı B: kontrol grubunda pozitif deney grubunda negatif sonuç veren eşlerin sayısı C: kontrol grubunda negatif deney grubunda pozitif sonuç veren eşlerin sayısı A+B: Kontrol grubunda ölçüm sonucu pozitif olan eşlerin sayısı C+: Kontrol grubunda ölçüm sonucu negatif olan eşlerin sayısı A+C: eney grubunda ölçüm sonucu pozitif olan eşlerin sayısı B+: eney grubunda ölçüm sonucu negatif olan eşlerin sayısı *Burada tablo deney-kontrol grubu yerine işlem öncesi-sonrası şeklinde de 8 verilebilirdi. 4

15 McNemar Testi/Varsayımlar N çift birim rassal ve birbirinden bağımsız olarak deney ve kontrol grubuna atanacaktır. Ölçek türü sınıflayıcı olacaktır. 4 kategori vardır. Evet-Evet, Evet-Hayır, Hayır-Evet, Hayır-Hayır Çiftteki gözlemler birbiri ile ilişkili iken, çiftler birbirinden bağımsız olacaktır. 9 McNemar Testi/Hipotezler Bir işlem altında ilgilenilen özellikte olanların oranı p ve diğer işlem altında ilgilenilen özellikte olanların oranı p olmak üzere; 30 5

16 McNemar Testi/Test İstatistiği İlgilenilen özelliğin örneklem oranını pˆ ve pˆ ile gösterelim. Buna göre eğer ilgilendiğimiz karakteristik Evet yanıtını almak ise A B A C B C pˆ pˆ N pˆ pˆ N N H 0 hipotezi doğru iken E(B-C/N)=0 olur. H 0 hipotezinin testi için McNemar test istatistiği; B C z B C H 0 hipotezi doğru ve B+C en az 0 ise z istatistiği std. Normal dağılır. 3 McNemar Testi/Karar Kuralı A Z h >Z α/ veya Z h <-Z α/ ise H 0 reddedilir. B Z h >Z α C Z h <-Z α H 0 reddedilir. H 0 reddedilir. 3 6

17 McNemar Testi/Örnek Rassal olarak seçilen 0 hastanın kandaki şeker ölçümleri alınmış ve bu ölçümler normal değerler (N) içinde olup olmamasına göre değerlendirilmiştir. Bu 0 hastaya 4 ay boyunca kandaki şeker düzeyini düşürme amaçlı bir tedavi uygulanmış ve ardından kandaki şeker düzeyi ölçümleri tekrar alınarak N içinde olup olmadığına bakılmıştır. Aşağıda tablo olarak verilen değerlere göre %5 önem düzeyinde tedavinin etkili olduğu söylenebilir mi? Tedavi sonrası N içinde N dışında Toplam N içinde 4 (A) (B) 6 Tedavi öncesi N dışında (C) () 4 Toplam McNemar Testi/Örnek H : p p 0 H : p p Tedavi öncesi Tedavi sonrası N N içinde dışında Toplam N içinde 4 (A) (B) 6 N dışında (C) () 4 Toplam z B C B C.67 z 0.05 =.645 z < - z 0.05 olduğundan H 0 reddedilir. %95 güvenle tedavinin etkili olduğu söylenebilir. P-değeri??? 34 7

18 McNemar Testi/Örnek 85 Hodgkin s hastası, aynı cinsiyette ve 5 yaş farkı içinde olan kardeşleri ile eşleştirilmiştir. İki grup arasında bademciklerin alınma oranları açısından fark olup olmadığını %5 önem düzeyinde araştırınız. Kontrol Grubu Bademcikleri alındı Evet Hayır Toplam Hodgkin s hastası olanlar Bademcikleri alındı Evet Hayır Toplam McNemar Testi/Örnek H :p p 0 H :p p Kontrol Grubu Bademcikleri alındı Evet Hayır Toplam Hodgkin s hastası olanlar Bademcikleri alındı Evet Hayır Toplam > z B C B C z 0.05 =.96 z < z 0.05 olduğundan H 0 reddedilemez. 36 8

19 McNemar Testi/Örnek 3 Rassal olarak seçilen 30 sporcunun kondisyon programı uygulanmadan önce ve uygulandıktan sonraki değerlendirmesi aşağıda verilmektedir. %5 önem düzeyinde kondisyon programının başarıyı arttırdığı söylenebilir mi? Program öncesi Program sonrası Başarılı Başarısız Toplam Başarılı 8 4 Başarısız 6 8 Toplam McNemar Testi/Örnek 3 H : p p 0 H : p p +4>6 Program öncesi Program sonrası Başarılı Başarısız Toplam Başarılı 8 4 Başarısız 6 8 Toplam z B C B C 4 4 z 0.05 =.645 z < -z 0.05 olduğundan H 0 reddedilir. %95 güvenle kondisyon programının etkili olduğu 38 söylenebilir. 9

20 McNemar Testi/Örnek 3 SPSS ile çözüm? Exact p-değeri nasıl hesaplanır? 39 0

Parametrik Olmayan İstatistiksel Yöntemler IST

Parametrik Olmayan İstatistiksel Yöntemler IST Parametrik Olmayan İstatistiksel Yöntemler IST-435-5- DEÜ İstatistik Bölümü 8 Güz Non-Parametric Statistics Nominal Ordinal Interval One Sample Tests Binomial test Run test Kolmogrov-Smirnov test X test

Detaylı

Parametrik Olmayan İstatistiksel Yöntemler IST Ders

Parametrik Olmayan İstatistiksel Yöntemler IST Ders Parametrik Olmayan İstatistiksel Yöntemler IST-4035 10. Ders DEÜ İstatistik Bölümü 018 Güz 1 Non-Parametric Statistics Nominal Ordinal Interval One Sample Tests Binomial test Run test Kolmogrov-Smirnov

Detaylı

Parametrik Olmayan İstatistiksel Yöntemler

Parametrik Olmayan İstatistiksel Yöntemler Parametrik Olmayan İstatistiksel Yöntemler IST-4035 2. Ders DEÜ İstatistik Bölümü 208 Güz One Sample Tests İçerik Non-Parametric Statistics Nominal Ordinal Interval Binomial test Kolmogrov-Smirnov test

Detaylı

Parametrik Olmayan İstatistiksel Yöntemler IST

Parametrik Olmayan İstatistiksel Yöntemler IST Parametrik Olmayan İstatistiksel Yöntemler IST-4035-7- DEÜ İstatistik Bölümü 018 Güz 1 Non-Parametric Statistics Nominal Ordinal Interval One Sample Tests Binomial test Run test Kolmogrov-Smirnov test

Detaylı

Parametrik Olmayan İstatistiksel Yöntemler

Parametrik Olmayan İstatistiksel Yöntemler Parametrik Olmayan İstatistiksel Yöntemler IST-4035 1. Ders DEÜ İstatistik Bölümü 2018 Güz 1 Dersin Amacı Yaygın olarak kullanılan parametrik olmayan istatistiksel yöntemleri tanıtmaktır. Temel kavramların

Detaylı

PARAMETRİK ve PARAMETRİK OLMAYAN (NON PARAMETRİK) ANALİZ YÖNTEMLERİ.

PARAMETRİK ve PARAMETRİK OLMAYAN (NON PARAMETRİK) ANALİZ YÖNTEMLERİ. AED 310 İSTATİSTİK PARAMETRİK ve PARAMETRİK OLMAYAN (NON PARAMETRİK) ANALİZ YÖNTEMLERİ. Standart Sapma S = 2 ( X X ) (n -1) =square root =sum (sigma) X=score for each point in data _ X=mean of scores

Detaylı

Örneklemden elde edilen parametreler üzerinden kitle parametreleri tahmin edilmek istenmektedir.

