Yrd. Doç. Dr. Sedat ŞEN 2

Ebat: px
Şu sayfadan göstermeyi başlat:

Download "Yrd. Doç. Dr. Sedat ŞEN 2"

Transkript

1 3.SUNUM

2 Önceki derste gördüğümüz gibi 2 grubu karşılaştırırken kullandığımız yöntem t-testi idi. Peki araştırmamızda 3 gruba (A,B ve C grupları) sahip isek bu 3 grup arasında nasıl karşılaştırma yaparız? 3 tane t-testi yapsak nasıl olur? Önce A ile B yi sonra A ile C yi daha sonra da B ile C yi t-testi alfa=0.05 kriterini kullanarak karşılaştırabilir miyiz? Cevap: evet:) Ama. Yrd. Doç. Dr. Sedat ŞEN 2

3 Diyelim ki bir t testi yaparken alfa kriterimiz 0.05 yani %95 olasılığımız ve % 5 hata (I.Tür hata) yapma ihtimalimiz bulunmaktadır. Eğer 3 tane t-testi uygularsak ve alfa=0.05 alırsak 0.95x0.95x0.95=.857 I. Tür hata yapmama ihtimaline sahip oluruz. I. Tür hata yapma ihtimalimiz de =0.143 yani %14.3 olur. Daha önce %5 olan bu değer %14.3 e yükselmiş olur bu nedenle 3 ayrı t- testi yapmak doğru bir uygulama olmayacaktır. Bu olay familywise veya experimentwise hata oranı olarak bilinir. Eğer 10 grubu t-testleri kullanarak karşılaştırsaydık 1 - (0.95 )^10 = yani %40 I. Tür hata yapma ihtimalimiz olacaktı. Yrd. Doç. Dr. Sedat ŞEN 3

4 Kaynak: Wikipedia (https://tr.wikipedia.org/wiki/hipotez_testi) Yrd. Doç. Dr. Sedat ŞEN 4

5 T-testi uygularken iki grubun ortalamalarının eşit olup olmadığını test ediyorduk. Eğer p değeri alfa (0.05) değerinden büyük çıkarsa sıfır hipotezi (iki grubun ortalamasının eşit olması) reddedemiyorduk. Eğer p değeri alfa değerinden düşük çıkarsa sıfır hipotezi reddediyor ve alternatif hipotezi (iki grubun ortalamasının farklı olması) kabul ediyorduk. Aynı şekilde ANOVA da da sıfır hipotezi ile öne sürdüğümüz ikiden fazla (örn:3 grup; GRUP1=GRUP2=GRUP3) grubun ortalamalarının eşit olması durumunu test ediyoruz. Yani p değeri 0.05 ten büyük olursa bu hipotezi kabul ediyor eğer p değeri 0.05 ten küçük ise bu hipotezi reddediyor ve 3 grup arası farklılık mevcut diyoruz. p değerinin anlamlı olup olmadığına karar vermede T-testinde t değeri kullanılırken ANOVA da da F testinden elde edilen F değeri/oranı kullanılıyor. Yrd. Doç. Dr. Sedat ŞEN 5

6 ANOVA da F testini kullandığımız için bu testin sonuçlarının geçerli olabilmesi için diğer parametrik testlerde olduğu gibi bazı varsayımların yerine gelmesi gerekmektedir. Varyansların homojenliği (homojenlik) Verilerin bağımsız olması (bağımsızlık) Bağımlı değişkenin en az eşit aralıklı ölçek olması Grup içi dağılımların normal olması (within group normality) (normallik) Bir grup değişkenine (categorical) sahip olunmalıdır. Verimizde her han ANOVA bu varsayımların ihlaline dirençli bir yöntemdir. Özellikle grup büyüklükleri eşit (n1=n2=n3) olduğunda ANOVA normallik ve grup varyans homojenliği varsayımı ihlallerine dirençlidir. Yrd. Doç. Dr. Sedat ŞEN 6

7 T-testinde olduğu gibi ANOVA da da grupların varyanslarının homojen olduğu yani birbirlerine yakın olduğu varsayılır. T-testinde olduğu gibi burada da varyans homojenliğini Levene s test ile kontrol edebiliriz. Hatırlatma: Levene s testte sıfır hipotezimiz (H0) her grubun varyansının eşit olmasıdır. Eğer p değeri 0.05 ten yüksek çıkarsa bu hipotezi reddedemeyiz ve varyans homojenliğinin sağlandığını söyleyebiliriz. Eğer Levene s testten elde ettiğimiz p değeri 0.05 ten küçük ise bu hipotezi reddeder ve varyans homojenliği varsayımının sağlanmadığını söyleriz. Bu durumda ANOVA tablosunda verilen F ve p değerlerini kullanamayız. Bunun yerine SPSS te sunulan Brown Forsythe F (1974), ve Welch s F (1951) istatistikleri yoluyla elde edilen F değeri ve buna bağlı p değeri kullanılır. Yrd. Doç. Dr. Sedat ŞEN 7

8 - Varyans homojenliği varsayımının ihlali durumunda Brown Forsythe F (1974), ve Welch s F (1951) istatistikleri kullanılabilir. - Brown ve Forsythe grup varyanslarını ağırlıklandırarak (n/n) varyansların homojen olmama durumunu düzeltmeye çalışır ve büyük varyansa sahip olan büyük örneklemlerin etkisini azaltır. - Brown-Forsythe ile Welch test I.Tür hatayı kontrol etmeyi sağlar. - -Bu iki test arasında Welch testi daha güçlü bulunmaktadır. Yrd. Doç. Dr. Sedat ŞEN 8

9 Önceki sunumda t-testini anlatırken bahsettiğimiz yöntemler ANOVA da da kullanılabilir. Ama burada dikkat edilmesi gereken bağımlı değişken değerinin her grup için normallik koşulunu sağlamasıdır. Normallik görsel olarak kontrol edilebildiği gibi sayısal verilerle de kontrol edilebilir. Ayrıca normallik test etmek için iki tane de test üretilmiştir. Görsel olarak histogram ve P-P plot yardımıyla Sayısal olarak çarpıklık (skewness) ve basıklık (kurtosis) değerleri yardımıyla Test olarak Kolmogorov Smirnov test ve Shapiro Wilk testleri kullanarak test edilebilir. SPSS>Analayze>Descriptive Stat>Explore seçeneği kullanarak normallik ve uçdeğer kontrolleri yapılabilir. Yrd. Doç. Dr. Sedat ŞEN 9

10 T-testinde olduğu gibi bir sıralama izlemek mümkündür. ANOVA normal olmayan verilere dirençli olsa da normalliğin sağlanmadığı durumlarda sonuçlar yanlı olabilir. Normalliğin sağlanmadığı durumlarda yapabileceğimiz şeyler: örneklem büyüklüğünü artırmak, veriyi dönüştürmek ve dönüştürülmüş veri üzerinde ANOVA yapmak ya da parametrik olmayan testleri (Kruskal Wallis) kullanmaktır. Yrd. Doç. Dr. Sedat ŞEN 10

11 Grup büyüklükleri eşit olduğunda (n1=n2=n3) ANOVA normallik ve grup varyans homojenliği varsayımı ihlallerine dirençlidir. Yrd. Doç. Dr. Sedat ŞEN 11

12 Bu sunumda kullanılan verimizde (SINAV2) bulunan değişkenler: İSİM CİNSİYET KİTAP YAŞ VİZE VİZE2 FİNAL DÖNEMSONUNOTU SINIF Yrd. Doç. Dr. Sedat ŞEN 12

13 Yrd. Doç. Dr. Sedat ŞEN 13

14 Yrd. Doç. Dr. Sedat ŞEN 14

15 Yrd. Doç. Dr. Sedat ŞEN 15

16 Yrd. Doç. Dr. Sedat ŞEN 16

17 Bağımlı değişkeni dependent list kısmına ve grup değişkenini de Factor kısmına ekliyoruz. Yrd. Doç. Dr. Sedat ŞEN 17

18 Yrd. Doç. Dr. Sedat ŞEN 18

19 Soru: Üç Sınıf Arasında Vize Puanları Açısından ANLAMLI BIR FARK VAR MIDIR? Analiz: One-Way ANOVA Yapmamız gereken elde ettiğimiz ANOVA istatistiği çıktısında Sig. adlı bölgedeki 0 ile 1 arasında değişen p değerini bulmak ve bu değeri 0.05 değeri ile karşılaştırmak. Sig. p<.05 ise GRUPLAR ARASI ANLAMLI FARK VAR Sig. p>.05 ise ANLAMLI FARK YOK DEMEKTİR Yrd. Doç. Dr. Sedat ŞEN 19

20 Sonuç: ÜÇ SINIF ARASINDA İSTATİSTİKSEL ANLAMLI BİR FARK BULUNMAMIŞTIR. Nedeni ise hesaplanan Sig. (p) değerinin (0,268) 0.05 ten büyük olması. Yrd. Doç. Dr. Sedat ŞEN 20

21 Daha önce bahsettiğimiz gibi ANOVA testi sonuçlarının yorumlanabilmesi için bazı varsayımların yerine gelip gelmediği kontrol edilmelidir. Yrd. Doç. Dr. Sedat ŞEN 21

22 ANOVA da kullanacağımız bağımlı değişkenin her bir grup için uç değerlere ve normalliğe sahip olup olmadığını SPSS Analyze Descriptive Statistics Explore seçeneklerini kullanarak kontrol edebiliriz. Yrd. Doç. Dr. Sedat ŞEN 22

23 Yrd. Doç. Dr. Sedat ŞEN 23

24 Yrd. Doç. Dr. Sedat ŞEN 24

25 Yrd. Doç. Dr. Sedat ŞEN 25

26 Yrd. Doç. Dr. Sedat ŞEN 26

27 T-testte olduğu gibi ANOVA da da varyans homojenliği Levene İstatistiği kullanılarak kontrol edilir. Levene İstatistiğinden elde edilen p değeri 0.05 ten büyük ise varyans homojenliği varsayımı sağlanmıştır diyebiliriz. Yrd. Doç. Dr. Sedat ŞEN 27

28 Brown-Forsythe ya da Welch İstatistiklerinden elde edilen F değerleri ve p değerleri kullanılırdı. Yrd. Doç. Dr. Sedat ŞEN 28

