İÇİNDEKİLER. Ön Söz...2. Adi Diferansiyel Denklemler...3. Birinci Mertebeden ve Birinci Dereceden. Diferansiyel Denklemler...9

Ebat: px
Şu sayfadan göstermeyi başlat:

Download "İÇİNDEKİLER. Ön Söz...2. Adi Diferansiyel Denklemler...3. Birinci Mertebeden ve Birinci Dereceden. Diferansiyel Denklemler...9"

Transkript

1 İÇİNDEKİLER Ön Söz... Adi Diferansiyel Denklemler... Birinci Mertebeden ve Birinci Dereceden Diferansiyel Denklemler...9 Homojen Diferansiyel Denklemler...15 Tam Diferansiyel Denklemler...19 Birinci Mertebeden Lineer Diferansiyel Denklemler...5 Diferansiyel Denklem Çeşitleri...9 İzogonal ve Ortogonal Yörüngeler Genel Tarama Sınavı...5

2 a 0() 0 olmak üzere, (n) (n 1) (n ) 0 n a ()y a ()y a ()y... a ()y F() denklemine n. mertebeden lineer diferansiyel denklem denir. Eğer F() = 0 ise denkleme sağ tarafsız ya da homojen lineer diferansiyel denklem; F() 0 ise denkleme sağ taraflı ya da homojen olmayan lineer diferansiyel denklem denir. v) c1y1 cy cy... cnyn = 0 denkleminde c1 c c... cn 0 oluyorsa y 1,y,y,...,y n fonksiyonlarına lineer bağımsızdır denir. c1y1 cy cy... cnyn 0 denkleminde (n 1) kez türev alınırsa c1y1 cy cy... cnyn 0 Özellikleri: c 1,c,c,...,c n keyfi sabitler olsun. c y c y c y... c y 0 1 n n c y c y c y... c y 0 1 n n i) y 1 homojen denklemin bir çözümü ise c1y 1 de homojen kısmın bir çözümüdür. c y c y c y... c y 0 1 n n ii) y 1,y,y,...,y n homojen denklemin n tane çözümü ise. c1y1 cy cy... cnyn (n 1) (n 1) (n 1) (n 1) 1 n n c y c y c y... c y 0 de homojen kısmın çözümüdür. denklem sistemi elde edilir. Bu denklem sistemindeki c 1,c,c,...,c n keyfi sabitlerin tümü birden sıfır ise iii) y 1,y,y,...,y n homojen denklemin n tane çözümü ve () fonksiyonu da homojen olmayan denklemin bir çözümü ise () + c1y1 cy cy... cnyn y y... y n y y... y n W(y,y,y,...,y ) y y... y 0 n (n 1) (n 1) (n 1) n y y... y de homojen olmayan diferansiyel denklemin bir çözümüdür. dır. Bu determinanta Wronskiyen ya da Wronski determinantı denir. Wronskiyen determinantı sıfır ise y 1,y,y,...,y n fonksiyonları lineer bağımlıdır. iv) Lineer diferansiyel denklemde bağımsız değişken değiştirildiğinde yine bir lineer diferansiyel denklem elde edilir. 4

3 Örnek: y e ve y e fonksiyonlarının lineer bağımsız olduklarını gösterelim. c1 ve c keyfi sabitler olsun. y 1 e W 0 e 0 determinantından 0 e c e c e 0 4 denkleminin Wronski determinantı diferansiyel denklemi elde edilir. e e W e e olacağından y 1 ve y fonksiyonları lineer bağımsızdır. vi) Genel çözümü y = c1y1 cy cy... cnyn + () olan n. mertebeden lineer diferansiyel denklem için Sabit Katsayılı Lineer Diferansiyel Denklemler a 0,a 1,a,...,an R (n) (n 1) (n ) 0 n a y a y a y... a y Q() denklemine n. mertebeden sabit katsayılı lineer diferansiyel denklem denir. Eğer Q() = 0 ise verilen denkleme sabit katsayılı sağ tarafsız (homojen) diferansiyel denklem denir. y () y y... y n y () y y... y n W y () y y... y 0 olmalıdır. n (n) (n) (n) (n) (n) n y () y y... y Sabit Katsayılı Homojen Diferansiyel Denklemlerin Genel Çözümü (n) (n 1) (n ) (n) 0 n a y a y a y... a y 0 denkleminin y = e biçiminde çözümlerini araştıralım. n n 1 n 0 n e (a a a... a ) 0 olmak üzere, Örnek: Genel çözümü y c c e olan lineer diferansiyel denklemi bulalım. n n 1 n 0 n a a a... a 0 denklemine homojen diferansiyel denklemin karakteristik denklemi denir. Bu denklemin n tane kökü olduğundan 1,,,..., n köklerine karşılık gelen e,e,e,...,e n fonksiyonlarından her biri verilen diferansiyel denklemi sağlar. 4