Örneklemden elde edilen parametreler üzerinden kitle parametreleri tahmin edilmek istenmektedir. ÇIKARSAMALI İSTATİSTİKLER Çıkarsamalı istatistikler, örneklemden elde edilen değerler üzerinde kitleyi tanımlamak için uygulanan istatistiksel yöntemlerdir. Çıkarsamalı istatistikler; Tahmin Hipotez Testleri

Detaylı

Parametrik Olmayan Testler 2. Wilcoxon ve Kruskal-Wallis Testleri

Parametrik Olmayan Testler 2. Wilcoxon ve Kruskal-Wallis Testleri Parametrik Olmayan Testler 2 Wilcoxon ve Kruskal-Wallis Testleri İki Bağımlı Örneklemin Karşılaştırılması (Wilcoxon Bağımlı Örneklemler İşaretli Sıralamalar Testi) (Wilcoxon Matched-Samples Signed Ranks

Detaylı

PARAMETRİK OLMAYAN İSTATİSTİKSEL TEKNİKLER

PARAMETRİK OLMAYAN İSTATİSTİKSEL TEKNİKLER PARAMETRİK OLMAYAN İSTATİSTİKSEL TEKNİKLER Prof. Dr. Ali ŞEN 1 Tek Örneklem İşaret Testi İşaret Testi parametrik olmayan prosedürler içinde en eski olanıdır. Analiz yapılırken serideki verileri artı ve

Detaylı

ÇND BİYOİSTATİSTİK EĞİTİMİ

ÇND BİYOİSTATİSTİK EĞİTİMİ ÇND BİYOİSTATİSTİK EĞİTİMİ Yrd.Doç.Dr.Gökmen ZARARSIZ Erciyes Üniversitesi, Tıp Fakültesi, Biyoistatistik Anabilim Dalı, Kayseri Turcosa Analitik Çözümlemeler Ltd Şti, Kayseri gokmenzararsiz@hotmail.com

Detaylı

Kullanılacak İstatistikleri Belirleme Ölçütleri. Değişkenin Ölçek Türü ya da Yapısı

Kullanılacak İstatistikleri Belirleme Ölçütleri. Değişkenin Ölçek Türü ya da Yapısı ARAŞTIRMA MODELLİLERİNDE KULLANILACAK İSTATİSTİKLERİ BELİRLEME ÖLÇÜTLERİ Parametrik mi Parametrik Olmayan mı? Kullanılacak İstatistikleri Belirleme Ölçütleri Değişken Sayısı Tek değişkenli (X) İki değişkenli

Detaylı

Non-Parametrik İstatistiksel Yöntemler

Non-Parametrik İstatistiksel Yöntemler Non-Parametrik İstatistiksel Yöntemler Dr. Seher Yalçın 27.12.2016 1 1. Tek Örneklem Kay Kare Testi 2. İki Değişken İçin Kay Kare Testi 3. Mann Whitney U Testi 4. Kruskal Wallis H Testi ortanca testine

Detaylı

Mann-Whitney U ve Wilcoxon T Testleri

Mann-Whitney U ve Wilcoxon T Testleri Mann-Whitney U ve Wilcoxon T Testleri Doç. Dr. Ertuğrul ÇOLAK Eskişehir Osmangazi Üniversitesi Tıp Fakültesi Biyoistatistik Anabilim Dalı Konu Başlıkları Parametrik olmayan yöntem Mann-Whitney U testinin

Detaylı

İKİ EŞ ARASINDAKİ FARKIN ÖNEMLİLİK TESTİ. Biyoistatistik (Ders 5: Bağımlı Gruplarda İki Örneklem Testleri) İKİ ÖRNEKLEM TESTLERİ

İKİ EŞ ARASINDAKİ FARKIN ÖNEMLİLİK TESTİ. Biyoistatistik (Ders 5: Bağımlı Gruplarda İki Örneklem Testleri) İKİ ÖRNEKLEM TESTLERİ İKİ ÖRNEKLEM TESTLERİ BAĞIMLI GRUPLARDA İKİ ÖRNEKLEM TESTLERİ Yrd. Doç. Dr. Ünal ERKORKMAZ Sakarya Üniversitesi Tıp Fakültesi Biyoistatistik Anabilim Dalı uerkorkmaz@sakarya.edu.tr İKİ ÖRNEKLEM TESTLERİ

Detaylı

Parametrik Olmayan İstatistik

Parametrik Olmayan İstatistik Parametrik Olmayan İstatistik 2 Anakütlenin Karşılaştırılması İki Anakütlenin Karşılaştırılması Bağımsız Örnekler Eşleştirilmiş Örnekler Wilcoxon Mertebe Toplam Testi İşaret Testi Wilcoxon İşaretli Mertebe

Detaylı

Parametrik Olmayan Testler. İşaret Testi-The Sign Test Mann-Whiney U Testi Wilcoxon Testi Kruskal-Wallis Testi

Parametrik Olmayan Testler. İşaret Testi-The Sign Test Mann-Whiney U Testi Wilcoxon Testi Kruskal-Wallis Testi Yrd. Doç. Dr. Neşet Demirci, Balıkesir Üniversitesi NEF Fizik Eğitimi Parametrik Olmayan Testler İşaret Testi-The Sign Test Mann-Whiney U Testi Wilcoxon Testi Kruskal-Wallis Testi Rank Korelasyon Parametrik

Detaylı

PARAMETRİK OLMAYAN TESTLER

PARAMETRİK OLMAYAN TESTLER PARAMETRİK OLMAYAN TESTLER Daha önce incelediğimiz testler, normal dağılmış ana kütleden örneklerin rassal seçilmesi varsayımına dayanmaktaydı ve parametrik testler kullanılmıştı. Parametrik olmayan testler

Detaylı

ANADOLU ÜNİVERSİTESİ. ENM 317 MÜHENDİSLİK İSTATİSTİĞİ PARAMETRİK OLMAYAN TESTLER Prof. Dr. Nihal ERGİNEL

ANADOLU ÜNİVERSİTESİ. ENM 317 MÜHENDİSLİK İSTATİSTİĞİ PARAMETRİK OLMAYAN TESTLER Prof. Dr. Nihal ERGİNEL ANADOLU ÜNİVERSİTESİ ENM 317 MÜHENDİSLİK İSTATİSTİĞİ PARAMETRİK OLMAYAN TESTLER Prof. Dr. Nihal ERGİNEL PARAMETRİK OLMAYAN TESTLER Daha önce incelediğimiz testler, normal dağılmış ana kütleden örneklerin

Detaylı

UYGUN HİPOTEZ TESTİNİN SEÇİMİ. Ankara Üniversitesi Tıp Fakültesi Biyoistatistik Anabilim Dalı

UYGUN HİPOTEZ TESTİNİN SEÇİMİ. Ankara Üniversitesi Tıp Fakültesi Biyoistatistik Anabilim Dalı UYGUN HİPOTEZ TESTİNİN SEÇİMİ Ankara Üniversitesi Tıp Fakültesi Biyoistatistik Anabilim Dalı ÖNEMLİLİK (Hipotez) TESTLERİ ü Önemlilik testleri, araştırma sonucunda elde edilen değerlerin ya da varılan

Detaylı

İki Ortalama Arasındaki Farkın Önemlilik Testi (Student s t Test) Ankara Üniversitesi Tıp Fakültesi Biyoistatistik Anabilim Dalı

İki Ortalama Arasındaki Farkın Önemlilik Testi (Student s t Test) Ankara Üniversitesi Tıp Fakültesi Biyoistatistik Anabilim Dalı İki Ortalama Arasındaki Farkın Önemlilik Testi (Student s t Test) Ankara Üniversitesi Tıp Fakültesi Biyoistatistik Anabilim Dalı İki Ortalama Arasındaki Farkın Önemlilik Testi (Student s t test) Ölçümle