29 ANOVA sonuçlarını sunmadan önce betimleyici istatistikleri vermede fayda var. Yrd. Doç. Dr. Sedat ŞEN 29

30 Yrd. Doç. Dr. Sedat ŞEN 30

31 Bu örneğimizde üç sınıf arasında yaş değişkeni açısından anlamlı bir fark var mı diye bakıyoruz ve sonuç olarak Sig. (p) değeri (0.008) 0.05 ten küçük olduğu için anlamlı bir fark olduğunu söyleyebiliriz. Yrd. Doç. Dr. Sedat ŞEN 31

32 Eğer ANOVA analizi sonucunda gruplar arasında anlamlı bir fark çıkmış ise yani Sig. değeri 0.05 ten küçük çıkarsa bu farkın hangi gruplar arasında olduğunu bulmak gerekebilir. Bunun için post hoc analizi yapılabilir. Post Hoc analizinin nasıl yapılacağı gelecek slaytlarda gösterilmiştir. Yrd. Doç. Dr. Sedat ŞEN 32

33 ANOVA sonucundan elde edilen F değeri bize gruplar arasında deneysel etkiden dolayı oluşan bir fark var mı yok mu onu söyler. Eğer F değeri anlamlı çıkarsa ilk düşünmemiz gereken üç grup arasında anlamlı bir fark olduğudur. Bu anlamlı fark birçok değişik durumda karşımıza çıkabilir. Örneğin 3 grubun ortalamasının birbirinden farklı olması durumuna sahip olabiliriz. Başka bir senaryo ise 1. ve 2. grubunun ortalamalarının eşit olması ama 3. grubun bunlardan farklı bir ortalamaya sahip olması olabilir. Bunun gibi birçok durumdan dolayı F değeri anlamlı çıkmış olabilir. F değeri sadece gruplar arasında anlamlı bir fark olduğunu söyler ve bundan başka ek bir bilgi sunmaz. Yrd. Doç. Dr. Sedat ŞEN 33

34 Gruplar arası farkların hangi durumlarda olduğunu anlamanın iki yolu vardır: planlı zıtlık karşılaştırmaları ve Post hoc çoklu karşılaştırma testleri. Birinci durumda açıklanan varyansı farklı parçalara bölerek daha önceden dayanan bilgilerimizi de kullanarak belli grupları belli ağırlıklar vererek karşılaştırmaktır. İkinci durumda yaptığımız ise elimizde bulunan tüm grupları ikişerli olarak birbirleriyle karşılaştırmaktır. Bu yöntem katı bir kabul kriteri kullanarak familywise hata oranını 0.05 in üzerine çıkmamasını sağlarız. Eğer araştırmacı çok spesifik hipotezlere sahip ise planlı zıtlık karşılaştırmalarını kullanır, eğer araştırmacının çok spesifik bir hipotezi yoksa post hoc çoklu karşılaştırmaları kullanır. Yrd. Doç. Dr. Sedat ŞEN 34

35 Genellikle ikiden fazla gruptan veri toplayan araştırmacı herhangi bir spesifik hipoteze sahip olmayabilir. Bu durumda araştırmacının yapacağı işlem veriyi keşfetmektir. Bunu yapmak için eldeki grupları kullanarak olabilecek bütün karşılaştırmaları yaparak bir keşfe çıkılır. Bunu tek tek yapmak çok zor olacağı için hepsini bir arada yapmamızı sağlayan post hoc çoklu karşılaştırma testleri üretilmiştir. Yrd. Doç. Dr. Sedat ŞEN 35

36 Post hoc çoklu karşılaştırma testleri aslında her bir grup çiftini kullanarak yapılan t-testlerinden başka bir şey değildir. Diyelim ki elimizde 3 grup olsun (A, B ve C). Bu 3 grubu kullanarak yaptığımız ANOVA sonucu anlamlı çıktı ve farkın nereden kaynaklandığını anlamaya çalışıyoruz. Bunu anlamak için 3 ayrı t-testi yaparak A ile B yi, A ile C yi, B ile C yi karşılaştırmamız gerekmektedir. Daha önce uyarmıştık ANOVA yerine 3 ayrı t-testi yaparsak familywise hata oranını artırırız ve I.Tür hata yapma olasılığımız artar. Literatürde familywise hata oranını kontrol ederek I.tür hata riskimizi 0.05 te tutmaya çalışan birçok yöntem önerilmiştir. Yrd. Doç. Dr. Sedat ŞEN 36

37 Önerilen Post Hoc Çoklu Karşılaştırma Testleri arasında en popüler olanı alfa değerini yaptığınız karşılaştırma testleri adedine bölmekt.r Örneğin 10tane t-testi uyguladıysanız 0.05 olan alfa değerini 10 a bölerek elde ederiz ve alfa değeri olarak 0.05 yerine kullanırız. Bu yönteme Bonferroni düzeltmesi denir. Post Hoc Çoklu Karşılaştırma Testlerini kullanarak I.Tür hata oranını düşürürken II.tür hata oranını artırıyoruz. II.Tür hata da 1-Power (gü) eşit olduğu için I.Tür hatayı düşürmek analizlerimizin gücünü de olumsuz yönde etkilemektedir. Bu sebepten dolayı Post Hoc Çoklu Karşılaştırma Testleri arasında karar verirken -I.Tür hata oranı kontrolü -II.Tür hata kontrolü -varsayımların ihlali ve testin güvenirliği konularına dikkat etmeliyiz. Yrd. Doç. Dr. Sedat ŞEN 37

38 Post Hoc Çoklu Karşılaştırma Testleri üzerine yapılan araştırmalar genelde normallik varsayımı ve varyans homojenliğinin ihmalleri durumu üzerine çalışmışlardır. Ortaya atılan Post Hoc Çoklu Karşılaştırma Testleri normallikten küçük sapmalar olması durumundan çok fazla etkilenmemektedir. Fakat grupların popülasyon varyanslarının ve eleman sayılarının eşit olmaması durumu Post Hoc Çoklu Karşılaştırma Testlerini etkilemektedir. Yrd. Doç. Dr. Sedat ŞEN 38

39 Hochberg s GT2 ve Gabriel s pairwise testleri grup eleman syaılarının eşit olmadığı durumlar için geliştirilmiştir. Popülasyon varyanslarının farklı olduğu durumlar için birçok Post Hoc Çoklu Karşılaştırma Testi geliştirilmiştir: Tamhane s T2, Dunnett s T3, Games Howell ve Dunnett s C. Tamhane s T2 is daha katı (conservative) and Dunnett s T3 ve C çok küçük I.Tür hata kontrolüne sahiptir. The Games Howell prosedürü örneklemler küçük olduğunda daha esnek (liberal) fakat grup eleman sayıları eşit olmadığında da doğru sonuçlar vermektedir. Yrd. Doç. Dr. Sedat ŞEN 39

40 Eşit sayıda grup elemanlarına ve varyans homojenliğine sahipseniz REGWQ or Tukey s HSD testlerini kullanabilirsiniz. Eğer grup eleman sayıları arasında çok az fark varsa Gabriel s procedure kullanılabilir. Eğer grup eleman sayıları çok farklı ise Hochberg s GT2. Eğer varyans homojenliği hakkında şüpheler varsa Games Howell procedure kullanılabilir. Eğer çok tutucu iseniz Bonferroni tercih edilebilir. Bunlara ek olarak birçok test bulunmaktadır (Dunnett test ). Yrd. Doç. Dr. Sedat ŞEN 40

41 Yrd. Doç. Dr. Sedat ŞEN 41 KAYNAK: Kayri, M. (2009). ARAŞTIRMALARDA GRUPLAR ARASI FARKIN BELİRLENMESİNE YÖNELİK ÇOKLU KARŞILAŞTIRMA (POST-HOC) TEKNİKLERİ. Fırat Üniversitesi Sosyal Bilimler Dergisi Fırat University Journal of

42 Yrd. Doç. Dr. Sedat ŞEN 42

43 Burada 2şerli olarak her grup birbiriyle karşılaştırılmış ve asıl farkın hangi 2 grup arasında olduğunu bulmamıza kolaylık sağlamıştır. Aşağıda grup 1grup 2 ve grup 3 ayrı ayrı karşılaştırılmıştır. Tablodaki Sig. (p) değerleri incelendiğinde 0.05 ten küçük olan değerler asıl farkın sebebidir. Burada sadece 2. sınıf ve 3. sınıf arasında anlamlı bir fark vardır diyebiliriz. Yrd. Doç. Dr. Sedat ŞEN 43

44 İstersek aynı anda bir çok değişken için ANOVA analizini aynı anda yapabiliriz. Yrd. Doç. Dr. Sedat ŞEN 44

45 Aynı anda yapılan birçok ANOVA analizinin sonucu ortak bir tabloda yandaki gibi verilir. Fark var Fark yok Fark yok Fark yok Fark yok Fark yok Yrd. Doç. Dr. Sedat ŞEN 45

46 ANOVA sonuçlarını rapor ederken mutlaka F değeri, serbestlik dereceleri ve p değerini rapor etmeliyiz. Bu değerlerin hepsi ANOVA outputta elde edilebilir. Bu değerlere ek olarak SPSS rapor etmediği fakat bizim çalışmamızda sunmamız gereken bir değer de etki büyüklüğüdür. Nasıl ki p değeri çalışmamızın istatistiksel olarak anlamını belirtiyorsa etki büyüklüğü de çalışmamızın pratikte ne gibi bir değere sahip olduğunu gösterir. Etki büyüklüğü bir nevi bağımlı değişkeni bağımsız değişkenin ne kadar açıkladığını gösteren bir değer. Bu değeri araştırmacının hesaplaması gerekmektedir: Eta-squared (eta-kare) Kısmi eta-kare (partial eta-squared) Omega-squared (omega kare) Epsilon-kare (Epsilon-squared) Yrd. Doç. Dr. Sedat ŞEN 46

47 Eta-squared= (between grups/total Sum of Squares) 20.slayttaki ANOVA tablosunu kullanırsak: Eta-squared=( / )= Yrd. Doç. Dr. Sedat ŞEN 47

