İki Varyansın Karşılaştırılması

Save this PDF as:
 WORD  PNG  TXT  JPG

Ebat: px
Şu sayfadan göstermeyi başlat:

Download "İki Varyansın Karşılaştırılması"

Transkript

1 6.DERS İki Varyansın Karşılaştırılması Comparing Two Variances t-testinde iki varyansın eşit kabul edilip edilmemesi için kullanılır 1

2 Varyans için ikili-örnek Testi ve gibi iki varyansı karşılaştırmak için, F-dağılımını kullanınız. İki farklı popülasyondan seçilen örneklerin varyansı s 1 ve s olsun. eğer iki populasyon da normal ve the populasyon varyansları ve eşit ise, bu tür örnekleme dağılımına F max -dağılımı denir s 1 her zaman büyük varyans için kullanılır. İki tane serbestlik derecesi vardır. Numeratör ve denominatör diye d.f. N = 8 d.f. D = F değeri sıfır veya pozitif olabilir

3 Varyanslar için F-Testi Normal dağılım gösteren iki popülasyondan seçilen örneklerin varyanslarının eşit olup olmadığını test etmek için, örnekler rastgele seçilmelidir. s 1 ve s örnek varyanslarını göstersin Örnek dağılımımız numeratörü d.f. = n 1 1 ve denominatörü d.f. = n 1 olan F max dağılımı gösterir. max Eşit varyanslı testler için sadece tek taraflı-sağ taraflı-f-testi kullanılmalıdır.hesap sonunda bulunan değeri kritik değer ile karşılaştırarak yorum yapılır. Çift taraflı test için de,sağ taraftaki kritik değer kullanılabilir ama bu durumda karşılaştırmada kullanılacak değer olur.

4 örnek Bir mühendis t-testi uygulayarak A arabasının benzin tüketiminin B den az olup olmadığını görmek istiyor. Rastele seçilen 16 adet A arabasının standart sapması 4.5 ve adet B arabasının standart sapması 4. dir. Mühendis kullanacağı t-testinde eşit varyans mı yoksa eşit olmayan varyansı kullanmalıdır? dir. 1. Boş ve altenatif hipotezi yazın.. Anlamlılık seviyesi:. A arabasının varyansı B den büyük,s 1 için A arabasının varyansı kullanılır. 4

5 . Örnek dağılımını belirleyiniz F dağılımı: d.f. N = 15, d.f. D = Kritik değeri bul. 5. Reddetme bölgesini bul İstatistiksel hesap yap: NOT: F max dağılımının ayrı tablosu vardır max

6 Karar ver F = değeri reddetme bölgesinde değil, bu yüzden boş-nul hipotez reddedilemez yani kabul edilir. 8. Kararı yorumla Varyansların eşit oldmadığı iddiasını desteklemek için yeterince delil bulunamamış,ho reddedilememiştir bu yüzden uygulanacak t-testinde eşit varyans kullanılmalıdır. Varyanslar farklı olsa idi, Standar sapma için pooled havuzlu değer işlemleri yapılarak kullanılmalıdır. (d.f. için: n1+n alınmalı)

7 ANOVA Analysis of Variance İki ya da daha fazla popülasyon ortalamasını karşılaştırmak için kullanılan hipotez testi tekniğidir. 7

8 ANOVA için test istatistiği için F-testi kullanılır. F= Yöntemler arası varyans yöntemin etkisi+ kişisel farklılıklar+ deneysel hata = Yöntemler içi varyans kişisel farklılıklar+ deneysel hata Yöntemler arasındaki farklılık: uygulanan yöntemin etkisi,kişisel farklılık ve deneysel hatadan kaynaklanır Yöntemler içi farklılık: kişisel farklılık ve deneysel hatadan kaynaklanır. Yöntemin etkisi 0 ise F değeri 1 bulunur. H o doğru ise yöntemin etkisi sıfırdır bu yüzden F oranı 1 bulunur H o yanlış ise uygulanan yöntemin etkisi vardır ve F oranı 1 den büyük çıkar H 0 : (bütün popülasyon ortalamaları eşit.) H a : en azından bir tanesinin ortalaması diğerlerinden farklı. 8

9 Bağımsız ölçümler için ANOVA Varyanslar iki farklı şekilde hesaplanarak oranlanır bu değer F değerini verir 1. MS B, Arasındaki ortalamanın karesi, örnekler arasındaki varyans, her bir örneğe uygulanan yöntem farklılıkların ölçümü.... MS W, İçindeki ortalamanın karesi, örnek içindeki variance, aynı örneğin içindeki örnekleme hatasından kaynaklanan farklılıkların ölçümü Örnek varyansı s = SS df SS toplam =SS between +SS within d.f. toplam =df between +df within MS B = SS B df B MS W = SS W df W d.f.toplam=n-1 d.f.between=k-1 d.f.within=n-k 9

10 Arasındaki ortalamanın karesi Mean Square Between Her bir gruba farklı bir yöntem treatment. uygulanıyor. Genel ortalamadaki farklılık (grup içindeki bütün değerlerin ortalaması) ölçülür. treatment (veya faktör) bir örnekten diğerini ayıran değişkendir. Önce, SS B yi hesapla sonra serbestlik derecesi olan k 1e böl. (k = treatments uygulanan yöntem sayısı veya faktör sayısı.) Arasındaki: Uygulanan yöntemler arasındaki demek 10

11 İçindeki ortalamanın karesi Mean Square Within SS W yi hesapla ve N k ya böl, (serbestlik derecesine). Eğer MS B değeri MS W ye çok yakınsa uygulanan yöntemin etkili olmadığını gösterir ve F oranının değeri 1 yakın olur. Eğer MS B değeri önemli derecede MS W den büyükse bu uygulanan yöntemin veya faktörün etkili olduğunun bir göstergesi olabilir 11

12 Örnek Aşağıdaki tablo Amerikanın dört farklı bölgesinden rasgele seçilen müşterilerin yıllık okumak için harcadığı ortalama parayı $ cinsinden göstermektedir. anlamlılık seviyesine göre bu bölgeler arasındaki harcanan ortalama paranın farklı olduğu sonucuna varabilir misiniz? Kuzeydoğu Ortadoğu Güney Batı Boş ve alternatif hipotezi yazınız H 0 : (bütün popülasyon ortalamaları aynı.) H a : en azından birinin ortalaması farklı. 1

13 . Anlamlılık seviyesini belirle. Örnekleme dağılımını belirle. F dağılımı ve d.f. N =, d.f. D = Kritik değeri bul 5. Reddetme bölgesini bul. 0.10

14 6. İstatistiksel hesaplamaları yap. Kuzeydoğu Ortadoğu Güney Batı Her örnek için ortalama ve varyansı hesapla Genel ortalama bütün değerlerin ortalaması

15 MS B hesabı ortalama n

16 MS W hesabı n s

17 Kararını ver F = değeri reddetme bölgesi içinde değil,boş hipotez reddedilemez, kabul edilir. 8. Interpret your decision. ortalamaların aynı olğu hakkındaki görüşü destekleyecek yeterince delil bulunamamıştır. Dört bölge içinde okumak için ortalama harcanan paralar eşittir.

18 Çıktı örneği-raporda sonuç yazma One-way Analysis of Variance Analysis of Variance Source DF SS MS F P Factor Error Total p-değerini kullanarak,boş hipotez reddedilemez, çünkü 0.15 > 0.10 dir. Dört bölgede okumak için harcanan paraların farklı olduğu görüşünu desteklemek için yeterince delil bulunamamıştır. Raporda Sonuç Yazma: F(,)= 1,61;p>.10 F(k-1,N-k)= F bulunan ; p<.05 18

19 ÖRNEK: Deneysel metot kullanılan bir araştırmada üç ağrı kesici(a,b ve C) ile birlikte bir de sahte-tatlandırıcı-ilaç kullanılıyor.veriler aşağıdaki gibi elde edilmiş olup ölçümler birbirinden bağımsızdır.bu ilaçlar arasında bir fark olup olmadığı hakkında ne söylenebilir?(ölçülen değerler, birbirinden bağımsız kişilerdeki ağrı geçme süresini s cinsinden göstermektedir.) Tatlandırıcı İlaç A İlaç B İlaç C N: G:6 5 5 ΣX :178 T= T= T=1 T=18 =G/N= SS=6 SS= SS= SS=6 Hipotezleri belirle ve alfa seviyesini belirle df toplam,df B ve df W yi bul F oranı için MS B ve MS w yi hesapla ve kararı yorumla ve raporda belirt. 19

20 SS Toplam = ΣX G N = = 70 SS W =ΣSS içinde =6+++6=16 SS B =SS toplam -SS W =70-16=54 VEYA SS B T = Σ n G N = = 54 MS B = SS MS W = SS B W =18/=9 =54/=18 =16/8= df B df W Bulunan sonuç kritik yani red bölgesinde 9> 4.07 olduğu için Ho yani değersiz hipotez reddedilir.yani, veriler desteklemektedir ki kullanılan ilaçlar arasında bir fark vardır. Yukarıdaki değerleri gösteren tablo ile F(,8)= 9.0, p<.05 yazılır. Peki hangisinin daha etkili olduğunu nasıl öğrenebiliriz? 0

21 POST HOC TEST Uygulanan metotlar arasında belli bir anlamlı farklılık bulunmuş ise yani Ho değersiz hipotez reddedilmiş ise hangi metodun daha etkili olduğunu anlamak için uygulanacak testlere post hoc test i denir 1. TUKEY S HONESTLY SIGNİFİCNAT DIFFERENCE (HSD) TEST. THE SCHEFFÉ TEST 1

22 HSD TEST HSD = q. MS n w q değeri tablo ile belirlenir Önceki ağrı kesici örneği için hangisinin etkili olduğunu bulalım: Alfa =.05 k=4 için q=4.5 bulunur ve MSw= ve n= idi buradan HSD=.70 bulunur. BU sonuç şu şekilde yorumlanır: Herhangi iki ilacın ortalama farkı bu bulunan değere eşit veya daha büyük olmalıdır.küçükse ikisi arasında fark yoktur büyükse ikisi arasında fark vardır demektir. Buna göre: ortalamalar: tatlandırıcının1, ilaç A nın 1, ilaç B nin 4 ve ilaç C nin 6 dir. Tatlandırıcı ile ilaç A ve B arasında fark yok, tatlandırıcı ile İlaç C ve ilaç A ile ilaç C arasında bir fark vardır. Verilerin ışığı altında söylenebilir ki: İlaç C,ilaç A ve tatlandırıcıdan daha iyidir.