Detaylı

BAĞIMLI ĠKĠDEN ÇOK GRUBUN KARġILAġTIRILMASINA ĠLĠġKĠN HĠPOTEZ TESTLERĠ

BAĞIMLI ĠKĠDEN ÇOK GRUBUN KARġILAġTIRILMASINA ĠLĠġKĠN HĠPOTEZ TESTLERĠ BAĞIMLI ĠKĠDEN ÇOK GRUBUN KARġILAġTIRILMASINA ĠLĠġKĠN HĠPOTEZ TESTLERĠ 1. TEKRARLI ÖLÇÜMLERDE TEK YÖNLÜ VARYANS ANALĠZĠ. FRIEDMAN TESTĠ 3. COCHRAN Q TESTĠ TEKRARLI ÖLÇÜMLERDE TEK YÖNLÜ VARYANS ANALĠZĠ

Detaylı

Ortalamaların karşılaştırılması

Ortalamaların karşılaştırılması Parametrik ve Parametrik Olmayan Testler Ortalamaların karşılaştırılması t testleri, ANOVA Mann-Whitney U Testi Wilcoxon İşaretli Sıra Testi Kruskal Wallis Testi BBY606 Araştırma Yöntemleri Güleda Doğan

Detaylı

Parametrik Olmayan İstatistik. Prof. Dr. Cenk ÖZLER

Parametrik Olmayan İstatistik. Prof. Dr. Cenk ÖZLER Parametrik Olmayan İstatistik Prof. Dr. Cenk ÖZLER bulunur. Bağımsızlık Testleri Sütun Kategorisi Satır Kategorisi I II III Satır Toplamı A B Sütun Toplamı Genel Toplam Bu kategorilere dayanarak A nın

Detaylı

PARAMETRİK OLMAYAN İSTATİSTİKSEL TEKNİKLER 8

PARAMETRİK OLMAYAN İSTATİSTİKSEL TEKNİKLER 8 PARAMETRİK OLMAYAN İSTATİSTİKSEL TEKNİKLER 8 Prof. Dr. Ali ŞEN İki Populasyonun Karşılaştırılması: Eşleştirilmiş Örnekler için Wilcoxon İşaretli Mertebe Testi -BÜYÜK ÖRNEK Bağımsız populasyonlara uygulanan

Detaylı

İÇİNDEKİLER ÖNSÖZ... Örneklem Genişliğinin Elde edilmesi... 1

İÇİNDEKİLER ÖNSÖZ... Örneklem Genişliğinin Elde edilmesi... 1 İÇİNDEKİLER ÖNSÖZ... v 1. BÖLÜM Örneklem Genişliğinin Elde edilmesi... 1 1.1. Kitle ve Parametre... 1 1.2. Örneklem ve Tahmin Edici... 2 1.3. Basit Rastgele Örnekleme... 3 1.4. Tabakalı Rastgele Örnekleme...

Detaylı

Parametrik İstatistiksel Yöntemler (t testi ve F testi)

Parametrik İstatistiksel Yöntemler (t testi ve F testi) Parametrik İstatistiksel Yöntemler (t testi ve F testi) Dr. Seher Yalçın 27.12.2016 1 İstatistiksel testler parametrik ve parametrik olmayan testler olmak üzere iki gruba ayrılır. Parametrik testler, ilgilenen

Detaylı

PARAMETRİK OLMAYAN İSTATİSTİKSEL TEKNİKLER 6

PARAMETRİK OLMAYAN İSTATİSTİKSEL TEKNİKLER 6 PARAMETRİK OLMAYAN İSTATİSTİKSEL TEKNİKLER 6 Prof. Dr. Ali ŞEN 1 İki populasyon karşılaştırılırken her iki örneklemin hacmi n1 ve n2, 10 dan büyükse TA nın dağılışı ortalaması ve varyansı aşağıdaki gösterilen

Detaylı

KRUSKAL WALLIS VARYANS ANALİZİ. Ankara Üniversitesi Tıp Fakültesi Biyoistatistik Anabilim Dalı

KRUSKAL WALLIS VARYANS ANALİZİ. Ankara Üniversitesi Tıp Fakültesi Biyoistatistik Anabilim Dalı KRUSKAL WALLIS VARYANS ANALİZİ Ankara Üniversitesi Tıp Fakültesi Biyoistatistik Anabilim Dalı ükruskal Wallis varyans analizi, tek yönlü varyans analizinin parametrik olmayan karşılığıdır. üveriler ölçümle

Detaylı

BİR GRUBA AİT TEKRARLI ÖLÇÜMLERİN ORTALAMASINI KARŞILAŞTIRMA (İlişkili örneklemler için t-testi)

BİR GRUBA AİT TEKRARLI ÖLÇÜMLERİN ORTALAMASINI KARŞILAŞTIRMA (İlişkili örneklemler için t-testi) 1 BİR GRUBA AİT TEKRARLI ÖLÇÜMLERİN ORTALAMASINI KARŞILAŞTIRMA (İlişkili örneklemler için t-testi) parametrik test koşulları sağlanmadığında TEKRARLI İKİ ÖLÇÜMÜM ORTALAMALARINI KARŞILAŞTIRILMA (Wilcoxon

Detaylı

BİYOİSTATİSTİK. Uygulama 4. Yrd. Doç. Dr. Aslı SUNER KARAKÜLAH

BİYOİSTATİSTİK. Uygulama 4. Yrd. Doç. Dr. Aslı SUNER KARAKÜLAH BİYOİSTATİSTİK Uygulama 4 Yrd. Doç. Dr. Aslı SUNER KARAKÜLAH Ege Üniversitesi, Tıp Fakültesi, Biyoistatistik ve Tıbbi Bilişim AD. Web: www.biyoistatistik.med.ege.edu.tr 1 Güven Aralıkları 2 Güven Aralıkları

Detaylı

Frekans. Hemoglobin Düzeyi

Frekans. Hemoglobin Düzeyi GRUPLARARASI VE GRUPİÇİ KARŞILAŞTIRMA YÖNTEMLERİ Uzm. Derya ÖZTUNA Yrd. Doç. Dr. Atilla Halil ELHAN 1. ÖNEMLİLİK (HİPOTEZ) TESTLERİ Önemlilik testleri, araştırma sonucunda elde edilen değerlerin ya da

Detaylı

3 KESİKLİ RASSAL DEĞİŞKENLER VE OLASILIK DAĞILIMLARI

3 KESİKLİ RASSAL DEĞİŞKENLER VE OLASILIK DAĞILIMLARI ÖNSÖZ İÇİNDEKİLER III Bölüm 1 İSTATİSTİK ve SAYISAL BİLGİ 11 1.1 İstatistik ve Önemi 12 1.2 İstatistikte Temel Kavramlar 14 1.3 İstatistiğin Amacı 15 1.4 Veri Türleri 15 1.5 Veri Ölçüm Düzeyleri 16 1.6

Detaylı

Korelasyon, Korelasyon Türleri ve Regresyon

Korelasyon, Korelasyon Türleri ve Regresyon Korelasyon, Korelasyon Türleri ve Regresyon İçerik Korelasyon Korelasyon Türleri Korelasyon Katsayısı Regresyon KORELASYON Korelasyon iki ya da daha fazla değişken arasındaki doğrusal ilişkiyi gösterir.