48 Eta-kare yanlı sonuçlar verdiği için başka etki büyüklükleri de önerilmiştir. Omega-kare ve epsilon kare etki büyüklükleri aşağıdaki formüller kullanılarak elde edilir. Yrd. Doç. Dr. Sedat ŞEN 48

49 Cohen s (1988) kriterleri. Cohen e göre: Küçük: 0.01 Orta: Büyük: Örneğin eta-squared değerimiz 0.50 olsun. Bu durumda varyansın yüzde ellisi bağımsız değişken tarafından açıklanmaktadır ve çok büyük bir etki büyüklüğü değerine sahibiz demektir. Yrd. Doç. Dr. Sedat ŞEN 49

50 Daha önce de bahsettiğimiz üzere parametrik testlerin varsayımları ihlal edildiğinde parametrik olmayan testler tercih edilebilir. ANOVA varsayımlarının ihlal edildiği durumlarda ANOVA nın non-parametrik eşdeğeri olan Kruskal Wallis testi uygulanabilir. Yrd. Doç. Dr. Sedat ŞEN 50

51 Daha önce bahsettiğimiz gibi parametrik bir istatistik olan one-way ANOVA yapabilmemiz için belirli varsayımların yerine getirilmesi lazım. Eğer varsayımlar karşılanmıyorsa parametrik olmayan versiyonu yani Kruskal Wallis one-way ANOVA istatistiğini kullanabiliriz. Yrd. Doç. Dr. Sedat ŞEN 51

52 Yan taraftaki veriyi kullanarak Kruskal Wallis H testinin uygulamasını göstereceğiz. Verimizde 3 çeşit ilaca ait rakamlar ve bu ilaçların verdiği ağrı derecelerini gösteren (ağrı) değişkenler mevcut. Ağrı derecesi açısından bu 3 ilaç arasında anlamlı bir fark var mı Kruskal Wallis ile bakacağız. Yrd. Doç. Dr. Sedat ŞEN 52

53 SPSS te Analyze>Non paramteric Tests>K independent Samples kısmında Kruskal Wallis H testini bulasbiliriz. Yrd. Doç. Dr. Sedat ŞEN 53

54 Çıkan ekranda bağımlı değişkeni Test Variable List kısmına grup değişkenini de Grouping Variable kısmına gireceğiz. Yalnız burada grup değişkenini girdikten sonra grup değerleri hangi sayılar arasında değişiyor (min/maks) ise Define Range kısmında bunu belirtmek gerekiyor. Yrd. Doç. Dr. Sedat ŞEN 54

55 Gerekli olan bilgileri ve değişkenleri girdikten sonra OK tuşuna basarak sonuçları elde edebiliriz. Yrd. Doç. Dr. Sedat ŞEN 55

56 Kruskal Wallis analiz sonuç tabloları yan tarafta verilmiştir. İlk tabloda her bir ilaç için ortalama değerler gözükürken anlamlı bir farklılık olup olmadığı alttaki tablodan öğrenilebilir. Asymp. Sig. değerini 0.05 ile karşılaştırdığımızda bu değer anlamlı çıkmamıştır. Yani bu 3 ilaç arasında verdikleri ağrı bakımından anlamlı bir fark bulunamamıştır. Yrd. Doç. Dr. Sedat ŞEN 56

57 Sonuç tablosunda bulunan chi-square değeri ve tüm gruplardaki örneklem sayısının toplamı ile hesaplanır. Eta-kare= (ki-kare/n) = 1,473/15 = Yrd. Doç. Dr. Sedat ŞEN 57

58 Kruskal Wallis Testi çoklu karşılaştırma seçeneği içermemektedir. Eğer ikiden fazla grup arasında Kruskal Wallis test sonucu anlamlı bir fark bulunursa tüm grupların olası ikililerinin Mann-Whitney U testi ile kıyaslanması yapılır. Yrd. Doç. Dr. Sedat ŞEN 58

5.HAFTA. Yrd. Doç. Dr. Sedat ŞEN Harran Üniversitesi

5.HAFTA. Yrd. Doç. Dr. Sedat ŞEN Harran Üniversitesi 5.HAFTA Yrd. Doç. Dr. Sedat ŞEN Harran Üniversitesi Bu sunumda kullanılan verimizde bulunan değişkenler: İsim CİNSİYET KİTAP YAŞ VİZE VİZE2 FİNAL DÖNEMSONUNOTU Bu dersimizde daha önce hesapladığımız basit

Detaylı

SPSS UYGULAMALARI-II Dr. Seher Yalçın 1

SPSS UYGULAMALARI-II Dr. Seher Yalçın 1 SPSS UYGULAMALARI-II 27.12.2016 Dr. Seher Yalçın 1 Normal Dağılım Varsayımının İncelenmesi Çarpıklık ve Basıklık Katsayısının İncelenmesi Analyze Descriptive Statistics Descriptives tıklanır. Açılan pencerede,

Detaylı

Varyans Analizi (ANOVA) Kruskal-Wallis H Testi. Doç. Dr. Ertuğrul ÇOLAK. Eskişehir Osmangazi Üniversitesi Tıp Fakültesi Biyoistatistik Anabilim Dalı

Varyans Analizi (ANOVA) Kruskal-Wallis H Testi. Doç. Dr. Ertuğrul ÇOLAK. Eskişehir Osmangazi Üniversitesi Tıp Fakültesi Biyoistatistik Anabilim Dalı Varyans Analizi (ANOVA) Kruskal-Wallis H Testi Doç. Dr. Ertuğrul ÇOLAK Eskişehir Osmangazi Üniversitesi Tıp Fakültesi Biyoistatistik Anabilim Dalı Konu Başlıkları Tek Yönlü Varyans Analizi SPSS de Tek

Detaylı

Tekrarlı Ölçümler ANOVA

Tekrarlı Ölçümler ANOVA Tekrarlı Ölçümler ANOVA Repeated Measures ANOVA Aynı veya ilişkili örneklemlerin tekrarlı ölçümlerinin ortalamalarının aynı olup olmadığını test eder. Farklı zamanlardaki ölçümlerde aynı (ilişkili) kişiler

Detaylı

Kullanılacak İstatistikleri Belirleme Ölçütleri. Değişkenin Ölçek Türü ya da Yapısı

Kullanılacak İstatistikleri Belirleme Ölçütleri. Değişkenin Ölçek Türü ya da Yapısı ARAŞTIRMA MODELLİLERİNDE KULLANILACAK İSTATİSTİKLERİ BELİRLEME ÖLÇÜTLERİ Parametrik mi Parametrik Olmayan mı? Kullanılacak İstatistikleri Belirleme Ölçütleri Değişken Sayısı Tek değişkenli (X) İki değişkenli

Detaylı

İKİDEN ÇOK BAĞIMSIZ GRUBUN KARŞILAŞTIRILMASI

İKİDEN ÇOK BAĞIMSIZ GRUBUN KARŞILAŞTIRILMASI İKİDEN ÇOK BAĞIMSIZ GRUBUN KARŞILAŞTIRILMASI Grup sayısı ikiye geçtiğinde tüm grupların bağımsız iki grup testleri ile ikişerli analiz düşünülebilir. Ancak bu yaklaşım, karşılaştırmalar bağımsız olmadığından

Detaylı

K-S Testi hipotezde ileri sürülen dağılımla örnek yığılmalı dağılım fonksiyonunun karşılaştırılması ile yapılır.

K-S Testi hipotezde ileri sürülen dağılımla örnek yığılmalı dağılım fonksiyonunun karşılaştırılması ile yapılır. İstatistiksel güven aralıkları uygulamalarında normallik (normal dağılıma uygunluk) oldukça önemlidir. Kullanılan parametrik istatistiksel tekniklerin geçerli olabilmesi için populasyon şans değişkeninin

Detaylı

Sosyal Bilimler İçin Veri Analizi El Kitabı

Sosyal Bilimler İçin Veri Analizi El Kitabı 292 Dicle Üniversitesi Ziya Gökalp Eğitim Fakültesi Dergisi, 18 (2012) 292-297 KİTAP İNCELEMESİ Sosyal Bilimler İçin Veri Analizi El Kitabı Editör Doç. Dr. Şener BÜYÜKÖZTÜRK Dilek SEZGİN MEMNUN 1 Bu çalışmada,

Detaylı

H.Ü. Bilgi ve Belge Yönetimi Bölümü BBY 208 Sosyal Bilimlerde Araştırma Yöntemleri II (Bahar 2012) SPSS Ders Notları II (19 Nisan 2012)

H.Ü. Bilgi ve Belge Yönetimi Bölümü BBY 208 Sosyal Bilimlerde Araştırma Yöntemleri II (Bahar 2012) SPSS Ders Notları II (19 Nisan 2012) H.Ü. Bilgi ve Belge Yönetimi Bölümü BBY 208 Sosyal Bilimlerde Araştırma Yöntemleri II (Bahar 2012) SPSS Ders Notları II (19 Nisan 2012) Aşağıdaki analizlerde lise öğrencileri veri dosyası kullanılmıştır.

Detaylı

H.Ü. Bilgi ve Belge Yönetimi Bölümü BBY 208 Sosyal Bilimlerde Araştırma Yöntemleri II (Bahar 2012) SPSS Ders Notları III (3 Mayıs 2012)

H.Ü. Bilgi ve Belge Yönetimi Bölümü BBY 208 Sosyal Bilimlerde Araştırma Yöntemleri II (Bahar 2012) SPSS Ders Notları III (3 Mayıs 2012) H.Ü. Bilgi ve Belge Yönetimi Bölümü BBY 208 Sosyal Bilimlerde Araştırma Yöntemleri II (Bahar 2012) Parametrik Olmayan Testler Binom Testi SPSS Ders Notları III (3 Mayıs 2012) Soru 1: Öğrencilerin okul

Detaylı

BÖLÜM-1.BİLİM NEDİR? Tanımı...1 Bilimselliğin Ölçütleri...2 Bilimin İşlevleri...3

BÖLÜM-1.BİLİM NEDİR? Tanımı...1 Bilimselliğin Ölçütleri...2 Bilimin İşlevleri...3 KİTABIN İÇİNDEKİLER BÖLÜM-1.BİLİM NEDİR? Tanımı...1 Bilimselliğin Ölçütleri...2 Bilimin İşlevleri...3 BÖLÜM-2.BİLİMSEL ARAŞTIRMA Belgesel Araştırmalar...7 Görgül Araştırmalar Tarama Tipi Araştırma...8

Detaylı

Parametrik Olmayan Testler. İşaret Testi-The Sign Test Mann-Whiney U Testi Wilcoxon Testi Kruskal-Wallis Testi

Parametrik Olmayan Testler. İşaret Testi-The Sign Test Mann-Whiney U Testi Wilcoxon Testi Kruskal-Wallis Testi Yrd. Doç. Dr. Neşet Demirci, Balıkesir Üniversitesi NEF Fizik Eğitimi Parametrik Olmayan Testler İşaret Testi-The Sign Test Mann-Whiney U Testi Wilcoxon Testi Kruskal-Wallis Testi Rank Korelasyon Parametrik

Detaylı

PROBLEM:1. 11 yeni doğan rata günlük 1000 unts/kg epo uygulanmış, kontrol grubuna ise salin uygulanmıştır.