23 THE SCHEFFÉ TEST Scheffe test iki örnek-yani metot-için F değerlerine göre aralarında bir fark olup olmadığını test etmektedir. MS B değeri için seçile iki örnek değerleri kullanılır. MS W için Anova daki değer kullanılır. İki örnek karşılaştırması olduğu halde scheffe testte k için (iki grup değil) toplam k değeri alınır.ve sonuçta bulunan F değeri iki grup için karşılaştırma değeridir. Anlamlı bir sonuç varsa seçilen bu iki grup arasında fark vardır şeklinde yorum yapılır. Toplam önceki örneğimizdeki gibi 4 grup varsa her ikili grup için ayrı ayrı F değerleri hesaplanıp ona göre yorum yapılmalıdır.

24 Tekrar ağrı kesici ilaç örneğine dönelim: Tatlandırıcı İlaç A İlaç B İlaç C N: G:6 5 5 ΣX :178 T= T= T=1 T=18 =G/N= SS=6 SS= SS= SS=6 En büyük ile en küçük ortalamaya sahip olan iki örneği önce karşılaştırma yaparak sonuç anlamlı bulunursa sonra diğer ortalamalar karşılaştırılmaya devam edilmelidir. Şimdi tatlandırıcı ile İlaç C yi karşılaştıralım: T = Σ n G N SS B T SS B = Σ n G N = Formülü iki grup için uygulanır. G=+18=1 ve N=+=6 olarak değişir. Buradan: = 7,5 MS B = SS B df B =7,5/=1,5 k-1= 4

25 MSW de bir deüişiklik yok normal ANOVA hesabındaki değer alınır: MS W = SS W df W reddetme bölgesi içinde olduğundan ikisi arasında anlamlı =16/8= buradan =1,5/=6.5 bulunur ve bu değer bir fark vardır denir. Diğer grupların anlamlı olup olmadıklarını aynı metotla siz deneyiniz!!! 5

26 F ile t arasındaki ilişki F=t bağıntısı vardır. Örnek ortalamalarında elde edilen farklılık t= Farklılığın şansla(hata ile) elde edilmesi Örnek ortalamalarının varyansı (farklılığı) F= Varyansın (farklılığın) şansla(hata ile) elde edilmesi %95 % (.101) 6

27 Bağımsız ölçümler için kullanılan ANOVA nın kullanılması için aynen t-testi için olduğu gibi üç tane kabullenme varıdır, bunlar: 1. Herbir örnek için yapılan gözlem ve ölçümler birbirinden bağımsız olmalıdır. Örneğin seçildiği popülasyon normal olmalıdır. Örnek seçilen popülasyonlar eşit varyansa sahip olmalıdır.(homogenity of variance) ANOVA förmüllerini özetlersek: SS Toplam Toplam G = ΣX df=n-1 N Metotlar arası T G SS B = Σ n N MS=SS/d.f d.f.=k-1 Metotlar içinde SS W =ΣSS içinde MS=SS/d.f d.f.=n-k 7

28 Tekrarlı Ölçümler için ANOVA Yine null-boş hipotez yöntemler arasında bir farklılık yoktur der ve F değerine göre bu sonuç yorumlanır ancak burada sadece tekrarlı ölçümler söz konusudur. Yöntemler arası varyans yöntemin etkisi+ deneysel hata F= = Yöntemler içi varyans deneysel hata Bir örnekle açıklamaya çalışalım: Dört kişiye ait el beceri test puanları (belli bir deneme yaptıktan sonra her bir oturumun sonunda alınan puanlar) aşağıda verilmiştir. Buna göre tekrarlı ölçümler için ANOVA hesaplamalarını yapalım. Kişi Oturum1 oturum oturum P A 6 1 B 6 C D T 1 =8 T =10 T =18 SS 1 = SS =5 SS =11 G=6 ΣX =140 k= n=4 N=1 8

29 SS Toplam Toplam = ΣX G N df=n-1 1.adım Metotlar arası T G SS B = Σ n N df=k-1 SS arası Metotlar içinde SS W =ΣSS içinde df=n-k SS hata.adım p = Σ k G N SS B df=n-1 SS içinde -SS arası df=(n-k)-(n-1) Önce, toplam, arası ve içinde için SS hesabı yap sonra. adıma geç 9

30 SS Toplam = ΣX G N = = SS B T = Σ n G N = = 14 1.aşama SS W =ΣSS içinde =SS 1 +SS +SS =+5+11=18 SS kişişilera sı = Σ p k G N 1 = SS hata =SS metotlar içinde -SS kişiler arası = 1 d.f.toplam=n-1=1-1=11 d.f. B =k-1=-1=.aşama =18-1=6 Sonra MS ler hesaplanarak F bulunur d.f. W =N-k=1-=9 d.f. kişlerarası =n-1=4-1= d.f. hata =(N-k)-(n-1)=9-=6 0

31 MS B = SS B d.f. B MS Hata = SS hata d.f.hata = 14/ =7 =6/6 =1 Hata = 7/1 =7 F(,6)= 7.0, p <.05 1

32 ÖDEV Ders içinde kontrolü zor çocuklara yeni geliştirilen bir metot uygulanıyor ve bunun etkinliğini ölçmek için okul psikologu belli zaman aralıklarında seçilen bu 4 öğrenciye program başlamadan önce ve sonra testler uyguluyor. Bu test sonuçları aşağıdaki gibi tablo haline getirilmiştir. Buna göre hipotezlerinizi kurup bunu test ediniz. Kişi pro. önce 1.hafta sonra 1ay sonra 6ay sonra P A B C D T 1 =6 T =8 T =6 T 4 =4 SS 1 =11 SS = SS =9 SS 4 = n=4 k=4 N=16 G=44 ΣX = Cevap: F(,9)= 1.04, p <.05.. Post hoc test yine aynı yöntemlerle yapılır

33 Two-Factor ANOVA(bağımsız Ölçümler için) One-way ANOVA Two-way ANOVA veya li faktör ANOVA 18-li sınıf FAKTÖR B-Sınıf Büyüklüğü 4-lü sınıf 0lu sınıf FAKTÖR A Program Program I Program Program1 A1B1 program AB1 program1 A1B program AB program1 A1B program AB X faktörel dizayn örneği Faktör A ve Faktör B ve ikisinin etkileşimi(axb)ne göre bir çok boş ve alternatif hipotez yazmak mümkündür.

34 H o : µ A1 = µ A H 1 : µ A1 µ A H o : µ B1 = µ B = µ B H 1 : en azından bir ortalama diğerlerinden farklı H o : A ve B faktörleri arasında bir etkileşim yoktur H 1 : bir faktörün etkisi diğer faktöre bağlı yani faktörler arası bir etkileşim vardır A1 A B1 B A 1 =0 A =10 B1 B B1 B B 1 =15 B =15 0 puan fark Fark yok Fark yok Ortalamalara göre hangi faktörler arasında nasıl bir etkileşim olduğu anlaşılabilir Fark yok 4

35 Gösterim ve Formüller: Toplam değişkenlilik Metotlar arası değişkenlilik Metotlar içi değişkenlilik Faktör A daki değişkenlilk Faktör A daki değişkenlilk Faktör A daki değişkenlilk G:genel toplam değeri N: toplam sayı a :Faktör A b :Faktör B n:her bir metottaki sayı 5

36 Faktör B B1 B B A AB:5 SS: AB:45 SS:6 8 AB:0 SS:0 A1:90 Verilen değerlere ait faktör ANOVA işlemlerini yaparak değerlendiriniz? A AB:5 SS: AB:5 SS: AB:0 SS:8 B1:0 B:50 B:40 A:0 N:0, G:10, ΣX =80 6

37 1.Adım: SS B SSToplam = Σ = ΣX AB n G N G N = 10 = = 40 SS W =ΣSS içinde =SS 1 +SS +SS = =10.Adım: = 0 SS toplam =SS W +SS B olduğunu görünüz SS SS SS A A A G = Σ A bn N = = 10 SS SS SS B B B G = Σ an N 0 50 = = 0 B SS AXB =SS Barası -SS A -SS B = =80 7

38 Serbestlik derecesi hesapları df toplam =N-1=0-1=9 df içinde = Σ(n-1)=N-ab=0-x=4 df arasında =ab-1=6-1=5 dftoplam=dfiçinde+dfarasında df A =a-1=-1=1 df B =b-1=-1= df AXB =dfarasında-df A -df B =5-1-= veya df AxB =df A xdf B MS=SS/d.f A için MS B için MS AXB için MS MS A =SS A /d.f A =10/1=10 MS B =SS B /d.f B =0/=10 MS AxB =SS AxB /d.f AxB =80/=40 A, B ve AXB için ayrı ayrı F değeri bulunacaktır 8

39 Faktör A için: MS içinde =SS içinde /d.f içinde =10/4=5 Faktör B için: MS içinde =SS içinde /d.f içinde =10/4=5 F= MS A MS içinde =4 F(1,4)=4 =10/5 F= MS B MS içinde = F(,4)= =10/5 df A df içinde F= MS AXB MS içinde =40/5 df B df içinde =8 F(,4)=8 Eğer bu değerler reddetme bölgesinde ise hipotezdeki H o reddedilir df AxB df içinde 9

