Hyperbolik Fonksiyonlar

Ebat: px
Şu sayfadan göstermeyi başlat:

Download "Hyperbolik Fonksiyonlar"

Transkript

1

2 2

3 38

4 Bölüm 8 Hyperbolik Fonksiyonlar Hiperbolik fonksiyonlar iferensiyel enklemlerin çözümüme önemli rol oynar. Trigonometrik fonksiyonları anıran aları varır. Trigonometrik fonksiyonların alarını sonunu h harfi konulur. Ama onlar trigonometrik fonkiyonlaran farklıır. Aynen trigonometrik fonksiyonlara oluğu gibi, öteki hiperbolik fonksiyonlar şu ikisi cinsinen ifae eilir: cosh x = e x + e x 2 sinh x = e x e x 2 (8.) (8.2) e x ve e x fonksiyonları süreki ve sonsuz ke türetilebilir oluğu için coshx ve si nhx fonksiyonları a sonsuz kes stüretilebilir sürekli fonksiyonlarır. (8.) ve (8.2) fonksiyonlarını sağ yanları kullanılarak coshx v4 si nhx fonksiyonlarını gtafikleri çizilebilir. cosh0 = sinh0 = 0 (8.3) oluğu tanımlarınan çıkar. Ayrıca, şu bağıntışar kolayca görülür: cosh( x) = 2 (e x + e x ) = coshx (8.4) si nh( x) = 2 (e x e x ) = si nhx (8.5) (8.6)

5 40 BÖLÜM 8. HYPERBOLİK FONKSİYONLAR x coshx = 2 x e x + e x = (e x e x ) = si nhx (8.7) x si nhx = 2 x e x e x = (e x + e x ) = coshx (8.8) (8.9) Bu türevlri kullanarak intgrallerini hen yazabiliriz: coshx x = si nhx +C (8.0) si nhx x = coshx +C (8.) 8. Karmaşık Sayılar İçin Hiperbolik Fonksiyonlar e i x = cos x + i sin x (8.2) e i x = cos x i sin x (8.3) sinh x = i sinh(i x) (8.4) cosh x = cosh(i x) (8.5) tanh x = i tanh(i x) (8.6) coth x = i coth(i x) (8.7) sechx = sech(i x) (8.8) sschx = i csch(i x) (8.9) tanh(i x) = i tan x (8.20) cosh(x) = cos(i x) (8.2) tanh x = i tan(i x) (8.22) 8.2 Ters Hiperbolik Fonksiyonlar Hiperbolik fonksiyonların bire-bir oluğu aralıklara ters fonksiyonları varır:

6 8.3. HİPERBOLİK FONKSİYONLARIN TÜREVLERİ 4 ( ) ar csi nhx = ln x + x 2 + ( ) ar ccoshx = ln x + x 2 (8.23) (8.24) ar ct anhx = 2 ln + x, x < (8.25) x ar ccothx = 2 ln + x, x > (8.26) ( x ) x 2 ar csechx = ln x +, (0 < x ) (8.27) x ( ) + x + x 2 ar ccschx = ln (8.28) + x 8.3 Hiperbolik Fonksiyonların Türevleri x tanh x = tanh2 x = sech 2 x = cosh 2 (8.29) x x coth x = coth2 x = csch 2 x = sinh 2 (8.30) x cschx = coth x.cschx (8.3) x (8.32) x ar csi nhx = x 2 + (8.33) ar ccoshx = x x (8.34) ar ct anhx = x x 2 (8.35) ar ccschx = x x + x 2 (8.36) ar csechx = x x x 2 (8.37) ar ccothx = x x 2 (8.38)

7 42 BÖLÜM 8. HYPERBOLİK FONKSİYONLAR 8.4 Hiperbolik Özeşlikler Hiperbolik özeşlikler rigonometrik özeşliklere benzer, zaten aları a onlar gibiir. sinh( x) = sinh x (8.39) cosh( x) = cosh x (8.40) (8.4) tanh( x) = tanh x (8.42) coth( x) = coth x (8.43) sech( x) = sechx (8.44) csch( x) = cschx (8.45) ar csechx = ar ccosh x ar ccschx = ar csi nh x ar ccothx = ar ct anh x (8.46) (8.47) (8.48) si nhx = 2 (e x e x ) = 2e x (e2x ) = 2e x ( e 2x ) (8.49) coshx = 2 (e x + e x ) = 2e x (e2x + ) = 2e x ( + e 2x ) (8.50) tanh x = sinh x cosh x = e x e x e x + e x = e2x e 2x + = e 2x + e 2x (8.5) coth x = cosh x sinh x = e x + e x e x e x = e2x + e 2x = + e 2x e 2x (8.52) sechx = cosh x = 2 e x + e x = cschx = sinh x = 2 e x e x = 2e x e 2x + = 2e x e 2x = 2e x + e 2x (8.53) 2e x e 2x (8.54)

8 8.4. HİPERBOLİK ÖZDEŞLİKLER 43 cosh 2 x sinh 2 x = (8.55) İspat : cosh 2 si nh 2 x = 4 (e x + e x ) 2 4 (e x e x ) 2 = 4 (e2x e 2x e 2x + 2 e 2x ) = 4 (4) = e x = cosh x + sinh x (8.56) e x = cosh x sinh x (8.57) sinh(x + y) = sinh x.cosh y + cosh x.sinh y (8.58) İspat: sinh x.cosh y + cosh x.sinh y = 4 (e x e x )(e y + e y ) + 4 (e x + e x )(e y e y ) = 4 (e x+y e x+y + e x y e x y + ex + y + e x+y e x y e x y ) = 2 (e x+y e x y ) = si nh(x + y) cosh(x + y) = cosh x.cosh y + sinh x.sinh y (8.59) İspat: Bunun ispatı önceki gibi yapılır. Bu özeşliklere y yerine y konulursa, sinh(x y) = sinh x cosh y cosh x sinh y (8.60) cosh(x y) = cosh x cosh y sinh x sinh y (8.6)

9 44 BÖLÜM 8. HYPERBOLİK FONKSİYONLAR çıkar. sinh(2x) = 2sinh x cosh x (8.62) cosh(2x) = cosh 2 x sinh 2 x (8.63) özeşlikleri ele eilir. Trigonometrik fonksiyonlar için x 2 + y 2 = formülünün karşılığı x 2 y 2 = (8.64) ir. Trigonometrik fonksiyonlaraki çember yerini hiperbol almaktaır. Bu enklem hiperbolün sağ koluna karşılık gelir. Tabii, formüle x ile y nin yerleri eğişirse, hiperbolün sol kolu ele eilir. Şekle bakınız. tanh x ve coth x fonksiyonları tan x ve cot x fonksiyonlarına benzer olarak tanımlanır: tanh x = sinh x cosh x = e x e x e x + e x (8.65) coth x = cosh x sinh x = e x + e x e x e x (8.66) Aynı şey sechx ve cschx fonksiyonları için e geçerliir: sechx = (8.67) cosh x = 2 e x + e x (8.68) cschx = sinh x = 2 e x e x (8.69) 8.5 Hiperbolik Fonksiyonların Türevleri Hiperbolik fonksiyonların türevleri, onları tanımlayan eşitlikler kullanılarak kolayca bulunur: cosh x = sinh x (8.70) x sinh x = cosh x (8.7) x x tanh x = sech2 x (8.72) x coth x = csch2 x (8.73) sechx = sechx.tanh x (8.74) x cschx = cschx.coth x (8.75) x

10 8.6. HİPERBOLİK FONKSİYONLARIN İNTGRALLEİ 45 Bunlaran ilk iki eşitliği önceen bulmuştuk. Sonrakiler bölümün türevi tanımınan çıkar. Örnek olması için örüncü eşitliği çıkaralım. x coth x = x tanh x (8.76) = tanh 2 tanh x x x (8.77) = tanh 2 x sech2 x (8.78) = cosh2 x sinh 2 x cosh 2 x (8.79) = sinh 2 x (8.80) = csch 2 x (8.8) Problem: 2 f = f 3 f, f (0) = f 8 ) = 0 (8.82) başlangıç eğer problemini çözünüz. Çözüm: tanh x fonksiyonunun sınır eğer problemini salaığı kolayca görülür. O hale çözüm y = tanh x ir. 8.6 Hiperbolik Fonksiyonların İntgrallei Sonlu bir [a, b] aralığına cosh x fonksiyonunun integrali o aralıktaki eğri uzunluğuna eşitttir: Alan= = b a cosh x x = b a + ( ) 2 x cosh x x = arc length (8.83) tanh x x = lncosh x +C (8.84) ir. İspat:

11 46 BÖLÜM 8. HYPERBOLİK FONKSİYONLAR sinh x tanh x x = cosh x x (8.85) (cosh x = (8.86) cosh x = lncosh x +C (8.87) tanh x fonksiyonu oğrusal olmayan f = f 2 ifrensiyel enklemini sağlar; yani o enklemin çözümüür.