Detaylı

Daha önce yaptığımız işlem tüm sınıfın bir değişkene ait ortalamasını hesaplamaktı. Eğer sınıfta KIZ-ERKEK gibi 2 grup varsa bu iki grubun başarısını

Daha önce yaptığımız işlem tüm sınıfın bir değişkene ait ortalamasını hesaplamaktı. Eğer sınıfta KIZ-ERKEK gibi 2 grup varsa bu iki grubun başarısını 5.SUNUM Daha önce yaptığımız işlem tüm sınıfın bir değişkene ait ortalamasını hesaplamaktı. Eğer sınıfta KIZ-ERKEK gibi 2 grup varsa bu iki grubun başarısını karşılaştırmak isteyebiliriz. Bu durumda iki

Detaylı

İki ortalama arasındaki farkın önemlilik testi

İki ortalama arasındaki farkın önemlilik testi Örnek: Kalple ilgili bir çalışmada 5 yaşındaki 4 erkek ve 40 yaşındaki 30 erkeğin sistolik kan basınçları ölçülmüştür. Elde edilen verilere göre 0.05 anlamlılık düzeyinde yaşlı erkeklerin genç erkeklere

Detaylı

BÖLÜM-1.BİLİM NEDİR? Tanımı...1 Bilimselliğin Ölçütleri...2 Bilimin İşlevleri...3

BÖLÜM-1.BİLİM NEDİR? Tanımı...1 Bilimselliğin Ölçütleri...2 Bilimin İşlevleri...3 KİTABIN İÇİNDEKİLER BÖLÜM-1.BİLİM NEDİR? Tanımı...1 Bilimselliğin Ölçütleri...2 Bilimin İşlevleri...3 BÖLÜM-2.BİLİMSEL ARAŞTIRMA Belgesel Araştırmalar...7 Görgül Araştırmalar Tarama Tipi Araştırma...8

Detaylı

Biyoistatistik (Ders 8: Hipotez Testleri Uygulama)

Biyoistatistik (Ders 8: Hipotez Testleri Uygulama) HİPOTEZ TESTLERİ UYGULAMA Yrd. Doç. Dr. Ünal ERKORKMAZ Sakarya Üniversitesi Tıp Fakültesi Biyoistatistik Anabilim Dalı uerkorkmaz@sakarya.edu.tr Örnek: Hipertansiyon ilgili bir çalışmada 0 yaşındaki 4

Detaylı

BİYOİSTATİSTİK DERSLERİ AMAÇ VE HEDEFLERİ

BİYOİSTATİSTİK DERSLERİ AMAÇ VE HEDEFLERİ BİYOİSTATİSTİK DERSLERİ AMAÇ VE HEDEFLERİ DÖNEM I-I. DERS KURULU Konu: Bilimsel yöntem ve istatistik Amaç: Biyoistatistiğin tıptaki önemini kavrar ve sonraki dersler için gerekli terminolojiye hakim olur.

Detaylı

BİYOİSTATİSTİK Tek Örneklem ve İki Örneklem Hipotez Testleri Dr. Öğr. Üyesi Aslı SUNER KARAKÜLAH

BİYOİSTATİSTİK Tek Örneklem ve İki Örneklem Hipotez Testleri Dr. Öğr. Üyesi Aslı SUNER KARAKÜLAH BİYOİSTATİSTİK Tek Örneklem ve İki Örneklem Hipotez Testleri Dr. Öğr. Üyesi Aslı SUNER KARAKÜLAH Ege Üniversitesi, Tıp Fakültesi, Biyoistatistik ve Tıbbi Bilişim AD. Web: www.biyoistatistik.med.ege.edu.tr

Detaylı

BKİ farkı Standart Sapması (kg/m 2 ) A B BKİ farkı Ortalaması (kg/m 2 )

BKİ farkı Standart Sapması (kg/m 2 ) A B BKİ farkı Ortalaması (kg/m 2 ) 4. SUNUM 1 Gözlem ya da deneme sonucu elde edilmiş sonuçların, rastlantıya bağlı olup olmadığının incelenmesinde kullanılan istatistiksel yöntemlere HİPOTEZ TESTLERİ denir. Sonuçların rastlantıya bağlı

Detaylı

Bağımlı Gruplar İçin t Testi Wilcoxon İşaretli Sıralar Testi

Bağımlı Gruplar İçin t Testi Wilcoxon İşaretli Sıralar Testi Bağımlı Gruplar İçin t Testi Wilcoxon İşaretli Sıralar Testi Dr. Eren Can Aybek erencan@aybek.net www.olcme.net IBM SPSS Statistics ile Bağımlı Gruplar için t Testi İlişkili olan iki ortalama arasında

Detaylı

BİYOİSTATİSTİK Korelasyon Analizi Yrd. Doç. Dr. Aslı SUNER KARAKÜLAH

BİYOİSTATİSTİK Korelasyon Analizi Yrd. Doç. Dr. Aslı SUNER KARAKÜLAH BİYOİSTATİSTİK Korelasyon Analizi Yrd. Doç. Dr. Aslı SUNER KARAKÜLAH Ege Üniversitesi, Tıp Fakültesi, Biyoistatistik ve Tıbbi Bilişim AD. Web: www.biyoistatistik.med.ege.edu.tr 1 Bir değişkenin değerinin,

Detaylı

KARŞILAŞTIRMA İSTATİSTİĞİ, ANALİTİK YÖNTEMLERİN KARŞILAŞTIRILMASI, BİYOLOJİK DEĞİŞKENLİK. Doç.Dr. Mustafa ALTINIŞIK ADÜTF Biyokimya AD 2005

KARŞILAŞTIRMA İSTATİSTİĞİ, ANALİTİK YÖNTEMLERİN KARŞILAŞTIRILMASI, BİYOLOJİK DEĞİŞKENLİK. Doç.Dr. Mustafa ALTINIŞIK ADÜTF Biyokimya AD 2005 KARŞILAŞTIRMA İSTATİSTİĞİ, ANALİTİK YÖNTEMLERİN KARŞILAŞTIRILMASI, BİYOLOJİK DEĞİŞKENLİK Doç.Dr. Mustafa ALTINIŞIK ADÜTF Biyokimya AD 2005 1 Karşılaştırma istatistiği Temel kavramlar: Örneklem ve evren:

Detaylı

H.Ü. Bilgi ve Belge Yönetimi Bölümü BBY 208 Sosyal Bilimlerde Araştırma Yöntemleri II (Bahar 2012) SPSS Ders Notları III (3 Mayıs 2012)

H.Ü. Bilgi ve Belge Yönetimi Bölümü BBY 208 Sosyal Bilimlerde Araştırma Yöntemleri II (Bahar 2012) SPSS Ders Notları III (3 Mayıs 2012) H.Ü. Bilgi ve Belge Yönetimi Bölümü BBY 208 Sosyal Bilimlerde Araştırma Yöntemleri II (Bahar 2012) Parametrik Olmayan Testler Binom Testi SPSS Ders Notları III (3 Mayıs 2012) Soru 1: Öğrencilerin okul

Detaylı

PARAMETRİK TESTLER. Tek Örneklem t-testi. 200 öğrencinin matematik dersinden aldıkları notların ortalamasının 70 e eşit olup olmadığını test ediniz.

