) -3n(k+1) (1) ile verilir.

Ebat: px
Şu sayfadan göstermeyi başlat:

Download ") -3n(k+1) (1) ile verilir."

Transkript

1 FİEDMAN İKİ YÖNLÜ VAYANS ANALİZİ Tekrarlı ölçümlerde tek yönlü varyans analizinin varsayımları yerine gelmediğinde kullanılabilecek olan değiģik parametrik olmayan testler vardır. Freidman iki yönlü varyans analizi bu testler arasında en bilinenidir. Özellikle denek sayısının az ya da verilerin sayımla belirtildiği ya da sıralama ölçeğinde olduğu durumlarda kullanılır. Örnekler. Tekrarlı ölçümlerde tek yönlü varyans analizi için verilen örnekler, denek sayılarının az, verilerin sayımla belirtildiği vb. durumlarda Freidman iki yönlü varyans analizi ile karģılaģtırılabilir.. BESYO ya kaydı yapılan öğrencilerin hangi spor branģına ilgi duyduğunu belirlemek amacıyla, öğrencilerden verilen 5 branģı; en ilgi duydukları branģ için, hiç ilgi duymadıkları branģ için 5 olacak Ģekilde numaralamaları isteniyor. Örnek tablo aģağıdadır. Öğrenciler belli bir branģa eğilim göstermekte midir? Ģeklindeki bir soru Friedman iki yönlü varyans analizi ile araģtırılabilir. SPO BANŞI Öğrenci A B C D E N Friedman testinde, F yada Ki-kare ( ) test istatistiklerinden biri yardımıyla çözüme ulaģabilir. Burada, her iki yaklaģıma iliģkin formüller de verilecektir. Gruplar arasındaki farkın anlamlı olduğu durumlarda, hangi gruplar arasında fark olduğunu anlamak amacıyla yapılacak ikili karģılaģtırmalar için, F değerinin bulunmasında kullanılan iki istatistik yardımıyla elde edilen güven aralıklarından yararlanılacaktır. F ya da Ki-kare istatistiklerinden birini bulabilmek için Tablo daki verileri dikkate alalım. Önce her bir satırdaki gözlemlere den baģlayarak küçükten büyüğe doğru (aynı değeri alan gözlemler de dikkate alınarak) sıra numarası verilir. Daha sonra her bir gruba (sütuna) iliģkin sıra numaraları ve sıra numaralarının kareleri toplanarak test istatistiğinin elde etmekte kullanılır. a. Friedman için test istatistiği ; = n. k( K ) k j ( j ) -3n(k+) () ile verilir. Burada, n : Satır sayısı k : Grup (sütun) sayısı Prof.Dr.Ömer SATICI Dicle Üniversitesi Tıp Fakültesi Biyoistatistik Anabilim Dalı -

2 j : er bir gruba (sütuna) iliģkin sıra numaraları toplamıdır. Ġstatistiksel karar için, hesapla bulunan tablo değerleri (EK Tablo 9) ile karģılaģtırılır b. Friedman için F istatistiği Friedman çift yönlü varyans analizi için F istatistiği; değeri, n ve k nın küçük değerleri için geliģtirilen F= ( n )[ B A n. k( k ) / 4] B ( ) ile verilir. Burada, n : Satır sayısı k : Grup (sütun) sayısı A : Sıra numaralarının kareleri toplamı Benzer gözlemlerin olmadığı durumlarda A değeri kısa yoldan A =nk(k+) (k+) /6 (3) yardımıyla bulanabilir. B : B = k n j ( j ) (4) dir. Ġstatistiksel karar için, hesapla bulunan F istatistiği, seçilen α yanılma düzeyindeki k k ve k = (n-) (k-) serbestlik dereceli F tablo istatistiği ile karıģtırılır. F tablosunda k e soldan sağa, k ye yukarıdan aģağıya doğru bakılır. ĠKĠġELĠ KAġILAġTIMALA F F ise hipotezi reddedilir. Test sonucunda gruplar arasında fark varsa, farklılığın hangi gruplar arasında olduğu aģağıdaki yaklaģım yardımıyla araģtırılabilir. Buna göre ; T > t i j n( A B ) ( n )( k ) (5) ise karģılaģtırılan gruplar arasındaki farkın anlamlı olduğu söylenir. (5) de ki t değeri ; (n-)(k-) serbestlik dereceli ve çift yönlü t tablo istatistiğidir. Örnek : sporcunun vücut yağ yüzdeleri 3 farklı yöntemle ölçülmüģtür.. Su altında tartılama,. Toplam vücut suyu, 3. Potasyum 4. Vücut yağ yüzdesi ölçüm yöntemleri arasında fark var mıdır? Aynı sporcuların vücut yağ yüzdeleri 3 farklı yöntemle elde edilmektedir. Gruplar bağımlıdır. Veri ölçümle belirtilmekle birlikte kişi sayısı azdır. Prof.Dr.Ömer SATICI Dicle Üniversitesi Tıp Fakültesi Biyoistatistik Anabilim Dalı -

3 sporcunun vücut yağ yüzdeleri ve her sporcunun 3 yönteme göre aldığı değerlerin sıra numaraları (rankları) Tablo 7.8 de verilmiģtir. Ġlk sporcu en küçük yağ yüzdesini 3 üncü yöntemden, en büyük yağ yüzdesini inci yöntemden aldığı için sıra numaraları; 3 üncü yöntem için, nci yöntem için ve 3 üncü yöntem için 3 olacaktır. Ġkinci sporcuya iliģkin verilerde 9.8 iki kez tekrarlandığı için, tekrarlanan gözlemlere iliģkin sıra numaraları toplamının yarısı yeni sıra numarası olarak verilir. er bir yöntem için sıra numaraları toplamları ( ), tablonun en alt satırında verilmiģtir. Tablo Farklı Yöntemle Elde Edilen Vücut Yağ Yüzde Ölçümleri ve Sıra Numaraları Yağ % Ölçüm Yöntemleri Sıra Numaraları SPOCU 3 () () (3) Toplam j Tablo de görüldüğü gibi, verilerde tekrarlanan gözlemler vardır. Bu nedenle, F değerinin bulunmasında kullanılacak olan A, her bir sıra numarasının karesi alınarak elde edilir; A = =67.5. B ise (7.44) den ; B = [( 8 ) (.5) (.5) ]=46.47 olarak bulunur. Bu bilgiler çerçevesinde test süreci aģağıdaki gibidir.. : Vücut yağ yüzdeleri açısından üç yöntem arasında fark yoktur. :Üç yöntem arasında fark vardır.. Test istatistiği, (7.4) yardımıyla, [( 8 ) (.5) (.5) ]-3 () (3+)=.46 olarak bulunur. ()(3)(3 ) 3. Yanılma düzeyi olarak α=.5 alınmıģtır. Gözlem sayısı oldukça azdır. Bu nedenle hesapla bulunan test istatistiği Ek Tablo 9 da verilen tablo istatistiği ile karģılaģtırılır. Ek Tablo 9 da n= ve K=3 serbestlik dereceli tablo istatistiği α=.5 için 6.3 olarak bulunur. Prof.Dr.Ömer SATICI Dicle Üniversitesi Tıp Fakültesi Biyoistatistik Anabilim Dalı -

4 4. Ġstatistiksel karar: =.46 < 6.5 olduğu için hipotezi kabul edilir ve vücut yağ yüzdesini kestirmekte kullanılan üç yöntem arasında anlamlı bir fark olmadığı söylenir. (P>.5). Aynı sonu F dağılımı yardımı ile de çözebiliriz. Buna göre F değeri (7.4) yardımıyla ; ( )[ () (3) (3 ) / 4] F=. 466 olarak bulunur. esapla bulunan F değeri k k 3 ve k = (n-) (k-)= (-) (3-) = serbestlik dereceli F tablo istatistiği ile karģılaģtırılır. F.466 FT (.5;,) =3.44 olduğu için hipotezi kabul edilir. Friedman iki yönl Varyans analizi verilerin doğrudan rank olarak elde edildiği çalıģmalarda da sık sık kullanılır. Buna iliģkin bir örnek aģağıda verilmiģtir. Örnek: Beden Eğitimi ve Spor Yüksek Okulu.sınıf öğrencisinden, aģağıda belirtilen 5 çalıģma alanını; en çok istedikleri alan, h,ç istemedikleri alan 5 olacak Ģekilde sıralamaları istenmiģtir. Acaba, öğrencilerin çalıģma alanı tercihlerinde belirgin bir eğilim var mıdır? A: Özel bir spor kompleksinde yönetici olarak çalıģmak B:Antrenör olarak çalıģmak C:Beden eğitimi ve spor öğretmeni olarak çalıģmak D:Üniversitede öğretim elemanı olarak çalıģmak E:Sporla ilgili olmayan bir konuda çalıģmak ÇalıĢma sonunda elde edilen sonuçlar aģağıdadır..sınıf öğrencilerinin çalıģma alanı tercihleri TECĠLE ÖĞENCĠ A B C D E TOPLAM Prof.Dr.Ömer SATICI Dicle Üniversitesi Tıp Fakültesi Biyoistatistik Anabilim Dalı -