4 Karakteristik Denklemin Kökleri 1) Karakteristik denklemin, 1,,,..., n gibi n farklı reel kökü olsun. Bu durumda verilen homojen diferansiyel denklemin e,e,e,...,e n biçiminde n tane özel çözümü vardır. c 1,c,c,...,c n keyfi sabitler olmak üzere, homojen denklemin genel çözümü, 1 n n y = c e c e c e... c e ) k n olmak üzere, karakteristik denklemin 1,,,..., k gibi k tane katlı kökü olsun k ve c 1,c,c,...,c n keyfi sabitler olmak üzere, genel çözüm k 1 1 k k 1 n (c c c... c )e c e... c e 1 k 1 n y= Örnek: 4 4y 0 diferansiyel denkleminin Örnek: 4y 0 diferansiyel denkleminin Verilen homojen diferansiyel y = e biçimde çözümlerine bakarak = 0 karakteristik denklemi elde edilir. ( - 1) ( - ) = ve olduğundan genel çözüm Karakteristik denklem = 0 ( ) = 0 olduğundan 1 0, olur. O halde genel çözüm 0 y c e (c c )e y c (c c )e bulunur. y c e c e. Karakteristik denklemin a + bi ve a bi gibi iki kökü komleks olmak üzere, n tane kökü olsun. O halde genel çözüm a n y e (c cosb c sinb) c e... c e n 44

5 Örnek: 6y 10 0 diferansiyel denkleminin Örnek: y diferansiyel denkleminin Karakteristik denklem y = 0-1 = 0 ( ) = , 1 - = i olduğundan h y c e c e tir. Homojen olmayan 1 i, i olduğundan genel çözüm y e (c cos c sin) denklemin bir özel çözümü üzere, y a b a y a b c olmak Sabit Katsayılı Homojen Olmayan Lineer Diferansiyel Denklemler ifadeleri sağ taraflı denklemde yerine yazılarak a a b c = + (n) (n 1) 0 1 n a y a y... a y Q() a = -1, b = -1, c= - homojen olmayan sabit katsayılı lineer diferansiyel denklemin genel çözümü, çözümü ve y özel çözümü olmak üzere, y h homojen kısmın bir () homojen olmayan kısmın bir bulunur. Bu değerler özel çözümde yazılarak y elde edilir. O halde genel çözüm y y y h y y y h c e c e olur. 45

6 Örnek: 1 diferansiyel denkleminin Örnek: y y 6e diferansiyel denkleminin Verilen denklemin homojen kısmının karakteristik denklemi, - = 0 1 0, 1 olduğundan y c c e h 1 0 biçiminde bir kök olduğundan özel çözüm, y y = 0 1 1, olduğundan homojen kısmın genel çözümü h 1 y c e c e Karakteristik denklemin köklerinden hiçbiri -1 ( çözüm e te in katsayısı) olmadığından özel 1 y (a b) y ae y a b y a b y a a - a b = 1 a = -1, b = -1 y bulunur. Buradan da homojen olmayan denklemin genel çözümü y y y h biçiminde olacaktır. y ae y ae y y 6e ae ( ae ) ae 6e a + a + a = 6 a = 1 olduğundan genel çözüm y y y h olur. c c e c e c e e 46

7 Örnek: Örnek: 4y 6 sin diferansiyel denkleminin 5y 6y 0e diferansiyel denkleminin Karakteristik denklem Karakteristik denklem = = 0 1, 1 i, i olduğundan, olduğundan, h 1 y c e c e yh c1 cos c sin Karakteristik denklemin bir kökü olan e te in katsayısı ile aynı olduğundan özel çözüm Özel çözüm ise y a sin bcos y ae y acos b sin biçiminde olacaktır. y a( 1)e y a sin bcos a sin b cos 4a sin 4bcos 6 sin y a(4 4)e a =, b = 0 a(4 4)e 5a( 1)e 6ae 0e a = 4 Buradan da genel çözüm y y y h y c e c e 4e y sin O halde genel çözüm y y y h y c1 cos c sin sin bulunur. 47

8 Euler Diferansiyel Denklemi Örnek: 5y y 0 diferansiyel denkleminin n n d y n 1 n 1 d y 0 n 1 n 1 n a a... a y Q() d d t e şeklindeki değişken katsayılı lineer diferansiyel denklemlere Euler diferansiyel denklemi denir. Bu ti diferansiyel denklemlerde = e t dönüşümü yaılarak verilen diferansiyel denklem sabit katsayılı lineer diferansiyel denkleme indirgenir. a0 1, a1 5, a d y dy 4 y 0 dt dt d y dy 0 a a a y Q() d d y = e t olmak üzere, karakteristik denklem = 0 ikinci mertebeden Euler diferansiyel denkleminde d dt e ise e ve e dt d t t t 1 1, olduğundan genel çözüm dy dy dt d dt d c c y c e c e ise y t t t dy e dt tür. d y d t dy dt e dt dt dt d t d y e e dt t dy dt olacağından verilen diferansiyel denklem d y dy t a 0 (a 1 a 0 ) ay Q(e ) dt dt hâlini alır. 48