PARAMETRİK TESTLER. Tek Örneklem t-testi. 200 öğrencinin matematik dersinden aldıkları notların ortalamasının 70 e eşit olup olmadığını test ediniz. PARAMETRİK TESTLER Tek Örneklem t-testi 200 öğrencinin matematik dersinden aldıkları notların ortalamasının 70 e eşit olup olmadığını test ediniz. H0 (boş hipotez): 200 öğrencinin matematik dersinden aldıkları

Detaylı

ÇANAKKALE ONSEKİZ MART ÜNİVERSİTESİ TIP FAKÜLTESİ

ÇANAKKALE ONSEKİZ MART ÜNİVERSİTESİ TIP FAKÜLTESİ Dönem V SPSS İLE TEMEL BİYOİSTATİSTİK UYGULAMALARI Seçmeli Staj Eğitim Programı (08 19 Haziran 2015) Eğitim Başkoordinatörü: Doç. Dr. Erkan Melih ŞAHİN Dönem Koordinatörü: Yrd. Doç. Dr. Baran GENCER Koordinatör

Detaylı

BİYOİSTATİSTİK İstatistiksel Tahminleme ve Hipotez Testi-III Dr. Öğr. Üyesi Aslı SUNER KARAKÜLAH

BİYOİSTATİSTİK İstatistiksel Tahminleme ve Hipotez Testi-III Dr. Öğr. Üyesi Aslı SUNER KARAKÜLAH BİYOİSTATİSTİK İstatistiksel Tahminleme ve Hipotez Testi-III Dr. Öğr. Üyesi Aslı SUNER KARAKÜLAH Ege Üniversitesi, Tıp Fakültesi, Biyoistatistik ve Tıbbi Bilişim AD. Web: www.biyoistatistik.med.ege.edu.tr

Detaylı

BİYOİSTATİSTİK PARAMETRİK TESTLER

BİYOİSTATİSTİK PARAMETRİK TESTLER BİYOİSTATİSTİK PARAMETRİK TESTLER Doç. Dr. Mahmut AKBOLAT *Bir testin kullanılabilmesi için belirli şartların sağlanması gerekir. *Bir testin, uygulanabilmesi için gerekli şartlar; ne kadar çok veya güçlü

Detaylı

Kalitatif Veri. 1. Kalitatif random değişkenler sınıflanabilen yanıtlar vermektedir. Örnek: cinsiyet (Erkek, Kız)

Kalitatif Veri. 1. Kalitatif random değişkenler sınıflanabilen yanıtlar vermektedir. Örnek: cinsiyet (Erkek, Kız) Kalitatif Veri 1. Kalitatif random değişkenler sınıflanabilen yanıtlar vermektedir. Örnek: cinsiyet (Erkek, Kız). Ölçüm kategorideki veri sayısını yansıtır 3. Nominal yada Ordinal ölçek Multinomial Deneyler

Detaylı

BİYOİSTATİSTİK Kategorik Veri Analizi Dr. Öğr. Üyesi Aslı SUNER KARAKÜLAH

BİYOİSTATİSTİK Kategorik Veri Analizi Dr. Öğr. Üyesi Aslı SUNER KARAKÜLAH BİYOİSTATİSTİK Kategorik Veri Analizi Dr. Öğr. Üyesi Aslı SUNER KARAKÜLAH Ege Üniversitesi, Tıp Fakültesi, Biyoistatistik ve Tıbbi Bilişim AD. Web: www.biyoistatistik.med.ege.edu.tr 1 SAYIMLA ELDE EDİLEN

Detaylı

BİYOİSTATİSTİK. Ödev Çözümleri. Yrd. Doç. Dr. Aslı SUNER KARAKÜLAH

BİYOİSTATİSTİK. Ödev Çözümleri. Yrd. Doç. Dr. Aslı SUNER KARAKÜLAH BİYOİSTATİSTİK Ödev Çözümleri Yrd. Doç. Dr. Aslı SUNER KARAKÜLAH Ege Üniversitesi, Tıp Fakültesi, Biyoistatistik ve Tıbbi Bilişim AD. Web: www.biyoistatistik.med.ege.edu.tr Ödev 1 Çözümleri 2 1. Bir sonucun

Detaylı

Sık kullanılan istatistiksel yöntemler ve yorumlama. Doç. Dr. Seval KUL Gaziantep Üniversitesi Tıp Fakültesi

Sık kullanılan istatistiksel yöntemler ve yorumlama. Doç. Dr. Seval KUL Gaziantep Üniversitesi Tıp Fakültesi Sık kullanılan istatistiksel yöntemler ve yorumlama Doç. Dr. Seval KUL Gaziantep Üniversitesi Tıp Fakültesi Biyoistatistik AD Bşk. 1 Hakkımda 2 Hedef: Katılımcılar modülün sonunda temel istatistiksel yöntemler

Detaylı

SPSS UYGULAMALARI-II Dr. Seher Yalçın 1

SPSS UYGULAMALARI-II Dr. Seher Yalçın 1 SPSS UYGULAMALARI-II 27.12.2016 Dr. Seher Yalçın 1 Normal Dağılım Varsayımının İncelenmesi Çarpıklık ve Basıklık Katsayısının İncelenmesi Analyze Descriptive Statistics Descriptives tıklanır. Açılan pencerede,

Detaylı

K-S Testi hipotezde ileri sürülen dağılımla örnek yığılmalı dağılım fonksiyonunun karşılaştırılması ile yapılır.

K-S Testi hipotezde ileri sürülen dağılımla örnek yığılmalı dağılım fonksiyonunun karşılaştırılması ile yapılır. İstatistiksel güven aralıkları uygulamalarında normallik (normal dağılıma uygunluk) oldukça önemlidir. Kullanılan parametrik istatistiksel tekniklerin geçerli olabilmesi için populasyon şans değişkeninin

Detaylı

Biyoistatistik (Ders 7: Bağımlı Gruplarda İkiden Çok Örneklem Testleri)

Biyoistatistik (Ders 7: Bağımlı Gruplarda İkiden Çok Örneklem Testleri) ÖRNEKLEM TESTLERİ BAĞIMLI GRUPLARDA ÖRNEKLEM TESTLERİ Yrd. Doç. Dr. Ünal ERKORKMAZ Saarya Üniversitesi Tıp Faültesi Biyoistatisti Anabilim Dalı uerormaz@saarya.edu.tr BAĞIMLI İKİDEN ÇOK GRUBUN KARŞILAŞTIRILMASINA

Detaylı

D.Ü.TIP FAKÜLTESİ BİYOİSTATİSTİK AD. DÖNEM I (BİYOİSTATİSTİK, HALK SAĞLIĞI VE RUH SAĞLIĞI DERS KURULU)

D.Ü.TIP FAKÜLTESİ BİYOİSTATİSTİK AD. DÖNEM I (BİYOİSTATİSTİK, HALK SAĞLIĞI VE RUH SAĞLIĞI DERS KURULU) DÖNEM I (BİYOİSTATİSTİK, HALK SAĞLIĞI VE RUH SAĞLIĞI DERS KURULU) TOPLAM KALİTE YÖNETİMİ BİLİNÇLENDİRME EĞİTİMİ NONPARAMETRİK KÜKRER GIDA TESTLER (Mann Whitney U ve Wilcoxon Testleri) Yrd.Doç.Dr. İsmail

Detaylı

İçindekiler. Pazarlama Araştırmalarının Önemi

İçindekiler. Pazarlama Araştırmalarının Önemi İçindekiler Birinci Bölüm Pazarlama Araştırmalarının Önemi 1.1. PAZARLAMA ARAŞTIRMALARININ TANIMI VE ÖNEMİ... 1 1.2. PAZARLAMA ARAŞTIRMASI İŞLEVİNİN İŞLETME ORGANİZASYONU İÇİNDEKİ YERİ... 5 1.3. PAZARLAMA

Detaylı

BİLİMSEL ARAŞTIRMA YÖNTEMLERİ. Bazı Temel Kavramlar

BİLİMSEL ARAŞTIRMA YÖNTEMLERİ. Bazı Temel Kavramlar BİLİMSEL ARAŞTIRMA YÖNTEMLERİ Bazı Temel Kavramlar TEMEL ARAŞTIRMA KAVRAMLARI Bilimsel çalışmaların amacı, örneklem değerinden evren değerlerinin kestirilmesidir. Araştırma evreni (population) Evren, bütündeki

Detaylı

Doç.Dr.İstem Köymen KESER

Doç.Dr.İstem Köymen KESER Doç.Dr.İstem Köymen KESER Güven Aralıkları Ortalama yada iki ortalama farkı için biliniyor bilinmiyor n30 n