5 Gruplar arasında fark olup olmadığı F dağılımı yardımıyla yapılacaktır. Buna göre, A ve B değerleri aģağıdaki gibi olacaktır. Sıra numaraları dağılımında tekrarlayan gözlemler olmadığı için A değeri (7.43) yardımıyla, A =() (5) (5+) ((5)+) /6=55 olarak bulunur. B değeri ise (7.44) yardımıyla, B = ( ) =5. olarak bulunur. Bu bilgiler yardımıyla test süreci aģağıda verilmiģtir.. : Öğrencilerin okul bitirme sonrası çalıģma alanı tercihleri birbirine benzerdir. : Öğrencilerin okul bitirme sonrası çalıģma alanı tercihleri birbirine benzer değildir.. Test istatistiği (7.4) yardımıyla, ( )[5. - () (5) (5 ) / 4] F= olarak bulunur. 3. Yanılma düzeyi olarak α=.5 alınmıģtır. Gerekli F tablo istatistiği F. 6 T (.5;4,36) olarak bulunur. (not: ki-kare test istatistiği 4.88 olarak bulunur) 4. Ġstatistiksel karar: F =4.895> F T (.5;4,36). 6 olduğu için hipotezi reddedilir. Buna göre.sınıf öğrencilerin tercihleri farklı Ģekilde ortaya çıkmaktadır en tercih edilen seçenek, öğrencilerin ileride öğretim üyesi olmak istemeleridir. ĠKĠġELĠ KAġILAġTIMALA Gruplar arasında fark bulunduğu için, farklılığın hangi gruplar arasında olduğu araģtırılır. Bu amaçla, (7.45) eģitsizliğinin sağ tarafı bulunur. (7.45) deki t değeri ; (-) (5- )=36 serbestlik dereceli ve α=.5 için çift yönlü t tablo istatistiği olup t. olarak bulunur. Buradan eģitsizliğin sağ tarafı; T (.5;36). ()(55 5.) ( )(5 ) =9.6 Olarak bulunur. Buna göre sıra numaraları toplamı farkları 9.6 den daha büyük olan gruplar arasında fark olduğu söylenir. Örneğimiz için grup sıra toplamlarına iliģkin farklar ve anlamlı olup olmadıkları aģağıdaki tabloda gösterilmiģtir. Prof.Dr.Ömer SATICI Dicle Üniversitesi Tıp Fakültesi Biyoistatistik Anabilim Dalı -

6 Farklara ĠliĢkin KarĢılaĢtırmalar GUPLA i j P A-B -4 =9 >9.6 <.5 A-C -6 =5 <9.6 >.5 A-D -7 =4 <9.6 >.5 A-E -46 =5 >9.6 <.5 B-C 4-6 =4 >9.6 <.5 B-D 4-7 =3 >9.6 <.5 B-E 4-46 =6 <9.6 >.5 C-D 6-7 =9 <9.6 >.5 C-E 6-46 = >9.6 <.5 D-E 7-46 =9 >9.6 <.5 KAYNAK: EA ALPA Ġstatistik ve Spor Bilimleri BAĞIGAN YAYN EVĠ MAYIS 998 ANKAA Prof.Dr.Ömer SATICI Dicle Üniversitesi Tıp Fakültesi Biyoistatistik Anabilim Dalı -

ĠKĠ ÖRNEKLEM TESTLERĠ

ĠKĠ ÖRNEKLEM TESTLERĠ ĠKĠ ÖRNEKLEM TESTLERĠ BAĞIMSIZ GRUPLARDA İKİ ÖRNEKLEM TESTLERİ 1. ĠKĠ ORTALAMA ARASINDAKĠ FARKIN ÖNEMLĠLĠK TESTĠ. MANN-WHITNEY U TESTĠ 3. ĠKĠ YÜZDE ARASINDAKĠ FARKIN ÖNEMLĠLĠK TESTĠ 4. x KĠ-KARE TESTLERĠ

Detaylı

MATE 211 BİYOİSTATİSTİK İKİ FARKIN ÖNEMLİLİK TESTİ VE İKİ EŞ ARASINDAKİ FARKIN ÖNEMLİLİK TEST SORULARI

MATE 211 BİYOİSTATİSTİK İKİ FARKIN ÖNEMLİLİK TESTİ VE İKİ EŞ ARASINDAKİ FARKIN ÖNEMLİLİK TEST SORULARI MATE 211 BİYOİSTATİSTİK İKİ FARKIN ÖNEMLİLİK TESTİ VE İKİ EŞ ARASINDAKİ FARKIN ÖNEMLİLİK TEST SORULARI 1. Doğum sırasının çocuğun zeka düzeyini etkileyip etkilemediğini araştıran bir araştırmacı çocuklar

Detaylı

İKİ EŞ ARASINDAKİ FARKIN ÖNEMLİLİK TESTİ. Biyoistatistik (Ders 5: Bağımlı Gruplarda İki Örneklem Testleri) İKİ ÖRNEKLEM TESTLERİ

İKİ EŞ ARASINDAKİ FARKIN ÖNEMLİLİK TESTİ. Biyoistatistik (Ders 5: Bağımlı Gruplarda İki Örneklem Testleri) İKİ ÖRNEKLEM TESTLERİ İKİ ÖRNEKLEM TESTLERİ BAĞIMLI GRUPLARDA İKİ ÖRNEKLEM TESTLERİ Yrd. Doç. Dr. Ünal ERKORKMAZ Sakarya Üniversitesi Tıp Fakültesi Biyoistatistik Anabilim Dalı uerkorkmaz@sakarya.edu.tr İKİ ÖRNEKLEM TESTLERİ

Detaylı

NORMAL DAĞILIM VE ÖNEMLİLİK TESTLERİ İLE İLGİLİ PROBLEMLER

NORMAL DAĞILIM VE ÖNEMLİLİK TESTLERİ İLE İLGİLİ PROBLEMLER NORMAL DAĞILIM VE ÖNEMLİLİK TESTLERİ İLE İLGİLİ PROBLEMLER A) Normal Dağılım ile İlgili Sorular Sayfa /4 Hamileler ile ilgili bir araştırmada, bu grubun hemoglobin değerlerinin normal dağılım gösterdiği

Detaylı

MATE 211 BİYOİSTATİSTİK DÖNEM SONU SINAVI

MATE 211 BİYOİSTATİSTİK DÖNEM SONU SINAVI Öğrenci Bilgileri Ad Soyad: İmza: MATE 211 BİYOİSTATİSTİK DÖNEM SONU SINAVI 26 Mayıs, 2014 Numara: Grup: Soru Bölüm 1 10 11 12 TOPLAM Numarası (1-9) Ağırlık 45 15 30 20 110 Alınan Puan Yönerge 1. Bu sınavda

Detaylı

Varyans Analizi (ANOVA) Kruskal-Wallis H Testi. Doç. Dr. Ertuğrul ÇOLAK. Eskişehir Osmangazi Üniversitesi Tıp Fakültesi Biyoistatistik Anabilim Dalı

Varyans Analizi (ANOVA) Kruskal-Wallis H Testi. Doç. Dr. Ertuğrul ÇOLAK. Eskişehir Osmangazi Üniversitesi Tıp Fakültesi Biyoistatistik Anabilim Dalı Varyans Analizi (ANOVA) Kruskal-Wallis H Testi Doç. Dr. Ertuğrul ÇOLAK Eskişehir Osmangazi Üniversitesi Tıp Fakültesi Biyoistatistik Anabilim Dalı Konu Başlıkları Tek Yönlü Varyans Analizi SPSS de Tek

Detaylı

Parametrik Olmayan Testler. İşaret Testi-The Sign Test Mann-Whiney U Testi Wilcoxon Testi Kruskal-Wallis Testi

Parametrik Olmayan Testler. İşaret Testi-The Sign Test Mann-Whiney U Testi Wilcoxon Testi Kruskal-Wallis Testi Yrd. Doç. Dr. Neşet Demirci, Balıkesir Üniversitesi NEF Fizik Eğitimi Parametrik Olmayan Testler İşaret Testi-The Sign Test Mann-Whiney U Testi Wilcoxon Testi Kruskal-Wallis Testi Rank Korelasyon Parametrik

Detaylı

Çoğu araştırmada seçilen örnekler araştırmanın yapısı gereği birbirinden bağımsız olmayabilir.