PROBLEM:1. 11 yeni doğan rata günlük 1000 unts/kg epo uygulanmış, kontrol grubuna ise salin uygulanmıştır. PROBLEM:1 Beyinde hipoksik iskemik hasar geliştirilmiş ratlarda recombinant insan eritropoteininin infarkt alanı üzerine ve nöron hücre apopitozisi üzerine etkisi araştırılmaktadır. 11 yeni doğan rata

Detaylı

İçindekiler vii Yazarların Ön Sözü xiii Çevirenin Ön Sözü xiv Teşekkürler xvi Semboller Listesi xvii. Ölçme, İstatistik ve Araştırma...

İçindekiler vii Yazarların Ön Sözü xiii Çevirenin Ön Sözü xiv Teşekkürler xvi Semboller Listesi xvii. Ölçme, İstatistik ve Araştırma... İçindekiler İçindekiler vii Yazarların Ön Sözü xiii Çevirenin Ön Sözü xiv Teşekkürler xvi Semboller Listesi xvii BÖLÜM 1 Ölçme, İstatistik ve Araştırma...1 Ölçme Nedir?... 3 Ölçme Süreci... 3 Değişkenler

Detaylı

BÖLÜM 13 HİPOTEZ TESTİ

BÖLÜM 13 HİPOTEZ TESTİ 1 BÖLÜM 13 HİPOTEZ TESTİ Bilimsel yöntem aşamalarıyla tanımlanmış sistematik bir bilgi üretme biçimidir. Bilimsel yöntemin aşamaları aşağıdaki gibi sıralanabilmektedir (Karasar, 2012): 1. Bir problemin

Detaylı

Hipotez. Hipotez Testleri. Y. Doç. Dr. İbrahim Turan Nisan 2011

Hipotez. Hipotez Testleri. Y. Doç. Dr. İbrahim Turan Nisan 2011 Hipotez Hipotez Testleri Y. Doç. Dr. İbrahim Turan Nisan 2011 Hipotez Nedir? Gözlemlenebilir (araştırılabilir) bir olay, olgu veya fikri mantıklı ve bilimsel olarak açıklamaya yönelik yapılan tahminlerdir.

Detaylı

Sıralı Verilerle Yapılan Testler Mann-Whitney U Testi

Sıralı Verilerle Yapılan Testler Mann-Whitney U Testi Sıralı Verilerle Yapılan Testler Mann-Whitney U Testi Parametrik testlerin, normal dağılım varsayımına dayandığını, normal dağılıma sahip olmayan veriler üzerinde kullanıldığında, elde edilen sonuçların

Detaylı

H.Ü. Bilgi ve Belge Yönetimi Bölümü BBY 606 Araştırma Yöntemleri (Bahar 2014) 3 Nisan 2014

H.Ü. Bilgi ve Belge Yönetimi Bölümü BBY 606 Araştırma Yöntemleri (Bahar 2014) 3 Nisan 2014 H.Ü. Bilgi ve Belge Yönetimi Bölümü BBY 606 Araştırma Yöntemleri (Bahar 2014) 3 Nisan 2014 t testleri: Tek örneklem t testi, Bağımsız iki örneklem t testi, Bağımlı iki örneklem t testi Aşağıdaki analizlerde

Detaylı

H.Ü. Bilgi ve Belge Yönetimi Bölümü BBY 208 Sosyal Bilimlerde Araştırma Yöntemleri II (Bahar 2012) SPSS DERS NOTLARI I 5 Nisan 2012

H.Ü. Bilgi ve Belge Yönetimi Bölümü BBY 208 Sosyal Bilimlerde Araştırma Yöntemleri II (Bahar 2012) SPSS DERS NOTLARI I 5 Nisan 2012 H.Ü. Bilgi ve Belge Yönetimi Bölümü BBY 208 Sosyal Bilimlerde Araştırma Yöntemleri II (Bahar 2012) SPSS DERS NOTLARI I 5 Nisan 2012 Aşağıdaki analizlerde http://yunus.hacettepe.edu.tr/~tonta/courses/spring2010/bby208/bby208

Detaylı

BÖLÜM 6 MERKEZDEN DAĞILMA ÖLÇÜLERİ

BÖLÜM 6 MERKEZDEN DAĞILMA ÖLÇÜLERİ 1 BÖLÜM 6 MERKEZDEN DAĞILMA ÖLÇÜLERİ Gözlenen belli bir özelliği, bu özelliğe ilişkin ölçme sonuçlarını yani verileri kullanarak betimleme, istatistiksel işlemlerin bir boyutunu oluşturmaktadır. Temel

Detaylı

01.02.2013. Statistical Package for the Social Sciences

01.02.2013. Statistical Package for the Social Sciences Hipotezlerin test edilip onaylanması için çeşitli istatistiksel testler kullanılmaktadır. Fakat... Her istatistik teknik her tür analize elverişli değildir. Modele veya hipoteze uygun test istatistiği

Detaylı

NORMAL DAĞILIM VE ÖNEMLİLİK TESTLERİ İLE İLGİLİ PROBLEMLER

NORMAL DAĞILIM VE ÖNEMLİLİK TESTLERİ İLE İLGİLİ PROBLEMLER NORMAL DAĞILIM VE ÖNEMLİLİK TESTLERİ İLE İLGİLİ PROBLEMLER A) Normal Dağılım ile İlgili Sorular Sayfa /4 Hamileler ile ilgili bir araştırmada, bu grubun hemoglobin değerlerinin normal dağılım gösterdiği

Detaylı

Student t Testi. Doç. Dr. Ertuğrul ÇOLAK. Eskişehir Osmangazi Üniversitesi Tıp Fakültesi Biyoistatistik Anabilim Dalı

Student t Testi. Doç. Dr. Ertuğrul ÇOLAK. Eskişehir Osmangazi Üniversitesi Tıp Fakültesi Biyoistatistik Anabilim Dalı Student t Testi Doç. Dr. Ertuğrul ÇOLAK Eskişehir Osmangazi Üniversitesi Tıp Fakültesi Biyoistatistik Anabilim Dalı Konu Başlıkları Tek örnek t testi SPSS de tek örnek t testi uygulaması Bağımsız iki örnek

Detaylı

3 KESİKLİ RASSAL DEĞİŞKENLER VE OLASILIK DAĞILIMLARI

3 KESİKLİ RASSAL DEĞİŞKENLER VE OLASILIK DAĞILIMLARI ÖNSÖZ İÇİNDEKİLER III Bölüm 1 İSTATİSTİK ve SAYISAL BİLGİ 11 1.1 İstatistik ve Önemi 12 1.2 İstatistikte Temel Kavramlar 14 1.3 İstatistiğin Amacı 15 1.4 Veri Türleri 15 1.5 Veri Ölçüm Düzeyleri 16 1.6

Detaylı

PARAMETRİK OLMAYAN İSTATİSTİKSEL TEKNİKLER 8

PARAMETRİK OLMAYAN İSTATİSTİKSEL TEKNİKLER 8 PARAMETRİK OLMAYAN İSTATİSTİKSEL TEKNİKLER 8 Prof. Dr. Ali ŞEN İki Populasyonun Karşılaştırılması: Eşleştirilmiş Örnekler için Wilcoxon İşaretli Mertebe Testi -BÜYÜK ÖRNEK Bağımsız populasyonlara uygulanan

Detaylı

Pazarlama Araştırması Grup Projeleri

Pazarlama Araştırması Grup Projeleri Pazarlama Araştırması Grup Projeleri Projeler kapsamında öğrencilerden derlediğiniz 'Teknoloji Kullanım Anketi' verilerini kullanarak aşağıda istenilen testleri SPSS programını kullanarak gerçekleştiriniz.

Detaylı

Temel İstatistik. Y.Doç.Dr. İbrahim Turan Mart Tanımlayıcı İstatistik. Dağılımları Tanımlayıcı Ölçüler Dağılış Ölçüleri

Temel İstatistik. Y.Doç.Dr. İbrahim Turan Mart Tanımlayıcı İstatistik. Dağılımları Tanımlayıcı Ölçüler Dağılış Ölçüleri Temel İstatistik Tanımlayıcı İstatistik Dağılımları Tanımlayıcı Ölçüler Dağılış Ölçüleri Y.Doç.Dr. İbrahim Turan Mart 2011 DAĞILIM / YAYGINLIK ÖLÇÜLERİ Verilerin değişkenlik durumu ve dağılışın şeklini

Detaylı

Hipotezlerin test edilip onaylanması için çeşitli istatistiksel testler kullanılmaktadır. Fakat...