40 ÖDEV Yeme alışkanlığı ile şişmanlık arasındaki ilişkiyi araştırmada normal insanlarla şişmanlardan seçilen örneklerde boş mide-aç- ve dolu midelerle-tok ikenyemek yemeleri incelenmiş ve şu hipotez ortaya atılmıştır şişman kişiler aç veya tok olmaları fark etmeksizin yemeye yönelmektedir. Bunun için rastgele seçilen normal ve şişman kişilerden aç ve tok iken bir tür kraker yemeleri serbest bırakılmış ve kaçar adet kraker yemelerine göre değerlendirme yapılmış aşağıdaki sonuçlar elde edilmiştir. Burada iki bağımsız değişken: ağırlık(normal ve şişman) ve doygunluk (boş ve dolu mide) deneyden önce dolu mideye sahip olmaları için o kişilere istediği kadar yemek yedirilmiş-- Faktör A-doygunluk normal şişman Faktör B(doygunluk) Boş mide Dolu mide n=0 n=0 X= X=15 AB=440 AB=00 SS=1540 SS=170 n=0 n=0 X=17 X=18 AB=40 AB=60 SS=10 SS=166 A1=740 A=700 B1=780 B=660 G=1440 N=80 ΣX =1,86 40

41 Cevap: Source SS df MS F Betwen treatments 50 Factor A(weight) Factor B(doygunluk) AXB interaction Within treatments Total Etkileşim Yorumu Yenilen kraker sayısı Boş mide şişman normal dolu mide 41

42 ANCOVA Co-variate(birlikte değişken) olarak seçilen bağımsız değişkenin bağımlı değişken üzerine etkisi biliniyor ise diğer bağımsız değişkenlerin bağımlı değişken üzerine etkisini hesaplamak için ANCOVA kullanılmalıdır. Mesela öğrencilerin başarısı bağımlı değişkenimiz olsun, bağımsız değişkenimiz ise öğrencilerin ön bilgileri,cinsiyeti, sosya-ekomomik seviyeleri ve etnik durumları olsun. Araştırmacı öğrencilerin ön bilgilerinin başarıyı etkilediğini bildiği için bu bağımsız değişkeni covariate-birlikte değişken- olarak seçebilir. Bunun avantajı hesaplamalarda covariate olan değişkenin bağımlı değişken üzerindeki etkilerinin çıkarılarak diğerlerinin ne derece etkili olduğunu bulmamızı kolaylaştıracaktır. Bağımsız değişken Bağımlı değişken ANCOVA, ANOVA den fazla 1 tane MANCOVA den fazla veya fazla Faktör analizi nedir? Bütün ANOVA, ANCOVA,MANCOVA hesaplamaları MRC ile bulunabilir. MRC? 4

Parametrik Olmayan Testler. İşaret Testi-The Sign Test Mann-Whiney U Testi Wilcoxon Testi Kruskal-Wallis Testi

Parametrik Olmayan Testler. İşaret Testi-The Sign Test Mann-Whiney U Testi Wilcoxon Testi Kruskal-Wallis Testi Yrd. Doç. Dr. Neşet Demirci, Balıkesir Üniversitesi NEF Fizik Eğitimi Parametrik Olmayan Testler İşaret Testi-The Sign Test Mann-Whiney U Testi Wilcoxon Testi Kruskal-Wallis Testi Rank Korelasyon Parametrik

Detaylı

HİPOTEZ TESTLERİ HİPOTEZ NEDİR?

HİPOTEZ TESTLERİ HİPOTEZ NEDİR? HİPOTEZ TESTLERİ HİPOTEZ NEDİR? Örnekleme ile test edilmeye çalışılan bir popülasyonun ilgili parametresi hakkında ortaya sunulan iddiadır. Örneğin; A dersi için vize ortalaması 50 nin altındadır Firestone

Detaylı

Hipotez Testleri. Mühendislikte İstatistik Yöntemler

Hipotez Testleri. Mühendislikte İstatistik Yöntemler Hipotez Testleri Mühendislikte İstatistik Yöntemler Hipotez Testleri Parametrik Testler ( z ve t testleri) Parametrik Olmayan Testler (χ 2 Testi) Hipotez Testleri Ana Kütle β( µ, σ ) Örnek Kütle b ( µ

Detaylı

İSTATİSTİK 2. Hipotez Testi 21/03/2012 AYŞE S. ÇAĞLI. aysecagli@beykent.edu.tr

İSTATİSTİK 2. Hipotez Testi 21/03/2012 AYŞE S. ÇAĞLI. aysecagli@beykent.edu.tr İSTATİSTİK 2 Hipotez Testi 21/03/2012 AYŞE S. ÇAĞLI aysecagli@beykent.edu.tr 1 Güven aralığı ve Hipotez testi Güven aralığı µ? µ? Veriler, bir değer aralığında hangi değeri gösteriyor? (Parametrenin gerçek

Detaylı

Tekrarlı Ölçümler ANOVA

Tekrarlı Ölçümler ANOVA Tekrarlı Ölçümler ANOVA Repeated Measures ANOVA Aynı veya ilişkili örneklemlerin tekrarlı ölçümlerinin ortalamalarının aynı olup olmadığını test eder. Farklı zamanlardaki ölçümlerde aynı (ilişkili) kişiler

Detaylı

PARAMETRİK OLMAYAN İSTATİSTİKSEL TEKNİKLER 6

PARAMETRİK OLMAYAN İSTATİSTİKSEL TEKNİKLER 6 PARAMETRİK OLMAYAN İSTATİSTİKSEL TEKNİKLER 6 Prof. Dr. Ali ŞEN 1 İki populasyon karşılaştırılırken her iki örneklemin hacmi n1 ve n2, 10 dan büyükse TA nın dağılışı ortalaması ve varyansı aşağıdaki gösterilen

Detaylı

PARAMETRİK OLMAYAN İSTATİSTİKSEL TEKNİKLER 8

PARAMETRİK OLMAYAN İSTATİSTİKSEL TEKNİKLER 8 PARAMETRİK OLMAYAN İSTATİSTİKSEL TEKNİKLER 8 Prof. Dr. Ali ŞEN İki Populasyonun Karşılaştırılması: Eşleştirilmiş Örnekler için Wilcoxon İşaretli Mertebe Testi -BÜYÜK ÖRNEK Bağımsız populasyonlara uygulanan

Detaylı

Yrd. Doç. Dr. Neşet Demirci, Balıkesir Üniversitesi NEF Fizik Eğitimi. Parametrik Olmayan Testler. Ki-kare (Chi-Square) Testi

Yrd. Doç. Dr. Neşet Demirci, Balıkesir Üniversitesi NEF Fizik Eğitimi. Parametrik Olmayan Testler. Ki-kare (Chi-Square) Testi Parametrik Olmayan Testler Ki-kare (Chi-Square) Testi Ki-kare (Chi-Square) Testi En iyi Uygunluk (Goodness of Fit) Ki-kare Dağılımı Bir çok önemli istatistik testi ki kare diye bilinen ihtimal dağılımı

Detaylı

Bağımsız örneklem t-testi tablo okuması

Bağımsız örneklem t-testi tablo okuması Bağımsız örneklem t-testi tablo okuması İki bağımsız grubu karşılaştırmada kullanılır; Normal dağılım (her bir grup için n>30) [Uygulamada daha küçük sayılar da kullanılmaktadır] Sürekli bağımlı değişken

Detaylı

MATE 211 BİYOİSTATİSTİK İKİ FARKIN ÖNEMLİLİK TESTİ VE İKİ EŞ ARASINDAKİ FARKIN ÖNEMLİLİK TEST SORULARI

MATE 211 BİYOİSTATİSTİK İKİ FARKIN ÖNEMLİLİK TESTİ VE İKİ EŞ ARASINDAKİ FARKIN ÖNEMLİLİK TEST SORULARI MATE 211 BİYOİSTATİSTİK İKİ FARKIN ÖNEMLİLİK TESTİ VE İKİ EŞ ARASINDAKİ FARKIN ÖNEMLİLİK TEST SORULARI 1. Doğum sırasının çocuğun zeka düzeyini etkileyip etkilemediğini araştıran bir araştırmacı çocuklar

Detaylı

BİYOİSTATİSTİK PARAMETRİK TESTLER

BİYOİSTATİSTİK PARAMETRİK TESTLER BİYOİSTATİSTİK PARAMETRİK TESTLER Doç. Dr. Mahmut AKBOLAT *Bir testin kullanılabilmesi için belirli şartların sağlanması gerekir. *Bir testin, uygulanabilmesi için gerekli şartlar; ne kadar çok veya güçlü

Detaylı

Bir Normal Dağılım Ortalaması İçin Testler

Bir Normal Dağılım Ortalaması İçin Testler Bir Normal Dağılım Ortalaması İçin Testler İÇERİK o Giriş ovaryansı Bilinen Bir Normal Dağılım Ortalaması İçin Hipotez Testler P-değerleri: II. Çeşit hata ve Örnekleme Büyüklüğü Seçimi Örnekleme Büyüklüğü

Detaylı

01.02.2013. Statistical Package for the Social Sciences

01.02.2013. Statistical Package for the Social Sciences Hipotezlerin test edilip onaylanması için çeşitli istatistiksel testler kullanılmaktadır. Fakat... Her istatistik teknik her tür analize elverişli değildir. Modele veya hipoteze uygun test istatistiği

Detaylı

Korelasyon ve Regresyon

Korelasyon ve Regresyon Korelasyon ve Regresyon Korelasyon- (lineer korelasyon) Açıklayıcı (Bağımsız) Değişken x çalışma zamanı ayakkabı numarası İki değişken arasındaki ilişkidir. Günlük sigara sayısı SAT puanı boy Yanıt (Bağımlı)