9 KONU TESTİ 1. Genel çözümü y c c e 1 olan lineer diferansiyel denklem aşağıdakilerden A) y 6y 0 A) y c c e c e y c c e c e y (c c )e c e y c e c e c e y c e c e c e. Genel çözümü y (c c )e olan lineer diferansiyel denklem aşağıdakilerden A) y A) y c e (c cos c sin ) y 4 y c e (c cos c sin ) y (c c )e c cos c y 5 4 y c e c cos c sin 4 y c e e (c cos c sin ). 4y 0 A) y c e c e y c e c e y (c c )e y (c c )e y e (c cos c sin) 6. 6y 0 A) y c c e c e y c c e c e y (c c )e c e y (c c )e c e y (c c )e c e 49

10 KONU TESTİ 7. y y 10 cos A) y c e c cos c sin A) y c e c e cos sin y c e c cos c sin y c e c e sin y c e (c cos c sin )e y c e c e cos y (c c cos c sin )e y c1 c cos c sin y c e c e cos y c e c e sin 8. y 1 A) y c e c e 11. y y 0 c c1 c A) y c1 y y c e c e 1 y c e c e y c e c e 1 c y c1 y c c y (c c )e y c e c e y 9y 0 9. y 4e A) y c e c e y (c c ln )e A) y c e c e e y (c c ln )e y c e c e e y (c c )e y c e c e e y (c c ln ) y c e c e e y c e c e e CEVAP ANAHTARI 1. A. D. B 4. D 5. A 6. B 7. C 8. D 9. B 10. D 11. C 1. E 50

11 KONU TARAMA SINAVI-8 1. Genel çözümü y c c e olan lineer diferansiyel denklem aşağıdakilerden A) y e A) y c c e e y c c e e y c c e e y c c e e y c c e e. 0 A) y c c e c e y c e c e c e y c c e c e y (c c )e c e y (c c )e c e 5. y 0 A) y c c e y c e c e c y c1 c1 y c c1 y c 6. y 0. (ıv) y 0 A) y (c c )e c e y c e c e 4 y (c c c )e c e c1 A) y c y c1 c c y c1 y (c1 c)e y c e c e 4 y c c c e c e y (c c )e c e CEVAP ANAHTARI 1. C. A. D 4. A 5. C 6. A 51

12 GENEL TARAMA SINAVI 1. y = c 4. (1 + cos)dy (1 cosy)d = 0 eğri ailesinin diferansiyel denklemi aşağıdakilerden y A) y 0 y y 0 y y 0 y y 0 A) tan + coty = c tan coty = c y tan cot c y tan cot c y y 0 y tan cot c. Aşağıdaki denklemlerden hangisi doğrusal (lineer) diferansiyel denklem değildir? A) 1 y y cos sin sin y 0 y y 1 5. y sin( y 1) A) tan( y 1) sec( y 1) c tan( y 1) sec( y 1) c tan( y 1) sec( y 1) c tan( y 1) c sec( y 1) c. y sin cos y A) y = sincos + c y = c tan 6. dy ( y )d 0 A) e ( y 1) c e ( y ) c y = sin + cos + c y = sin cos + c y = c sin e ( y 1) c e ( y ) c e ( y 1) c 5

13 GENEL TARAMA SINAVI 5. y c eğrisinin dik yörüngeleri aşağıdakilerden A) y c y c y c y c y c y 0 A) y c c c e y c c e y (c c c )e y c (c c )e y c (c c )e 6. y c doğru ailesini 45 lik açı altında kesen eğik yörüngelerin denklemi aşağıdakilerden 9. 5y 0 4 A) y e (c cos c sin ) A) y c y c y c y c y c y e (c cos 4 c sin 4) y e (c cos c sin ) y e (c cos c sin ) y e (c cos c sin ) 0. y 5y 0 7. Genel çözümü y c c e 1 olan lineer diferansiyel denklem aşağıdakilerden A) c1 A) y c1 c y c c1 y c y c1 c y c c CEVAP ANAHTARI 1. A. C. B 4. D 5. A 6. E 7. D 8. B 9. E 10. C 11. E 1.A 1. B 14. B 15. D 16. D 17. C 18. A 19. C 0. E 1. D. E. B 4. A 5. E 6. B 7. B 8. D 9. C 0. B 56