12 94 BÖLÜM 8. HYPERBOLİK FONKSİYONLAR

1. GİRİŞ Örnek: Bir doğru boyunca hareket eden bir cismin başlangıç noktasına göre konumu s (metre), zamanın t (saniye) bir fonksiyonu olarak

1. GİRİŞ Örnek: Bir doğru boyunca hareket eden bir cismin başlangıç noktasına göre konumu s (metre), zamanın t (saniye) bir fonksiyonu olarak DERS: MATEMATİK I MAT0(09) ÜNİTE: TÜREV ve UYGULAMALARI KONU: A. TÜREV. GİRİŞ Bir doğru boyunca hareket eden bir cismin başlangıç noktasına göre konumu s (metre) zamanın t (saniye) bir fonksiyonu olarak

Detaylı

Güz Yar y l D IFERANS IYEL DENKLEMLER I ARA SINAV 9 Kas m 2010 Süre: 90 dakika CEVAP ANAHTARI

Güz Yar y l D IFERANS IYEL DENKLEMLER I ARA SINAV 9 Kas m 2010 Süre: 90 dakika CEVAP ANAHTARI DÜCE ÜN IVERS ITES I FEN-EDEB IYAT FAKÜLTES I MATEMAT IK BÖLÜMÜ 00-0 Güz Yar y l D IFERANS IYEL DENKLEMLER I ARA SINAV 9 Kas m 00 Süre: 90 akika CEVAP ANAHTARI. (0p) y e x (x + 9) fonksiyonunun y 0 y e

Detaylı

[ 1, 1] alınırsa bu fonksiyon birebir ve örten olur. Bu fonksiyonun tersine arkkosinüs. f 1 (x) = sin 1 (x), 1 x 1

[ 1, 1] alınırsa bu fonksiyon birebir ve örten olur. Bu fonksiyonun tersine arkkosinüs. f 1 (x) = sin 1 (x), 1 x 1 ..3 Ters Trigonometrik Fonksionlar Önceki kesimde belirtilen bütün trigonometrik fonksionlar perodik olduklarından görüntü kümesindeki her değeri sonsuz noktada alırlar. Bölece trigonometrik fonksionlar

Detaylı

fonksiyonu için in aralığındaki bütün değerleri için sürekli olsun. in bu aralıktaki olsun. Fonksiyonda meydana gelen artma miktarı

fonksiyonu için in aralığındaki bütün değerleri için sürekli olsun. in bu aralıktaki olsun. Fonksiyonda meydana gelen artma miktarı 10.1 Türev Kavramı fonksiyonu için in aralığındaki bütün değerleri için sürekli olsun. in bu aralıktaki bir değerine kadar bir artma verildiğinde varılan x = x 0 + noktasında fonksiyonun değeri olsun.

Detaylı

Diferensiyel Denklemler I Uygulama Notları

Diferensiyel Denklemler I Uygulama Notları 2004 Diferensiyel Denklemler I Uygulama Notları Mustafa Özdemir İçindekiler Temel Bilgiler...................................................................... 2 Tam Diferensiyel Denklemler........................................................4

Detaylı

Matematik I. Arzu Erdem Coşkun

Matematik I. Arzu Erdem Coşkun Matematik I Arzu Erdem Coşkun 1. Calculus - James Stewart 2. Calculus - George B.Thomas, Maurice D.Weir, Joel Hass Kaynaklar: 3. Advanced Calculus (Schaum s Outlines), - ROBERT WREDE, 4. Genel Matematik

Detaylı

Türev Kuralları. Kural 1. Sabitle Çarpım Kuralı c bir sabit ve f türevlenebilir bir fonksiyonsa, d dx [cf(x)] = c d. dx f(x) dir. Kural 2.

Türev Kuralları. Kural 1. Sabitle Çarpım Kuralı c bir sabit ve f türevlenebilir bir fonksiyonsa, d dx [cf(x)] = c d. dx f(x) dir. Kural 2. Bölüm 3 Türev Kuralları Kural 1. Sabitle Çarpım Kuralı c bir sabit ve f türevlenebilir bir fonksiyonsa, ir. x [cf(x)] = c x f(x) Kural 2. Toplam-Fark Kuralı f ve g türevlenebilir ise, ir. [f(x) ± g(x)]

Detaylı

MAT355 Kompleks Fonksiyonlar Teorisi I Hafta 12. 3.3. Trigonometrik ve Hiperbolik Fonksiyonlar ve Tersleri., cosx = eix + e ix 2i

MAT355 Kompleks Fonksiyonlar Teorisi I Hafta 12. 3.3. Trigonometrik ve Hiperbolik Fonksiyonlar ve Tersleri., cosx = eix + e ix 2i MAT355 Kompleks Fonksiyonlar Teorisi I Hafta 1 3.3. Trigonometrik ve Hiperbolik Fonksiyonlar ve Tersleri e ix = cosx+isinx ve e ix = cosx isinx denklemlerinden yararlanılarak, her x reel sayısı için, sinx

Detaylı

LİMİT. lim f(x) = L yazılır. lim. lim x a dır. lim g( clim

LİMİT. lim f(x) = L yazılır. lim. lim x a dır. lim g( clim LİMİT I. TANIM:, a yakınındaki değerleri için tanımlı bir onksiyon olsun. Alınan ε> sayısına karşılık -L < ε olacak şekilde -a < δ koşulunu sağlayan δ > sayısı bulunabiliyorsa ;, a ya yaklaşırken, L ye

Detaylı

Hiperbolik Fonksiyonlar

Hiperbolik Fonksiyonlar Matematik Dünas, 0-III Kapak Konusu: İntegral IV Hiperbolik Fonksionlar sinh olarak a z - lan kosinüs sinüs hiperbolik fonksionlar ndan geçmiflte k saca sö zet mifltik Bu az da bu fonksionlardan biraz

Detaylı

Lys x 2 + y 2 = (6k) 2. (x 2k) 2 + y 2 = (2k 5) 2 olduğuna göre x 2 y 2 =? Cevap: 14k 2

Lys x 2 + y 2 = (6k) 2. (x 2k) 2 + y 2 = (2k 5) 2 olduğuna göre x 2 y 2 =? Cevap: 14k 2 1. 1 =? Lys 1 7. x + y = (6k) (x k) + y = (k 5) olduğuna göre x y =?. 6 a.b = ise a + 1 b. b 1 a =? 1k 8. x ve y birbirinden farklı pozitif gerçel sayılar olmak üzere, x y y x. x.y = (x y) ise x y =?.