Çoğu araştırmada seçilen örnekler araştırmanın yapısı gereği birbirinden bağımsız olmayabilir. Bağımlı Örneklerde Ki-Kare testi -- Mc Nemar Testi Çoğu araştırmada seçilen örnekler araştırmanın yapısı gereği birbirinden bağımsız olmayabilir. Örnek: Sigara içmeyle ilgili bir çalışmada, kişilere sigarayı

Detaylı

İstatistik Yöntemleri ve Hipotez Testleri

İstatistik Yöntemleri ve Hipotez Testleri Sağlık Araştırmalarında Kullanılan Temel İstatistik Yöntemleri ve Hipotez Testleri Yrd. Doç. Dr. Emre ATILGAN BİYOİSTATİSTİK İstatistiğin biyoloji, tıp ve diğer sağlık bilimlerinde kullanımı biyoistatistik

Detaylı

Tanımlayıcı İstatistikler. Yrd. Doç. Dr. Emre ATILGAN

Tanımlayıcı İstatistikler. Yrd. Doç. Dr. Emre ATILGAN Tanımlayıcı İstatistikler Yrd. Doç. Dr. Emre ATILGAN 1 Tanımlayıcı İstatistikler Yer Gösteren Ölçüler Yaygınlık Ölçüleri Merkezi Eğilim Ölçüleri Konum Ölçüleri 2 3 Aritmetik Ortalama Aritmetik ortalama,

Detaylı

BÖLÜM-1.BİLİM NEDİR? Tanımı...1 Bilimselliğin Ölçütleri...2 Bilimin İşlevleri...3

BÖLÜM-1.BİLİM NEDİR? Tanımı...1 Bilimselliğin Ölçütleri...2 Bilimin İşlevleri...3 KİTABIN İÇİNDEKİLER BÖLÜM-1.BİLİM NEDİR? Tanımı...1 Bilimselliğin Ölçütleri...2 Bilimin İşlevleri...3 BÖLÜM-2.BİLİMSEL ARAŞTIRMA Belgesel Araştırmalar...7 Görgül Araştırmalar Tarama Tipi Araştırma...8

Detaylı

Kullanılacak İstatistikleri Belirleme Ölçütleri. Değişkenin Ölçek Türü ya da Yapısı

Kullanılacak İstatistikleri Belirleme Ölçütleri. Değişkenin Ölçek Türü ya da Yapısı ARAŞTIRMA MODELLİLERİNDE KULLANILACAK İSTATİSTİKLERİ BELİRLEME ÖLÇÜTLERİ Parametrik mi Parametrik Olmayan mı? Kullanılacak İstatistikleri Belirleme Ölçütleri Değişken Sayısı Tek değişkenli (X) İki değişkenli

Detaylı

ÖLÇME VE DEĞERLENDİRME. Antrenörlük Eğitimi 4. Sınıf. Ölçme ve Değerlendirme - Yrd. Doç. Dr. Yetkin Utku KAMUK

ÖLÇME VE DEĞERLENDİRME. Antrenörlük Eğitimi 4. Sınıf. Ölçme ve Değerlendirme - Yrd. Doç. Dr. Yetkin Utku KAMUK ÖLÇME VE DEĞERLENDİRME Antrenörlük Eğitimi 4. Sınıf ÖLÇME VE DEĞERLENDİRME Merkezi Eğilim Ölçütleri Mod En çok görülen puandır ve hesaplanma yöntemi yoktur. İnceleme yolu ile bulunur. Terminal istatistiktir.

Detaylı

İÇİNDEKİLER. BÖLÜM 1 Değişkenler ve Grafikler 1. BÖLÜM 2 Frekans Dağılımları 37

İÇİNDEKİLER. BÖLÜM 1 Değişkenler ve Grafikler 1. BÖLÜM 2 Frekans Dağılımları 37 İÇİNDEKİLER BÖLÜM 1 Değişkenler ve Grafikler 1 İstatistik 1 Yığın ve Örnek; Tümevarımcı ve Betimleyici İstatistik 1 Değişkenler: Kesikli ve Sürekli 1 Verilerin Yuvarlanması Bilimsel Gösterim Anlamlı Rakamlar

Detaylı

SPSS E GİRİŞ SPSS TE TEMEL İŞLEMLER. Abdullah Can

SPSS E GİRİŞ SPSS TE TEMEL İŞLEMLER. Abdullah Can SPSS E GİRİŞ SPSS TE TEMEL İŞLEMLER SPSS in üzerinde işlem yapılabilecek iki ana ekran görünümü vardır. DATA VIEW (VERİ görünümü) VARIABLE VIEW (DEĞİŞKEN görünümü) 1 DATA VIEW (VERİ görünümü) İstatistiksel

Detaylı

İçindekiler. I Varyans Analizi (ANOVA) 1. Önsöz. Simgeler ve Kısaltmalar Dizini

İçindekiler. I Varyans Analizi (ANOVA) 1. Önsöz. Simgeler ve Kısaltmalar Dizini İçindekiler Önsöz Simgeler ve Kısaltmalar Dizini v xv I Varyans Analizi (ANOVA) 1 1 Varyans Analizine Giriş 3 1.1 TemelKavramlar... 3 1.2 Deney Tasarımının Temel İlkeleri... 5 1.2.1 Bloklama... 5 1.2.2

Detaylı

3 KESİKLİ RASSAL DEĞİŞKENLER VE OLASILIK DAĞILIMLARI

3 KESİKLİ RASSAL DEĞİŞKENLER VE OLASILIK DAĞILIMLARI ÖNSÖZ İÇİNDEKİLER III Bölüm 1 İSTATİSTİK ve SAYISAL BİLGİ 11 1.1 İstatistik ve Önemi 12 1.2 İstatistikte Temel Kavramlar 14 1.3 İstatistiğin Amacı 15 1.4 Veri Türleri 15 1.5 Veri Ölçüm Düzeyleri 16 1.6

Detaylı

Sosyal Bilimler İçin Veri Analizi El Kitabı

Sosyal Bilimler İçin Veri Analizi El Kitabı 292 Dicle Üniversitesi Ziya Gökalp Eğitim Fakültesi Dergisi, 18 (2012) 292-297 KİTAP İNCELEMESİ Sosyal Bilimler İçin Veri Analizi El Kitabı Editör Doç. Dr. Şener BÜYÜKÖZTÜRK Dilek SEZGİN MEMNUN 1 Bu çalışmada,

Detaylı

TANIMLAYICI İSTATİSTİKLER

TANIMLAYICI İSTATİSTİKLER TANIMLAYICI İSTATİSTİKLER Tanımlayıcı İstatistikler ve Grafikle Gösterim Grafik ve bir ölçüde tablolar değişkenlerin görsel bir özetini verirler. İdeal olarak burada değişkenlerin merkezi (ortalama) değerlerinin

Detaylı

Merkezi Eğilim ve Dağılım Ölçüleri

Merkezi Eğilim ve Dağılım Ölçüleri Merkezi Eğilim ve Dağılım Ölçüleri Soru Öğrencilerin derse katılım düzeylerini ölçmek amacıyla geliştirilen 16 soruluk bir test için öğrencilerin ilk 8 ve son 8 soruluk yarılardan aldıkları puanlar arasındaki

Detaylı

Ki-Kare Bağımsızlık Analizi

Ki-Kare Bağımsızlık Analizi Ki-Kare Bağımsızlık Analizi Dr. Ertuğrul ÇOLAK Eskişehir Osmangazi Üniversitesi Tıp Fakültesi Biyoistatistik Anabilim Dalı Ki-Kare Bağımsızlık Analizi Kikare bağımsızlık analizi, isimsel ya da sıralı ölçekli

Detaylı

H.Ü. Bilgi ve Belge Yönetimi Bölümü BBY 208 Sosyal Bilimlerde Araştırma Yöntemleri II (Bahar 2012) SPSS Ders Notları II (19 Nisan 2012)

H.Ü. Bilgi ve Belge Yönetimi Bölümü BBY 208 Sosyal Bilimlerde Araştırma Yöntemleri II (Bahar 2012) SPSS Ders Notları II (19 Nisan 2012) H.Ü. Bilgi ve Belge Yönetimi Bölümü BBY 208 Sosyal Bilimlerde Araştırma Yöntemleri II (Bahar 2012) SPSS Ders Notları II (19 Nisan 2012) Aşağıdaki analizlerde lise öğrencileri veri dosyası kullanılmıştır.

Detaylı

EĞĠTĠM TEKNOLOLOJĠLERĠ ARAġTIRMALARI DERGĠSĠ

EĞĠTĠM TEKNOLOLOJĠLERĠ ARAġTIRMALARI DERGĠSĠ EĞĠTĠM TEKNOLOLOJĠLERĠ ARAġTIRMALARI DERGĠSĠ EĞĠTĠM TEKNOLOLOJĠLERĠ ARAġTIRMALARI DERGĠSĠ MAKALE YAZIM KURALLARI Versiyon 2 ETAD 2009 1 E T A D W W W. ET- AD. N E T ĠÇĠNDEKĠLER 1. GĠRĠġ... 1 2. MAKALE

Detaylı

RASSAL DEĞİŞKENLER VE OLASILIK DAĞILIMLARI. Yrd. Doç. Dr. Emre ATILGAN

RASSAL DEĞİŞKENLER VE OLASILIK DAĞILIMLARI. Yrd. Doç. Dr. Emre ATILGAN RASSAL DEĞİŞKENLER VE OLASILIK DAĞILIMLARI Yrd. Doç. Dr. Emre ATILGAN 1 RASSAL DEĞİŞKENLER VE OLASILIK DAĞILIMLARI Olasılığa ilişkin olayların çoğunluğunda, deneme sonuçlarının bir veya birkaç yönden incelenmesi

Detaylı

1. FARKLILIKLARIN TESPİTİNE YÖNELİK HİPOTEZ TESTLERİ

1. FARKLILIKLARIN TESPİTİNE YÖNELİK HİPOTEZ TESTLERİ 1. FARKLILIKLARIN TESPİTİNE YÖNELİK HİPOTEZ TESTLERİ Örneklem verileri kullanılan her çalışmada bir örneklem hatası çıkma riski her zaman söz konusudur. Dolayısıyla istatistikte bu örneklem hatasının meydana

Detaylı

H.Ü. Bilgi ve Belge Yönetimi Bölümü BBY 208 Sosyal Bilimlerde Araştırma Yöntemleri II (Bahar 2012) SPSS Ders Notları III (3 Mayıs 2012)

H.Ü. Bilgi ve Belge Yönetimi Bölümü BBY 208 Sosyal Bilimlerde Araştırma Yöntemleri II (Bahar 2012) SPSS Ders Notları III (3 Mayıs 2012) H.Ü. Bilgi ve Belge Yönetimi Bölümü BBY 208 Sosyal Bilimlerde Araştırma Yöntemleri II (Bahar 2012) Parametrik Olmayan Testler Binom Testi SPSS Ders Notları III (3 Mayıs 2012) Soru 1: Öğrencilerin okul

Detaylı

AMAÇ: Araştırma planlamasında kullanılan basamakları öğrencilerin tanımlayabilmesini sağlamaktır.