Hipotezlerin test edilip onaylanması için çeşitli istatistiksel testler kullanılmaktadır. Fakat... Hipotezlerin test edilip onaylanması için çeşitli istatistiksel testler kullanılmaktadır. Fakat... Her istatistik teknik her tür analize elverişli değildir. Modele veya hipoteze uygun test istatistiği

Detaylı

Mann-Whitney U ve Wilcoxon T Testleri

Mann-Whitney U ve Wilcoxon T Testleri Mann-Whitney U ve Wilcoxon T Testleri Doç. Dr. Ertuğrul ÇOLAK Eskişehir Osmangazi Üniversitesi Tıp Fakültesi Biyoistatistik Anabilim Dalı Konu Başlıkları Parametrik olmayan yöntem Mann-Whitney U testinin

Detaylı

Kazanımlar. Z puanları yerine T istatistiğini ne. zaman kullanacağını bilmek. t istatistiği ile hipotez test etmek

Kazanımlar. Z puanları yerine T istatistiğini ne. zaman kullanacağını bilmek. t istatistiği ile hipotez test etmek T testi Kazanımlar Z puanları yerine T istatistiğini ne 1 zaman kullanacağını bilmek 2 t istatistiği ile hipotez test etmek 3 Cohen ind sini ve etki büyüklüğünü hesaplamak 1 9.1 T İstatistiği: zalternatifi

Detaylı

Prof. Dr. Özkan ÜNVER Prof. Dr. Hamza GAMGAM Doç. Dr. Bülent ALTUNKAYNAK SPSS UYGULAMALI TEMEL İSTATİSTİK YÖNTEMLER

Prof. Dr. Özkan ÜNVER Prof. Dr. Hamza GAMGAM Doç. Dr. Bülent ALTUNKAYNAK SPSS UYGULAMALI TEMEL İSTATİSTİK YÖNTEMLER Prof. Dr. Özkan ÜNVER Prof. Dr. Hamza GAMGAM Doç. Dr. Bülent ALTUNKAYNAK SPSS UYGULAMALI TEMEL İSTATİSTİK YÖNTEMLER Gözden Geçirilmiş ve Genişletilmiş 8. Baskı Frekans Dağılımları Varyans Analizi Merkezsel

Detaylı

KORELASYON. 7.Sunum. Yrd. Doç. Dr. Sedat ŞEN

KORELASYON. 7.Sunum. Yrd. Doç. Dr. Sedat ŞEN KORELASYON 7.Sunum 1 Korelasyon Buraya kadar olan konularda (t-testi, ANOVA vb.) bağımlı değişkenin gruplar arasında anlamlı bir fark gösterip göstermediğini test ettik. Bu sunumumuzda farklı bir araştırma

Detaylı

PROJE TABANLI ÖĞRENMEDE ÇOKLU ZEKÂ YAKLAŞIMININ MATEMATİK ÖĞRENME BAŞARISINA VE MATEMATİĞE KARŞI TUTUMA ETKİSİNİN KARŞILAŞTIRILMASI

PROJE TABANLI ÖĞRENMEDE ÇOKLU ZEKÂ YAKLAŞIMININ MATEMATİK ÖĞRENME BAŞARISINA VE MATEMATİĞE KARŞI TUTUMA ETKİSİNİN KARŞILAŞTIRILMASI PROJE TABANLI ÖĞRENMEDE ÇOKLU ZEKÂ YAKLAŞIMININ MATEMATİK ÖĞRENME BAŞARISINA VE MATEMATİĞE KARŞI TUTUMA ETKİSİNİN KARŞILAŞTIRILMASI Mesut TABUK1 Ahmet Şükrü ÖZDEMİR2 Özet Matematik, diğer soyut bilimler

Detaylı

İstatistik ve Olasılık

İstatistik ve Olasılık İstatistik ve Olasılık Ders 8: Prof. Dr. Tanım Hipotez, bir veya daha fazla anakütle hakkında ileri sürülen, ancak doğruluğu önceden bilinmeyen iddialardır. Ortaya atılan iddiaların, örnekten elde edilen

Detaylı

Nicel / Nitel Verilerde Konum ve Değişim Ölçüleri. BBY606 Araştırma Yöntemleri 2013-2014 Bahar Dönemi 13 Mart 2014

Nicel / Nitel Verilerde Konum ve Değişim Ölçüleri. BBY606 Araştırma Yöntemleri 2013-2014 Bahar Dönemi 13 Mart 2014 Nicel / Nitel Verilerde Konum ve Değişim Ölçüleri BBY606 Araştırma Yöntemleri 2013-2014 Bahar Dönemi 13 Mart 2014 1 Konum ölçüleri Merkezi eğilim ölçüleri Verilerin ortalamaya göre olan gruplanması nasıl?

Detaylı

BÖLÜM 14 BİLGİSAYAR UYGULAMALARI - 3 (ORTALAMALARIN KARŞILAŞTIRILMASI)

BÖLÜM 14 BİLGİSAYAR UYGULAMALARI - 3 (ORTALAMALARIN KARŞILAŞTIRILMASI) 1 BÖLÜM 14 BİLGİSAYAR UYGULAMALARI - 3 (ORTALAMALARIN KARŞILAŞTIRILMASI) Hipotez testi konusunda görüldüğü üzere temel betimleme, sayma ve sınıflama işlemlerine dayalı yöntemlerin ötesinde normal dağılım

Detaylı

MIT OpenCourseWare http://ocw.mit.edu. 14.30 Ekonomide İstatistiksel Yöntemlere Giriş Bahar 2009

MIT OpenCourseWare http://ocw.mit.edu. 14.30 Ekonomide İstatistiksel Yöntemlere Giriş Bahar 2009 MIT OpenCourseWare http://ocw.mit.edu 14.30 Ekonomide İstatistiksel Yöntemlere Giriş Bahar 2009 Bu materyale atıfta bulunmak ve kullanım koşulları için http://ocw.mit.edu/terms sayfasını ziyaret ediniz.

Detaylı

MATE 211 BİYOİSTATİSTİK İKİ FARKIN ÖNEMLİLİK TESTİ VE İKİ EŞ ARASINDAKİ FARKIN ÖNEMLİLİK TEST SORULARI

MATE 211 BİYOİSTATİSTİK İKİ FARKIN ÖNEMLİLİK TESTİ VE İKİ EŞ ARASINDAKİ FARKIN ÖNEMLİLİK TEST SORULARI MATE 211 BİYOİSTATİSTİK İKİ FARKIN ÖNEMLİLİK TESTİ VE İKİ EŞ ARASINDAKİ FARKIN ÖNEMLİLİK TEST SORULARI 1. Doğum sırasının çocuğun zeka düzeyini etkileyip etkilemediğini araştıran bir araştırmacı çocuklar

Detaylı

Sosyal Bilimlerde Araştırma Yöntemleri. Bölüm 8. VERİ İŞLEMEYE HAZIRLIK, TEMEL İSTATİSTİKİ ÖLÇÜLER VE ANALİZ TÜRLERİ Sait Gürbüz - Faruk Şahin

Sosyal Bilimlerde Araştırma Yöntemleri. Bölüm 8. VERİ İŞLEMEYE HAZIRLIK, TEMEL İSTATİSTİKİ ÖLÇÜLER VE ANALİZ TÜRLERİ Sait Gürbüz - Faruk Şahin Sosyal Bilimlerde Araştırma Yöntemleri Bölüm 8 VERİ İŞLEMEYE HAZIRLIK, TEMEL İSTATİSTİKİ ÖLÇÜLER VE ANALİZ TÜRLERİ Sait Gürbüz - Faruk Şahin Öğrenim Kazanımları Bu bölümü okuyup anladığınızda; 1. Veri

Detaylı

1. FARKLILIKLARIN TESPİTİNE YÖNELİK HİPOTEZ TESTLERİ

1. FARKLILIKLARIN TESPİTİNE YÖNELİK HİPOTEZ TESTLERİ 1. FARKLILIKLARIN TESPİTİNE YÖNELİK HİPOTEZ TESTLERİ Örneklem verileri kullanılan her çalışmada bir örneklem hatası çıkma riski her zaman söz konusudur. Dolayısıyla istatistikte bu örneklem hatasının meydana

Detaylı

İÇİNDEKİLER. BÖLÜM 1 Değişkenler ve Grafikler 1. BÖLÜM 2 Frekans Dağılımları 37

İÇİNDEKİLER. BÖLÜM 1 Değişkenler ve Grafikler 1. BÖLÜM 2 Frekans Dağılımları 37 İÇİNDEKİLER BÖLÜM 1 Değişkenler ve Grafikler 1 İstatistik 1 Yığın ve Örnek; Tümevarımcı ve Betimleyici İstatistik 1 Değişkenler: Kesikli ve Sürekli 1 Verilerin Yuvarlanması Bilimsel Gösterim Anlamlı Rakamlar

Detaylı

Parametrik Olmayan Testler

Parametrik Olmayan Testler Araştırma Yöntemleri Parametrik Olmayan Testler Parametrik Olmayan Testler Verilerin normal dağılmış olması gerekmiyor Veriler sınıflama ya da sıralama ölçme düzeyinde toplanmış olacak Ya da eşit aralıklı

Detaylı

KARŞILAŞTIRMA İSTATİSTİĞİ, ANALİTİK YÖNTEMLERİN KARŞILAŞTIRILMASI, BİYOLOJİK DEĞİŞKENLİK. Doç.Dr. Mustafa ALTINIŞIK ADÜTF Biyokimya AD 2005

KARŞILAŞTIRMA İSTATİSTİĞİ, ANALİTİK YÖNTEMLERİN KARŞILAŞTIRILMASI, BİYOLOJİK DEĞİŞKENLİK. Doç.Dr. Mustafa ALTINIŞIK ADÜTF Biyokimya AD 2005 KARŞILAŞTIRMA İSTATİSTİĞİ, ANALİTİK YÖNTEMLERİN KARŞILAŞTIRILMASI, BİYOLOJİK DEĞİŞKENLİK Doç.Dr. Mustafa ALTINIŞIK ADÜTF Biyokimya AD 2005 1 Karşılaştırma istatistiği Temel kavramlar: Örneklem ve evren:

Detaylı

Mühendislikte İstatistiksel Yöntemler

Mühendislikte İstatistiksel Yöntemler Mühendislikte İstatistiksel Yöntemler BÖLÜM 9 VARYANS ANALİZİ Yrd. Doç. Dr. Fatih TOSUNOĞLU 1 Varyans analizi niçin yapılır? İkiden fazla veri grubunun ortalamalarının karşılaştırılması t veya Z testi