Detaylı

MATEMATĠKSEL ĠġLEMLER

MATEMATĠKSEL ĠġLEMLER MATEMATĠKSEL ĠġLEMLER 2. HAFTA MATEMATĠKSEL ĠġLEM KOMUTLARI (FONKSĠYONLARI) Matematiksel (aritmetik) işlemlerin gerçekleştirilmesini sağlayan komutlar (fonksiyonlar) dır. C deki matematiksel fonksiyonlar

Detaylı

MAT 101, MATEMATİK I, FİNAL SINAVI 08 ARALIK (10+10 p.) 2. (15 p.) 3. (7+8 p.) 4. (15+10 p.) 5. (15+10 p.) TOPLAM

MAT 101, MATEMATİK I, FİNAL SINAVI 08 ARALIK (10+10 p.) 2. (15 p.) 3. (7+8 p.) 4. (15+10 p.) 5. (15+10 p.) TOPLAM TOBB-ETÜ, MATEMATİK BÖLÜMÜ, GÜZ DÖNEMİ 2014-2015 MAT 101, MATEMATİK I, FİNAL SINAVI 08 ARALIK 2014 Adı Soyadı: No: İMZA: 1. 10+10 p.) 2. 15 p.) 3. 7+8 p.) 4. 15+10 p.) 5. 15+10 p.) TOPLAM 1. a) NOT: Tam

Detaylı

2012 LYS MATEMATİK SORU VE ÇÖZÜMLERİ Niyazi Kurtoğlu

2012 LYS MATEMATİK SORU VE ÇÖZÜMLERİ Niyazi Kurtoğlu .SORU 8 sayı tabanında verilen (5) 8 sayısının sayı tabanında yazılışı nedir?.soru 6 3 3 3 3 4 6 8? 3.SORU 3 ise 5? 5 4.SORU 4 5 olduğuna göre, ( )? 5.SORU (y z) z(y ) y z yz bulunuz. ifadesinin en sade

Detaylı

Önceki bölümde bir f fonksiyonunun bir a noktasındaki tanım değeri kadar x

Önceki bölümde bir f fonksiyonunun bir a noktasındaki tanım değeri kadar x 3 TÜREV Önceki bölüme bir f fonksiyonunun bir a noktasınaki tanım eğeri kaar x bağımsız eğişkeni a noktasına yaklaşırken f nin avranışınına önemi vurgulanmış ve it kavramı tanıtılmıştı. Daha sonra it kavramınan

Detaylı

Y = f(x) denklemi ile verilen fonksiyonun diferansiyeli dy = f '(x). dx tir.

Y = f(x) denklemi ile verilen fonksiyonun diferansiyeli dy = f '(x). dx tir. 1 İNTEGRAL BİR FONKSİYONUN DİFERANSİYELİ Tanım: f: [a,b] R, x f(x) fonksiyonu (a,b) aralığında türevli olmak üzere, x değişkeninin değişme miktarı x ise f '(x). x ifadesine f(x) fonksiyonunun diferansiyeli

Detaylı

2. (1 + y ) ln(x + y) = yy dif. denk. çözünüz. 3. xy dy y 2 dx = (x + y) 2 e ( y/x) dx dif. denk. çözünüz.

2. (1 + y ) ln(x + y) = yy dif. denk. çözünüz. 3. xy dy y 2 dx = (x + y) 2 e ( y/x) dx dif. denk. çözünüz. D DİFERANSİYEL DENKLEMLER ÇALIŞMA SORULARI Fakülte No:................................................... Adı ve Soyadı:................................................. Bölüm:...................................................................

Detaylı

Belirsiz Integraller. 1.1 Ilkel Fonksiyon ve Belirsiz Integral. 1.1.1 Temel Tan mlar ve Sonuc. lar

Belirsiz Integraller. 1.1 Ilkel Fonksiyon ve Belirsiz Integral. 1.1.1 Temel Tan mlar ve Sonuc. lar Ic. indekiler Belirsiz Integraller 3. Ilkel Fonksiyon ve Belirsiz Integral................ 3.. Temel Tan mlar ve Sonuc.lar............... 3. Temel Integral Alma Yöntemleri................ 0.. De giṣken

Detaylı

Sağ Taraf Fonksiyonu İle İlgili Özel Çözüm Örnekleri(rezonans durumlar)

Sağ Taraf Fonksiyonu İle İlgili Özel Çözüm Örnekleri(rezonans durumlar) 3.1.2.1. Sağ Taraf Fonksiyonu İle İlgili Özel Çözüm Örnekleri(rezonans durumlar) ÖRNEK: y + 4.y + 4.y = 5.sin2x diferensiyel denkleminin genel çözümünü bulalım: Homojen kısmın çözümü: y + 4.y + 4.y = 0

Detaylı

7 TAYLOR SER I GÖSTER IMLER I

7 TAYLOR SER I GÖSTER IMLER I 7 TAYLOR SER I GÖSTER IMLER I Bir f fonksiyonu analitiklik bölgesi içinde f () X a n ( 0 ) n şeklinde bir kuvvet serisi gösterimine sahiptir. E¼ger a n f (n) ( 0 ) seçilirse bu kuvvet serisi Taylor serisi

Detaylı

DERS: MATEMATİK I MAT101(04)

DERS: MATEMATİK I MAT101(04) DERS: MATEMATİK I MAT0(0) ÜNİTE: FONKSİYONLAR KONU:. TRİGONOMETRİK FONKSİYONLAR Öncelikle açı ölçü birimlerine göz atalım: Bilindiği gibi bir tam açının ölçüsü 0 derecedir. Diğer bir açı ölçü birimi de

Detaylı

Elektriksel Alan ve Potansiyel. Test 1 in Çözümleri. Şekle göre E bileşke elektriksel alan açıortay doğrultusunda hareket ettiğine göre E 1. dir.

Elektriksel Alan ve Potansiyel. Test 1 in Çözümleri. Şekle göre E bileşke elektriksel alan açıortay doğrultusunda hareket ettiğine göre E 1. dir. 3 lektriksel lan ve Potansiyel 1 Test 1 in Çözümleri 1. 3. 1 30 30 1 3 Şekil inceleniğine noktasınaki elektriksel alanı oluşturan yük tek başına 3 ür. 1 ve yüklerinin noktasına oluşturukları elektriksel

Detaylı

LYS Y ĞRU MTMTİK TSTİ. u testte Matematik ile ilgili 0 soru vardır.. evaplarınızı, cevap kâğıdının Matematik Testi için ayrılan kısmına işaretleyiniz.. u testteki süreniz 7 dakikadır.., y reel sayılar

Detaylı

Final sınavı konularına aşağıdaki sorular dahil değildir: 1, 2, 3, 4, 5, 6, 7, 19, 20, 21, 25, 27, 28, 29, 30, 33-b.

Final sınavı konularına aşağıdaki sorular dahil değildir: 1, 2, 3, 4, 5, 6, 7, 19, 20, 21, 25, 27, 28, 29, 30, 33-b. Final sınavı konularına aşağıdaki sorular dahil değildir:,,,, 5, 6, 7, 9,,, 5, 7, 8, 9,, -b. MAT -MATEMATİK (- GÜZ DÖNEMİ) FİNAL ÇALIŞMA SORULARI. Tabanı a büyük eksenli, b küçük eksenli elips ile sınırlanan

Detaylı

Trigonometrik Fonksiyonlar

Trigonometrik Fonksiyonlar Trigonometrik Fonksiyonlar Yazar Prof.Dr. Vakıf CAFEROV ÜNİTE 6 Amaçlar Bu üniteyi çalıştıktan sonra; açı kavramını hatırlayacak, açıların derece ölçümünü radyan ölçümüne ve tersine çevirebilecek, trigonometrik

Detaylı

ARASINAV SORULARININ ÇÖZÜMLERİ GÜZ DÖNEMİ A A A A A A A

ARASINAV SORULARININ ÇÖZÜMLERİ GÜZ DÖNEMİ A A A A A A A AKDENİZ ÜNİVERSİTESİ MATEMATİK BÖLÜMÜ BİTİRME ÖDEVİ I ARASINAV SORULARININ ÇÖZÜMLERİ - 6 GÜZ DÖNEMİ ADI SOYADI :... NO :... A A A A A A A SINAV TARİHİ VE SAATİ : Bu sınav 4 sorudan oluşmaktadır ve sınav

Detaylı

8 LAURENT SER I GÖSTER IMLER I

8 LAURENT SER I GÖSTER IMLER I 8 LAURENT SER I GÖSTER IMLER I Tan m. C n ; n 0; ; ; : : : kompleks sabitler olmak üere serisine Laurent serisi denir. Burada n X C n ( X X X C n ( 0 ) n a n ( 0 ) n b n + ( 0 ) n 0 ) n dir. Teore8.. (Laurent

Detaylı

7.2 Fonksiyon ve Fonksiyon Tanımları (I) Fonksiyon ve Fonksiyon Tanımları (II)

7.2 Fonksiyon ve Fonksiyon Tanımları (I) Fonksiyon ve Fonksiyon Tanımları (II) 7.2 Fonksiyon ve Fonksiyon Tanımları (I) Tanım kümesindeki her elemanın değer kümesinde bir ve yalnız bir görüntüsü varsa, tanım kümesinden değer kümesine olan bağıntıya fonksiyon denir. Fonksiyonu f ile

Detaylı

2 1 fonksiyonu veriliyor. olacak şekilde ortalama değer teoremini sağlayacak bir c sayısının var olup olmadığını araştırınız. Eğer var ise bulunuz.