AMAÇ: Araştırma planlamasında kullanılan basamakları öğrencilerin tanımlayabilmesini sağlamaktır. Örnek Hacmi ve Örnekleme Yöntemleri 7.01.014 P.Tesi İstatistik Dergisi; n den N ye Gezinti Yıl:, Sayı:8 Eylül-Ekim 01 deki bir yazıda: Depresyon, dünya çapında milyonlarca insanı etkileyen son derece yaygın

Detaylı

Parametrik Olmayan Testler 2. Wilcoxon ve Kruskal-Wallis Testleri

Parametrik Olmayan Testler 2. Wilcoxon ve Kruskal-Wallis Testleri Parametrik Olmayan Testler 2 Wilcoxon ve Kruskal-Wallis Testleri İki Bağımlı Örneklemin Karşılaştırılması (Wilcoxon Bağımlı Örneklemler İşaretli Sıralamalar Testi) (Wilcoxon Matched-Samples Signed Ranks

Detaylı

Frekans. Hemoglobin Düzeyi

Frekans. Hemoglobin Düzeyi GRUPLARARASI VE GRUPİÇİ KARŞILAŞTIRMA YÖNTEMLERİ Uzm. Derya ÖZTUNA Yrd. Doç. Dr. Atilla Halil ELHAN 1. ÖNEMLİLİK (HİPOTEZ) TESTLERİ Önemlilik testleri, araştırma sonucunda elde edilen değerlerin ya da

Detaylı

MAK 210 SAYISAL ANALİZ

MAK 210 SAYISAL ANALİZ MAK 210 SAYISAL ANALİZ BÖLÜM 6- İSTATİSTİK VE REGRESYON ANALİZİ Doç. Dr. Ali Rıza YILDIZ 1 İSTATİSTİK VE REGRESYON ANALİZİ Bütün noktalardan geçen bir denklem bulmak yerine noktaları temsil eden, yani

Detaylı

Tekrarlı Ölçümler ANOVA

Tekrarlı Ölçümler ANOVA Tekrarlı Ölçümler ANOVA Repeated Measures ANOVA Aynı veya ilişkili örneklemlerin tekrarlı ölçümlerinin ortalamalarının aynı olup olmadığını test eder. Farklı zamanlardaki ölçümlerde aynı (ilişkili) kişiler

Detaylı

Grafik üzerindeki bilgiler özetlenmiştir. Veriler arasındaki ilişkiler görünür haldedir.

Grafik üzerindeki bilgiler özetlenmiştir. Veriler arasındaki ilişkiler görünür haldedir. GRAFİK VE İSTATİSTİK Grafikler,verileri görsel hale getirerek,veriler üzerinde daha kolay işlem yapılmasına ve elde edilen sonuçları değerlendirerek üzerinde tahmin yapılmasına olanak sağlar. Grafik üzerindeki

Detaylı

Student t Testi. Doç. Dr. Ertuğrul ÇOLAK. Eskişehir Osmangazi Üniversitesi Tıp Fakültesi Biyoistatistik Anabilim Dalı

Student t Testi. Doç. Dr. Ertuğrul ÇOLAK. Eskişehir Osmangazi Üniversitesi Tıp Fakültesi Biyoistatistik Anabilim Dalı Student t Testi Doç. Dr. Ertuğrul ÇOLAK Eskişehir Osmangazi Üniversitesi Tıp Fakültesi Biyoistatistik Anabilim Dalı Konu Başlıkları Tek örnek t testi SPSS de tek örnek t testi uygulaması Bağımsız iki örnek

Detaylı

İki ortalama arasındaki farkın önemlilik testi

İki ortalama arasındaki farkın önemlilik testi Örnek: Kalple ilgili bir çalışmada 5 yaşındaki 4 erkek ve 40 yaşındaki 30 erkeğin sistolik kan basınçları ölçülmüştür. Elde edilen verilere göre 0.05 anlamlılık düzeyinde yaşlı erkeklerin genç erkeklere

Detaylı

Mühendislikte İstatistik Yöntemler

Mühendislikte İstatistik Yöntemler .0.0 Mühendislikte İstatistik Yöntemler İstatistik Parametreler Tarih Qma.3.98 4..98 0.3.983 45 7..984 37.3.985 48 0.4.986 67.4.987 5 0.3.988 45.5.989 34.3.990 59.4.99 3 4 34 5 37 6 45 7 45 8 48 9 5 0

Detaylı

İstatistik ve Olasılığa Giriş. İstatistik ve Olasılığa Giriş. Ders 3 Verileri Sayısal Ölçütlerle İfade Etme. Verileri Sayısal Ölçütlerle İfade Etme

İstatistik ve Olasılığa Giriş. İstatistik ve Olasılığa Giriş. Ders 3 Verileri Sayısal Ölçütlerle İfade Etme. Verileri Sayısal Ölçütlerle İfade Etme İstatistik ve Olasılığa Giriş Robert J. Beaver Barbara M. Beaver William Mendenhall Presentation designed and written by: Barbara M. Beaver İstatistik ve Olasılığa Giriş Ders 3 Verileri Sayısal Ölçütlerle

Detaylı

TAŞINMAZ DEĞERLEMEDE İSTATİSTİKSEL ANALİZ

TAŞINMAZ DEĞERLEMEDE İSTATİSTİKSEL ANALİZ Taşınmaz Değerlemede İstatistiksel Analiz Taşınmaz Değerleme ve Geliştirme Tezsiz Yüksek Lisans Programı TAŞINMAZ DEĞERLEMEDE İSTATİSTİKSEL ANALİZ 1 Taşınmaz Değerlemede İstatistiksel Analiz İçindekiler

Detaylı

H.Ü. Bilgi ve Belge Yönetimi Bölümü BBY 208 Sosyal Bilimlerde Araştırma Yöntemleri II (Bahar 2012) SPSS DERS NOTLARI I 5 Nisan 2012

H.Ü. Bilgi ve Belge Yönetimi Bölümü BBY 208 Sosyal Bilimlerde Araştırma Yöntemleri II (Bahar 2012) SPSS DERS NOTLARI I 5 Nisan 2012 H.Ü. Bilgi ve Belge Yönetimi Bölümü BBY 208 Sosyal Bilimlerde Araştırma Yöntemleri II (Bahar 2012) SPSS DERS NOTLARI I 5 Nisan 2012 Aşağıdaki analizlerde http://yunus.hacettepe.edu.tr/~tonta/courses/spring2010/bby208/bby208

Detaylı

KARŞILAŞTIRMA İSTATİSTİĞİ, ANALİTİK YÖNTEMLERİN KARŞILAŞTIRILMASI, BİYOLOJİK DEĞİŞKENLİK. Doç.Dr. Mustafa ALTINIŞIK ADÜTF Biyokimya AD 2005

KARŞILAŞTIRMA İSTATİSTİĞİ, ANALİTİK YÖNTEMLERİN KARŞILAŞTIRILMASI, BİYOLOJİK DEĞİŞKENLİK. Doç.Dr. Mustafa ALTINIŞIK ADÜTF Biyokimya AD 2005 KARŞILAŞTIRMA İSTATİSTİĞİ, ANALİTİK YÖNTEMLERİN KARŞILAŞTIRILMASI, BİYOLOJİK DEĞİŞKENLİK Doç.Dr. Mustafa ALTINIŞIK ADÜTF Biyokimya AD 2005 1 Karşılaştırma istatistiği Temel kavramlar: Örneklem ve evren:

Detaylı

ÇANAKKALE ONSEKİZ MART ÜNİVERSİTESİ TIP FAKÜLTESİ

ÇANAKKALE ONSEKİZ MART ÜNİVERSİTESİ TIP FAKÜLTESİ Dönem V SPSS İLE TEMEL BİYOİSTATİSTİK UYGULAMALARI Seçmeli Staj Eğitim Programı (08 19 Haziran 2015) Eğitim Başkoordinatörü: Doç. Dr. Erkan Melih ŞAHİN Dönem Koordinatörü: Yrd. Doç. Dr. Baran GENCER Koordinatör