İkinci Mertebeden Lineer Diferansiyel Denklemler

İkinci Mertebeden Lineer Diferansiyel Denklemler A(x)y + B(x)y + C(x)y = F (x) (5) Denklem (5) in sağ tarafında bulunan F (x) fonksiyonu, I aralığı üzerinde sıfıra özdeş ise, (5) denklemine lineer homogen; aksi taktirde lineer homogen olmayan denklem

Detaylı

1 Lineer Diferansiyel Denklem Sistemleri

1 Lineer Diferansiyel Denklem Sistemleri Outline İçindekiler 1 Lineer Diferansiyel Denklem Sistemleri 1 1.1 Lineer sistem türleri (iki bilinmeyenli iki denklem)................. 1 2 Normal Formda lineer denklem sistemleri (İki bilinmeyenli iki

Detaylı

İleri Diferansiyel Denklemler

İleri Diferansiyel Denklemler MIT AçıkDersSistemi http://ocw.mit.edu 18.034 İleri Diferansiyel Denklemler 2009 Bahar Bu bilgilere atıfta bulunmak veya kullanım koşulları hakkında bilgi için http://ocw.mit.edu/terms web sitesini ziyaret

Detaylı

DÜZCE ÜN IVERS ITES I FEN-EDEB IYAT FAKÜLTES I

DÜZCE ÜN IVERS ITES I FEN-EDEB IYAT FAKÜLTES I DÜZCE ÜN IVERS ITES I FEN-EDEB IYAT FAKÜLTES I MATEMAT IK BÖLÜMÜ 203-204 BAHAR YARIYILI D IFERANS IYEL DENKLEMLER II ARA SINAV 2 Nisan 204 Süre: 90 dakika CEVAP ANAHTARI. (5p) Belirsiz katsay lar yöntemini

Detaylı

İleri Diferansiyel Denklemler

İleri Diferansiyel Denklemler MIT AçıkDersSistemi http://ocw.mit.edu 18.034 İleri Diferansiyel Denklemler 2009 Bahar Bu bilgilere atıfta bulunmak veya kullanım koşulları hakkında bilgi için http://ocw.mit.edu/terms web sitesini ziyaret

Detaylı

Sınav süresi 75 dakika. Student ID # / Öğrenci Numarası

Sınav süresi 75 dakika. Student ID # / Öğrenci Numarası March 16, 2017 [16:00-17:15]MATH216 First Midterm Exam / MAT216 Birinci Ara Sınav Page 1 of 6 Your Name / İsim Soyisim Your Signature / İmza Student ID # / Öğrenci Numarası Professor s Name / Öğretim Üyesi

Detaylı

MATEMATÝK GEOMETRÝ DENEMELERÝ

MATEMATÝK GEOMETRÝ DENEMELERÝ NM 1 MTMTÝK OMTRÝ NMLRÝ 1. o o = 75 ve y = 5 olduğuna göre,. 3 + 8 = 0 sin( y)cos( + y) + sin( + y)cos( y) sin( y)sin( + y) cos( + y)cos( y) denkleminin kaç tane farklı reel kökü vardır? ifadesinin eşiti

Detaylı

İleri Diferansiyel Denklemler

İleri Diferansiyel Denklemler MIT AçıkDersSistemi http://ocw.mit.edu 18.034 İleri Diferansiyel Denklemler 2009 Bahar Bu bilgilere atıfta bulunmak veya kullanım koşulları hakkında bilgi için http://ocw.mit.edu/terms web sitesini ziyaret

Detaylı

Sağ Taraf Fonksiyonu İle İlgili Özel Çözüm Örnekleri(rezonans durumlar)

Sağ Taraf Fonksiyonu İle İlgili Özel Çözüm Örnekleri(rezonans durumlar) 3.1.2.1. Sağ Taraf Fonksiyonu İle İlgili Özel Çözüm Örnekleri(rezonans durumlar) ÖRNEK: y + 4.y + 4.y = 5.sin2x diferensiyel denkleminin genel çözümünü bulalım: Homojen kısmın çözümü: y + 4.y + 4.y = 0

Detaylı

İleri Diferansiyel Denklemler

İleri Diferansiyel Denklemler MIT AçıkDersSistemi http://ocw.mit.edu 18.034 İleri Diferansiyel Denklemler 2009 Bahar Bu bilgilere atıfta bulunmak veya kullanım koşulları hakkında bilgi için http://ocw.mit.edu/terms web sitesini ziyaret

Detaylı

Alıştırmalar 1. 1) Aşağıdaki diferansiyel denklemlerin mertebesini ve derecesini bulunuz. Bağımlı ve bağımsız değişkenleri belirtiniz.