2 1 fonksiyonu veriliyor. olacak şekilde ortalama değer teoremini sağlayacak bir c sayısının var olup olmadığını araştırınız. Eğer var ise bulunuz. ANALİZ 1.) a) sgn. sgn( 1) = 1 denkleminin çözüm kümesini b) f ( ) 3 1 fonksiyonu veriliyor. olacak şekilde ortalama değer teoremini sağlayacak bir c sayısının var olup olmadığını araştırınız. Eğer var

Detaylı

Türev Uygulamaları. 9.1 Ortalama Değer teoremi

Türev Uygulamaları. 9.1 Ortalama Değer teoremi 1 2 Bölüm 9 Türev Uygulamaları 9.1 Ortalama Değer teoremi Türevin çok farklı uygulamaları vardır. Bunlar arasında çok önemli olan bazılarını ele alacağız. Ortalama Değer Teoremi ni daha önce görmüştük.

Detaylı

SORULAR. 1. Aşa¼g daki limitleri bulunuz. Cevab n z n aşamalar n belirtiniz. lim. 1 n sin. lim. q 1 x 1+x

SORULAR. 1. Aşa¼g daki limitleri bulunuz. Cevab n z n aşamalar n belirtiniz. lim. 1 n sin. lim. q 1 x 1+x SOULA. Aşa¼g daki limitleri bulunuz. Cevab n z n aşamalar n belirtiniz. lim! lim sin(t )dt sin 4 np n! i= n sin i n. q + arcsin belirli integralini hesalay n z. Cevab n z n aşamalar n belirtiniz. 3. 4

Detaylı

Çalışma Soruları(MAT-117)-Harita Mühendisliği Bölümü(2015)-Ara Sınav

Çalışma Soruları(MAT-117)-Harita Mühendisliği Bölümü(2015)-Ara Sınav Çalışma Soruları(MAT-117)-Harita Mühendisliği Bölümü(015)-Ara Sınav S-1) Merkezi M(, 1) de olan ve 4y + 1 = 0 doğrusundan 4 birimlik bir kiriş ayıran çemberin S-) Merkezi M(,4) de olan ve + 5y 10 = 0 doğrusundan

Detaylı

π a) = cosa Öğrenci Seçme Sınavı (Öss) / 17 Haziran 2007 Matematik II Soruları ve Çözümleri

π a) = cosa Öğrenci Seçme Sınavı (Öss) / 17 Haziran 2007 Matematik II Soruları ve Çözümleri Öğrenci Seçme Sınavı (Öss) 7 Haziran 7 Matematik II Soruları ve Çözümleri. Karmaşık sayılar kümesi üzerinde * işlemi, Z * Z Z + Z + Z Z biçiminde tanımlanıyor. Buna göre, ( i) * ( + i) işleminin sonucu

Detaylı

HOMOGEN OLMAYAN DENKLEMLER

HOMOGEN OLMAYAN DENKLEMLER n. mertebeden homogen olmayan lineer bir diferansiyel denklemin y (n) + p 1 (x)y (n 1) + + p n 1 (x)y + p n (x)y = f(x) (1) şeklinde olduğunu ve bununla ilgili olan n. mertebeden lineer homogen denlemin

Detaylı

Lineer Dönüşümler ÜNİTE. Amaçlar. İçindekiler. Yazar Öğr. Grv.Dr. Nevin ORHUN

Lineer Dönüşümler ÜNİTE. Amaçlar. İçindekiler. Yazar Öğr. Grv.Dr. Nevin ORHUN Lineer Dönüşümler Yazar Öğr. Grv.Dr. Nevin ORHUN ÜNİTE 7 Amaçlar Bu üniteyi çalıştıktan sonra; Vektör uzayları arasında tanımlanan belli fonksiyonları tanıyacak, özelliklerini öğrenecek, Bir dönüşümün,

Detaylı

LYS Matemat k Deneme Sınavı

LYS Matemat k Deneme Sınavı LYS Matematk Deneme Sınavı. Üç basamaklı doğal saılardan kaç tanesi, 8 ve ile tam bölünür? 8 9. ile in geometrik ortası z dir. ( z). ( z ). z aşağıdakilerden hangisidir?. 9 ifadesinin cinsinden değeri

Detaylı

Ö.S.S MATEMATĐK II SORULARI ve ÇÖZÜMLERĐ

Ö.S.S MATEMATĐK II SORULARI ve ÇÖZÜMLERĐ Ö.S.S. 7 MATEMATĐK II SORULARI ve ÇÖZÜMLERĐ. Karmaşık sayılar kümesi üzerinde * işlemi, Z * Z Z + Z + Z Z biçiminde tanımlanıyor. Buna göre, ( i) * (+i) işleminin sonucu nedir? A) + 8i B) - 8i C) 8 + i

Detaylı

TRIGONOMETRI AÇI, YÖNLÜ AÇI, YÖNLÜ YAY

TRIGONOMETRI AÇI, YÖNLÜ AÇI, YÖNLÜ YAY TRIGONOMETRI AÇI, YÖNLÜ AÇI, YÖNLÜ YAY A. AÇI Başlangıç noktaları aynı olan iki ışının birleşim kümesine açı denir. Bu ışınlara açının kenarları, başlangıç noktasına ise açının köşesi denir. B. YÖNLÜ AÇI

Detaylı

TÜREV VE UYGULAMALARI

TÜREV VE UYGULAMALARI TÜREV VE UYGULAMALARI A R, a A ve f de A da tanımlı bir fonksiyon olsun. Eğer f(x) f(a) lim x a x a limiti veya x=a+h koymakla elde edilen f(a+h) f(a) lim h 0 h Bu türev f (a), df dx limiti varsa f fonksiyonu

Detaylı

Bilinen Türevlerden Yeni Türevler Elde Etmek. Polinomların ve. Üstel Fonksiyonların Türevleri. Çarpım Kuralı f ve g türevlenebilir ise,

Bilinen Türevlerden Yeni Türevler Elde Etmek. Polinomların ve. Üstel Fonksiyonların Türevleri. Çarpım Kuralı f ve g türevlenebilir ise, Bilinen Türevleren Yeni Türevler Ele Etmek Bilinen Türevleren Yeni Türevler Ele Etmek Sabitle Çarpım Kuralı c bir sabit ve f türevlenebilir bir fonksiyonsa, x [cf(x)] = c x f(x) ir. Toplam-Fark Kuralı

Detaylı

LYS Matemat k Deneme Sınavı

LYS Matemat k Deneme Sınavı LYS Matematk Deneme Sınavı. n olmak üzere; n n toplamı ten büük n nin alabileceği tamsaı değerleri kaç tanedir? 9 B) 8 7.,, z reel saılar olmak üzere; ( 8) l 8 l z z aşağıdakilerden hangisidir? B) 8. tabanındaki

Detaylı

DENKLEMLER CAUCHY-EULER DENKLEMİ. a n x n dn y dx n + a n 1x n 1 dn 1 y

DENKLEMLER CAUCHY-EULER DENKLEMİ. a n x n dn y dx n + a n 1x n 1 dn 1 y SABİT KATSAYILI DENKLEMLERE DÖNÜŞTÜREBİLEN DENKLEMLER Bu bölümde sabit katsayılı diferansiyel denklemlere dönüşebilen değişken katsayılı diferansiyel denklemlerden Cauchy Euler ve Legendre difarensiyel