Detaylı

Mann-Whitney U ve Wilcoxon T Testleri

Mann-Whitney U ve Wilcoxon T Testleri Mann-Whitney U ve Wilcoxon T Testleri Doç. Dr. Ertuğrul ÇOLAK Eskişehir Osmangazi Üniversitesi Tıp Fakültesi Biyoistatistik Anabilim Dalı Konu Başlıkları Parametrik olmayan yöntem Mann-Whitney U testinin

Detaylı

YABANCI DİL EĞİTİMİ VEREN ÖZEL BİR EĞİTİM KURUMUNDAKİ ÖĞRENCİLERİN BEKLENTİLERİNİN ARAŞTIRILMASI. Sibel SELİM 1 Efe SARIBAY 2

YABANCI DİL EĞİTİMİ VEREN ÖZEL BİR EĞİTİM KURUMUNDAKİ ÖĞRENCİLERİN BEKLENTİLERİNİN ARAŞTIRILMASI. Sibel SELİM 1 Efe SARIBAY 2 Dokuz Eylül Üniversitesi Sosyal Bilimler Enstitüsü Dergisi Cilt 5, Sayı:2, 2003 YABANCI DİL EĞİTİMİ VEREN ÖZEL BİR EĞİTİM KURUMUNDAKİ ÖĞRENCİLERİN BEKLENTİLERİNİN ARAŞTIRILMASI Sibel SELİM 1 Efe SARIBAY

Detaylı

01.02.2013. Statistical Package for the Social Sciences

01.02.2013. Statistical Package for the Social Sciences Hipotezlerin test edilip onaylanması için çeşitli istatistiksel testler kullanılmaktadır. Fakat... Her istatistik teknik her tür analize elverişli değildir. Modele veya hipoteze uygun test istatistiği

Detaylı

HİPOTEZ TESTLERİ HİPOTEZ NEDİR?

HİPOTEZ TESTLERİ HİPOTEZ NEDİR? HİPOTEZ TESTLERİ HİPOTEZ NEDİR? Örnekleme ile test edilmeye çalışılan bir popülasyonun ilgili parametresi hakkında ortaya sunulan iddiadır. Örneğin; A dersi için vize ortalaması 50 nin altındadır Firestone

Detaylı

D.Ü.TIP FAKÜLTESİ BİYOİSTATİSTİK AD. DÖNEM I (BİYOİSTATİSTİK, HALK SAĞLIĞI VE RUH SAĞLIĞI DERS KURULU)

D.Ü.TIP FAKÜLTESİ BİYOİSTATİSTİK AD. DÖNEM I (BİYOİSTATİSTİK, HALK SAĞLIĞI VE RUH SAĞLIĞI DERS KURULU) DÖNEM I (BİYOİSTATİSTİK, HALK SAĞLIĞI VE RUH SAĞLIĞI DERS KURULU) TOPLAM KALİTE YÖNETİMİ BİLİNÇLENDİRME EĞİTİMİ NONPARAMETRİK KÜKRER GIDA TESTLER (Mann Whitney U ve Wilcoxon Testleri) Yrd.Doç.Dr. İsmail

Detaylı

ÖLÇME VE DEĞERLENDĠRME (3)

ÖLÇME VE DEĞERLENDĠRME (3) ÖLÇME VE DEĞERLENDĠRME (3) ÖLÇME SONUÇLARI ÜZERĠNDE ĠSTATĠSTĠKSEL ĠġLEMLER VERĠLERĠN DÜZENLENMESĠ -Herhangi bir test uygulamasından önce verilerin düzenlenmesi için önce bütün puanların büyüklüklerine

Detaylı

6111 sayılı Kanunla yapılan sigorta primi desteği düzenlemeleri Genelge 2011-45 ( 15..06.2011)

6111 sayılı Kanunla yapılan sigorta primi desteği düzenlemeleri Genelge 2011-45 ( 15..06.2011) Sayı : B.13.2.SGK.0.10.04.00/73-031/ 365 7/6/2011 Konu: 6111 sayılı Kanunla yapılan sigorta primi desteği düzenlemeleri GENELGE 2011-45 4447 GEÇİCİ 7. VE 9. MADDE: 5510 sayılı Kanunun 81 inci maddesinin

Detaylı

1. TANIMLAYICI İSTATİSTİK

1. TANIMLAYICI İSTATİSTİK BİYOİSTATİSTİK Status: Devlet,durum İstatistik: Herhangi bir konuyu incelemek için gerekli verilerin toplanmasını, toplanan verilerin değerlendirilmesini ve değerlendirme sonucu karara varılmasını sağlayan

Detaylı

Üretim Süreci: Girdi İşlem Ürün (Sonuç) Araştırma Süreci: Hangi alanda olursa olsun araştırma bir BİLGİ ye ulaşma sürecidir.

Üretim Süreci: Girdi İşlem Ürün (Sonuç) Araştırma Süreci: Hangi alanda olursa olsun araştırma bir BİLGİ ye ulaşma sürecidir. BİYOİSTATİSTİK Üretim Süreci: Girdi İşlem Ürün (Sonuç) Araştırma Süreci: Hangi alanda olursa olsun araştırma bir BİLGİ ye ulaşma sürecidir. Veri Analiz Bilgi El ile ya da birtakım bilgisayar programları

Detaylı

GİRİŞ. Bilimsel Araştırma: Bilimsel bilgi elde etme süreci olarak tanımlanabilir.

GİRİŞ. Bilimsel Araştırma: Bilimsel bilgi elde etme süreci olarak tanımlanabilir. VERİ ANALİZİ GİRİŞ Bilimsel Araştırma: Bilimsel bilgi elde etme süreci olarak tanımlanabilir. Bilimsel Bilgi: Kaynağı ve elde edilme süreçleri belli olan bilgidir. Sosyal İlişkiler Görgül Bulgular İşlevsel

Detaylı

İKİDEN ÇOK BAĞIMSIZ GRUBUN KARŞILAŞTIRILMASI

İKİDEN ÇOK BAĞIMSIZ GRUBUN KARŞILAŞTIRILMASI İKİDEN ÇOK BAĞIMSIZ GRUBUN KARŞILAŞTIRILMASI Grup sayısı ikiye geçtiğinde tüm grupların bağımsız iki grup testleri ile ikişerli analiz düşünülebilir. Ancak bu yaklaşım, karşılaştırmalar bağımsız olmadığından

Detaylı

İÇİNDEKİLER BİRİNCİ KISIM: TASARIM PAZARLAMA ARAŞTIRMASINA GİRİŞ

İÇİNDEKİLER BİRİNCİ KISIM: TASARIM PAZARLAMA ARAŞTIRMASINA GİRİŞ İÇİNDEKİLER ÖNSÖZ... v TEŞEKKÜR... vi İKİNCİ BASKIYA ÖNSÖZ VE TEŞEKKÜR... vii İÇİNDEKİLER... ix ŞEKİLLER LİSTESİ... xviii TABLOLAR LİSTESİ... xx BİRİNCİ KISIM: TASARIM BİRİNCI BÖLÜM PAZARLAMA ARAŞTIRMASINA

Detaylı

PARAMETRİK OLMAYAN İSTATİSTİKSEL TEKNİKLER

PARAMETRİK OLMAYAN İSTATİSTİKSEL TEKNİKLER PARAMETRİK OLMAYAN İSTATİSTİKSEL TEKNİKLER Prof. Dr. Ali ŞEN 1 Tek Örneklem İşaret Testi İşaret Testi parametrik olmayan prosedürler içinde en eski olanıdır. Analiz yapılırken serideki verileri artı ve

Detaylı

Yrd. Doç. Dr. Neşet Demirci, Balıkesir Üniversitesi NEF Fizik Eğitimi. Parametrik Olmayan Testler. Ki-kare (Chi-Square) Testi

Yrd. Doç. Dr. Neşet Demirci, Balıkesir Üniversitesi NEF Fizik Eğitimi. Parametrik Olmayan Testler. Ki-kare (Chi-Square) Testi Parametrik Olmayan Testler Ki-kare (Chi-Square) Testi Ki-kare (Chi-Square) Testi En iyi Uygunluk (Goodness of Fit) Ki-kare Dağılımı Bir çok önemli istatistik testi ki kare diye bilinen ihtimal dağılımı

Detaylı

Hipotezlerin test edilip onaylanması için çeşitli istatistiksel testler kullanılmaktadır. Fakat...

Hipotezlerin test edilip onaylanması için çeşitli istatistiksel testler kullanılmaktadır. Fakat... Hipotezlerin test edilip onaylanması için çeşitli istatistiksel testler kullanılmaktadır. Fakat... Her istatistik teknik her tür analize elverişli değildir. Modele veya hipoteze uygun test istatistiği

Detaylı

26.12.2013. Farklı iki ilaç(a,b) kullanan iki grupta kan pıhtılaşma zamanları farklı mıdır?

26.12.2013. Farklı iki ilaç(a,b) kullanan iki grupta kan pıhtılaşma zamanları farklı mıdır? 26.2.23 Gözlem ya da deneme sonucu elde edilmiş sonuçların, raslantıya bağlı olup olmadığının incelenmesinde kullanılan istatistiksel yöntemlere HĐPOTEZ TESTLERĐ denir. Sonuçların raslantıya bağlı olup

Detaylı

MIT OpenCourseWare http://ocw.mit.edu. 14.30 Ekonomide İstatistiksel Yöntemlere Giriş Bahar 2009

MIT OpenCourseWare http://ocw.mit.edu. 14.30 Ekonomide İstatistiksel Yöntemlere Giriş Bahar 2009 MIT OpenCourseWare http://ocw.mit.edu 14.30 Ekonomide İstatistiksel Yöntemlere Giriş Bahar 2009 Bu materyale atıfta bulunmak ve kullanım koşulları için http://ocw.mit.edu/terms sayfasını ziyaret ediniz.