Detaylı

İstatistik Yöntemleri ve Hipotez Testleri

İstatistik Yöntemleri ve Hipotez Testleri Sağlık Araştırmalarında Kullanılan Temel İstatistik Yöntemleri ve Hipotez Testleri Yrd. Doç. Dr. Emre ATILGAN BİYOİSTATİSTİK İstatistiğin biyoloji, tıp ve diğer sağlık bilimlerinde kullanımı biyoistatistik

Detaylı

Hipotez Testlerine Giriş. Hipotez Testlerine Giriş

Hipotez Testlerine Giriş. Hipotez Testlerine Giriş Hipotez Testlerine Giriş Hipotez Testlerine Giriş Hipotez Testlerine Giriş Gözlem ya da deneme sonucu elde edilmiş sonuçların, raslantıya bağlı olup olmadığının incelenmesinde kullanılan istatistiksel

Detaylı

1. FARKLILIKLARIN TESPİTİNE YÖNELİK HİPOTEZ TESTLERİ

1. FARKLILIKLARIN TESPİTİNE YÖNELİK HİPOTEZ TESTLERİ 1. FARKLILIKLARIN TESPİTİNE YÖNELİK HİPOTEZ TESTLERİ Örneklem verileri kullanılan her çalışmada bir örneklem hatası çıkma riski her zaman söz konusudur. Dolayısıyla istatistikte bu örneklem hatasının meydana

Detaylı

BİYOİSTATİSTİK Uygulama 4 Yrd. Doç. Dr. Aslı SUNER KARAKÜLAH

BİYOİSTATİSTİK Uygulama 4 Yrd. Doç. Dr. Aslı SUNER KARAKÜLAH BİYOİSTATİSTİK Uygulama 4 Yrd. Doç. Dr. Aslı SUNER KARAKÜLAH Ege Üniversitesi, Tıp Fakültesi, Biyoistatistik ve Tıbbi Bilişim AD. Web: www.biyoistatistik.med.ege.edu.tr 1 Örnek Senaryo İmplant üreten İMPLANTDENT

Detaylı

Prof. Dr. Özkan ÜNVER Prof. Dr. Hamza GAMGAM Doç. Dr. Bülent ALTUNKAYNAK SPSS UYGULAMALI TEMEL İSTATİSTİK YÖNTEMLER

Prof. Dr. Özkan ÜNVER Prof. Dr. Hamza GAMGAM Doç. Dr. Bülent ALTUNKAYNAK SPSS UYGULAMALI TEMEL İSTATİSTİK YÖNTEMLER Prof. Dr. Özkan ÜNVER Prof. Dr. Hamza GAMGAM Doç. Dr. Bülent ALTUNKAYNAK SPSS UYGULAMALI TEMEL İSTATİSTİK YÖNTEMLER Gözden Geçirilmiş ve Genişletilmiş 8. Baskı Frekans Dağılımları Varyans Analizi Merkezsel

Detaylı

BÖLÜM 5 MERKEZİ EĞİLİM ÖLÇÜLERİ

BÖLÜM 5 MERKEZİ EĞİLİM ÖLÇÜLERİ 1 BÖLÜM 5 MERKEZİ EĞİLİM ÖLÇÜLERİ Gözlenen belli bir özelliği, bu özelliğe ilişkin ölçme sonuçlarını yani verileri kullanarak betimleme, istatistiksel işlemlerin bir boyutunu oluşturmaktadır. Temel sayma

Detaylı

taşinmaz DEĞERLEME- DE İSTATİKSEL ANALİZ

taşinmaz DEĞERLEME- DE İSTATİKSEL ANALİZ 8 Varyans Analizi (Anova) TAŞINMAZ GELİŞTİRME TEZSİZ YÜKSEK LİSANS PROGRAMI taşinmaz DEĞERLEME- DE İSTATİKSEL ANALİZ Doç. Dr. Yüksel TERZİ 1 Ünite: 8 VARYANS ANALİZİ (ANOVA) Doç. Dr. Yüksel TERZİ İçindekiler

Detaylı

BİYOİSTATİSTİK İstatistiksel Tahminleme ve Hipotez Testi-III Yrd. Doç. Dr. Aslı SUNER KARAKÜLAH

BİYOİSTATİSTİK İstatistiksel Tahminleme ve Hipotez Testi-III Yrd. Doç. Dr. Aslı SUNER KARAKÜLAH BİYOİSTATİSTİK İstatistiksel Tahminleme ve Hipotez Testi-III Yrd. Doç. Dr. Aslı SUNER KARAKÜLAH Ege Üniversitesi, Tıp Fakültesi, Biyoistatistik ve Tıbbi Bilişim AD. Web: www.biyoistatistik.med.ege.edu.tr

Detaylı

Örnek 4.1: Tablo 2 de verilen ham verilerin aritmetik ortalamasını hesaplayınız.

Örnek 4.1: Tablo 2 de verilen ham verilerin aritmetik ortalamasını hesaplayınız. .4. Merkezi Eğilim ve Dağılım Ölçüleri Merkezi eğilim ölçüleri kitleye ilişkin bir değişkenin bütün farklı değerlerinin çevresinde toplandığı merkezi bir değeri gösterirler. Dağılım ölçüleri ise değişkenin

Detaylı

Sosyal Bilimlerde Araştırma Yöntemleri. Bölüm 8. VERİ İŞLEMEYE HAZIRLIK, TEMEL İSTATİSTİKİ ÖLÇÜLER VE ANALİZ TÜRLERİ Sait Gürbüz - Faruk Şahin

Sosyal Bilimlerde Araştırma Yöntemleri. Bölüm 8. VERİ İŞLEMEYE HAZIRLIK, TEMEL İSTATİSTİKİ ÖLÇÜLER VE ANALİZ TÜRLERİ Sait Gürbüz - Faruk Şahin Sosyal Bilimlerde Araştırma Yöntemleri Bölüm 8 VERİ İŞLEMEYE HAZIRLIK, TEMEL İSTATİSTİKİ ÖLÇÜLER VE ANALİZ TÜRLERİ Sait Gürbüz - Faruk Şahin Öğrenim Kazanımları Bu bölümü okuyup anladığınızda; 1. Veri

Detaylı

EVREN ORTALAMASI HİPOTEZ TESTİ VE EVREN ORANI HİPOTEZ TESTİ. Ankara Üniversitesi Tıp Fakültesi Biyoistatistik Anabilim Dalı

EVREN ORTALAMASI HİPOTEZ TESTİ VE EVREN ORANI HİPOTEZ TESTİ. Ankara Üniversitesi Tıp Fakültesi Biyoistatistik Anabilim Dalı EVREN ORTALAMASI HİPOTEZ TESTİ VE EVREN ORANI HİPOTEZ TESTİ Ankara Üniversitesi Tıp Fakültesi Biyoistatistik Anabilim Dalı EVREN ORTALAMASI İÇİN TEK ÖRNEKLEM T-TESTİ Tek örneklem t-testi, örneklemin çekildiği

Detaylı

Anlam Çıkartıcı (Kestirisel- Vardamsal) İstatistik

Anlam Çıkartıcı (Kestirisel- Vardamsal) İstatistik Anlam Çıkartıcı (Kestirisel- Vardamsal) İstatistik Dr. Seher Yalçın 27.12.2016 1 Anlam Çıkartıcı İstatistik: Hipotez Nedir? Null Hipotezi Alternatif Hipotez Hipotez Testi Adımları Karar verirken yapılan