Detaylı

MKM 308 Makina Dinamiği

MKM 308 Makina Dinamiği MKM 308 Lagrange Denklemleri Mühenislik Fakültesi Makine Mühenisliği Bölümü E k E k = Q k n: Serbestlik Derecesi Lagrange Denklemleri Mühenislik Fakültesi Makine Mühenisliği Bölümü k = 1,, 3,.., n E k

Detaylı

MATEMATÝK GEOMETRÝ DENEMELERÝ

MATEMATÝK GEOMETRÝ DENEMELERÝ NM 1 MTMTÝK OMTRÝ NMLRÝ 1. o o = 75 ve y = 5 olduğuna göre,. 3 + 8 = 0 sin( y)cos( + y) + sin( + y)cos( y) sin( y)sin( + y) cos( + y)cos( y) denkleminin kaç tane farklı reel kökü vardır? ifadesinin eşiti

Detaylı

ANADOLU ÜNİVERSİTESİ AÇIKÖĞRETİM FAKÜLTESİ İLKÖĞRETİM ÖĞRETMENLİĞİ LİSANS TAMAMLAMA PROGRAMI. Analiz. Cilt 2. Ünite 8-14

ANADOLU ÜNİVERSİTESİ AÇIKÖĞRETİM FAKÜLTESİ İLKÖĞRETİM ÖĞRETMENLİĞİ LİSANS TAMAMLAMA PROGRAMI. Analiz. Cilt 2. Ünite 8-14 ANADOLU ÜNİVERSİTESİ AÇIKÖĞRETİM FAKÜLTESİ İLKÖĞRETİM ÖĞRETMENLİĞİ LİSANS TAMAMLAMA PROGRAMI Analiz Cilt 2 Ünite 8-14 T.C. ANADOLU ÜNİVERSİTESİ YAYINLARI NO: 1082 AÇIKÖĞRETİM FAKÜLTESİ YAYINLARI NO: 600

Detaylı

Sayfa No. Test No İÇİNDEKİLER TRİGONOMETRİ

Sayfa No. Test No İÇİNDEKİLER TRİGONOMETRİ TRİGONOMETRİ İÇİNDEKİLER Sayfa No Test No YÖNLÜ AÇI VE YÖNLÜ YAY KAVRAMI -AÇI ÖLÇÜ BİRİMLERİ...00-00.... BİRİM ÇEMBER...00-00.... BİR AÇININ ESAS ÖLÇÜSÜ...00-00.... BİR AÇININ TRİGONOMETRİK ORANLARININ

Detaylı

f (a+h) f (a) h + f(a)

f (a+h) f (a) h + f(a) DERS 7 Marjinal Analiz 7.. Marjinal Değerler. f fonksiyonunun (a, f(a noktasınaki teğetinin eğiminin f (a ve teğetin enkleminin e y f (a ( a + f(a oluğunu biliyoruz. a ya yakın bir a+h eğeri için f (a+h

Detaylı

BÖLÜM I. Tam sayılarda Bölünebilme

BÖLÜM I. Tam sayılarda Bölünebilme BÖLÜM I Tam sayılara Bölünebilme Teorem 1.1 (Bölme algoritması) b > 0 olmak üzere, verilen a ve b tam sayıları için a = qb + r, 0 r < b (1) olacak şekile bir ve bir tek q, r Z çifti varır. İspat: 1. İlk

Detaylı

DERS İÇERİKLERİ, KAZANIMLAR, DERSLER ARASI İLİŞKİ Çizelge 2.

DERS İÇERİKLERİ, KAZANIMLAR, DERSLER ARASI İLİŞKİ Çizelge 2. DERS İÇERİKLERİ, KAZANIMLAR, DERSLER ARASI İLİŞKİ Çizelge 2. Kategoriler Alt kategoriler Ders içerikleri Kazanımlar Dersler arası ilişki I. Analiz I.1. Fonksiyonlar I.1.1. Fonksiyonlara ait bazı önemli

Detaylı

2014 LYS MATEMATİK. x lü terimin 1, 3. 3 ab olduğuna göre, ifadesinin değeri kaçtır? 2b a ifade- sinin değeri kaçtır? olduğuna göre, x.

2014 LYS MATEMATİK. x lü terimin 1, 3. 3 ab olduğuna göre, ifadesinin değeri kaçtır? 2b a ifade- sinin değeri kaçtır? olduğuna göre, x. 4 LYS MATEMATİK. a b b a ifade- ab olduğuna göre, sinin değeri kaçtır? 5. ifadesinin değeri kaçtır? 5. P() polinomunda katsaısı kaçtır? 4 lü terimin 4 log log çarpımının değeri kaçtır? 6. 4 olduğuna göre,.

Detaylı

AYT 2018 MATEMATİK ÇÖZÜMLERİ. ai i İçler dışlar çarpımı yapalım. 1 ai i a i 1 ai ai i. 1 ai ai 1 ai ai 0 2ai a 0 olmalıdır.

AYT 2018 MATEMATİK ÇÖZÜMLERİ. ai i İçler dışlar çarpımı yapalım. 1 ai i a i 1 ai ai i. 1 ai ai 1 ai ai 0 2ai a 0 olmalıdır. AYT 08 MATEMATİK ÇÖZÜMLERİ ai i İçler dışlar çarpımı yapalım. ai ai i ai ai aii ai ai ai ai 0 ai a 0 olmalıdır. Cevap : E 8 in asal çarpanları ve 3 tür. 8.3 3 40 ın asal çarpanları ve 5 tir. 40.5 İkisinde

Detaylı

MATEMATİK (LİSE) ÖĞRETMENLİĞİ

MATEMATİK (LİSE) ÖĞRETMENLİĞİ KAMU PERSONEL SEÇME SINAVI MATEMATİK (LİSE) ÖĞRETMENLİĞİ TÜRKİYE GENELİ ÇÖZÜMLER MATEMATİK (LİSE) ÖĞRETMENLİĞİ. D 6. D. D 7. B. B 8. A 4. D 9. B 5. B. C 6. A. A 7. B. A 8. E. B 9. D 4. E. C 5. B. D 6.

Detaylı

3. V, R 3 ün açık bir altkümesi olmak üzere, c R. p noktasında yüzeye dik olduğunu gösteriniz.(10

3. V, R 3 ün açık bir altkümesi olmak üzere, c R. p noktasında yüzeye dik olduğunu gösteriniz.(10 Diferenisyel Geometri 2 Yazokulu 2010 AdıSoyadı: No : 1. ϕ (u, v) = ( u + 2v, v + 2u, u 2 v ) parametrizasyonu ile verilen M kümesinin bir regüler yüzey olduğunu gösteriniz. (15 puan) 3. V, R 3 ün açık

Detaylı

Aralıklar, Eşitsizlikler, Mutlak Değer

Aralıklar, Eşitsizlikler, Mutlak Değer ARALIKLAR Gerçel sayıların, aralık olarak adlandırılan bazı kümeleri kalkülüste sık sık kullanılır ve geometrik olarak doğru parçalarına karşılık gelir. Örneğin, a < b ise, a dan b ye açık aralık, a ile

Detaylı

MAT MATEMATİK I DERSİ

MAT MATEMATİK I DERSİ MATEMATİK BÖLÜMÜ MAT 0 - MATEMATİK I DERSİ ÇALIŞMA SORULARI Bölüm : Fonksiyonlar. Tanım Kümesi ) f() = ln fonksiyonu verilsin. Tanım kümesini bulunuz. ((0, )\{}) Bölüm : Limit ve Süreklilik.. Limit L Hospital

Detaylı

Deney 21 PID Denetleyici (I)

Deney 21 PID Denetleyici (I) Deney 21 PID Denetleyici (I) DENEYİN AMACI 1. Ziegler ve Nichols ayarlama kuralı I i kullanarak PID enetleyici parametrelerini belirlemek. 2. PID enetleyici parametrelerinin ince ayarını yapmak. GENEL

Detaylı

Limit. 1.1 Soldan ve Sağdan Yaklaşım. 1.2 Fonksiyonun Limiti

Limit. 1.1 Soldan ve Sağdan Yaklaşım. 1.2 Fonksiyonun Limiti Bölüm Limit. Soldan ve Sağdan Yaklaşım değişkeni a ya, a dan küçük değerlerle yaklaşıyorsa, bu tür yaklaşıma soldan yaklaşım denir ve a biçiminde gösterilir. değişkeni a ya, a dan büyük değerlerle yaklaşıyorsa,

Detaylı

Matematikte karşılaştığınız güçlükler için endişe etmeyin. Emin olun benim karşılaştıklarım sizinkilerden daha büyüktür.