Alıştırmalar 1. 1) Aşağıdaki diferansiyel denklemlerin mertebesini ve derecesini bulunuz. Bağımlı ve bağımsız değişkenleri belirtiniz. Alıştırmalar 1 1) Aşağıdaki diferansiyel denklemlerin mertebesini ve derecesini bulunuz. Bağımlı ve bağımsız değişkenleri belirtiniz. Denklem Mertebe Derece a) 2 1 ( ) 4 6 c) 2 1 d) 2 2 e) 3 1 f) 2 4 g)

Detaylı

TRİGONOMETRİK DENKLEMLER

TRİGONOMETRİK DENKLEMLER TRİGONOMETRİK DENKLEMLER Daha önceden Sin + Cos = 1 ifadesinin R için gerçekleştiğini biliyoruz. Bu tür eşitliklere Özdeşlik adını verdiğimizi biliyorsunuz. Fakat ; Sin = 0 ve tan = 0 gibi eşitlikler R

Detaylı

Diferansiyel denklemler uygulama soruları

Diferansiyel denklemler uygulama soruları . Aşağıdaki diferansiyel denklemleri sınıflandırınız. a) d y d d + y = 0 b) 5 d dt + 4d + 9 = cos 3t dt Diferansiyel denklemler uygulama soruları 0.0.3 c) u + u [ ) ] d) y + = c d. y + 3 = 0 denkleminin,

Detaylı

DENKLEMLER CAUCHY-EULER DENKLEMİ. a n x n dn y dx n + a n 1x n 1 dn 1 y

DENKLEMLER CAUCHY-EULER DENKLEMİ. a n x n dn y dx n + a n 1x n 1 dn 1 y SABİT KATSAYILI DENKLEMLERE DÖNÜŞTÜREBİLEN DENKLEMLER Bu bölümde sabit katsayılı diferansiyel denklemlere dönüşebilen değişken katsayılı diferansiyel denklemlerden Cauchy Euler ve Legendre difarensiyel

Detaylı

HOMOGEN OLMAYAN DENKLEMLER

HOMOGEN OLMAYAN DENKLEMLER n. mertebeden homogen olmayan lineer bir diferansiyel denklemin y (n) + p 1 (x)y (n 1) + + p n 1 (x)y + p n (x)y = f(x) (1) şeklinde olduğunu ve bununla ilgili olan n. mertebeden lineer homogen denlemin

Detaylı

Bahar Yarıyılı D_IFERANS_IYEL DENKLEMLER II ARA SINAV 6 Nisan 2011 Süre: 90 dakika CEVAP ANAHTARI. y = c n x n+r. (n + r) c n x n+r 1 +

Bahar Yarıyılı D_IFERANS_IYEL DENKLEMLER II ARA SINAV 6 Nisan 2011 Süre: 90 dakika CEVAP ANAHTARI. y = c n x n+r. (n + r) c n x n+r 1 + DÜZCE ÜN_IVERS_ITES_I FEN-EDEB_IYAT FAKÜLTES_I MATEMAT_IK BÖLÜMÜ 010-011 Bahar Yarıyılı D_IFERANS_IYEL DENKLEMLER II ARA SINAV 6 Nisan 011 Süre: 90 dakika CEVAP ANAHTARI 1. 0p x d y + dy + xy = 0 diferansiyel

Detaylı

2. (1 + y ) ln(x + y) = yy dif. denk. çözünüz. 3. xy dy y 2 dx = (x + y) 2 e ( y/x) dx dif. denk. çözünüz.

2. (1 + y ) ln(x + y) = yy dif. denk. çözünüz. 3. xy dy y 2 dx = (x + y) 2 e ( y/x) dx dif. denk. çözünüz. D DİFERANSİYEL DENKLEMLER ÇALIŞMA SORULARI Fakülte No:................................................... Adı ve Soyadı:................................................. Bölüm:...................................................................

Detaylı

İleri Diferansiyel Denklemler

İleri Diferansiyel Denklemler MIT AçıkDersSistemi http://ocw.mit.edu 18.034 İleri Diferansiyel Denklemler 2009 Bahar Bu bilgilere atıfta bulunmak veya kullanım koşulları hakkında bilgi için http://ocw.mit.edu/terms web sitesini ziyaret

Detaylı

2 1 fonksiyonu veriliyor. olacak şekilde ortalama değer teoremini sağlayacak bir c sayısının var olup olmadığını araştırınız. Eğer var ise bulunuz.

2 1 fonksiyonu veriliyor. olacak şekilde ortalama değer teoremini sağlayacak bir c sayısının var olup olmadığını araştırınız. Eğer var ise bulunuz. ANALİZ 1.) a) sgn. sgn( 1) = 1 denkleminin çözüm kümesini b) f ( ) 3 1 fonksiyonu veriliyor. olacak şekilde ortalama değer teoremini sağlayacak bir c sayısının var olup olmadığını araştırınız. Eğer var

Detaylı

Kaynaklar Shepley L. Ross, Differential Equations (3rd Edition), 1984.