Detaylı

HİPOTEZ TESTLERİ. Yrd. Doç. Dr. Emre ATILGAN

HİPOTEZ TESTLERİ. Yrd. Doç. Dr. Emre ATILGAN HİPOTEZ TESTLERİ Yrd. Doç. Dr. Emre ATILGAN Hipotez Nedir? HİPOTEZ: parametre hakkındaki bir inanıştır. Parametre hakkındaki inanışı test etmek için hipotez testi yapılır. Hipotez testleri sayesinde örneklemden

Detaylı

İstatistik ve Olasılık

İstatistik ve Olasılık İstatistik ve Olasılık -II Prof. Dr. İrfan KAYMAZ İki Ortalama Farkının Güven Aralığı Anakütle Varyansı Biliniyorsa İki ortalama arasındaki farkın dağılımına ilişkin Z değişkeni: Güven aralığı ifadesinde

Detaylı

OLASILIK ve İSTATİSTİK Hipotez Testleri

OLASILIK ve İSTATİSTİK Hipotez Testleri OLASILIK ve İSTATİSTİK Hipotez Testleri Yrd.Doç.Dr. Pınar YILDIRIM Okan Üniversitesi Mühendislik ve Mimarlık Fakültesi Bilgisayar Mühendisliği Bölümü Hipotezler ve Testler Hipotez, kitleye(yığına) ait

Detaylı

BÖLÜM 13 HİPOTEZ TESTİ

BÖLÜM 13 HİPOTEZ TESTİ 1 BÖLÜM 13 HİPOTEZ TESTİ Bilimsel yöntem aşamalarıyla tanımlanmış sistematik bir bilgi üretme biçimidir. Bilimsel yöntemin aşamaları aşağıdaki gibi sıralanabilmektedir (Karasar, 2012): 1. Bir problemin

Detaylı

Yrd. Doç.Dr. Neşet Demirci, Balıkesir Üniversitesi, NEF, Fizik Eğitimi. Hipotez Testine Giriş

Yrd. Doç.Dr. Neşet Demirci, Balıkesir Üniversitesi, NEF, Fizik Eğitimi. Hipotez Testine Giriş Yrd. Doç.Dr. Neşet Demirci, Balıkesir Üniversitesi, NEF, Fizik Eğitimi 5. ders Hipotez Testine Giriş Yrd. Doç.Dr. Neşet Demirci, Balıkesir Üniversitesi, NEF, Fizik Eğitimi Hipotez Yazma Popülasyon hakkındaki

Detaylı

Araştırma Yöntemleri. Çıkarımsal İstatistikler: Parametrik Testler I. Giriş

Araştırma Yöntemleri. Çıkarımsal İstatistikler: Parametrik Testler I. Giriş Araştırma Yöntemleri Çıkarımsal İstatistikler: Parametrik Testler I Giriş Bir önceki derste örneklem seçme mantığını işledik Evren ve örneklemden elde edilen değerleri tanımlamayı öğrendik Standart normal

Detaylı

Varyans Analizi (ANOVA) Kruskal-Wallis H Testi. Doç. Dr. Ertuğrul ÇOLAK. Eskişehir Osmangazi Üniversitesi Tıp Fakültesi Biyoistatistik Anabilim Dalı

Varyans Analizi (ANOVA) Kruskal-Wallis H Testi. Doç. Dr. Ertuğrul ÇOLAK. Eskişehir Osmangazi Üniversitesi Tıp Fakültesi Biyoistatistik Anabilim Dalı Varyans Analizi (ANOVA) Kruskal-Wallis H Testi Doç. Dr. Ertuğrul ÇOLAK Eskişehir Osmangazi Üniversitesi Tıp Fakültesi Biyoistatistik Anabilim Dalı Konu Başlıkları Tek Yönlü Varyans Analizi SPSS de Tek

Detaylı

NORMAL DAĞILIM VE ÖNEMLİLİK TESTLERİ İLE İLGİLİ PROBLEMLER

NORMAL DAĞILIM VE ÖNEMLİLİK TESTLERİ İLE İLGİLİ PROBLEMLER NORMAL DAĞILIM VE ÖNEMLİLİK TESTLERİ İLE İLGİLİ PROBLEMLER A) Normal Dağılım ile İlgili Sorular Sayfa /4 Hamileler ile ilgili bir araştırmada, bu grubun hemoglobin değerlerinin normal dağılım gösterdiği

Detaylı

26.12.2013. Farklı iki ilaç(a,b) kullanan iki grupta kan pıhtılaşma zamanları farklı mıdır?

26.12.2013. Farklı iki ilaç(a,b) kullanan iki grupta kan pıhtılaşma zamanları farklı mıdır? 26.2.23 Gözlem ya da deneme sonucu elde edilmiş sonuçların, raslantıya bağlı olup olmadığının incelenmesinde kullanılan istatistiksel yöntemlere HĐPOTEZ TESTLERĐ denir. Sonuçların raslantıya bağlı olup

Detaylı

Hipotezlerin test edilip onaylanması için çeşitli istatistiksel testler kullanılmaktadır. Fakat...

Hipotezlerin test edilip onaylanması için çeşitli istatistiksel testler kullanılmaktadır. Fakat... Hipotezlerin test edilip onaylanması için çeşitli istatistiksel testler kullanılmaktadır. Fakat... Her istatistik teknik her tür analize elverişli değildir. Modele veya hipoteze uygun test istatistiği

Detaylı

H.Ü. Bilgi ve Belge Yönetimi Bölümü BBY 208 Sosyal Bilimlerde Araştırma Yöntemleri II (Bahar 2012) SPSS Ders Notları II (19 Nisan 2012)

H.Ü. Bilgi ve Belge Yönetimi Bölümü BBY 208 Sosyal Bilimlerde Araştırma Yöntemleri II (Bahar 2012) SPSS Ders Notları II (19 Nisan 2012) H.Ü. Bilgi ve Belge Yönetimi Bölümü BBY 208 Sosyal Bilimlerde Araştırma Yöntemleri II (Bahar 2012) SPSS Ders Notları II (19 Nisan 2012) Aşağıdaki analizlerde lise öğrencileri veri dosyası kullanılmıştır.

Detaylı

T TESTİ: ORTALAMALAR ARASI FARKLARIN TEST EDİLMESİ. Yrd. Doç. Dr. C. Deha DOĞAN

T TESTİ: ORTALAMALAR ARASI FARKLARIN TEST EDİLMESİ. Yrd. Doç. Dr. C. Deha DOĞAN T TESTİ: ORTALAMALAR ARASI FARKLARIN TEST EDİLMESİ Yrd. Doç. Dr. C. Deha DOĞAN Gruplara ait ortalamalar elde edildiğinde, farklı olup olmadıkları ilk bakışta belirlenemez. Ortalamalar arsında bulunan

Detaylı

Kazanımlar. Z puanları yerine T istatistiğini ne. zaman kullanacağını bilmek. t istatistiği ile hipotez test etmek

Kazanımlar. Z puanları yerine T istatistiğini ne. zaman kullanacağını bilmek. t istatistiği ile hipotez test etmek T testi Kazanımlar Z puanları yerine T istatistiğini ne 1 zaman kullanacağını bilmek 2 t istatistiği ile hipotez test etmek 3 Cohen ind sini ve etki büyüklüğünü hesaplamak 1 9.1 T İstatistiği: zalternatifi

Detaylı

EME 3105 SİSTEM SİMÜLASYONU. Girdi Analizi Prosedürü. Dağılıma Uyum Testleri. Dağılıma Uyumun Kontrol Edilmesi. Girdi Analizi-II Ders 9

EME 3105 SİSTEM SİMÜLASYONU. Girdi Analizi Prosedürü. Dağılıma Uyum Testleri. Dağılıma Uyumun Kontrol Edilmesi. Girdi Analizi-II Ders 9 EME 3105 1 Girdi Analizi Prosedürü SİSTEM SİMÜLASYONU Modellenecek sistemi (prosesi) dokümante et Veri toplamak için bir plan geliştir Veri topla Verilerin grafiksel ve istatistiksel analizini yap Girdi

Detaylı

Genel olarak test istatistikleri. Merkezi Eğilim (Yığılma) Ölçüleri Dağılım (Yayılma) Ölçüleri. olmak üzere 2 grupta incelenebilir.

Genel olarak test istatistikleri. Merkezi Eğilim (Yığılma) Ölçüleri Dağılım (Yayılma) Ölçüleri. olmak üzere 2 grupta incelenebilir. 4.SUNUM Genel olarak test istatistikleri Merkezi Eğilim (Yığılma) Ölçüleri Dağılım (Yayılma) Ölçüleri olmak üzere 2 grupta incelenebilir. 2 Ranj Çeyrek Kayma Çeyrekler Arası Açıklık Standart Sapma Varyans

Detaylı

İstatistik ve Olasılık

İstatistik ve Olasılık İstatistik ve Olasılık Ders 8: Prof. Dr. Tanım Hipotez, bir veya daha fazla anakütle hakkında ileri sürülen, ancak doğruluğu önceden bilinmeyen iddialardır. Ortaya atılan iddiaların, örnekten elde edilen

Detaylı

PARAMETRİK TESTLER. Tek Örneklem t-testi. 200 öğrencinin matematik dersinden aldıkları notların ortalamasının 70 e eşit olup olmadığını test ediniz.