Matematikte karşılaştığınız güçlükler için endişe etmeyin. Emin olun benim karşılaştıklarım sizinkilerden daha büyüktür. - 1 - ÖĞRENME ALANI CEBİR BÖLÜM KARMAŞIK SAYILAR ALT ÖĞRENME ALANLARI 1) Karmaşık Sayılar Karmaşık Sayıların Kutupsal Biçimi KARMAŞIK SAYILAR Kazanım 1 : Gerçek sayılar kümesini genişletme gereğini örneklerle

Detaylı

MAT MATEMATİK I DERSİ

MAT MATEMATİK I DERSİ MATEMATİK BÖLÜMÜ MAT 0 - MATEMATİK I DERSİ ÇALIŞMA SORULARI Bölüm : Fonksiyonlar. Tanım Kümesi ) f() = ln fonksiyonu verilsin. Tanım kümesini bulunuz. ((0, )\{}) Bölüm : Limit ve Süreklilik.. Limit L Hospital

Detaylı

28/04/2014 tarihli LYS-1 Matematik-Geometri Testi konu analizi SORU NO LYS 1 MATEMATİK TESTİ KAZANIM NO KAZANIMLAR 1 / 31

28/04/2014 tarihli LYS-1 Matematik-Geometri Testi konu analizi SORU NO LYS 1 MATEMATİK TESTİ KAZANIM NO KAZANIMLAR 1 / 31 SORU NO LYS 1 MATEMATİK TESTİ A B KAZANIM NO KAZANIMLAR 1 1 / 31 11 32159 Rasyonel sayı kavramını açıklar. 2 12 32151 İki ya da daha çok doğal sayının en büyük ortak bölenini ve en küçük ortak katını bulur.

Detaylı

FİZ217 TİTREŞİMLER VE DALGALAR DERSİNİN 2. ARA SINAV SORU CEVAPLARI

FİZ217 TİTREŞİMLER VE DALGALAR DERSİNİN 2. ARA SINAV SORU CEVAPLARI 1) Gerilmiş bir ipte enine titreşimler denklemi ile tanımlıdır. Değişkenlerine ayırma yöntemiyle çözüm yapıldığında için [ ] [ ] ifadesi verilmiştir. 1.a) İpin enine titreşimlerinin n.ci modunu tanımlayan

Detaylı

KAMU PERSONEL SEÇME SINAVI ÖĞRETMENLİK ALAN BİLGİSİ TESTİ ORTAÖĞRETİM MATEMATİK ÖĞRETMENLİĞİ TG 4 ÖABT ORTAÖĞRETİM MATEMATİK Bu testlerin her hakkı saklıdır. Hangi amaçla olursa olsun, testlerin tamamının

Detaylı

SÜREKLİLİK. 9.1 Süreklilik ve Süreksizlik Kavramları

SÜREKLİLİK. 9.1 Süreklilik ve Süreksizlik Kavramları SÜREKLİLİK Bu bölümde süreklilik kavramı, süreksizlik, sürekli fonksiyonların özellikleri ile buna ilişkin teoremler örnekler ve grafiklerle açıklanmaktadır. 9.1 Süreklilik ve Süreksizlik Kavramları Tanım

Detaylı

İleri Diferansiyel Denklemler

İleri Diferansiyel Denklemler MIT AçıkDersSistemi http://ocw.mit.edu 18.034 İleri Diferansiyel Denklemler 2009 Bahar Bu bilgilere atıfta bulunmak veya kullanım koşulları hakkında bilgi için http://ocw.mit.edu/terms web sitesini ziyaret

Detaylı

9 B ol um Türevin Uygulamaları

9 B ol um Türevin Uygulamaları 2 Bölüm 9 Türevin Uygulamaları 64 BÖLÜM 9. TÜREVİN UYGULAMALARI Bölüm 0 Türev Tanım 0. y = f () fonksiyonu (a,b) aralığında tanımlı ve 0 (a,b) olsun. y = f ( 0 ) h 0 f ( 0 + h) f ( 0 ) h iti varsa, bu

Detaylı

3.2. Euler Yüksek Mertebeden Değişken Katsayılı Diferansiyel Denklemi

3.2. Euler Yüksek Mertebeden Değişken Katsayılı Diferansiyel Denklemi 3.2. Euler Yüksek Mertebeden Değişken Katsaılı Diferansiel Denklemi (n). (n) + (n-). (n-) + + 2. +. + = Q() Değişken dönüşümü apalım. Diferansiel denklemi sabit katsaılı ( erine t bağımsız değişkeni )

Detaylı

Türev Uygulamaları ÜNİTE. Amaçlar. İçindekiler. Yazar Prof.Dr. Vakıf CAFEROV

Türev Uygulamaları ÜNİTE. Amaçlar. İçindekiler. Yazar Prof.Dr. Vakıf CAFEROV Türev Uygulamaları Yazar Prof.Dr. Vakıf CAFEROV ÜNİTE 10 Amaçlar Bu üniteyi çalıştıktan sonra; türev kavramı yardımı ile fonksiyonun monotonluğunu, ekstremum noktalarını, konvekslik ve konkavlığını, büküm

Detaylı

Şekil 23.1: Düzlemsel bölgenin alanı

Şekil 23.1: Düzlemsel bölgenin alanı Bölüm Belirli İntegral Şekil.: Düzlemsel bölgenin alanı Düzlemde kare, dikdörtgen, üçgen, çember gibi iyi bilinen geometrik şekillerin alanlarını bulmak için uygun formüller kullanıyoruz. Ama, uygulamada

Detaylı

İleri Diferansiyel Denklemler

İleri Diferansiyel Denklemler MIT AçıkDersSistemi http://ocw.mit.edu 18.034 İleri Diferansiyel Denklemler 2009 Bahar Bu bilgilere atıfta bulunmak veya kullanım koşulları hakkında bilgi için http://ocw.mit.edu/terms web sitesini ziyaret

Detaylı

x e göre türev y sabit kabul edilir. y ye göre türev x sabit kabul edilir.

x e göre türev y sabit kabul edilir. y ye göre türev x sabit kabul edilir. TÜREV y= f(x) fonksiyonu [a,b] aralığında tanımlı olsun. Bu aralıktaki bağımsız x değişkenini h kadar arttırdığımızda fonksiyon değeri de buna bağlı olarak değişecektir. Fonksiyondaki artma miktarını değişkendeki

Detaylı

LYS MATEMATİK DENEME - 1

LYS MATEMATİK DENEME - 1 LYS MATEMATİK DENEME - BU SORULAR FİNAL EĞİTİM KURUMLARI TARAFINDAN SAĞLANMIŞTIR. İZİNSİZ KOPYALANMASI VE ÇOĞALTILMASI YASAKTIR, YAPILDIĞI TAKDİRDE CEZAİ İŞLEM UYGULANACAKTIR. LYS MATEMATİK TESTİ. Bu testte

Detaylı

LYS Y OĞRU MTMTİK TSTİ LYS-. u testte Matematik ile ilgili soru vardır.. evaplarınızı, cevap kâğıdının Matematik Testi için ayrılan kısmına işaretleyiniz.. u testteki süreniz 7 dakikadır.. a ve b asal

Detaylı

2(1+ 5 ) b = LYS MATEMATİK DENEMESİ. işleminin sonucu kaçtır? A)2 5 B)3 5 C)2+ 5 D)3+ 5 E) işleminin sonucu kaçtır?