Detaylı

Deneysel Araştırmalarda Uygun Örneklem Büyüklüğü Ve İstatistiksel Güç Analizi. Doç Dr. Nurhan DOĞAN AKÜ Tıp Fak. Biyoistatistik ve Tıbbi Bilişim AD

Deneysel Araştırmalarda Uygun Örneklem Büyüklüğü Ve İstatistiksel Güç Analizi. Doç Dr. Nurhan DOĞAN AKÜ Tıp Fak. Biyoistatistik ve Tıbbi Bilişim AD Deneysel Araştırmalarda Uygun Örneklem Büyüklüğü Ve İstatistiksel Güç Analizi Doç Dr. Nurhan DOĞAN AKÜ Tıp Fak. Biyoistatistik ve Tıbbi Bilişim AD Giriş Yeterli Örneklem Büyüklüğü Neden Önemlidir? Özel

Detaylı

BÖLÜM 14 BİLGİSAYAR UYGULAMALARI - 3 (ORTALAMALARIN KARŞILAŞTIRILMASI)

BÖLÜM 14 BİLGİSAYAR UYGULAMALARI - 3 (ORTALAMALARIN KARŞILAŞTIRILMASI) 1 BÖLÜM 14 BİLGİSAYAR UYGULAMALARI - 3 (ORTALAMALARIN KARŞILAŞTIRILMASI) Hipotez testi konusunda görüldüğü üzere temel betimleme, sayma ve sınıflama işlemlerine dayalı yöntemlerin ötesinde normal dağılım

Detaylı

SINAV TARİHİ VE SAATİ : 28 Nisan 2007 Cumartesi, 09.30-11.00 OKULU / SINIFI :

SINAV TARİHİ VE SAATİ : 28 Nisan 2007 Cumartesi, 09.30-11.00 OKULU / SINIFI : TÜBİTAK TÜRKİYE BİLİMSEL VE TEKNOLOJİK ARAŞTIRMA KURUMU BİLİM İNSANI DESTEKLEME DAİRE BAŞKANLIĞI 12. ULUSAL İLKÖĞRETİM MATEMATİK OLİMPİYATI SINAVI - 2007 Birinci Bölüm Soru kitapçığı türü B SINAV TARİHİ

Detaylı

ATATÜRK ÜNĠVERSĠTESĠ UZAKTAN EĞĠTĠM MERKEZĠ

ATATÜRK ÜNĠVERSĠTESĠ UZAKTAN EĞĠTĠM MERKEZĠ ATATÜRK ÜNĠVERSĠTESĠ UZAKTAN EĞĠTĠM MERKEZĠ 2009 ATAUZEM ŞABLON 28. HAFTA KONU BAġLIĞI Neler Öğrendik, Bilgilerimizi PekiĢtirelim AMAÇ Biyoistatistik dersinin 15-23. haftalarda öğrenilen konularını tekrarlamak

Detaylı

Nicel / Nitel Verilerde Konum ve Değişim Ölçüleri. BBY606 Araştırma Yöntemleri 2013-2014 Bahar Dönemi 13 Mart 2014

Nicel / Nitel Verilerde Konum ve Değişim Ölçüleri. BBY606 Araştırma Yöntemleri 2013-2014 Bahar Dönemi 13 Mart 2014 Nicel / Nitel Verilerde Konum ve Değişim Ölçüleri BBY606 Araştırma Yöntemleri 2013-2014 Bahar Dönemi 13 Mart 2014 1 Konum ölçüleri Merkezi eğilim ölçüleri Verilerin ortalamaya göre olan gruplanması nasıl?

Detaylı

A SINAV TARİHİ VE SAATİ : 28 Nisan 2007 Cumartesi, 09.30-11.00

A SINAV TARİHİ VE SAATİ : 28 Nisan 2007 Cumartesi, 09.30-11.00 TÜBİTAK TÜRKİYE BİLİMSEL VE TEKNOLOJİK ARAŞTIRMA KURUMU BİLİM İNSANI DESTEKLEME DAİRE BAŞKANLIĞI 12. ULUSAL İLKÖĞRETİM MATEMATİK OLİMPİYATI SINAVI - 2007 Birinci Bölüm Soru kitapçığı türü A SINAV TARİHİ

Detaylı

Akademik Personel ve Lisansüstü Eğitimi Giriş Sınavı. ALES / Sonbahar / Sayısal I / 18 Kasım 2007. Matematik Soruları ve Çözümleri

Akademik Personel ve Lisansüstü Eğitimi Giriş Sınavı. ALES / Sonbahar / Sayısal I / 18 Kasım 2007. Matematik Soruları ve Çözümleri Akademik Personel ve Lisansüstü Eğitimi Giriş Sınavı ALES / Sonbahar / Sayısal I / 18 Kasım 2007 Matematik Soruları ve Çözümleri 1. Bir sayının 0,02 ile çarpılmasıyla elde edilen sonuç, aynı sayının aşağıdakilerden

Detaylı

K-S Testi hipotezde ileri sürülen dağılımla örnek yığılmalı dağılım fonksiyonunun karşılaştırılması ile yapılır.

K-S Testi hipotezde ileri sürülen dağılımla örnek yığılmalı dağılım fonksiyonunun karşılaştırılması ile yapılır. İstatistiksel güven aralıkları uygulamalarında normallik (normal dağılıma uygunluk) oldukça önemlidir. Kullanılan parametrik istatistiksel tekniklerin geçerli olabilmesi için populasyon şans değişkeninin

Detaylı

Evren (Popülasyon) Araştırma kapsamına giren tüm elemanların oluşturduğu grup. Araştırma sonuçlarının genelleneceği grup

Evren (Popülasyon) Araştırma kapsamına giren tüm elemanların oluşturduğu grup. Araştırma sonuçlarının genelleneceği grup Evren (Popülasyon) Araştırma kapsamına giren tüm elemanların oluşturduğu grup Araştırma sonuçlarının genelleneceği grup Evrendeğer (Parametre): Değişkenlerin evrendeki değerleri µ : Evren Ortalaması σ

Detaylı

Nokta ve Aralık Tahmini Merkezi Limit Teoremi Örneklem Dağılımı Hipotez Testlerine Giriş

Nokta ve Aralık Tahmini Merkezi Limit Teoremi Örneklem Dağılımı Hipotez Testlerine Giriş Nokta ve Aralık Tahmini Merkezi Limit Teoremi Örneklem Dağılımı Hipotez Testlerine Giriş Doç. Dr. Ertuğrul ÇOLAK Eskişehir Osmangazi Üniversitesi Tıp Fakültesi Biyoistatistik Anabilim Dalı Nokta Tahmini

Detaylı

Ekonomik Açıdan En Avantajlı Teklifin Belirlenmesinde 2004/18/EC AB Kamu Ġhale Direktifi Ġle 4734 Sayılı Kamu Ġhale Kanununun KarĢılaĢtırılması

Ekonomik Açıdan En Avantajlı Teklifin Belirlenmesinde 2004/18/EC AB Kamu Ġhale Direktifi Ġle 4734 Sayılı Kamu Ġhale Kanununun KarĢılaĢtırılması 49 Ekonomik Açıdan En Avantajlı Teklifin Belirlenmesinde 2004/18/EC AB Kamu Ġhale Direktifi Ġle 4734 Sayılı Kamu Ġhale Kanununun KarĢılaĢtırılması Cemil Akçay 1, A.Sertaç KarakaĢ 2, BarıĢ Sayın 3, Ekrem

Detaylı

TOPRAK ANALĠZ LABORATUVARLARININ PERFORMANS DEĞERLENDĠRMESĠ RAPORU. Dr. AYLA ALTUN

TOPRAK ANALĠZ LABORATUVARLARININ PERFORMANS DEĞERLENDĠRMESĠ RAPORU. Dr. AYLA ALTUN T.C. GIDA TARIM VE HAYVANCILIK BAKANLIĞI Toprak Gübre ve Su Kaynakları Merkez Araştırma Enstitüsü Müdürlüğü TOPRAK ANALĠZ LABORATUVARLARININ PERFORMANS DEĞERLENDĠRMESĠ RAPORU Dr. AYLA ALTUN ANKARA 2011

Detaylı

BĠRĠNCĠ BASAMAK SAĞLIK ÇALIġANLARINDA YAġAM DOYUMU, Ġġ DOYUMU VE TÜKENMĠġLĠK DURUMU

BĠRĠNCĠ BASAMAK SAĞLIK ÇALIġANLARINDA YAġAM DOYUMU, Ġġ DOYUMU VE TÜKENMĠġLĠK DURUMU GOÜ Tıp Fakültesi Halk Sağlığı Anabilim Dalı Tokat Halk Sağlığı Müdürlüğü BĠRĠNCĠ BASAMAK SAĞLIK ÇALIġANLARINDA YAġAM DOYUMU, Ġġ DOYUMU VE TÜKENMĠġLĠK DURUMU Yalçın Önder¹, Rıza Çıtıl¹, Mücahit Eğri¹,

Detaylı

A İSTATİSTİK. 1. nc r, n tane nesneden her defasında r tanesinin alındığı (sıralama önemsiz) kombinasyonların sayısını göstermektedir.