Detaylı

TAŞINMAZ DEĞERLEMEDE İSTATİSTİKSEL ANALİZ

TAŞINMAZ DEĞERLEMEDE İSTATİSTİKSEL ANALİZ Taşınmaz Değerlemede İstatistiksel Analiz Taşınmaz Değerleme ve Geliştirme Tezsiz Yüksek Lisans Programı TAŞINMAZ DEĞERLEMEDE İSTATİSTİKSEL ANALİZ 1 Taşınmaz Değerlemede İstatistiksel Analiz İçindekiler

Detaylı

ÖRNEK BULGULAR. Tablo 1: Tanımlayıcı özelliklerin dağılımı

ÖRNEK BULGULAR. Tablo 1: Tanımlayıcı özelliklerin dağılımı BULGULAR Çalışma tarihleri arasında Hastanesi Kliniği nde toplam 512 olgu ile gerçekleştirilmiştir. Olguların yaşları 18 ile 28 arasında değişmekte olup ortalama 21,10±1,61 yıldır. Olguların %66,4 ü (n=340)

Detaylı

BÖLÜM 12 STUDENT T DAĞILIMI

BÖLÜM 12 STUDENT T DAĞILIMI 1 BÖLÜM 12 STUDENT T DAĞILIMI 'Student t dağılımı' ya da kısaca 't dağılımı'; normal dağılım ve Z dağılımının da içerisinde bulunduğu 'sürekli olasılık dağılımları' ailesinde yer alan dağılımlardan bir

Detaylı

HİPOTEZ TESTLERİ. Yrd. Doç. Dr. Emre ATILGAN

HİPOTEZ TESTLERİ. Yrd. Doç. Dr. Emre ATILGAN HİPOTEZ TESTLERİ Yrd. Doç. Dr. Emre ATILGAN Hipotez Nedir? HİPOTEZ: parametre hakkındaki bir inanıştır. Parametre hakkındaki inanışı test etmek için hipotez testi yapılır. Hipotez testleri sayesinde örneklemden

Detaylı

UYGULAMA 4 TANIMLAYICI İSTATİSTİK DEĞERLERİNİN HESAPLANMASI

UYGULAMA 4 TANIMLAYICI İSTATİSTİK DEĞERLERİNİN HESAPLANMASI 1 UYGULAMA 4 TANIMLAYICI İSTATİSTİK DEĞERLERİNİN HESAPLANMASI Örnek 1: Ders Kitabı 3. konuda verilen 100 tane yaş değeri için; a. Aritmetik ortalama, b. Ortanca değer, c. Tepe değeri, d. En küçük ve en

Detaylı

İki Varyansın Karşılaştırılması

İki Varyansın Karşılaştırılması 6.DERS İki Varyansın Karşılaştırılması Comparing Two Variances t-testinde iki varyansın eşit kabul edilip edilmemesi için kullanılır 1 Varyans için ikili-örnek Testi ve gibi iki varyansı karşılaştırmak

Detaylı

ÇANAKKALE ONSEKİZ MART ÜNİVERSİTESİ TIP FAKÜLTESİ

ÇANAKKALE ONSEKİZ MART ÜNİVERSİTESİ TIP FAKÜLTESİ Dönem V SPSS İLE TEMEL BİYOİSTATİSTİK UYGULAMALARI Seçmeli Staj Eğitim Programı (08 19 Haziran 2015) Eğitim Başkoordinatörü: Doç. Dr. Erkan Melih ŞAHİN Dönem Koordinatörü: Yrd. Doç. Dr. Baran GENCER Koordinatör

Detaylı

İçindekiler. Pazarlama Araştırmalarının Önemi

İçindekiler. Pazarlama Araştırmalarının Önemi İçindekiler Birinci Bölüm Pazarlama Araştırmalarının Önemi 1.1. PAZARLAMA ARAŞTIRMALARININ TANIMI VE ÖNEMİ... 1 1.2. PAZARLAMA ARAŞTIRMASI İŞLEVİNİN İŞLETME ORGANİZASYONU İÇİNDEKİ YERİ... 5 1.3. PAZARLAMA

Detaylı

Frekans. Hemoglobin Düzeyi

Frekans. Hemoglobin Düzeyi GRUPLARARASI VE GRUPİÇİ KARŞILAŞTIRMA YÖNTEMLERİ Uzm. Derya ÖZTUNA Yrd. Doç. Dr. Atilla Halil ELHAN 1. ÖNEMLİLİK (HİPOTEZ) TESTLERİ Önemlilik testleri, araştırma sonucunda elde edilen değerlerin ya da

Detaylı

İstatistik ve Olasılık

İstatistik ve Olasılık İstatistik ve Olasılık KORELASYON ve REGRESYON ANALİZİ Doç. Dr. İrfan KAYMAZ Tanım Bir değişkenin değerinin diğer değişkendeki veya değişkenlerdeki değişimlere bağlı olarak nasıl etkilendiğinin istatistiksel

Detaylı

SPSS Uygulamalı Çok Değişkenli İstatistik Teknikleri

SPSS Uygulamalı Çok Değişkenli İstatistik Teknikleri Elementary Education Online, 12(1), k: 1 6, 2013. İlköğretim Online, 12(1), b:1 6, 2013. [Online]: http://ilkogretim online.org.tr KİTAP İNCELEMESİ SPSS Uygulamalı Çok Değişkenli İstatistik Teknikleri

Detaylı

İstatistik Yöntemleri ve Hipotez Testleri

İstatistik Yöntemleri ve Hipotez Testleri Sağlık Araştırmalarında Kullanılan Temel İstatistik Yöntemleri ve Hipotez Testleri Yrd. Doç. Dr. Emre ATILGAN BİYOİSTATİSTİK İstatistiğin biyoloji, tıp ve diğer sağlık bilimlerinde kullanımı biyoistatistik

Detaylı

DÖNEM II ÜROGENİTAL SİSTEM VE HASTALIKLARIN BİYOLOJİK TEMELLERİ DERS KURULU. Yrd.Doç.Dr.İsmail YILDIZ BİYOİSTATİSTİK AD DERS NOTLARI

DÖNEM II ÜROGENİTAL SİSTEM VE HASTALIKLARIN BİYOLOJİK TEMELLERİ DERS KURULU. Yrd.Doç.Dr.İsmail YILDIZ BİYOİSTATİSTİK AD DERS NOTLARI DÖNEM II ÜROGENİTAL SİSTEM VE HASTALIKLARIN BİYOLOJİK TEMELLERİ DERS KURULU Yrd.Doç.Dr.İsmail YILDIZ BİYOİSTATİSTİK AD DERS NOTLARI 05.05.2014 Pazartesi, Saat:11.30-12.20;Korelasyon ve Regresyon Uygulaması

Detaylı

H 0 : θ = θ 0 Bu sıfır hipotezi şunu ifade eder: Anakütle parametresi θ belirli bir θ 0

H 0 : θ = θ 0 Bu sıfır hipotezi şunu ifade eder: Anakütle parametresi θ belirli bir θ 0 YTÜ-İktisat İstatistik II Hipotez Testi 1 HİPOTEZ TESTİ: AMAÇ: Örneklem bilgisinden hareketle anakütleye ilişkin olarak kurulan bir hipotezin (önsavın) geçerliliğinin test edilmesi Genel notasyon: anakütleye

Detaylı

MATE 211 BİYOİSTATİSTİK DÖNEM SONU SINAVI

MATE 211 BİYOİSTATİSTİK DÖNEM SONU SINAVI Öğrenci Bilgileri Ad Soyad: İmza: MATE 211 BİYOİSTATİSTİK DÖNEM SONU SINAVI 26 Mayıs, 2014 Numara: Grup: Soru Bölüm 1 10 11 12 TOPLAM Numarası (1-9) Ağırlık 45 15 30 20 110 Alınan Puan Yönerge 1. Bu sınavda

Detaylı

HİPOTEZ TESTLERİ HİPOTEZ NEDİR?

HİPOTEZ TESTLERİ HİPOTEZ NEDİR? HİPOTEZ TESTLERİ HİPOTEZ NEDİR? Örnekleme ile test edilmeye çalışılan bir popülasyonun ilgili parametresi hakkında ortaya sunulan iddiadır. Örneğin; A dersi için vize ortalaması 50 nin altındadır Firestone

Detaylı

İlköğretim Matematik Öğretmeni Adaylarının Meslek Olarak Öğretmenliği

İlköğretim Matematik Öğretmeni Adaylarının Meslek Olarak Öğretmenliği İlköğretim Matematik Öğretmeni Adaylarının Meslek Olarak Öğretmenliği 1 Seçmeye Yönelik Motivasyonlarının İncelenmesi Derya ÇELİK, Ra aza GÜRBÜZ, Serhat AYDIN, Mustafa GÜLER, Duygu TAŞKIN, Gökay AÇIKYILDIZ

Detaylı

MIT OpenCourseWare Ekonomide İstatistiksel Yöntemlere Giriş Bahar 2009

MIT OpenCourseWare Ekonomide İstatistiksel Yöntemlere Giriş Bahar 2009 MIT OpenCourseWare http://ocw.mit.edu 14.30 Ekonomide İstatistiksel Yöntemlere Giriş Bahar 2009 Bu materyale atıfta bulunmak ve kullanım koşulları için http://ocw.mit.edu/terms sayfasını ziyaret ediniz.