2(1+ 5 ) b = LYS MATEMATİK DENEMESİ. işleminin sonucu kaçtır? A)2 5 B)3 5 C)2+ 5 D)3+ 5 E) işleminin sonucu kaçtır? 017 LYS MATEMATİK DENEMESİ Soru Sayısı: 50 Sınav Süresi: 75 ı 1. 4. (1+ 5 ) 1+ 5 işleminin sonucu kaçtır? A) 5 B)3 5 C)+ 5 işleminin sonucu kaçtır? D)3+ 5 E)1+ 5 A) B) 1 C) 1 D) E) 3. 4 0,5.16 0,5 işleminin

Detaylı

MATLAB. Temel işlemler, Vektörler, Matrisler DOÇ. DR. ERSAN KABALCI

MATLAB. Temel işlemler, Vektörler, Matrisler DOÇ. DR. ERSAN KABALCI MATLAB Temel işlemler, Vektörler, Matrisler DOÇ. DR. ERSAN KABALCI İçerik Matlab Nedir? Matlab ın Kullanım Alanları Matlab Açılış Ekranı Matlab Programı İle Temel İşlemlerin Gerçekleştirilmesi Vektör İşlemleri

Detaylı

[ AN ] doğrusu açıortay olduğundan;

[ AN ] doğrusu açıortay olduğundan; . Bir havuzu bir musluk 6 saatte, başka bir musluk 8 saatte dolduruyor. Bu iki musluk kapalı iken, havuzun altında bulunan üçüncü bir musluk, dolu havuzu saatte boşaltabiliyor. Üç musluk birden açılırsa,boş

Detaylı

Kesirli Türevde Son Gelişmeler

Kesirli Türevde Son Gelişmeler Kesirli Türevde Son Gelişmeler Kübra DEĞERLİ Yrd.Doç.Dr. Işım Genç DEMİRİZ Yıldız Teknik Üniversitesi Fen Bilimleri Enstitüsü 6-9 Eylül, 217 Kesirli Türevin Ortaya Çıkışı Gama ve Beta Fonksiyonları Bazı

Detaylı

1. Hafta Uygulama Soruları

1. Hafta Uygulama Soruları . Hafta Uygulama Soruları ) x ekseni, x = doğrusu, y = x ve y = x + eğrileri arasında kalan alan nedir? ) y = x 3 ve y = 4 x 3 parabolleri arasında kalan alan nedir? 3) y = x, x y = 4 eğrileri arasında

Detaylı

Bir Fonksiyonun İlkeli. fonksiyonuna I üzerinde f nin ilkeli denir.

Bir Fonksiyonun İlkeli. fonksiyonuna I üzerinde f nin ilkeli denir. Bir Fonksiyonun İlkeli Tanım: Eğer bir I aralığındaki her x için F (x) = f(x) ise, F fonksiyonuna I üzerinde f nin ilkeli denir. Bir Fonksiyonun İlkeli Örneğin, f = x 2 olsun. Eğer Kuvvet Kuralı nı aklımızda

Detaylı

İÇİNDEKİLER. Ön Söz...2. Adi Diferansiyel Denklemler...3. Birinci Mertebeden ve Birinci Dereceden. Diferansiyel Denklemler...9

İÇİNDEKİLER. Ön Söz...2. Adi Diferansiyel Denklemler...3. Birinci Mertebeden ve Birinci Dereceden. Diferansiyel Denklemler...9 İÇİNDEKİLER Ön Söz... Adi Diferansiyel Denklemler... Birinci Mertebeden ve Birinci Dereceden Diferansiyel Denklemler...9 Homojen Diferansiyel Denklemler...15 Tam Diferansiyel Denklemler...19 Birinci Mertebeden

Detaylı

İÇİNDEKİLER ÖNSÖZ Bölüm 1 SAYILAR 11 Bölüm 2 KÜMELER 31 Bölüm 3 FONKSİYONLAR

İÇİNDEKİLER ÖNSÖZ Bölüm 1 SAYILAR 11 Bölüm 2 KÜMELER 31 Bölüm 3 FONKSİYONLAR İÇİNDEKİLER ÖNSÖZ III Bölüm 1 SAYILAR 11 1.1. Sayı Kümeleri 12 1.1.1.Doğal Sayılar Kümesi 12 1.1.2.Tam Sayılar Kümesi 13 1.1.3.Rasyonel Sayılar Kümesi 14 1.1.4. İrrasyonel Sayılar Kümesi 16 1.1.5. Gerçel

Detaylı

CEVAP ANAHTARI POLİNOMLAR - 4 POLİNOMLAR - 2 POLİNOMLAR - 1 POLİNOMLAR - 3. b) zaferbalci.com. 2. zaferbalci.com

CEVAP ANAHTARI POLİNOMLAR - 4 POLİNOMLAR - 2 POLİNOMLAR - 1 POLİNOMLAR - 3. b) zaferbalci.com. 2. zaferbalci.com POLİNOMLAR POLİNOMLAR POLİNOMLAR POLİNOMLAR. zaferbalci.com. zaferbalci.com. zaferbalci.com.. zaferbalci.com.. zaferbalci.com. 99 +..,,,,,,,. x x. x 0.... zaferbalci.com. (x + ).Q(x) + 0. E. x +. 0. a)

Detaylı

ANAL IZ III Aras nav Sorular

ANAL IZ III Aras nav Sorular Ad ve Soyad : Numaras : ANAL IZ III Aras nav Sorular 26.11.27 1. x 1 = p 3 ve x n+1 = p 3 + x n ; n = 1; 2; ::: biçiminde tan mlanan (x n ) dizisinin yak nsak oldu¼gunu gösteriniz ve limitini bulunuz.(2)

Detaylı

1984 ÖYS A) 875 B) 750 C) 625 D) 600 E) 500

1984 ÖYS A) 875 B) 750 C) 625 D) 600 E) 500 984 ÖYS. + + a a + a + a işleminin sonucu nedir? a A) +a B) a C) +a D) a E) +a a b ab. ifadesinin kısaltılmış biçimi a b + a b + ab a + b A) a b a b D) a b B) a b a + b E) ab(a-b) C) a b a + b A) 87 B)

Detaylı

MATEMATİK 2 TESTİ (Mat 2)

MATEMATİK 2 TESTİ (Mat 2) MTEMTİ TESTİ (Mat ). u testte srasyla, Matematik ( ) Geometri ( 0) ile ilgili 0 soru vardr.. evaplarnz, cevap kâğdnn Matematik Testi için ayrlan ksmna işaretleyiniz.. armaşk saylar kümesi üzerinde işlemi,

Detaylı

PERGEL YAYINLARI LYS 1 DENEME-6 KONU ANALİZİ SORU NO LYS 1 MATEMATİK TESTİ KAZANIM NO KAZANIMLAR

PERGEL YAYINLARI LYS 1 DENEME-6 KONU ANALİZİ SORU NO LYS 1 MATEMATİK TESTİ KAZANIM NO KAZANIMLAR 2013-2014 PERGEL YAYINLARI LYS 1 DENEME-6 KONU ANALİZİ SORU NO LYS 1 MATEMATİK TESTİ A B KAZANIM NO KAZANIMLAR 1 1 / 31 12 32173 Üslü İfadeler 2 13 42016 Rasyonel ifade kavramını örneklerle açıklar ve

Detaylı

1) Toplam gelir fonksiyonu olarak verildiğine göre marjinal gelir fonksiyonu MG aşağıdakilerden hangisidir? A) ** B) C) D) E)

1) Toplam gelir fonksiyonu olarak verildiğine göre marjinal gelir fonksiyonu MG aşağıdakilerden hangisidir? A) ** B) C) D) E) İktisadi ve İdari Bilimler Fakültesi MAT 152 Genel Matematik II Final Sorularının Çözümleri: 1) Toplam gelir fonksiyonu olarak verildiğine göre marjinal gelir fonksiyonu MG aşağıdakilerden hangisidir?