Kaynaklar Shepley L. Ross, Differential Equations (3rd Edition), 1984. Çankırı Karatekin Üniversitesi Matematik Bölümü 2015 Kaynaklar Shepley L. Ross, Differential Equations (3rd Edition), 1984. (Adi ) Bir ya da daha fazla bağımsız değişkenden oluşan bağımlı değişken ve türevlerini

Detaylı

UYGULAMALI MATEMATİK KONU ANLATIMLI ÇÖZÜMLÜ SORU BANKASI

UYGULAMALI MATEMATİK KONU ANLATIMLI ÇÖZÜMLÜ SORU BANKASI ÖABT UYGULAMALI MATEMATİK KONU ANLATIMLI ÇÖZÜMLÜ SORU BANKASI Yasin ŞAHİN ÖABT UYGULAMALI MATEMATİK KONU ANLATIMLI ÇÖZÜMLÜ SORU BANKASI Her hakkı saklıdır. Bu kitabın tamamı ya da bir kısmı, yazarın izni

Detaylı

x 0 = A(t)x + B(t) (2.1.2)

x 0 = A(t)x + B(t) (2.1.2) ÖLÜM 2 LİNEER SİSTEMLER Genel durumda diferansiyel denklemlerin çözümlerini açık olarak elde etmek veya çözümlerin bazı önemli özelliklerini araştırmak için genel yöntemler yoktur, çoğu zaman denkleme

Detaylı

Diferensiyel Denklemler I Uygulama Notları

Diferensiyel Denklemler I Uygulama Notları 2004 Diferensiyel Denklemler I Uygulama Notları Mustafa Özdemir İçindekiler Temel Bilgiler...................................................................... 2 Tam Diferensiyel Denklemler........................................................4

Detaylı

İleri Diferansiyel Denklemler

İleri Diferansiyel Denklemler MIT AçıkDersSistemi http://ocw.mit.edu 18.034 İleri Diferansiyel Denklemler 2009 Bahar Bu bilgilere atıfta bulunmak veya kullanım koşulları hakkında bilgi için http://ocw.mit.edu/terms web sitesini ziyaret

Detaylı

18.034 İleri Diferansiyel Denklemler

18.034 İleri Diferansiyel Denklemler MIT AçıkDersSistemi http://ocw.mit.edu 18.034 İleri Diferansiyel Denklemler 2009 Bahar Bu bilgilere atıfta bulunmak veya kullanım koşulları hakkında bilgi için http://ocw.mit.edu/terms web sitesini ziyaret

Detaylı

Şeklinde çok sayıda diferansiyel denklemden oluşan denklem sistemleridir. Denklem sayısı = bağımlı değişken eşitliği sağlanmasıdır.

Şeklinde çok sayıda diferansiyel denklemden oluşan denklem sistemleridir. Denklem sayısı = bağımlı değişken eşitliği sağlanmasıdır. 5. Diferansiyel Denklem Sistemleri ve Çözüm Yöntemleri X=bağımsız, Y, Z, W = bağımlı değişkenler olmak üzere; Y= (X, Y, Y, Y,, Z, Z, Z,, W, W, W, ) Z= (X, Y, Y, Y,, Z, Z, Z,, W, W, W, ) W= (X, Y, Y, Y,,

Detaylı

Iki Boyutlu Sabit Katsay l Lineer Homogen Diferensiyel Denklem Sistemleri (Euler Metodu)

Iki Boyutlu Sabit Katsay l Lineer Homogen Diferensiyel Denklem Sistemleri (Euler Metodu) Iki Boyulu Sabi Kasay l Lineer Homogen Diferensiyel Denklem Sisemleri (Euler Meodu) Bu bölümde sabi kasay l, lineer, homogen 8 >< d = a 1x + b 1 y >: dy d = a 2x + b 2 y sisemi ele al nmakad r. Burada

Detaylı

UYGULAMALI MATEMATİK ÇÖZÜMLÜ SORU BANKASI

UYGULAMALI MATEMATİK ÇÖZÜMLÜ SORU BANKASI ÖABT UYGULAMALI MATEMATİK ÇÖZÜMLÜ SORU BANKASI Yasin ŞAHİN ÖABT UYGULAMALI MATEMATİK ÇÖZÜMLÜ SORU BANKASI Her hakkı saklıdır. Bu kitabın tamamı ya da bir kısmı, yazarın izni olmaksızın, elektronik, mekanik,