Detaylı

19. BÖLÜM BİRBİRİYLE İLİŞKİLİ OLAN İKİ DEĞİŞKENDEN BİRİSİNDEKİ DEĞİŞİME GÖRE DİĞERİNİN ALACAĞI DEĞERİ YORDAMA (KESTİRME) UYGULAMA-I

19. BÖLÜM BİRBİRİYLE İLİŞKİLİ OLAN İKİ DEĞİŞKENDEN BİRİSİNDEKİ DEĞİŞİME GÖRE DİĞERİNİN ALACAĞI DEĞERİ YORDAMA (KESTİRME) UYGULAMA-I 19. BÖLÜM BİRBİRİYLE İLİŞKİLİ OLAN İKİ DEĞİŞKENDEN BİRİSİNDEKİ DEĞİŞİME GÖRE DİĞERİNİN ALACAĞI DEĞERİ YORDAMA (KESTİRME) UYGULAMA-I Bir dil dershanesinde öğrenciler talep ettikleri takdirde, öğretmenleriyle

Detaylı

OLASILIK ve İSTATİSTİK Hipotez Testleri

OLASILIK ve İSTATİSTİK Hipotez Testleri OLASILIK ve İSTATİSTİK Hipotez Testleri Yrd.Doç.Dr. Pınar YILDIRIM Okan Üniversitesi Mühendislik ve Mimarlık Fakültesi Bilgisayar Mühendisliği Bölümü Hipotezler ve Testler Hipotez, kitleye(yığına) ait

Detaylı

Parametrik Olmayan Testler 2. Wilcoxon ve Kruskal-Wallis Testleri

Parametrik Olmayan Testler 2. Wilcoxon ve Kruskal-Wallis Testleri Parametrik Olmayan Testler 2 Wilcoxon ve Kruskal-Wallis Testleri İki Bağımlı Örneklemin Karşılaştırılması (Wilcoxon Bağımlı Örneklemler İşaretli Sıralamalar Testi) (Wilcoxon Matched-Samples Signed Ranks

Detaylı

Merkezi Eğilim ve Dağılım Ölçüleri

Merkezi Eğilim ve Dağılım Ölçüleri Merkezi Eğilim ve Dağılım Ölçüleri Soru Öğrencilerin derse katılım düzeylerini ölçmek amacıyla geliştirilen 16 soruluk bir test için öğrencilerin ilk 8 ve son 8 soruluk yarılardan aldıkları puanlar arasındaki

Detaylı

17.ULUSAL TURİZM KONGRESİ

17.ULUSAL TURİZM KONGRESİ 17.ULUSAL TURİZM KONGRESİ 2016 YILI BİLDİRİLERİ ÜZERİNE BİR DEĞERLENDİRME Prof. Dr. A. Celil ÇAKICI Mersin Üniversitesi Turizm Fakültesi YAZAR SAYISI YAZARLARIN UNVAN DAĞILIMI (İlk üç) 1.Yazarın Üniversitesi

Detaylı

Yrd. Doç. Dr. Neşet Demirci, Balıkesir Üniversitesi NEF Fizik Eğitimi. Parametrik Olmayan Testler. Ki-kare (Chi-Square) Testi

Yrd. Doç. Dr. Neşet Demirci, Balıkesir Üniversitesi NEF Fizik Eğitimi. Parametrik Olmayan Testler. Ki-kare (Chi-Square) Testi Parametrik Olmayan Testler Ki-kare (Chi-Square) Testi Ki-kare (Chi-Square) Testi En iyi Uygunluk (Goodness of Fit) Ki-kare Dağılımı Bir çok önemli istatistik testi ki kare diye bilinen ihtimal dağılımı

Detaylı

Yrd. Doç. Dr. Sedat ŞEN

Yrd. Doç. Dr. Sedat ŞEN 6. SUNUM Test Geliştirme Aşamaları Madde Analizleri Madde Güçlüğü Madde Ayırıcılığı Madde varyansı ve standart sapması Madde güvenirlik katsayısı Test ortalaması, standart sapması ve ortalama güçlüğü Yrd.

Detaylı

MESLEKİ EĞİTİM ÇALIŞANLARINDA E-ÖĞRENME FARKINDALIĞININ ARTTIRILMASI

MESLEKİ EĞİTİM ÇALIŞANLARINDA E-ÖĞRENME FARKINDALIĞININ ARTTIRILMASI MESLEKİ EĞİTİM ÇALIŞANLARINDA E-ÖĞRENME FARKINDALIĞININ ARTTIRILMASI Mesleki Eğitim Kurumlarında Görev Yapan Okul Yöneticileri ve Öğretmenlerin E- Öğrenme Ortamları ile İlgili Görüşlerinin Karşılaştırmalı

Detaylı

TANIMLAYICI İSTATİSTİKLER

TANIMLAYICI İSTATİSTİKLER TANIMLAYICI İSTATİSTİKLER Tanımlayıcı İstatistikler ve Grafikle Gösterim Grafik ve bir ölçüde tablolar değişkenlerin görsel bir özetini verirler. İdeal olarak burada değişkenlerin merkezi (ortalama) değerlerinin

Detaylı

SAĞLIK ARAŞTIRMALARI VE BİYOİSTATİSTİK. Doç. Dr. Mustafa N. İLHAN mnilhan@gazi.edu.tr

SAĞLIK ARAŞTIRMALARI VE BİYOİSTATİSTİK. Doç. Dr. Mustafa N. İLHAN mnilhan@gazi.edu.tr SAĞLIK ARAŞTIRMALARI VE BİYOİSTATİSTİK Doç. Dr. Mustafa N. İLHAN mnilhan@gazi.edu.tr METODOLOJİK ARAŞTIRMALAR Tanı yöntemlerinin doğru ölçme derecesi ve bu yöntemleri kullananların farklılıklarını saptamak

Detaylı

YABANCI DİL EĞİTİMİ VEREN ÖZEL BİR EĞİTİM KURUMUNDAKİ ÖĞRENCİLERİN BEKLENTİLERİNİN ARAŞTIRILMASI. Sibel SELİM 1 Efe SARIBAY 2

YABANCI DİL EĞİTİMİ VEREN ÖZEL BİR EĞİTİM KURUMUNDAKİ ÖĞRENCİLERİN BEKLENTİLERİNİN ARAŞTIRILMASI. Sibel SELİM 1 Efe SARIBAY 2 Dokuz Eylül Üniversitesi Sosyal Bilimler Enstitüsü Dergisi Cilt 5, Sayı:2, 2003 YABANCI DİL EĞİTİMİ VEREN ÖZEL BİR EĞİTİM KURUMUNDAKİ ÖĞRENCİLERİN BEKLENTİLERİNİN ARAŞTIRILMASI Sibel SELİM 1 Efe SARIBAY

Detaylı

Varyans Analizi (ANOVA), Kovaryans Analizi (ANCOVA), Faktöriyel ANOVA, Çoklu Varyans Analizi (MANOVA)

Varyans Analizi (ANOVA), Kovaryans Analizi (ANCOVA), Faktöriyel ANOVA, Çoklu Varyans Analizi (MANOVA) Varyans Analizi (ANOVA), Kovaryans Analizi (ANCOVA), Faktöriyel ANOVA, Çoklu Varyans Analizi (MANOVA) Yaşar Tonta H.Ü. BBY tonta@hacettepe.edu.tr yunus.hacettepe.edu.tr/~tonta/courses/fall2008/sb5002/

Detaylı

PARAMETRİK OLMAYAN İSTATİSTİKSEL TEKNİKLER

PARAMETRİK OLMAYAN İSTATİSTİKSEL TEKNİKLER PARAMETRİK OLMAYAN İSTATİSTİKSEL TEKNİKLER Prof. Dr. Ali ŞEN 1 Tek Örneklem İşaret Testi İşaret Testi parametrik olmayan prosedürler içinde en eski olanıdır. Analiz yapılırken serideki verileri artı ve

Detaylı

Deneysel Araştırmalarda Uygun Örneklem Büyüklüğü Ve İstatistiksel Güç Analizi. Doç Dr. Nurhan DOĞAN AKÜ Tıp Fak. Biyoistatistik ve Tıbbi Bilişim AD

Deneysel Araştırmalarda Uygun Örneklem Büyüklüğü Ve İstatistiksel Güç Analizi. Doç Dr. Nurhan DOĞAN AKÜ Tıp Fak. Biyoistatistik ve Tıbbi Bilişim AD Deneysel Araştırmalarda Uygun Örneklem Büyüklüğü Ve İstatistiksel Güç Analizi Doç Dr. Nurhan DOĞAN AKÜ Tıp Fak. Biyoistatistik ve Tıbbi Bilişim AD Giriş Yeterli Örneklem Büyüklüğü Neden Önemlidir? Özel

Detaylı

3. TAHMİN En Küçük Kareler (EKK) Yöntemi 1

3. TAHMİN En Küçük Kareler (EKK) Yöntemi 1 3. TAHMİN 3.1. En Küçük Kareler (EKK) Yöntemi 1 En Küçük Kareler (EKK) yöntemi, regresyon çözümlemesinde en yaygın olarak kullanılan, daha sonra ele alınacak bazı varsayımlar altında çok aranan istatistiki

Detaylı

MIT OpenCourseWare http://ocw.mit.edu. 14.30 Ekonomide İstatistiksel Yöntemlere Giriş Bahar 2009

MIT OpenCourseWare http://ocw.mit.edu. 14.30 Ekonomide İstatistiksel Yöntemlere Giriş Bahar 2009 MIT OpenCourseWare http://ocw.mit.edu 14.30 Ekonomide İstatistiksel Yöntemlere Giriş Bahar 2009 Bu materyale atıfta bulunmak ve kullanım koşulları için http://ocw.mit.edu/terms sayfasını ziyaret ediniz.

Detaylı

SPSS (Statistical Package for Social Sciences)

SPSS (Statistical Package for Social Sciences) SPSS (Statistical Package for Social Sciences) SPSS Data Editor: Microsoft Excel formatına benzer satır ve sütunlardan oluşan çalışma sayfası (*sav) Data Editör iki arayüzden oluşur. 1. Data View 2. Variable

Detaylı

Temel İstatistik 2012 Y. Doç. Dr. İbrahim Turan SPSS. Analiz Menüsü

Temel İstatistik 2012 Y. Doç. Dr. İbrahim Turan SPSS. Analiz Menüsü SPSS Analiz Menüsü 1- Reports: a) OLAP Cubes: Seçilen değişkenlerin istatistiksel işlemlerini yapar. b) Case summaries: Verilerin frekans ve çapraz tablolarının oluşturulması, belirtici istatistiklerin

Detaylı

Yrd. Doç. Dr. Sedat ŞEN

Yrd. Doç. Dr. Sedat ŞEN 8. HAFTA Test Geliştirme Aşamaları Madde Analizleri Madde Güçlüğü Madde Ayırıcılığı Madde varyansı ve standart sapması Madde güvenirlik katsayısı Test ortalaması, standart sapması ve ortalama güçlüğü Yrd.