PARAMETRİK TESTLER. Tek Örneklem t-testi. 200 öğrencinin matematik dersinden aldıkları notların ortalamasının 70 e eşit olup olmadığını test ediniz. PARAMETRİK TESTLER Tek Örneklem t-testi 200 öğrencinin matematik dersinden aldıkları notların ortalamasının 70 e eşit olup olmadığını test ediniz. H0 (boş hipotez): 200 öğrencinin matematik dersinden aldıkları

Detaylı

Parametrik Olmayan Testler 2. Wilcoxon ve Kruskal-Wallis Testleri

Parametrik Olmayan Testler 2. Wilcoxon ve Kruskal-Wallis Testleri Parametrik Olmayan Testler 2 Wilcoxon ve Kruskal-Wallis Testleri İki Bağımlı Örneklemin Karşılaştırılması (Wilcoxon Bağımlı Örneklemler İşaretli Sıralamalar Testi) (Wilcoxon Matched-Samples Signed Ranks

Detaylı

Mühendislikte İstatistiksel Yöntemler

Mühendislikte İstatistiksel Yöntemler Mühendislikte İstatistiksel Yöntemler BÖLÜM 9 VARYANS ANALİZİ Yrd. Doç. Dr. Fatih TOSUNOĞLU 1 Varyans analizi niçin yapılır? İkiden fazla veri grubunun ortalamalarının karşılaştırılması t veya Z testi

Detaylı

PARAMETRİK OLMAYAN İSTATİSTİKSEL TEKNİKLER

PARAMETRİK OLMAYAN İSTATİSTİKSEL TEKNİKLER PARAMETRİK OLMAYAN İSTATİSTİKSEL TEKNİKLER Prof. Dr. Ali ŞEN 1 Tek Örneklem İşaret Testi İşaret Testi parametrik olmayan prosedürler içinde en eski olanıdır. Analiz yapılırken serideki verileri artı ve

Detaylı

Hipotez Testlerine Giriş. Hipotez Testlerine Giriş

Hipotez Testlerine Giriş. Hipotez Testlerine Giriş Hipotez Testlerine Giriş Hipotez Testlerine Giriş Hipotez Testlerine Giriş Gözlem ya da deneme sonucu elde edilmiş sonuçların, raslantıya bağlı olup olmadığının incelenmesinde kullanılan istatistiksel

Detaylı

Temel İstatistik. Y.Doç.Dr. İbrahim Turan Mart Tanımlayıcı İstatistik. Dağılımları Tanımlayıcı Ölçüler Dağılış Ölçüleri

Temel İstatistik. Y.Doç.Dr. İbrahim Turan Mart Tanımlayıcı İstatistik. Dağılımları Tanımlayıcı Ölçüler Dağılış Ölçüleri Temel İstatistik Tanımlayıcı İstatistik Dağılımları Tanımlayıcı Ölçüler Dağılış Ölçüleri Y.Doç.Dr. İbrahim Turan Mart 2011 DAĞILIM / YAYGINLIK ÖLÇÜLERİ Verilerin değişkenlik durumu ve dağılışın şeklini

Detaylı

Çalıştığı kurumun prestij kaynağı olup olmaması KIZ 2,85 ERKEK 4,18

Çalıştığı kurumun prestij kaynağı olup olmaması KIZ 2,85 ERKEK 4,18 1 * BAĞIMSIZ T TESTİ (Independent Samples t test) ÖRNEK: Yapılan bir anket çalışmasında katılımcılardan, çalıştıkları kurumun kendileri için bir prestij kaynağı olup olmadığını belirtmeleri istenmiş. 30

Detaylı

rasgele değişkeninin olasılık yoğunluk fonksiyonu,

rasgele değişkeninin olasılık yoğunluk fonksiyonu, 3.6. Bazı Sürekli Dağılımlar 3.6.1 Normal Dağılım Normal dağılım hem uygulamalı hem de teorik istatistikte kullanılan oldukça önemli bir dağılımdır. Normal dağılımın istatistikte önemli bir yerinin olmasının

Detaylı

Popülasyon Ortalamasının Tahmin Edilmesi

Popülasyon Ortalamasının Tahmin Edilmesi Güven Aralıkları Popülasyon Ortalamasının Tahmin Edilmesi Tanımlar: Nokta Tahmini Popülasyon parametresi hakkında tek bir rakamdan oluşan tahmindir. Popülasyon ortalaması ile ilgili en iyi nokta tahmini

Detaylı

RASSAL DEĞİŞKENLER VE OLASILIK DAĞILIMLARI. Yrd. Doç. Dr. Emre ATILGAN

RASSAL DEĞİŞKENLER VE OLASILIK DAĞILIMLARI. Yrd. Doç. Dr. Emre ATILGAN RASSAL DEĞİŞKENLER VE OLASILIK DAĞILIMLARI Yrd. Doç. Dr. Emre ATILGAN 1 RASSAL DEĞİŞKENLER VE OLASILIK DAĞILIMLARI Olasılığa ilişkin olayların çoğunluğunda, deneme sonuçlarının bir veya birkaç yönden incelenmesi

Detaylı

BÖLÜM 12 STUDENT T DAĞILIMI

BÖLÜM 12 STUDENT T DAĞILIMI 1 BÖLÜM 12 STUDENT T DAĞILIMI 'Student t dağılımı' ya da kısaca 't dağılımı'; normal dağılım ve Z dağılımının da içerisinde bulunduğu 'sürekli olasılık dağılımları' ailesinde yer alan dağılımlardan bir

Detaylı

Mühendislikte İstatistiksel Yöntemler

Mühendislikte İstatistiksel Yöntemler Mühendislikte İstatistiksel Yöntemler BÖLÜM 7 TAHMİNLER Yrd. Doç. Dr. Fatih TOSUNOĞLU 1 Tahmin (kestirim veya öngörü): Mevcut bilgi ve deneylere dayanarak olayın bütünü hakkında bir yargıya varmaktır.

Detaylı

İçindekiler vii Yazarların Ön Sözü xiii Çevirenin Ön Sözü xiv Teşekkürler xvi Semboller Listesi xvii. Ölçme, İstatistik ve Araştırma...

İçindekiler vii Yazarların Ön Sözü xiii Çevirenin Ön Sözü xiv Teşekkürler xvi Semboller Listesi xvii. Ölçme, İstatistik ve Araştırma... İçindekiler İçindekiler vii Yazarların Ön Sözü xiii Çevirenin Ön Sözü xiv Teşekkürler xvi Semboller Listesi xvii BÖLÜM 1 Ölçme, İstatistik ve Araştırma...1 Ölçme Nedir?... 3 Ölçme Süreci... 3 Değişkenler

Detaylı

İKİDEN ÇOK BAĞIMSIZ GRUBUN KARŞILAŞTIRILMASI

İKİDEN ÇOK BAĞIMSIZ GRUBUN KARŞILAŞTIRILMASI İKİDEN ÇOK BAĞIMSIZ GRUBUN KARŞILAŞTIRILMASI Grup sayısı ikiye geçtiğinde tüm grupların bağımsız iki grup testleri ile ikişerli analiz düşünülebilir. Ancak bu yaklaşım, karşılaştırmalar bağımsız olmadığından

Detaylı

İki İlişkili Örneklem için t-testi. Tekrarlı ölçümler için t hipotez testine uygun araştırma çalışmalarının yapısını anlamak.

İki İlişkili Örneklem için t-testi. Tekrarlı ölçümler için t hipotez testine uygun araştırma çalışmalarının yapısını anlamak. İki İlişkili Örneklem için t-testi Kazanımlar 1 2 3 4 Tekrarlı ölçümler için t hipotez testine uygun araştırma çalışmalarının yapısını anlamak. Tekrarlı ölçümler t istatistiğini kullanarak 2 uygulamanın

Detaylı

Hipotez Testi ENM 5210 İSTATİSTİK VE YAZILIMLA UYGULAMALARI. Ders 4 Minitab da İstatiksel Çıkarım-I. Hipotez Testi. Hipotez Testi

Hipotez Testi ENM 5210 İSTATİSTİK VE YAZILIMLA UYGULAMALARI. Ders 4 Minitab da İstatiksel Çıkarım-I. Hipotez Testi. Hipotez Testi ENM 52 İSTATİSTİK VE YAZILIMLA UYGULAMALARI Ders 4 Minitab da İstatiksel Çıkarım-I (Ortalamalar ve Oranlar İçin ) İstatistiksel Hipotezler İstatistiksel hipotez testi ve parametrelerin güven aralığı tahmini,

Detaylı

SPSS E GİRİŞ SPSS TE TEMEL İŞLEMLER. Abdullah Can

SPSS E GİRİŞ SPSS TE TEMEL İŞLEMLER. Abdullah Can SPSS E GİRİŞ SPSS TE TEMEL İŞLEMLER SPSS in üzerinde işlem yapılabilecek iki ana ekran görünümü vardır. DATA VIEW (VERİ görünümü) VARIABLE VIEW (DEĞİŞKEN görünümü) 1 DATA VIEW (VERİ görünümü) İstatistiksel

Detaylı

K-S Testi hipotezde ileri sürülen dağılımla örnek yığılmalı dağılım fonksiyonunun karşılaştırılması ile yapılır.

K-S Testi hipotezde ileri sürülen dağılımla örnek yığılmalı dağılım fonksiyonunun karşılaştırılması ile yapılır. İstatistiksel güven aralıkları uygulamalarında normallik (normal dağılıma uygunluk) oldukça önemlidir. Kullanılan parametrik istatistiksel tekniklerin geçerli olabilmesi için populasyon şans değişkeninin

Detaylı

1 Hipotez konusuna öncelikle yokluk hipoteziyle başlanılan yaklaşımda, araştırma hipotezleri ALTERNATİF HİPOTEZLER olarak adlandırılmaktadır.

1 Hipotez konusuna öncelikle yokluk hipoteziyle başlanılan yaklaşımda, araştırma hipotezleri ALTERNATİF HİPOTEZLER olarak adlandırılmaktadır. Özellikle deneysel araştırmalarda, araştırmacının doğru olup olmadığını yapacağı bir deney ile test edeceği ve araştırma sonunda ortaya çıkan sonuçlarla doğru ya da yanlış olduğuna karar vereceği bir önermesi

Detaylı

Ölçüm Sisteminin Analizi Measurement System Analysis. Dr. Nihal Erginel

Ölçüm Sisteminin Analizi Measurement System Analysis. Dr. Nihal Erginel Ölçüm Sisteminin Analizi Measurement System Analysis Dr. Nihal Erginel TOPLAM DEĞİŞKENLİK Süreçten kaynaklanan değişkenlik Ölçüm sisteminden kaynaklanan değişkenlik Süreç Değişkenlik Kaynakları Hammadde

Detaylı

TANIMLAYICI İSTATİSTİKLER

TANIMLAYICI İSTATİSTİKLER TANIMLAYICI İSTATİSTİKLER Tanımlayıcı İstatistikler ve Grafikle Gösterim Grafik ve bir ölçüde tablolar değişkenlerin görsel bir özetini verirler. İdeal olarak burada değişkenlerin merkezi (ortalama) değerlerinin

Detaylı

Herhangi bir oranın belli bir değere eşit olmadığını test etmek için kullanılır.