Detaylı

Sayfa No. Test No İÇİNDEKİLER TRİGONOMETRİ

Sayfa No. Test No İÇİNDEKİLER TRİGONOMETRİ TRİGONOMETRİ İÇİNDEKİLER Sayfa No Test No YÖNLÜ AÇI VE YÖNLÜ YAY KAVRAMI -AÇI ÖLÇÜ BİRİMLERİ...00-00.... BİRİM ÇEMBER...00-00.... BİR AÇININ ESAS ÖLÇÜSÜ...00-00.... BİR AÇININ TRİGONOMETRİK ORANLARININ

Detaylı

İÇİNDEKİLER. Bölüm 1 MATEMATİKSEL İKTİSADA GİRİŞ 11 1.1.İktisat Hakkında 12 1.2.İktisatta Grafik ve Matematik Kullanımı 13

İÇİNDEKİLER. Bölüm 1 MATEMATİKSEL İKTİSADA GİRİŞ 11 1.1.İktisat Hakkında 12 1.2.İktisatta Grafik ve Matematik Kullanımı 13 İÇİNDEKİLER ÖNSÖZ III Bölüm 1 MATEMATİKSEL İKTİSADA GİRİŞ 11 1.1.İktisat Hakkında 12 1.2.İktisatta Grafik ve Matematik Kullanımı 13 Bölüm 2 STATİK DENGE ANALİZİ 19 2.1 İktisatta Denge Kavramı 20 2.1.1.

Detaylı

İleri Diferansiyel Denklemler

İleri Diferansiyel Denklemler MIT AçıkDersSistemi http://ocw.mit.edu 18.034 İleri Diferansiyel Denklemler 2009 Bahar Bu bilgilere atıfta bulunmak veya kullanım koşulları hakkında bilgi için http://ocw.mit.edu/terms web sitesini ziyaret

Detaylı

LYS Y ĞRU MTMTİK TSTİ. u testte Matematik ile ilgili 0 soru vardır.. evaplarınızı, cevap kâğıdının Matematik Testi için ayrılan kısmına işaretleyiniz.. u testteki süreniz 7 dakikadır.., y reel sayılar

Detaylı

Eğitim Öğretim Yılı Güz Dönemi Diferansiyel Denklemler Çalışma Soruları

Eğitim Öğretim Yılı Güz Dönemi Diferansiyel Denklemler Çalışma Soruları 0 0 Eğiim Öğreim Yılı Güz Dönemi Diferansiel Denklemler Çalışma Soruları 0/0/0 ) 3 8 diferansiel denklemini çözünüz. ) a) d d ( ) diferansiel denklemini çözünüz. b) 3 5 diferansiel denklemini çözünüz.

Detaylı

İÇİNDEKİLER ÖNSÖZ Bölüm 1 SAYILAR 11 Bölüm 2 KÜMELER 31 Bölüm 3 FONKSİYONLAR

İÇİNDEKİLER ÖNSÖZ Bölüm 1 SAYILAR 11 Bölüm 2 KÜMELER 31 Bölüm 3 FONKSİYONLAR İÇİNDEKİLER ÖNSÖZ III Bölüm 1 SAYILAR 11 1.1. Sayı Kümeleri 12 1.1.1.Doğal Sayılar Kümesi 12 1.1.2.Tam Sayılar Kümesi 13 1.1.3.Rasyonel Sayılar Kümesi 14 1.1.4. İrrasyonel Sayılar Kümesi 16 1.1.5. Gerçel

Detaylı

Math 322 Diferensiyel Denklemler Ders Notları 2012

Math 322 Diferensiyel Denklemler Ders Notları 2012 1 Genel Tanımlar Bir veya birden fazla fonksiyonun türevlerini içeren denklemlere diferensiyel denklem denmektedir. Diferensiyel denklemler Adi (Sıradan) diferensiyel denklemler ve Kısmi diferensiyel denklemler

Detaylı

Özdeğer ve Özvektörler

Özdeğer ve Özvektörler Özdeğer ve Özvektörler Yazar Öğr.Grv.Dr.Nevin ORHUN ÜNİTE 9 Amaçlar Bu üniteyi çalıştıktan sonra; bir lineer dönüşümün ve bir matrisin özdeğer ve özvektör kavramlarını anlayacak, bir dönüşüm matrisinin

Detaylı

Değişken Katsayılı Adi Diferensiyel Denklemler Katsayıları bağımsız(x) değişkene bağlı diferensiyel denklemlerdir. Genel ifadesi şöyledir.

Değişken Katsayılı Adi Diferensiyel Denklemler Katsayıları bağımsız(x) değişkene bağlı diferensiyel denklemlerdir. Genel ifadesi şöyledir. 3. Yüksek Mertebeden Adi Diferansiyel Denklemler Geçmiş konularda şu ana kadar ele alınan 1.mertebe-1.dereceden adi diferensiyel denklemler ancak 1.mertebe seviyesindeki belirli problemleri ifade edebilmektedir.