Detaylı

SPSS de Tanımlayıcı İstatistikler

SPSS de Tanımlayıcı İstatistikler SPSS de Tanımlayıcı İstatistikler Doç. Dr. Ertuğrul ÇOLAK Eskişehir Osmangazi Üniversitesi Tıp Fakültesi Biyoistatistik Anabilim Dalı SPSS programında belirtici istatistikler 4 farklı menüden yararlanılarak

Detaylı

ISTATISTIK VE OLASILIK SINAVI EKİM 2016 WEB SORULARI

ISTATISTIK VE OLASILIK SINAVI EKİM 2016 WEB SORULARI SORU- 1 : ISTATISTIK VE OLASILIK SINAVI EKİM 2016 WEB SORULARI X ve Y birbirinden bağımsız iki rasgele değişken olmak üzere, sırasıyla aşağıdaki moment çıkaran fonksiyonlarına sahiptir: 2 2 M () t = e,

Detaylı

SIRADAN EN KÜÇÜK KARELER (OLS)

SIRADAN EN KÜÇÜK KARELER (OLS) SIRADAN EN KÜÇÜK KARELER (OLS) YÖNTEMİNİN ASİMPTOTİK ÖZELLİKLERİ Hüseyin Taştan 1 1 Yıldız Teknik Üniversitesi İktisat Bölümü Ders Kitabı: Introductory Econometrics: A Modern Approach (2nd ed.) J. Wooldridge

Detaylı

1 Hipotez konusuna öncelikle yokluk hipoteziyle başlanılan yaklaşımda, araştırma hipotezleri ALTERNATİF HİPOTEZLER olarak adlandırılmaktadır.

1 Hipotez konusuna öncelikle yokluk hipoteziyle başlanılan yaklaşımda, araştırma hipotezleri ALTERNATİF HİPOTEZLER olarak adlandırılmaktadır. Özellikle deneysel araştırmalarda, araştırmacının doğru olup olmadığını yapacağı bir deney ile test edeceği ve araştırma sonunda ortaya çıkan sonuçlarla doğru ya da yanlış olduğuna karar vereceği bir önermesi

Detaylı

Araştırma Yöntemleri. Araştırma Tasarımı ve İstatistik Test Seçimi

Araştırma Yöntemleri. Araştırma Tasarımı ve İstatistik Test Seçimi Araştırma Yöntemleri Araştırma Tasarımı ve İstatistik Test Seçimi Araştırma Süreci İLGİ? Y Y? FİKİR?? X Y, A B KURAM A B E F C D X Y KAVRAMSALLAŞTIRMA Kavramların ve araştırılacak değişkenlerin anlamlarını

Detaylı

Çevre ve Şehircilik Bakanlığı, İstanbul Çevre İl Müdürlüğü, Beşiktaş, İstanbul. 2

Çevre ve Şehircilik Bakanlığı, İstanbul Çevre İl Müdürlüğü, Beşiktaş, İstanbul. 2 Onur GÜMÜŞ 1, Ülkü ALVER ŞAHİN 2, Burcu ONAT 2, Ramazan ÖZÇELİK 3, Ergün GEDİK 3, İsmail SOLAKOĞLU 3, Nihat TAŞ 4 1 Çevre ve Şehircilik Bakanlığı, İstanbul Çevre İl Müdürlüğü, Beşiktaş, İstanbul. 2 İstanbul

Detaylı

LOJİSTİK REGRESYON ANALİZİ

LOJİSTİK REGRESYON ANALİZİ LOJİSTİK REGRESYON ANALİZİ Lojistik Regresyon Analizini daha kolay izleyebilmek için bazı terimleri tanımlayalım: 1. Değişken (incelenen özellik): Bireyden bireye farklı değerler alabilen özellik, fenomen

Detaylı

GİRİŞ. Bilimsel Araştırma: Bilimsel bilgi elde etme süreci olarak tanımlanabilir.

GİRİŞ. Bilimsel Araştırma: Bilimsel bilgi elde etme süreci olarak tanımlanabilir. VERİ ANALİZİ GİRİŞ Bilimsel Araştırma: Bilimsel bilgi elde etme süreci olarak tanımlanabilir. Bilimsel Bilgi: Kaynağı ve elde edilme süreçleri belli olan bilgidir. Sosyal İlişkiler Görgül Bulgular İşlevsel

Detaylı

Hatalar Bilgisi ve İstatistik Ders Kodu: Kredi: 3 / ECTS: 5

Hatalar Bilgisi ve İstatistik Ders Kodu: Kredi: 3 / ECTS: 5 Ders Kodu: 0010070021 Kredi: 3 / ECTS: 5 Yrd. Doç. Dr. Serkan DOĞANALP Necmettin Erbakan Üniversitesi Harita Mühendisliği Bölümü Konya 07.01.2015 1 Giriş 2 Giriş Matematiksel istatistiğin konusu yığın

Detaylı

Temel İstatistik 2012 Y. Doç. Dr. İbrahim Turan SPSS. Analiz Menüsü

Temel İstatistik 2012 Y. Doç. Dr. İbrahim Turan SPSS. Analiz Menüsü SPSS Analiz Menüsü 1- Reports: a) OLAP Cubes: Seçilen değişkenlerin istatistiksel işlemlerini yapar. b) Case summaries: Verilerin frekans ve çapraz tablolarının oluşturulması, belirtici istatistiklerin

Detaylı

D.Ü.TIP FAKÜLTESİ BİYOİSTATİSTİK AD. DÖNEM I (BİYOİSTATİSTİK, HALK SAĞLIĞI VE RUH SAĞLIĞI DERS KURULU)

D.Ü.TIP FAKÜLTESİ BİYOİSTATİSTİK AD. DÖNEM I (BİYOİSTATİSTİK, HALK SAĞLIĞI VE RUH SAĞLIĞI DERS KURULU) DÖNEM I (BİYOİSTATİSTİK, HALK SAĞLIĞI VE RUH SAĞLIĞI DERS KURULU) TOPLAM KALİTE YÖNETİMİ BİLİNÇLENDİRME EĞİTİMİ NONPARAMETRİK KÜKRER GIDA TESTLER (Mann Whitney U ve Wilcoxon Testleri) Yrd.Doç.Dr. İsmail

Detaylı

MIT OpenCourseWare Ekonomide İstatistiksel Yöntemlere Giriş Bahar 2009

MIT OpenCourseWare Ekonomide İstatistiksel Yöntemlere Giriş Bahar 2009 MIT OpenCourseWare http://ocw.mit.edu 14.30 Ekonomide İstatistiksel Yöntemlere Giriş Bahar 2009 Bu materyale atıfta bulunmak ve kullanım koşulları için http://ocw.mit.edu/terms sayfasını ziyaret ediniz.

Detaylı

Appendix B: Olasılık ve Dağılım Teorisi

Appendix B: Olasılık ve Dağılım Teorisi Yıldız Teknik Üniversitesi İktisat Bölümü Ekonometri I Ders Notları Ders Kitabı: J.M. Wooldridge, Introductory Econometrics A Modern Approach, 2nd. edition, Thomson Learning Appendix B: Olasılık ve Dağılım

Detaylı

Herhangi bir oranın belli bir değere eşit olmadığını test etmek için kullanılır.

Herhangi bir oranın belli bir değere eşit olmadığını test etmek için kullanılır. Hipotez testleri-oran testi Oran Testi Herhangi bir oranın belli bir değere eşit olmadığını test etmek için kullanılır Örnek: Yüz defa atılan bir para 34 defa yazı gelmiştir Paranın yazı gelme olasılığının

Detaylı

2x2 ve rxc Boyutlu Tablolarla Hipotez Testleri

2x2 ve rxc Boyutlu Tablolarla Hipotez Testleri x ve rxc Boyutlu Tablolarla Hipotez Testleri İki tür spesifik uygulamada kullanılır: 1. Bağımsızlık Testi (Test of Independency): Sayım verilerinden oluşan iki değişken arasında bağımsızlık (veya ilişki)

Detaylı

ARAŞTIRMALARDA GRUPLAR ARASI FARKIN BELİRLENMESİNE YÖNELİK ÇOKLU KARŞILAŞTIRMA (POST-HOC) TEKNİKLERİ

ARAŞTIRMALARDA GRUPLAR ARASI FARKIN BELİRLENMESİNE YÖNELİK ÇOKLU KARŞILAŞTIRMA (POST-HOC) TEKNİKLERİ Fırat Üniversitesi Sosyal Bilimler Dergisi Fırat University Journal of Social Science Cilt: 19, Sayı: 1, Sayfa: 51-64, ELAZIĞ-2009 ARAŞTIRMALARDA GRUPLAR ARASI FARKIN BELİRLENMESİNE YÖNELİK ÇOKLU KARŞILAŞTIRMA

Detaylı

Örnek. Aşağıdaki veri setlerindeki X ve Y veri çiftlerini kullanarak herbir durumda X=1,5 için Y nin hangi değerleri alacağını hesaplayınız.

Örnek. Aşağıdaki veri setlerindeki X ve Y veri çiftlerini kullanarak herbir durumda X=1,5 için Y nin hangi değerleri alacağını hesaplayınız. Örnek Aşağıdaki veri setlerindeki X ve Y veri çiftlerini kullanarak herbir durumda X=1,5 için Y nin hangi değerleri alacağını hesaplayınız. i. ii. X 1 2 3 4 1 2 3 4 Y 2 3 4 5 4 3 2 1 Örnek Aşağıdaki veri

Detaylı

Mühendislikte İstatistik Yöntemler

Mühendislikte İstatistik Yöntemler .0.0 Mühendislikte İstatistik Yöntemler İstatistik Parametreler Tarih Qma.3.98 4..98 0.3.983 45 7..984 37.3.985 48 0.4.986 67.4.987 5 0.3.988 45.5.989 34.3.990 59.4.99 3 4 34 5 37 6 45 7 45 8 48 9 5 0

Detaylı

rasgele değişkeninin olasılık yoğunluk fonksiyonu,

rasgele değişkeninin olasılık yoğunluk fonksiyonu, 3.6. Bazı Sürekli Dağılımlar 3.6.1 Normal Dağılım Normal dağılım hem uygulamalı hem de teorik istatistikte kullanılan oldukça önemli bir dağılımdır. Normal dağılımın istatistikte önemli bir yerinin olmasının

Detaylı