Herhangi bir oranın belli bir değere eşit olmadığını test etmek için kullanılır. Hipotez testleri-oran testi Oran Testi Herhangi bir oranın belli bir değere eşit olmadığını test etmek için kullanılır Örnek: Yüz defa atılan bir para 34 defa yazı gelmiştir Paranın yazı gelme olasılığının

Detaylı

Bağımsız Örneklemler İçin Tek Faktörlü ANOVA

Bağımsız Örneklemler İçin Tek Faktörlü ANOVA Bağımsız Örneklemler İçin Tek Faktörlü ANOVA ANOVA (Varyans Analizi) birden çok t-testinin uygulanması gerektiği durumlarda hata varyansını azaltmak amacıyla öncelikle bir F istatistiği hesaplanır bu F

Detaylı

BİYOİSTATİSTİK Uygulama 4 Yrd. Doç. Dr. Aslı SUNER KARAKÜLAH

BİYOİSTATİSTİK Uygulama 4 Yrd. Doç. Dr. Aslı SUNER KARAKÜLAH BİYOİSTATİSTİK Uygulama 4 Yrd. Doç. Dr. Aslı SUNER KARAKÜLAH Ege Üniversitesi, Tıp Fakültesi, Biyoistatistik ve Tıbbi Bilişim AD. Web: www.biyoistatistik.med.ege.edu.tr 1 Örnek Senaryo İmplant üreten İMPLANTDENT

Detaylı

Kalitatif Veri. 1. Kalitatif random değişkenler sınıflanabilen yanıtlar vermektedir. Örnek: cinsiyet (Erkek, Kız)

Kalitatif Veri. 1. Kalitatif random değişkenler sınıflanabilen yanıtlar vermektedir. Örnek: cinsiyet (Erkek, Kız) Kalitatif Veri 1. Kalitatif random değişkenler sınıflanabilen yanıtlar vermektedir. Örnek: cinsiyet (Erkek, Kız). Ölçüm kategorideki veri sayısını yansıtır 3. Nominal yada Ordinal ölçek Multinomial Deneyler

Detaylı

İÇİNDEKİLER. BÖLÜM 1 Değişkenler ve Grafikler 1. BÖLÜM 2 Frekans Dağılımları 37

İÇİNDEKİLER. BÖLÜM 1 Değişkenler ve Grafikler 1. BÖLÜM 2 Frekans Dağılımları 37 İÇİNDEKİLER BÖLÜM 1 Değişkenler ve Grafikler 1 İstatistik 1 Yığın ve Örnek; Tümevarımcı ve Betimleyici İstatistik 1 Değişkenler: Kesikli ve Sürekli 1 Verilerin Yuvarlanması Bilimsel Gösterim Anlamlı Rakamlar

Detaylı

1. FARKLILIKLARIN TESPİTİNE YÖNELİK HİPOTEZ TESTLERİ

1. FARKLILIKLARIN TESPİTİNE YÖNELİK HİPOTEZ TESTLERİ 1. FARKLILIKLARIN TESPİTİNE YÖNELİK HİPOTEZ TESTLERİ Örneklem verileri kullanılan her çalışmada bir örneklem hatası çıkma riski her zaman söz konusudur. Dolayısıyla istatistikte bu örneklem hatasının meydana

Detaylı

Hipotez. Hipotez Testleri. Y. Doç. Dr. İbrahim Turan Nisan 2011

Hipotez. Hipotez Testleri. Y. Doç. Dr. İbrahim Turan Nisan 2011 Hipotez Hipotez Testleri Y. Doç. Dr. İbrahim Turan Nisan 2011 Hipotez Nedir? Gözlemlenebilir (araştırılabilir) bir olay, olgu veya fikri mantıklı ve bilimsel olarak açıklamaya yönelik yapılan tahminlerdir.

Detaylı

Hipotez Testi Rehberi. Orhan Çevik İstanbul, 30 Ağustos 2014

Hipotez Testi Rehberi. Orhan Çevik İstanbul, 30 Ağustos 2014 Hipotez Testi Rehberi Orhan Çevik İstanbul, 30 Ağustos 2014 Hipotezler Sıfır Hipotezi: H 0 Aksi kanıtlanmadığı sürece doğru olduğu düşünülen varsayımdır. H 0 ın kanıta ihtiyacı yoktur. H 0 ı ret etmek

Detaylı

Yrd. Doç. Dr. Fatih TOSUNOĞLU Erzurum Teknik Üniversitesi Mühendislik Fakültesi İnşaat Mühendisliği Bölümü

Yrd. Doç. Dr. Fatih TOSUNOĞLU Erzurum Teknik Üniversitesi Mühendislik Fakültesi İnşaat Mühendisliği Bölümü Mühendislikte İstatistiksel Yöntemler Yrd. Doç. Dr. Fatih TOSUNOĞLU Erzurum Teknik Üniversitesi Mühendislik Fakültesi İnşaat Mühendisliği Bölümü 1 Araştırma sonuçlarının açıklanmasında frekans tablosu

Detaylı

Ölçme ve Değerlendirme

Ölçme ve Değerlendirme Ölçme ve Değerlendirme Z Puanı T Puanı Yrd. Doç. Dr. Yetkin Utku KAMUK Standart Puan Herhangi bir ölçüm sonucunda elde edilen ve farklı birimlere sahip ham puanların, standart bir dağılım haline dönüştürülmesi

Detaylı

HİPOTEZ TESTLERİ ANADOLU ÜNİVERSİTESİ. Hipotez Testleri ENM317 Mühendislik İstatistiği Doç. Dr. Nihal ERGİNEL 2014

HİPOTEZ TESTLERİ ANADOLU ÜNİVERSİTESİ. Hipotez Testleri ENM317 Mühendislik İstatistiği Doç. Dr. Nihal ERGİNEL 2014 ANADOLU ÜNİVERSİTESİ Hipotez Testleri ENM317 Mühendislik İstatistiği Doç. Dr. Nihal ERGİNEL 2014 HİPOTEZ TESTLERİ Pek çok problemde bazı parametrelere bağlı bir ifadeyi kabul yada red etmek için karar

Detaylı

İçindekiler. I Varyans Analizi (ANOVA) 1. Önsöz. Simgeler ve Kısaltmalar Dizini

İçindekiler. I Varyans Analizi (ANOVA) 1. Önsöz. Simgeler ve Kısaltmalar Dizini İçindekiler Önsöz Simgeler ve Kısaltmalar Dizini v xv I Varyans Analizi (ANOVA) 1 1 Varyans Analizine Giriş 3 1.1 TemelKavramlar... 3 1.2 Deney Tasarımının Temel İlkeleri... 5 1.2.1 Bloklama... 5 1.2.2

Detaylı

İstatistiksel Yorumlama

İstatistiksel Yorumlama İstatistiksel Yorumlama Amaç, popülasyon hakkında yorumlamalar yapmaktadır. Populasyon Parametre Karar Vermek Örnek İstatistik Tahmin 1 Tahmin Olaylar hakkında tahminlerde bulunmak ve karar vermek zorundayız

Detaylı

KARŞILAŞTIRMA İSTATİSTİĞİ, ANALİTİK YÖNTEMLERİN KARŞILAŞTIRILMASI, BİYOLOJİK DEĞİŞKENLİK. Doç.Dr. Mustafa ALTINIŞIK ADÜTF Biyokimya AD 2005

KARŞILAŞTIRMA İSTATİSTİĞİ, ANALİTİK YÖNTEMLERİN KARŞILAŞTIRILMASI, BİYOLOJİK DEĞİŞKENLİK. Doç.Dr. Mustafa ALTINIŞIK ADÜTF Biyokimya AD 2005 KARŞILAŞTIRMA İSTATİSTİĞİ, ANALİTİK YÖNTEMLERİN KARŞILAŞTIRILMASI, BİYOLOJİK DEĞİŞKENLİK Doç.Dr. Mustafa ALTINIŞIK ADÜTF Biyokimya AD 2005 1 Karşılaştırma istatistiği Temel kavramlar: Örneklem ve evren:

Detaylı

İSTATİSTİK HAFTA. ÖRNEKLEME METOTLARI ve ÖRNEKLEM BÜYÜKLÜĞÜNÜN TESPİTİ

İSTATİSTİK HAFTA. ÖRNEKLEME METOTLARI ve ÖRNEKLEM BÜYÜKLÜĞÜNÜN TESPİTİ ÖRNEKLEME METOTLARI ve ÖRNEKLEM BÜYÜKLÜĞÜNÜN TESPİTİ HEDEFLER Bu üniteyi çalıştıktan sonra; Örneklemenin niçin ve nasıl yapılacağını öğreneceksiniz. Temel Örnekleme metotlarını öğreneceksiniz. Örneklem

Detaylı

H 0 : θ = θ 0 Bu sıfır hipotezi şunu ifade eder: Anakütle parametresi θ belirli bir θ 0

H 0 : θ = θ 0 Bu sıfır hipotezi şunu ifade eder: Anakütle parametresi θ belirli bir θ 0 YTÜ-İktisat İstatistik II Hipotez Testi 1 HİPOTEZ TESTİ: AMAÇ: Örneklem bilgisinden hareketle anakütleye ilişkin olarak kurulan bir hipotezin (önsavın) geçerliliğinin test edilmesi Genel notasyon: anakütleye