A İSTATİSTİK. 1. nc r, n tane nesneden her defasında r tanesinin alındığı (sıralama önemsiz) kombinasyonların sayısını göstermektedir. . nc r, n tane nesneden her defasında r tanesinin alındığı (sıralama önemsiz) kombinasyonların sayısını göstermektedir. Buna göre, n C r + n C r toplamı aşağıdakilerden hangisine eşittir? A) n + C r B)

Detaylı

BMÜ-421 Benzetim ve Modelleme Kesikli Olay Benzetimi. İlhan AYDIN

BMÜ-421 Benzetim ve Modelleme Kesikli Olay Benzetimi. İlhan AYDIN BMÜ-421 Benzetim ve Modelleme Kesikli Olay Benzetimi İlhan AYDIN KESİKLİ-OLAY BENZETİMİ Kesikli olay benzetimi, durum değişkenlerinin zaman içinde belirli noktalarda değiştiği sistemlerin modellenmesi

Detaylı

UYDU KAR ÜRÜNÜ VERİLERİYLE TÜRKİYE İÇİN BÖLGESEL VE MEVSİMSEL KARLA KAPLI ALAN TREND ANALİZİ

UYDU KAR ÜRÜNÜ VERİLERİYLE TÜRKİYE İÇİN BÖLGESEL VE MEVSİMSEL KARLA KAPLI ALAN TREND ANALİZİ UYDU KAR ÜRÜNÜ VERİLERİYLE TÜRKİYE İÇİN BÖLGESEL VE MEVSİMSEL KARLA KAPLI ALAN TREND ANALİZİ İbrahim SÖNMEZ 1, Ahmet Emre TEKELİ 2, Erdem ERDİ 3 1 Ondokuz Mayıs Üniversitesi, Meteoroloji Mühendisliği Bölümü,

Detaylı

A t a b e y M e s l e k Y ü k s e k O k u l u İstatistik Sunum 4 Öğr.Gör. Şükrü L/O/G/O KAYA www.sukrukaya.org www.themegallery.com 1 Yer Ölçüleri Yer ölçüleri, verilerin merkezini veya yığılma noktasını

Detaylı

Resmî Gazete YÖNETMELİK

Resmî Gazete YÖNETMELİK 30 Ocak 2015 CUMA Resmî Gazete Sayı : 29252 YÖNETMELİK Sağlık Bakanlığından: AYAKTA TEġHĠS VE TEDAVĠ YAPILAN ÖZEL SAĞLIK KURULUġLARI HAKKINDA YÖNETMELĠKTE DEĞĠġĠKLĠK YAPILMASINA DAĠR YÖNETMELĠK MADDE 1

Detaylı

İki Varyansın Karşılaştırılması

İki Varyansın Karşılaştırılması 6.DERS İki Varyansın Karşılaştırılması Comparing Two Variances t-testinde iki varyansın eşit kabul edilip edilmemesi için kullanılır 1 Varyans için ikili-örnek Testi ve gibi iki varyansı karşılaştırmak

Detaylı

SAĞLIK SİGORTASI BİLGİ MERKEZİ ( SAGMER) HAKKINDA- 1

SAĞLIK SİGORTASI BİLGİ MERKEZİ ( SAGMER) HAKKINDA- 1 Hazine Müsteşarlığı SAĞLIK SİGORTASI BİLGİ MERKEZİ ( SAGMER) HAKKINDA- 1 09/08/208 tarih ve 26962 sayılı Resmi Gazetede yayımlanan Sigorta Bilgi Merkezi (SBM) Yönetmeliği ile kurulmuģtur. Amaçları; Sağlık

Detaylı

NEVġEHĠR ÜNĠVERSĠTESĠ BOLOGNA SÜRECĠ

NEVġEHĠR ÜNĠVERSĠTESĠ BOLOGNA SÜRECĠ NEVġEHĠR ÜNĠVERSĠTESĠ BOLOGNA SÜRECĠ ÖĞRENME ÇIKTILARI HAZIRLAMA VE ÖĞRENCĠ Ġġ YÜKÜ HESABI FUNDA NALBANTOĞLU YILMAZ Eğitim Öğretim Planlamacısı Ekim, 2011 GĠRĠġ Bologna Süreci kapsamında, yükseköğretim

Detaylı

Tek Değişkenli ve Çok Değişkenli Tablolar ve Grafikler

Tek Değişkenli ve Çok Değişkenli Tablolar ve Grafikler Tek Değişkenli ve Çok Değişkenli Tablolar ve Grafikler Umut Al umutal@hacettepe.edu.tr - 1 Plan İlgili kavramlar Tablo ne zaman kullanılır? Grafik nasıl üretilir? Örnekler Dikkat edilmesi gerekenler -

Detaylı

CARİ HESAP ANALİSTİ. Seçilmiş olan cariyi burada görebilirsiniz.

CARİ HESAP ANALİSTİ. Seçilmiş olan cariyi burada görebilirsiniz. CARİ HESAP ANALİSTİ Seçmiş olduğunuz cari hesabın firma için önem derecesini ve kapasitesini tespit edebileceğiniz bir analiz çalışmasıdır. Bu form sayesinde bir müşteri temsilcisi ilgili cari hesabı hiç

Detaylı

KÜBA ÜNĠVERSĠTE EĞĠTĠMĠ

KÜBA ÜNĠVERSĠTE EĞĠTĠMĠ KÜBA ÜNĠVERSĠTE EĞĠTĠMĠ Küba eğitim sistemi Bugünkü Küba eğitimi, Milli Eğitim Sistemi aracılığıyla organize edilir. Okullar, genellikle yılın 220 günü, günde 6-7 ders saati olmak üzere, tam gün eğitim

Detaylı

LOJİSTİK REGRESYON ANALİZİ

LOJİSTİK REGRESYON ANALİZİ LOJİSTİK REGRESYON ANALİZİ Lojistik Regresyon Analizini daha kolay izleyebilmek için bazı terimleri tanımlayalım: 1. Değişken (incelenen özellik): Bireyden bireye farklı değerler alabilen özellik, fenomen

Detaylı

GRAFĠKLER. WORD PROGRAMI KULLANARAK GRAFĠK OLUġTURMA EĞĠTĠCĠ KILAVUZU. HAZIRLAYAN Mehmet KUZU

GRAFĠKLER. WORD PROGRAMI KULLANARAK GRAFĠK OLUġTURMA EĞĠTĠCĠ KILAVUZU. HAZIRLAYAN Mehmet KUZU GRAFĠKLER WORD PROGRAMI KULLANARAK GRAFĠK OLUġTURMA EĞĠTĠCĠ KILAVUZU HAZIRLAYAN Mehmet KUZU GRAFİKLER GRAFİKLER Grafik Nedir? Grafik nasıl oluģturulur? Word de ne tür grafikler oluģturulur? Derse giriş

Detaylı

Gerçek uygulamalarda, standart normal olmayan sürekli bir rassal. değişken, sıfırdan farklı bir ortalama ve birden farklı standart sapma

Gerçek uygulamalarda, standart normal olmayan sürekli bir rassal. değişken, sıfırdan farklı bir ortalama ve birden farklı standart sapma 2 13.1 Normal Dağılımın Standartlaştırılması Gerçek uygulamalarda, standart normal olmayan sürekli bir rassal değişken, sıfırdan farklı bir ortalama ve birden farklı standart sapma değerleriyle normal

Detaylı

İNŞAAT MÜHENDİSLİĞİNDE LİSANS SONRASI AKADEMİK EĞİTİM: SAYILARLA TÜRKİYE DEKİ MEVCUT DURUM

İNŞAAT MÜHENDİSLİĞİNDE LİSANS SONRASI AKADEMİK EĞİTİM: SAYILARLA TÜRKİYE DEKİ MEVCUT DURUM - 169 - İNŞAAT MÜHENDİSLİĞİNDE LİSANS SONRASI AKADEMİK EĞİTİM: SAYILARLA TÜRKİYE DEKİ MEVCUT DURUM Cemalettin Dönmez * Özet Türkiye de inşaat mühendisliğinde lisans sonrası eğitimin hacim ve temel uzmanlık

Detaylı

Gaziosmanpaşa Üniversitesi Ziraat Fakültesi Öğrencilerinin Ziraat Fakültelerindeki Eğitim Hakkında Görüşlerinin İncelenmesi

Gaziosmanpaşa Üniversitesi Ziraat Fakültesi Öğrencilerinin Ziraat Fakültelerindeki Eğitim Hakkında Görüşlerinin İncelenmesi Gaziosmanpaşa Üniversitesi Ziraat Fakültesi Öğrencilerinin Ziraat Fakültelerindeki Eğitim Hakkında Görüşlerinin İncelenmesi Ziya Gökalp Göktolga Sibel Gülse Bal Kemal Esengün GaziosmanpaĢa Üniversitesi,