Detaylı

Tek Yönlü Varyans Analizi (ANOVA) Kruskal Wallis H Testi

Tek Yönlü Varyans Analizi (ANOVA) Kruskal Wallis H Testi Tek Yönlü Varyans Analizi (ANOVA) Kruskal Wallis H Testi Dr. Eren Can Aybek erencan@aybek.net www.olcme.net IBM SPSS Statistics ile Hangi Durumda Kullanılır? Bağımsız gruplar t testi, iki grubun ortalamasını

Detaylı

BÖLÜM 6 MERKEZDEN DAĞILMA ÖLÇÜLERİ

BÖLÜM 6 MERKEZDEN DAĞILMA ÖLÇÜLERİ 1 BÖLÜM 6 MERKEZDEN DAĞILMA ÖLÇÜLERİ Gözlenen belli bir özelliği, bu özelliğe ilişkin ölçme sonuçlarını yani verileri kullanarak betimleme, istatistiksel işlemlerin bir boyutunu oluşturmaktadır. Temel

Detaylı

BİR ÖRNEKLEM İÇİN T TESTİ İLİŞKİSİZ ÖRNEKLEMLER İÇİN T-TESTİ MANN-WHITNEY U TESTİ

BİR ÖRNEKLEM İÇİN T TESTİ İLİŞKİSİZ ÖRNEKLEMLER İÇİN T-TESTİ MANN-WHITNEY U TESTİ 1 BİR ÖRNEKLEM İÇİN T TESTİ İLİŞKİSİZ ÖRNEKLEMLER İÇİN T-TESTİ MANN-WHITNEY U TESTİ 2 BİR ÖRNEKLEM İÇİN T TESTİ 3 Ölçüm ortalamasını bir norm değer ile karşılaştırma (BİR ÖRNEKLEM İÇİN T TESTİ) Bir çocuk

Detaylı

BÖLÜM 13 HİPOTEZ TESTİ

BÖLÜM 13 HİPOTEZ TESTİ 1 BÖLÜM 13 HİPOTEZ TESTİ Bilimsel yöntem aşamalarıyla tanımlanmış sistematik bir bilgi üretme biçimidir. Bilimsel yöntemin aşamaları aşağıdaki gibi sıralanabilmektedir (Karasar, 2012): 1. Bir problemin

Detaylı

ÖN SÖZ... XV 1. BÖLÜM İSTATİSTİKTE KULLANILAN TEMEL KAVRAMLAR

ÖN SÖZ... XV 1. BÖLÜM İSTATİSTİKTE KULLANILAN TEMEL KAVRAMLAR İÇİNDEKİLER ÖN SÖZ... XV 1. BÖLÜM İSTATİSTİKTE KULLANILAN TEMEL KAVRAMLAR 1. DEĞİŞKEN... 2 1.1. Değişken Çeşitleri... 3 1.2. Değişkenlerde Bağımsızlık ve Bağımlılık... 5 1.3. Değişkenlerde Kontrol Edilebilirlik...

Detaylı

Çoğu araştırmada seçilen örnekler araştırmanın yapısı gereği birbirinden bağımsız olmayabilir.

Çoğu araştırmada seçilen örnekler araştırmanın yapısı gereği birbirinden bağımsız olmayabilir. Bağımlı Örneklerde Ki-Kare testi -- Mc Nemar Testi Çoğu araştırmada seçilen örnekler araştırmanın yapısı gereği birbirinden bağımsız olmayabilir. Örnek: Sigara içmeyle ilgili bir çalışmada, kişilere sigarayı

Detaylı

NONPARAMETRİK TEKNİKLERİN GÜÇ VE ETKİNLİKLERİ

NONPARAMETRİK TEKNİKLERİN GÜÇ VE ETKİNLİKLERİ Elektronik Sosyal Bilimler Dergisi www.esosder.org Electronic Journal of Social Sciences info@esosder.org Yaz-2010 Cilt:9 Sayı:33 (018-040) ISSN:1304-0278 Summer-2010 Volume:9 Issue:33 NONPARAMETRİK TEKNİKLERİN

Detaylı

KATEGORİK VERİLERİN ANALİZİ (Uyum İyiliği, Bağımsızlık ve Dağılıma Uygunluk Testleri)

KATEGORİK VERİLERİN ANALİZİ (Uyum İyiliği, Bağımsızlık ve Dağılıma Uygunluk Testleri) KATEGORİK VERİLERİN ANALİZİ (Uyum İyiliği, Bağımsızlık ve Dağılıma Uygunluk Testleri) Günümüzde yapılan birçok araştırmada nitel değişkenler kullanılmaktadır. Göz rengi, saç rengi gibi bazı değişkenler

Detaylı

26.12.2013. Farklı iki ilaç(a,b) kullanan iki grupta kan pıhtılaşma zamanları farklı mıdır?

26.12.2013. Farklı iki ilaç(a,b) kullanan iki grupta kan pıhtılaşma zamanları farklı mıdır? 26.2.23 Gözlem ya da deneme sonucu elde edilmiş sonuçların, raslantıya bağlı olup olmadığının incelenmesinde kullanılan istatistiksel yöntemlere HĐPOTEZ TESTLERĐ denir. Sonuçların raslantıya bağlı olup

Detaylı

İSTATİSTİKTE TEMEL KAVRAMLAR

İSTATİSTİKTE TEMEL KAVRAMLAR İSTATİSTİKTE TEMEL KAVRAMLAR 1. ve 2. Hafta İstatistik Nedir? Bir tanım olarak istatistik; belirsizlik altında bir konuda karar verebilmek amacıyla, ilgilenilen konuya ilişkin verilerin toplanması, düzenlenmesi,

Detaylı

Tek yönlü varyans analizi kısaltılmış olarak ANOVA (Analysis of Variance) bilinen

Tek yönlü varyans analizi kısaltılmış olarak ANOVA (Analysis of Variance) bilinen DÖNEM II ENDOKRİN SİSTEMİ Ders Kurulu Başkanı : Doç. Dr. Osman EVLİYAOĞLU VARYANS ANALİZİ (14.03.014 Cuma Y.ÇELİK Tek Yönlü Varyans Analizi Tek yönlü varyans analizi kısaltılmış olarak ANOVA (Analysis

Detaylı

ÖĞRENCİNİN ADI SOYADI:. NO:

ÖĞRENCİNİN ADI SOYADI:. NO: ÖĞRENCİNİN ADI SOYADI:. NO: İMZA: 2011-2012 ÖĞRETİM YILI TIP 1. SINIF TEMEL BİYOİSTATİSTİK DERSİ ARA SINAVI (04.11.2011) Biyoistatistik ve Tıp Bilişimi Anabilim Dalı Başarılar Temel Biyoistatistik dersi

Detaylı

a) I b) I ve II c) III ve IV d) I, II ve V e) II ve III İ.Ü.AUZEF İSTATİSTİK DERSİ KONU TEKRAR SORULARI (Ünite 1-7)

a) I b) I ve II c) III ve IV d) I, II ve V e) II ve III İ.Ü.AUZEF İSTATİSTİK DERSİ KONU TEKRAR SORULARI (Ünite 1-7) İ.Ü.AUZEF İSTATİSTİK DERSİ KONU TEKRAR SORULARI (Ünite 1-7) 1- Aşağıdakilerden hangisi maddi olmayan birim e örnek verilebilir? a) Bina b) İnsan c) Öğrenci d) Ölüm e) Araba 2-Aşağıdakilerden hangisi birimin

Detaylı

İÇİNDEKİLER. Birinci Bölüm UYGULAMA VERİLERİ

İÇİNDEKİLER. Birinci Bölüm UYGULAMA VERİLERİ İÇİNDEKİLER Birinci Bölüm UYGULAMA VERİLERİ VERİ GRUBU 1. Yüzücü ve Atlet Verileri... 1 VERİ GRUBU 2. Sutopu, Basketbol ve Voleybol Oyuncuları Verileri... 4 VERİ 3. Solunum Yolları Verisi... 7 VERİ 4.