Detaylı

BÖLÜM 6 MERKEZDEN DAĞILMA ÖLÇÜLERİ

BÖLÜM 6 MERKEZDEN DAĞILMA ÖLÇÜLERİ 1 BÖLÜM 6 MERKEZDEN DAĞILMA ÖLÇÜLERİ Gözlenen belli bir özelliği, bu özelliğe ilişkin ölçme sonuçlarını yani verileri kullanarak betimleme, istatistiksel işlemlerin bir boyutunu oluşturmaktadır. Temel

Detaylı

8.Hafta. Değişkenlik Ölçüleri. Öğr.Gör.Muhsin ÇELİK. Uygun değişkenlik ölçüsünü hesaplayıp yorumlayabilecek,

8.Hafta. Değişkenlik Ölçüleri. Öğr.Gör.Muhsin ÇELİK. Uygun değişkenlik ölçüsünü hesaplayıp yorumlayabilecek, İSTATİSTİK 8.Hafta Değişkenlik Ölçüleri Hedefler Bu üniteyi çalıştıktan sonra; Uygun değişkenlik ölçüsünü hesaplayıp yorumlayabilecek, Serilerin birbirlerine değişkenliklerini yorumlayabileceksiniz. 2

Detaylı

LAÜ FEN EDEBĐYAT FAKÜLTESĐ PSĐKOLOJĐ BÖLÜMÜ PSK 106 ĐSTATĐSTĐK YÖNTEMLER I BAHAR DÖNEMĐ BÜTÜNLEME SINAVI SORULARI

LAÜ FEN EDEBĐYAT FAKÜLTESĐ PSĐKOLOJĐ BÖLÜMÜ PSK 106 ĐSTATĐSTĐK YÖNTEMLER I BAHAR DÖNEMĐ BÜTÜNLEME SINAVI SORULARI LAÜ FEN EDEBĐYAT FAKÜLTESĐ PSĐKOLOJĐ BÖLÜMÜ PSK 106 ĐSTATĐSTĐK YÖNTEMLER I 2015-2016 BAHAR DÖNEMĐ BÜTÜNLEME SINAVI SORULARI Tarih/Saat/Yer: 24.06.16/11:00-12:30/AS010 Instructor: Prof. Dr. Hüseyin Oğuz

Detaylı

H.Ü. Bilgi ve Belge Yönetimi Bölümü BBY 208 Sosyal Bilimlerde Araştırma Yöntemleri II (Bahar 2012) SPSS Ders Notları III (3 Mayıs 2012)

H.Ü. Bilgi ve Belge Yönetimi Bölümü BBY 208 Sosyal Bilimlerde Araştırma Yöntemleri II (Bahar 2012) SPSS Ders Notları III (3 Mayıs 2012) H.Ü. Bilgi ve Belge Yönetimi Bölümü BBY 208 Sosyal Bilimlerde Araştırma Yöntemleri II (Bahar 2012) Parametrik Olmayan Testler Binom Testi SPSS Ders Notları III (3 Mayıs 2012) Soru 1: Öğrencilerin okul

Detaylı

Student t Testi. Doç. Dr. Ertuğrul ÇOLAK. Eskişehir Osmangazi Üniversitesi Tıp Fakültesi Biyoistatistik Anabilim Dalı

Student t Testi. Doç. Dr. Ertuğrul ÇOLAK. Eskişehir Osmangazi Üniversitesi Tıp Fakültesi Biyoistatistik Anabilim Dalı Student t Testi Doç. Dr. Ertuğrul ÇOLAK Eskişehir Osmangazi Üniversitesi Tıp Fakültesi Biyoistatistik Anabilim Dalı Konu Başlıkları Tek örnek t testi SPSS de tek örnek t testi uygulaması Bağımsız iki örnek

Detaylı

İKİ EŞ ARASINDAKİ FARKIN ÖNEMLİLİK TESTİ. Biyoistatistik (Ders 5: Bağımlı Gruplarda İki Örneklem Testleri) İKİ ÖRNEKLEM TESTLERİ

İKİ EŞ ARASINDAKİ FARKIN ÖNEMLİLİK TESTİ. Biyoistatistik (Ders 5: Bağımlı Gruplarda İki Örneklem Testleri) İKİ ÖRNEKLEM TESTLERİ İKİ ÖRNEKLEM TESTLERİ BAĞIMLI GRUPLARDA İKİ ÖRNEKLEM TESTLERİ Yrd. Doç. Dr. Ünal ERKORKMAZ Sakarya Üniversitesi Tıp Fakültesi Biyoistatistik Anabilim Dalı uerkorkmaz@sakarya.edu.tr İKİ ÖRNEKLEM TESTLERİ

Detaylı

Nicel / Nitel Verilerde Konum ve Değişim Ölçüleri. BBY606 Araştırma Yöntemleri 2013-2014 Bahar Dönemi 13 Mart 2014

Nicel / Nitel Verilerde Konum ve Değişim Ölçüleri. BBY606 Araştırma Yöntemleri 2013-2014 Bahar Dönemi 13 Mart 2014 Nicel / Nitel Verilerde Konum ve Değişim Ölçüleri BBY606 Araştırma Yöntemleri 2013-2014 Bahar Dönemi 13 Mart 2014 1 Konum ölçüleri Merkezi eğilim ölçüleri Verilerin ortalamaya göre olan gruplanması nasıl?

Detaylı

BİLİŞİM TEKNOLOJİLERİ İÇİN İŞLETME İSTATİSTİĞİ

BİLİŞİM TEKNOLOJİLERİ İÇİN İŞLETME İSTATİSTİĞİ SAKARYA ÜNİVERSİTESİ BİLİŞİM TEKNOLOJİLERİ İÇİN İŞLETME İSTATİSTİĞİ Hafta 11 Yrd. Doç. Dr. Halil İbrahim CEBECİ Bu ders içeriğinin basım, yayım ve satış hakları Sakarya Üniversitesi ne aittir. "Uzaktan

Detaylı

SÜREKLĠ OLASILIK DAĞILIMLARI

SÜREKLĠ OLASILIK DAĞILIMLARI SÜREKLĠ OLASILIK DAĞILIMLARI Sayı ekseni üzerindeki tüm noktalarda değer alabilen değişkenler, sürekli değişkenler olarak tanımlanmaktadır. Bu bölümde, sürekli değişkenlere uygun olasılık dağılımları üzerinde

Detaylı

Sürekli Rastsal Değişkenler

Sürekli Rastsal Değişkenler Sürekli Rastsal Değişkenler Normal Dağılım: Giriş Normal Dağılım: Tamamen ortalaması ve standart sapması ile tanımlanan bir rastsal değişken, X, için oluşturulan sürekli olasılık dağılımına normal dağılım

Detaylı

H.Ü. Bilgi ve Belge Yönetimi Bölümü BBY 208 Sosyal Bilimlerde Araştırma Yöntemleri II (Bahar 2012) SPSS DERS NOTLARI I 5 Nisan 2012

H.Ü. Bilgi ve Belge Yönetimi Bölümü BBY 208 Sosyal Bilimlerde Araştırma Yöntemleri II (Bahar 2012) SPSS DERS NOTLARI I 5 Nisan 2012 H.Ü. Bilgi ve Belge Yönetimi Bölümü BBY 208 Sosyal Bilimlerde Araştırma Yöntemleri II (Bahar 2012) SPSS DERS NOTLARI I 5 Nisan 2012 Aşağıdaki analizlerde http://yunus.hacettepe.edu.tr/~tonta/courses/spring2010/bby208/bby208

Detaylı

BÖLÜM 14 BİLGİSAYAR UYGULAMALARI - 3 (ORTALAMALARIN KARŞILAŞTIRILMASI)

BÖLÜM 14 BİLGİSAYAR UYGULAMALARI - 3 (ORTALAMALARIN KARŞILAŞTIRILMASI) 1 BÖLÜM 14 BİLGİSAYAR UYGULAMALARI - 3 (ORTALAMALARIN KARŞILAŞTIRILMASI) Hipotez testi konusunda görüldüğü üzere temel betimleme, sayma ve sınıflama işlemlerine dayalı yöntemlerin ötesinde normal dağılım

Detaylı

0.04.03 Standart Hata İstatistikte hesaplanan her istatistik değerin mutlaka hatası da hesaplanmalıdır. Çünkü hesaplanan istatistikler, tahmini bir değer olduğu için mutlaka hataları da vardır. Standart

Detaylı

GİRİŞ. Bilimsel Araştırma: Bilimsel bilgi elde etme süreci olarak tanımlanabilir.

GİRİŞ. Bilimsel Araştırma: Bilimsel bilgi elde etme süreci olarak tanımlanabilir. VERİ ANALİZİ GİRİŞ Bilimsel Araştırma: Bilimsel bilgi elde etme süreci olarak tanımlanabilir. Bilimsel Bilgi: Kaynağı ve elde edilme süreçleri belli olan bilgidir. Sosyal İlişkiler Görgül Bulgular İşlevsel

Detaylı

Hipotez Testinin Temelleri

Hipotez Testinin Temelleri Hipotez Testleri Hipotez Testinin Temelleri Tanımlar: Hipotez teori, önerme yada birinin araştırdığı bir iddiadır. Boş Hipotez, H 0 popülasyon parametresi ile ilgili şu anda kabul edilen değeri tanımlamaktadır.

Detaylı

Merkezi eğilim ölçüleri ile bir frekans dağılımının merkezi belirlenirken; yayılma ölçüleri ile değişkenliği veya yayılma düzeyini tespit eder.