Detaylı

TOBB Ekonomi ve Teknoloji Üniversitesi İKT351 Ekonometri I, Dönem Sonu Sınavı

TOBB Ekonomi ve Teknoloji Üniversitesi İKT351 Ekonometri I, Dönem Sonu Sınavı TOBB Ekonomi ve Teknoloji Üniversitesi Öğr. Gör.: Yrd. Doç. Dr. A. Talha YALTA Ad, Soyad: Açıklamalar: Bu sınav toplam 100 puan değerinde 4 sorudan oluşmaktadır. Sınav süresi 90 dakikadır ve tüm soruların

Detaylı

ÇANAKKALE ONSEKİZ MART ÜNİVERSİTESİ TIP FAKÜLTESİ

ÇANAKKALE ONSEKİZ MART ÜNİVERSİTESİ TIP FAKÜLTESİ Dönem V SPSS İLE TEMEL BİYOİSTATİSTİK UYGULAMALARI Seçmeli Staj Eğitim Programı (2016) Eğitim Başkoordinatörü: Doç. Dr. Erkan Melih ŞAHİN Dönem Koordinatörü: Yrd. Doç. Dr. Baran GENCER Koordinatör Yardımcısı:

Detaylı

1 PAZARLAMA ARAŞTIRMASI

1 PAZARLAMA ARAŞTIRMASI İÇİNDEKİLER ÖNSÖZ III Bölüm 1 PAZARLAMA ARAŞTIRMASI 11 1.1. Pazarlama Araştırması Kavramı ve Kapsamı 12 1.2. Pazarlama Araştırmasının Tarihçesi 14 1.3. Pazarlama Araştırması Pazarlama Bilgi Sistemi ve

Detaylı

EMNİYET KAZA ÖNLEME PARKURU. Dünya, Türk Teknolojisi İle Mutlaka Tanışacak

EMNİYET KAZA ÖNLEME PARKURU. Dünya, Türk Teknolojisi İle Mutlaka Tanışacak Dünya, Türk Teknolojisi İle Mutlaka Tanışacak 1 İNCİ İSTASYON TEK TARAFLI 1 İNCİ İSTASYON 1 İNCİ İSTASYON EMNİYET KAZA ÖNLEME PARKURU 1 İNCİ İSTASYON 1 İNCİ İSTASYON 2 NCİ İSTASYON TEK TARAFLI 2 NCİ İSTASYON

Detaylı

ERTÜRK YEMĠNLĠ MALĠ MÜġAVĠRLĠK VE BAĞIMSIZ DENETĠM A.ġ.

ERTÜRK YEMĠNLĠ MALĠ MÜġAVĠRLĠK VE BAĞIMSIZ DENETĠM A.ġ. 05.05.2014 ERTÜRK YEMİNLİ MALİ MÜŞAVİRLİK VE BAĞIMSIZ DENETİM A.Ş. SİRKÜLER 2014/72 KONU: İş Sağlığı ve Güvenliği Hizmetlerinin Desteklenmesi Hakkında. Giriş : 24.12.2013 tarih ve 28861 sayılı Resmî Gazetede

Detaylı

Tek Değişkenli ve Çok Değişkenli Tablolar ve Grafikler

Tek Değişkenli ve Çok Değişkenli Tablolar ve Grafikler Tek Değişkenli ve Çok Değişkenli Tablolar ve Grafikler Umut Al umutal@hacettepe.edu.tr BBY 375, 24 Ekim 2014-1 Plan İlgili kavramlar Tablo ne zaman kullanılır? Grafik nasıl üretilir? Örnekler Dikkat edilmesi

Detaylı

İÇİNDEKİLER. Bölüm 2 CEBİR 43

İÇİNDEKİLER. Bölüm 2 CEBİR 43 İÇİNDEKİLER ÖNSÖZ III Bölüm 1 SAYILAR 13 1.1 Doğal Sayılar 15 1.1.1. Tek ve Çift Sayılar 15 1.1.2. Asal Sayılar 15 1.1.3 Doğal Sayıların Özellikleri 15 1.1.4 Doğal Sayılarda Özel Toplamlar 16 1.1.5. Faktöriyel

Detaylı

Eğer Veri Çözümleme paketi Araçlar menüsünde görünmüyor ise yüklenmesi gerekir.

Eğer Veri Çözümleme paketi Araçlar menüsünde görünmüyor ise yüklenmesi gerekir. Bölüm BİLGİSAYAR DESTEKLİ İSTATİSTİK EXCEL DESTEKLİ İSTATİSTİK Excel de istatistik hesaplar; Genel Yöntem ve Excel Ġçerikli Çözümler olmak üzere iki esasa dayanabilir. Genel Yöntem; Excel in matematiksel

Detaylı

TC İSTANBUL KÜLTÜR ÜNİVERSİTESİ FEN EDEBİYAT FAKÜLTESİ PSİKOLOJİ BÖLÜMÜ ÖĞRENCİ STAJ RAPORU/DEFTERİ HAZIRLAMA İLKELERİ

TC İSTANBUL KÜLTÜR ÜNİVERSİTESİ FEN EDEBİYAT FAKÜLTESİ PSİKOLOJİ BÖLÜMÜ ÖĞRENCİ STAJ RAPORU/DEFTERİ HAZIRLAMA İLKELERİ TC İSTANBUL KÜLTÜR ÜNİVERSİTESİ FEN EDEBİYAT FAKÜLTESİ PSİKOLOJİ BÖLÜMÜ ÖĞRENCİ STAJ RAPORU/DEFTERİ HAZIRLAMA İLKELERİ Eylül, 2011 İÇİNDEKİLER GĠRĠġ... 3 A. Öğrenci Staj Raporu/Defterinin Başlıca Bölümleri...

Detaylı

çözümlemesi; beklenen değer ile gözlenen değer arasındaki farkın araştırılması için kullanılır.(aralarındaki fark anlamlı mı?)

çözümlemesi; beklenen değer ile gözlenen değer arasındaki farkın araştırılması için kullanılır.(aralarındaki fark anlamlı mı?) BÖLÜM 5. (Kİ-KARE) ÇÖZÜMLEMESİ çözümlemesi; beklenen değer ile gözlenen değer arasındaki farkın araştırılması için kullanılır.(aralarındaki fark anlamlı mı?) Örneğin; Bir para atma deneyinde olasılıkla

Detaylı

HAZIR AMBALAJLI MAMULLERĠN AĞIRLIK VE HACĠM ESASINA GÖRE NET MĠKTAR TESPĠTĠNE DAĠR YÖNETMELĠK (76/211/AT)

HAZIR AMBALAJLI MAMULLERĠN AĞIRLIK VE HACĠM ESASINA GÖRE NET MĠKTAR TESPĠTĠNE DAĠR YÖNETMELĠK (76/211/AT) Resmi Gazete Tarihi: 10.04.2002 Resmi Gazete Sayısı: 24722 HAZIR AMBALAJLI MAMULLERĠN AĞIRLIK VE HACĠM ESASINA GÖRE NET MĠKTAR TESPĠTĠNE DAĠR YÖNETMELĠK (76/211/AT) BĠRĠNCĠ BÖLÜM Amaç, Kapsam, Hukuki Dayanak,

Detaylı

MEÜ. SAĞLIK BĠLĠMLERĠ ENSTĠTÜSÜ DERS TANIMI FORMU

MEÜ. SAĞLIK BĠLĠMLERĠ ENSTĠTÜSÜ DERS TANIMI FORMU MEÜ. SAĞLIK BĠLĠMLERĠ ENSTĠTÜSÜ DERS TANIMI FORMU Dersin Adı-Kodu: BİS 601 Örnek Genişliği ve Güç Programın Adı: Biyoistatistik Dersin düzeyi Doktora Ders saatleri ve Teori Uyg. Lab. Proje/Alan Çalışması

Detaylı

Siirt Üniversitesi Eğitim Fakültesi. Yrd. Doç. Dr. H. Coşkun ÇELİK Arş. Gör. Barış MERCİMEK

Siirt Üniversitesi Eğitim Fakültesi. Yrd. Doç. Dr. H. Coşkun ÇELİK Arş. Gör. Barış MERCİMEK Siirt Üniversitesi Eğitim Fakültesi Yrd. Doç. Dr. H. Coşkun ÇELİK Arş. Gör. Barış MERCİMEK EYLÜL-2013 Bilgisayar, uzun ve çok karmaşık hesapları bile büyük bir hızla yapabilen, mantıksal (lojik) bağlantılara

Detaylı

T.C. SOSYAL GÜVENLĠK KURUMU BAġKANLIĞI Aktüerya ve Fon Yönetimi Daire BaĢkanlığı

T.C. SOSYAL GÜVENLĠK KURUMU BAġKANLIĞI Aktüerya ve Fon Yönetimi Daire BaĢkanlığı Sayı : B.13.2.SGK.0.15.00.05/178 Konu : Aktüerya ve Fon Yönetimi ĠĢlemleri 24 MART 2011 GENELGE 2011/33 Bilindiği gibi Kurumumuz uygulamalarına yönelik olarak ihtiyaca binaen BaĢkanlığımız tarafından değiģik

Detaylı