Detaylı

MATE 211 BİYOİSTATİSTİK DÖNEM SONU SINAVI

MATE 211 BİYOİSTATİSTİK DÖNEM SONU SINAVI Öğrenci Bilgileri Ad Soyad: İmza: MATE 211 BİYOİSTATİSTİK DÖNEM SONU SINAVI 26 Mayıs, 2014 Numara: Grup: Soru Bölüm 1 10 11 12 TOPLAM Numarası (1-9) Ağırlık 45 15 30 20 110 Alınan Puan Yönerge 1. Bu sınavda

Detaylı

Değişken Türleri, Tanımlayıcı İstatistikler ve Normal Dağılım. Dr. Deniz Özel Erkan

Değişken Türleri, Tanımlayıcı İstatistikler ve Normal Dağılım. Dr. Deniz Özel Erkan Değişken Türleri, Tanımlayıcı İstatistikler ve Normal Dağılım Dr. Deniz Özel Erkan Evren Parametre Örneklem Çıkarım Veri İstatistik İstatistik Tanımlayıcı (Descriptive) Çıkarımsal (Inferential) Özetleme

Detaylı

İstatistik 1 Bölüm 12 Tahmin: Hipotez Testleri 2

İstatistik 1 Bölüm 12 Tahmin: Hipotez Testleri 2 İstatistik 1 Bölüm 12 Tahmin: Hipotez Testleri 2 Notları Prof. Dr. Onur Özsoy Hipotez Testleri Yapılırken İzlenecek Aşamalar 1. H 0 ve H a nın belirlenmesi 2. Test İstatistiğinin belirlenmesi 3. Anlamlılık

Detaylı

Hastane Yönetimi-Ders 8 Hastanelerde İstatistiksel Karar Verme

Hastane Yönetimi-Ders 8 Hastanelerde İstatistiksel Karar Verme Hastane Yönetimi-Ders 8 Hastanelerde İstatistiksel Karar Verme Öğr. Gör. Hüseyin ARI 1 İstanbul Arel Üniversitesi M.Y.O Sağlık Kurumları İşletmeciliği Hastane Yönetiminde İstatistiksel Karar Vermenin Önemi

Detaylı

Sosyal Bilimler İçin Veri Analizi El Kitabı

Sosyal Bilimler İçin Veri Analizi El Kitabı 292 Dicle Üniversitesi Ziya Gökalp Eğitim Fakültesi Dergisi, 18 (2012) 292-297 KİTAP İNCELEMESİ Sosyal Bilimler İçin Veri Analizi El Kitabı Editör Doç. Dr. Şener BÜYÜKÖZTÜRK Dilek SEZGİN MEMNUN 1 Bu çalışmada,

Detaylı

BİYOİSTATİSTİK. Uygulama 6. Yrd. Doç. Dr. Aslı SUNER KARAKÜLAH

BİYOİSTATİSTİK. Uygulama 6. Yrd. Doç. Dr. Aslı SUNER KARAKÜLAH BİYOİSTATİSTİK Uygulama 6 Yrd. Doç. Dr. Aslı SUNER KARAKÜLAH Ege Üniversitesi, Tıp Fakültesi, Biyoistatistik ve Tıbbi Bilişim AD. Web: www.biyoistatistik.med.ege.edu.tr Soru 1 İlaç malzemelerinin kalitesini

Detaylı

LOJİSTİK REGRESYON ANALİZİ

LOJİSTİK REGRESYON ANALİZİ LOJİSTİK REGRESYON ANALİZİ Lojistik Regresyon Analizini daha kolay izleyebilmek için bazı terimleri tanımlayalım: 1. Değişken (incelenen özellik): Bireyden bireye farklı değerler alabilen özellik, fenomen

Detaylı

Toplum ve Örnek. Temel Araştırma Düzenleri. Doç. Dr. Ertuğrul ÇOLAK. Eskişehir Osmangazi Üniversitesi Tıp Fakültesi Biyoistatistik Anabilim Dalı

Toplum ve Örnek. Temel Araştırma Düzenleri. Doç. Dr. Ertuğrul ÇOLAK. Eskişehir Osmangazi Üniversitesi Tıp Fakültesi Biyoistatistik Anabilim Dalı Toplum ve Örnek Temel Araştırma Düzenleri Doç. Dr. Ertuğrul ÇOLAK Eskişehir Osmangazi Üniversitesi Tıp Fakültesi Biyoistatistik Anabilim Dalı Toplum ve Örnek İstatistik, toplumdan kurallara uygun olarak,

Detaylı

KİTABIN HARİTASI AÇIKLAMALAR BÖLÜMÜ

KİTABIN HARİTASI AÇIKLAMALAR BÖLÜMÜ KİTABIN HARİTASI Bu kitapta açıklanan analizlerin işlevselliğini ön plana çıkarabilmek adına, analiz isimlerinden çok bunlarla neler yapılabileceği açıklanarak, analizden yapılacak işleme gitmek yerine,

Detaylı

Örneklem Dağılımları & Hipotez Testleri Örneklem Dağılımı

Örneklem Dağılımları & Hipotez Testleri Örneklem Dağılımı Örneklem Dağılımları & Hipotez Testleri Örneklem Dağılımı Ortalama veya korelasyon gibi istatistiklerin dağılımıdır Çıkarımsal istatistikte örneklem dağılımı temel fikirlerden biridir. Çıkarımsal istatistik

Detaylı

Örnek. Aşağıdaki veri setlerindeki X ve Y veri çiftlerini kullanarak herbir durumda X=1,5 için Y nin hangi değerleri alacağını hesaplayınız.

Örnek. Aşağıdaki veri setlerindeki X ve Y veri çiftlerini kullanarak herbir durumda X=1,5 için Y nin hangi değerleri alacağını hesaplayınız. Örnek Aşağıdaki veri setlerindeki X ve Y veri çiftlerini kullanarak herbir durumda X=1,5 için Y nin hangi değerleri alacağını hesaplayınız. i. ii. X 1 2 3 4 1 2 3 4 Y 2 3 4 5 4 3 2 1 Örnek Aşağıdaki veri

Detaylı

2x2 ve rxc Boyutlu Tablolarla Hipotez Testleri

2x2 ve rxc Boyutlu Tablolarla Hipotez Testleri x ve rxc Boyutlu Tablolarla Hipotez Testleri İki tür spesifik uygulamada kullanılır: 1. Bağımsızlık Testi (Test of Independency): Sayım verilerinden oluşan iki değişken arasında bağımsızlık (veya ilişki)

Detaylı

ÇANAKKALE ONSEKİZ MART ÜNİVERSİTESİ TIP FAKÜLTESİ

ÇANAKKALE ONSEKİZ MART ÜNİVERSİTESİ TIP FAKÜLTESİ Dönem V SPSS İLE TEMEL BİYOİSTATİSTİK UYGULAMALARI Seçmeli Staj Eğitim Programı (2016) Eğitim Başkoordinatörü: Doç. Dr. Erkan Melih ŞAHİN Dönem Koordinatörü: Yrd. Doç. Dr. Baran GENCER Koordinatör Yardımcısı:

Detaylı

BÖLÜM 2 VERİ SETİNİN HAZIRLANMASI VE DÜZENLENMESİ

BÖLÜM 2 VERİ SETİNİN HAZIRLANMASI VE DÜZENLENMESİ 1 BÖLÜM 2 VERİ SETİNİN HAZIRLANMASI VE DÜZENLENMESİ Veri seti; satırlarında gözlem birimleri, sütunlarında ise değişkenler bulunan iki boyutlu bir matristir. Satır ve sütunların kesişim bölgelerine 'hücre

Detaylı