Merkezi eğilim ölçüleri ile bir frekans dağılımının merkezi belirlenirken; yayılma ölçüleri ile değişkenliği veya yayılma düzeyini tespit eder. Yayılma Ölçütleri Merkezi eğilim ölçüleri ile bir frekans dağılımının merkezi belirlenirken; yayılma ölçüleri ile değişkenliği veya yayılma düzeyini tespit eder. Bir başka ifade ile, bir veri setinin,

Detaylı

ANADOLU ÜNİVERSİTESİ. ENM 317 MÜHENDİSLİK İSTATİSTİĞİ PARAMETRİK OLMAYAN TESTLER Prof. Dr. Nihal ERGİNEL

ANADOLU ÜNİVERSİTESİ. ENM 317 MÜHENDİSLİK İSTATİSTİĞİ PARAMETRİK OLMAYAN TESTLER Prof. Dr. Nihal ERGİNEL ANADOLU ÜNİVERSİTESİ ENM 317 MÜHENDİSLİK İSTATİSTİĞİ PARAMETRİK OLMAYAN TESTLER Prof. Dr. Nihal ERGİNEL PARAMETRİK OLMAYAN TESTLER Daha önce incelediğimiz testler, normal dağılmış ana kütleden örneklerin

Detaylı

TEMEL EĞİTİMDEN ORTAÖĞRETİME GEÇİŞ ORTAK SINAV BAŞARISININ ÇEŞİTLİ DEĞİŞKENLER AÇISINDAN İNCELENMESİ

TEMEL EĞİTİMDEN ORTAÖĞRETİME GEÇİŞ ORTAK SINAV BAŞARISININ ÇEŞİTLİ DEĞİŞKENLER AÇISINDAN İNCELENMESİ T.C. MİLLÎ EĞİTİM BAKANLIĞI ÖLÇME, DEĞERLENDİRME VE SINAV HİZMETLERİ GENEL MÜDÜRLÜĞÜ VERİ ANALİZİ, İZLEME VE DEĞERLENDİRME DAİRE BAŞKANLIĞI TEMEL EĞİTİMDEN ORTAÖĞRETİME GEÇİŞ ORTAK SINAV BAŞARISININ ÇEŞİTLİ

Detaylı

Oluşturulan evren listesinden örnekleme birimlerinin seçkisiz olarak çekilmesidir

Oluşturulan evren listesinden örnekleme birimlerinin seçkisiz olarak çekilmesidir Bilimsel Araştırma Yöntemleri Prof. Dr. Şener Büyüköztürk Doç. Dr. Ebru Kılıç Çakmak Yrd. Doç. Dr. Özcan Erkan Akgün Doç. Dr. Şirin Karadeniz Dr. Funda Demirel Örnekleme Yöntemleri Evren Evren, araştırma

Detaylı

PROBLEM:1. 11 yeni doğan rata günlük 1000 unts/kg epo uygulanmış, kontrol grubuna ise salin uygulanmıştır.

PROBLEM:1. 11 yeni doğan rata günlük 1000 unts/kg epo uygulanmış, kontrol grubuna ise salin uygulanmıştır. PROBLEM:1 Beyinde hipoksik iskemik hasar geliştirilmiş ratlarda recombinant insan eritropoteininin infarkt alanı üzerine ve nöron hücre apopitozisi üzerine etkisi araştırılmaktadır. 11 yeni doğan rata

Detaylı

14 Ekim 2012. Ders Kitabı: Introductory Econometrics: A Modern Approach (2nd ed.) J. Wooldridge. 1 Yıldız Teknik Üniversitesi

14 Ekim 2012. Ders Kitabı: Introductory Econometrics: A Modern Approach (2nd ed.) J. Wooldridge. 1 Yıldız Teknik Üniversitesi ÇOK DEĞİŞKENLİ REGRESYON ANALİZİ: ÇIKARSAMA Hüseyin Taştan 1 1 Yıldız Teknik Üniversitesi İktisat Bölümü Ders Kitabı: Introductory Econometrics: A Modern Approach (2nd ed.) J. Wooldridge 14 Ekim 2012 Ekonometri

Detaylı

BİYOİSTATİSTİK Korelasyon Analizi Yrd. Doç. Dr. Aslı SUNER KARAKÜLAH

BİYOİSTATİSTİK Korelasyon Analizi Yrd. Doç. Dr. Aslı SUNER KARAKÜLAH BİYOİSTATİSTİK Korelasyon Analizi Yrd. Doç. Dr. Aslı SUNER KARAKÜLAH Ege Üniversitesi, Tıp Fakültesi, Biyoistatistik ve Tıbbi Bilişim AD. Web: www.biyoistatistik.med.ege.edu.tr 1 Bir değişkenin değerinin,

Detaylı

Sınavlı ve Sınavsız Geçiş İçin Akademik Bir Karşılaştırma

Sınavlı ve Sınavsız Geçiş İçin Akademik Bir Karşılaştırma Sınavlı ve Sınavsız Geçiş İçin Akademik Bir Karşılaştırma Öğr. Gör. Kenan KARAGÜL, Öğr. Gör. Nigar KARAGÜL, Murat DOĞAN 3 Pamukkale Üniversitesi, Honaz Meslek Yüksek Okulu, Lojistik Programı, kkaragul@pau.edu.tr

Detaylı

ÖRNEK BULGULAR. Tablo 1: Tanımlayıcı özelliklerin dağılımı

ÖRNEK BULGULAR. Tablo 1: Tanımlayıcı özelliklerin dağılımı BULGULAR Çalışma tarihleri arasında Hastanesi Kliniği nde toplam 512 olgu ile gerçekleştirilmiştir. Olguların yaşları 18 ile 28 arasında değişmekte olup ortalama 21,10±1,61 yıldır. Olguların %66,4 ü (n=340)

Detaylı

Faktöriyel: 1'den n'ye kadar olan tüm pozitif tamsayıların çarpımına, biçiminde gösterilir. Aynca; 0! = 1 ve 1!=1 1 dir. [Bunlar kabul değildir,

Faktöriyel: 1'den n'ye kadar olan tüm pozitif tamsayıların çarpımına, biçiminde gösterilir. Aynca; 0! = 1 ve 1!=1 1 dir. [Bunlar kabul değildir, 14. Binom ve Poisson olasılık dağılımları Faktöriyeller ve kombinasyonlar Faktöriyel: 1'den n'ye kadar olan tüm pozitif tamsayıların çarpımına, n! denir ve n! = 1.2.3...(n-2).(n-l).n biçiminde gösterilir.

Detaylı

İstatistik ve Olasılık

İstatistik ve Olasılık İstatistik ve Olasılık KORELASYON ve REGRESYON ANALİZİ Doç. Dr. İrfan KAYMAZ Tanım Bir değişkenin değerinin diğer değişkendeki veya değişkenlerdeki değişimlere bağlı olarak nasıl etkilendiğinin istatistiksel

Detaylı

İŞLETMECİLER İÇİN İSTATİSTİK II UYGULAMA III. Yrd. Doç. Dr. Pembe GÜÇLÜ

İŞLETMECİLER İÇİN İSTATİSTİK II UYGULAMA III. Yrd. Doç. Dr. Pembe GÜÇLÜ İŞLETMECİLER İÇİN İSTATİSTİK II UYGULAMA III Yrd. Doç. Dr. Pembe GÜÇLÜ 2 Yrd. Doç.Dr. Pembe GÜÇLÜ SORU 1. Toplu sözleşme görüşmeleri sırasında bir şirket, yeni bir teşvik planının, üretimdeki bütün işçiler

Detaylı

BİYOİSTATİSTİK DERSLERİ AMAÇ VE HEDEFLERİ

BİYOİSTATİSTİK DERSLERİ AMAÇ VE HEDEFLERİ BİYOİSTATİSTİK DERSLERİ AMAÇ VE HEDEFLERİ DÖNEM I-I. DERS KURULU Konu: Bilimsel yöntem ve istatistik Amaç: Biyoistatistiğin tıptaki önemini kavrar ve sonraki dersler için gerekli terminolojiye hakim olur.

Detaylı

İSTATİSTİKSEL TAHMİNLEME. Örneklem istatistiklerinden hareketle ana kütle parametreleri hakkında genelleme yapmaya istatistiksel tahminleme denir.

İSTATİSTİKSEL TAHMİNLEME. Örneklem istatistiklerinden hareketle ana kütle parametreleri hakkında genelleme yapmaya istatistiksel tahminleme denir. İSTATİSTİKSEL TAHMİNLEME Örneklem istatistiklerinden hareketle ana kütle parametreleri hakkında genelleme yapmaya istatistiksel tahminleme denir. 1 ŞEKİL: Evren uzay-örneklem uzay İstatistiksel tahmin

Detaylı

MIT OpenCourseWare Ekonomide İstatistiksel Yöntemlere Giriş Bahar 2009

MIT OpenCourseWare Ekonomide İstatistiksel Yöntemlere Giriş Bahar 2009 MIT OpenCourseWare http://ocw.mit.edu 14.30 Ekonomide İstatistiksel Yöntemlere Giriş Bahar 2009 Bu materyale atıfta bulunmak ve kullanım koşulları için http://ocw.mit.edu/terms sayfasını ziyaret ediniz.

Detaylı

İLERİ ARAŞTIRMA TEKNİKLERİ ARAŞTIRMA DESENİ RESEARCH DESIGN

İLERİ ARAŞTIRMA TEKNİKLERİ ARAŞTIRMA DESENİ RESEARCH DESIGN İLERİ ARAŞTIRMA TEKNİKLERİ ARAŞTIRMA DESENİ RESEARCH DESIGN 4 Prof. Dr. Mustafa Ergün Araştırma Desenleri (modelleri) Araştırmanın alt problemlerine yanıt aramak veya denenceleri test etmek için yapılan

Detaylı

Korelasyon, Korelasyon Türleri ve Regresyon

Korelasyon, Korelasyon Türleri ve Regresyon Korelasyon, Korelasyon Türleri ve Regresyon İçerik Korelasyon Korelasyon Türleri Korelasyon Katsayısı Regresyon KORELASYON Korelasyon iki ya da daha fazla değişken arasındaki doğrusal ilişkiyi gösterir.

Detaylı