Detaylı

ÖRNEK 3712 nin esas ölçüsünü bulunuz. ÇÖZÜM esas ölçüsü 112 olur. ÖRNEK ÇÖZÜM cos 1, 1 sin 1

ÖRNEK 3712 nin esas ölçüsünü bulunuz. ÇÖZÜM esas ölçüsü 112 olur. ÖRNEK ÇÖZÜM cos 1, 1 sin 1 MTEMTİK TRİGONOMETRİ - I irim Çember II III sin I IV 0 nin esas ölçüsünü bulunuz 0 00 0 00 + olduğundan, esas ölçüsü olur I ölge (0 < < II ölge ( ) < < ) III ölge ( < < IV ölge ( ) < < ) sin tan cot +

Detaylı

CORDIC METODU KULLANILARAK TRİGONOMETRİK HESAP MAKİNESİ SİMÜLASYONU

CORDIC METODU KULLANILARAK TRİGONOMETRİK HESAP MAKİNESİ SİMÜLASYONU OD METODU KULLANLAAK TİGONOMETİK HESAP MAKİNESİ SİMÜLASYONU Ahmet SETBAŞ 1 Selçuk SEVGEN 2 e-posta: 1 asertbas@istanbul.edu.tr e-posta: 2 sevgens@istanbul.edu.tr 1,2 İstanbul Üniversitesi, Mühendislik

Detaylı

Mat Matematik II / Calculus II

Mat Matematik II / Calculus II Mat - Matematik II / Calculus II Çalışma Soruları Çok Değişkenli Fonksiyonlar: Seviye eğri ve yüzeyler, Limit ve süreklilik wolframalpha.com uygulamasında bir fonksiyonun tanım kümesini bulmak için: x

Detaylı

SAÜ Fen Edebiyat Dergisi (2009-II) ÜÇ BOYUTLU LORENTZ UZAYI MANNHEİM EĞRİ ÇİFTİ ÜZERİNE A. ZEYNEP AZAK

SAÜ Fen Edebiyat Dergisi (2009-II) ÜÇ BOYUTLU LORENTZ UZAYI MANNHEİM EĞRİ ÇİFTİ ÜZERİNE A. ZEYNEP AZAK SAÜ Fen Edebiyat Dergisi (009-II) ÜÇ BOYUTLU LORENTZ UZAYI L DE TIMELIKE MANNHEİM EĞRİ ÇİFTİ ÜZERİNE A. ZEYNEP AZAK Saarya Üniversitesi, Fen-Edebiyat Faültesi Matemati Bölümü, 5487, SAKARYA apirdal@saarya.edu.tr

Detaylı

2010 oldu¼gundan x 2 = 2010 ve

2010 oldu¼gundan x 2 = 2010 ve ) 444400 say s ndaki rakamlar n yerleri de¼giştirilerek 7 basamakl kaç farkl say yaz labilir? Çözüm : Bu rakamlar n bütün farkl 7 li dizilişlerinin say s 7! olacakt r. Bu dizilişlerin 4!! soldan ilk rakam

Detaylı

İleri Diferansiyel Denklemler

İleri Diferansiyel Denklemler MIT AçıkDersSistemi http://ocw.mit.edu 18.034 İleri Diferansiyel Denklemler 2009 Bahar Bu bilgilere atıfta bulunmak veya kullanım koşulları hakkında bilgi için http://ocw.mit.edu/terms web sitesini ziyaret

Detaylı

ARŞİV FONKSİYONLARI VE ÖZELLİKLERİ TANIM İSİM VE ARGÜMAN ARGÜMAN/FONK. TİPİ AÇIKLAMA

ARŞİV FONKSİYONLARI VE ÖZELLİKLERİ TANIM İSİM VE ARGÜMAN ARGÜMAN/FONK. TİPİ AÇIKLAMA FONKSİYONLAR Sayısal bilgiler üzerinde direkt olarak kullanılabilen ve kendilerine özgü işlemleri gerçekleştiren ifadelerdir. Hazır fonksiyonlar Aritmetik deyim fonksiyonu (kullanıcı tarafında tanımlanan

Detaylı

1995 ÖYS. a+ =3a a= Cevap:D. Çözüm: Çözüm: Çözüm:

1995 ÖYS. a+ =3a a= Cevap:D. Çözüm: Çözüm: Çözüm: 99 ÖYS. a b c d ve a, b, c, d tek sayılar olmak üzere, abcd dört basamaklı en büyük sayıdır? Bu sayı aşağıdakilerden hangisine kalansız bölünebilir? A) B) 6 C) 9 D) E) a, b, c, d rakamları birbirinden

Detaylı

MATLABA GİRİŞ 1. MATLAB. Komut penceresi. MATLAB adı, MATrix LABoratory (Matrix Laboratuarı) kelimelerinden gelir.

MATLABA GİRİŞ 1. MATLAB. Komut penceresi. MATLAB adı, MATrix LABoratory (Matrix Laboratuarı) kelimelerinden gelir. 1. MATLAB MATLAB adı, MATrix LABoratory (Matrix Laboratuarı) kelimelerinden gelir. Matlab, komut temelli bir programdır. Command Window penceresinde» işareti Matlab'ın komut prompt'unu gösterir ve bu işaret

Detaylı

Diferansiyel denklemler uygulama soruları

Diferansiyel denklemler uygulama soruları . Aşağıdaki diferansiyel denklemleri sınıflandırınız. a) d y d d + y = 0 b) 5 d dt + 4d + 9 = cos 3t dt Diferansiyel denklemler uygulama soruları 0.0.3 c) u + u [ ) ] d) y + = c d. y + 3 = 0 denkleminin,

Detaylı

Darboux Ani Dönme Vektörleri ile. SPACELIKE ve TIMELIKE YÜZEYLER GEOMETRİSİ. Celal Bayar Üniversitesi Yayınları Yayın No: 0006

Darboux Ani Dönme Vektörleri ile. SPACELIKE ve TIMELIKE YÜZEYLER GEOMETRİSİ. Celal Bayar Üniversitesi Yayınları Yayın No: 0006 Darboux Ani Dönme Vektörleri ile SPACELIKE ve TIMELIKE YÜZEYLER GEOMETRİSİ Prof. Dr. H. Hüseyin UĞURLU Prof. Dr. Ali ÇALIŞKAN Celal Bayar Üniversitesi Yayınları Yayın No: 0006 0 Celal Bayar Üniversitesi

Detaylı

DERSİN ADI: MATEMATİK II MAT II (12) KUTUPSAL KOORDİNATLAR VE UYGULAMALARI 1. KUTUPSAL KOORDİNATLAR 2. EĞRİ ÇİZİMLERİ

DERSİN ADI: MATEMATİK II MAT II (12) KUTUPSAL KOORDİNATLAR VE UYGULAMALARI 1. KUTUPSAL KOORDİNATLAR 2. EĞRİ ÇİZİMLERİ DERSİN ADI: MATEMATİK II MAT II (1) ÜNİTE: KUTUPSAL KOORDİNATLAR VE UYGULAMALARI 1. KUTUPSAL KOORDİNATLAR. EĞRİ ÇİZİMLERİ GEREKLİ ÖN BİLGİLER 1. Trigonometrik fonksiyonlar. İntegral formülleri KONU ANLATIMI

Detaylı

DERS 10. Kapalı Türev, Değişim Oranları

DERS 10. Kapalı Türev, Değişim Oranları DERS 0 Kapalı Türev, Değişim Oranları 0.. Kapalı Türev. Fonksiyon kavramının ele alınığı ikinci erste kapalı enklemlerin e fonksiyon tanımlayabileceğini görmüştük. F (, enklemi ile tanımlanan f fonksiyonu

Detaylı

MAT355 Kompleks Fonksiyonlar Teorisi I Hafta 13

MAT355 Kompleks Fonksiyonlar Teorisi I Hafta 13 4. İNTEGRALLER 4.1. Kompleks İntegrasyon Tanım 1. f : [a, b] R fonksiyonu f(t) u(t) + iv(t) biçiminde olsun. Eğer u ve v, [a, b] aralığı üzerinde integrallenebilirse, olarak tanımlanır. b f(t)dt b u(t)dt

Detaylı