Detaylı

İleri Diferansiyel Denklemler

İleri Diferansiyel Denklemler MIT AçıkDersSistemi http://ocw.mit.edu 18.034 İleri Diferansiyel Denklemler 2009 Bahar Bu bilgilere atıfta bulunmak veya kullanım koşulları hakkında bilgi için http://ocw.mit.edu/terms web sitesini ziyaret

Detaylı

İleri Diferansiyel Denklemler

İleri Diferansiyel Denklemler MIT AçıkDersSistemi http://ocw.mit.edu 18.034 İleri Diferansiyel Denklemler 2009 Bahar Bu bilgilere atıfta bulunmak veya kullanım koşulları hakkında bilgi için http://ocw.mit.edu/terms web sitesini ziyaret

Detaylı

Y = f(x) denklemi ile verilen fonksiyonun diferansiyeli dy = f '(x). dx tir.

Y = f(x) denklemi ile verilen fonksiyonun diferansiyeli dy = f '(x). dx tir. 1 İNTEGRAL BİR FONKSİYONUN DİFERANSİYELİ Tanım: f: [a,b] R, x f(x) fonksiyonu (a,b) aralığında türevli olmak üzere, x değişkeninin değişme miktarı x ise f '(x). x ifadesine f(x) fonksiyonunun diferansiyeli

Detaylı

İleri Diferansiyel Denklemler

İleri Diferansiyel Denklemler MIT AçıkDersSistemi http://ocw.mit.edu 18.034 İleri Diferansiyel Denklemler 2009 Bahar Bu bilgilere atıfta bulunmak veya kullanım koşulları hakkında bilgi için http://ocw.mit.edu/terms web sitesini ziyaret

Detaylı

π a) = cosa Öğrenci Seçme Sınavı (Öss) / 17 Haziran 2007 Matematik II Soruları ve Çözümleri

π a) = cosa Öğrenci Seçme Sınavı (Öss) / 17 Haziran 2007 Matematik II Soruları ve Çözümleri Öğrenci Seçme Sınavı (Öss) 7 Haziran 7 Matematik II Soruları ve Çözümleri. Karmaşık sayılar kümesi üzerinde * işlemi, Z * Z Z + Z + Z Z biçiminde tanımlanıyor. Buna göre, ( i) * ( + i) işleminin sonucu

Detaylı

Ortak Akıl MATEMATİK DENEME SINAVI

Ortak Akıl MATEMATİK DENEME SINAVI Ortak Akıl LYS MATEMATİK DENEME SINAVI 0505- Ortak Akıl Adem ÇİL Ali Can GÜLLÜ Ayhan YANAĞLIBAŞ Barbaros GÜR Barış DEMİR Celal İŞBİLİR Deniz KARADAĞ Engin POLAT Erhan ERDOĞAN Ersin KESEN Fatih TÜRKMEN

Detaylı

Mühendislik Matematiği 2- Hafta 2-3. Arş. Gör. Dr. Sıtkı AKKAYA

Mühendislik Matematiği 2- Hafta 2-3. Arş. Gör. Dr. Sıtkı AKKAYA Mühendislik Matematiği 2- Hafta 2-3 Arş. Gör. Dr. Sıtkı AKKAYA İÇİNDEKİLER BÖLÜM 2 2.1. GİRİŞ 2.2. BİRİNCİ MERTEBE DİFERANSİYEL DENKLEMLERE GENEL BAKIŞ 2.3. BİRİNCİ MERTEBE LİNEER DİFERANSİYEL DENKLEMLER

Detaylı

ARASINAV SORULARININ ÇÖZÜMLERİ GÜZ DÖNEMİ A A A A A A A

ARASINAV SORULARININ ÇÖZÜMLERİ GÜZ DÖNEMİ A A A A A A A AKDENİZ ÜNİVERSİTESİ MATEMATİK BÖLÜMÜ BİTİRME ÖDEVİ I ARASINAV SORULARININ ÇÖZÜMLERİ - 6 GÜZ DÖNEMİ ADI SOYADI :... NO :... A A A A A A A SINAV TARİHİ VE SAATİ : Bu sınav 4 sorudan oluşmaktadır ve sınav

Detaylı

İÇİNDEKİLER. Ön Söz Saymanın Temel Kuralları Permütasyon (Sıralama) Kombinasyon (Gruplama) Binom Açılımı...

İÇİNDEKİLER. Ön Söz Saymanın Temel Kuralları Permütasyon (Sıralama) Kombinasyon (Gruplama) Binom Açılımı... İÇİNDEKİLER Ön Söz... Saymanın Temel Kuralları... Permütasyon (Sıralama)... 8 Kombinasyon (Gruplama)... 6 Binom Açılımı... Olasılık... 9 İstatistik... 8... Dağılımlar... 5 Genel Tarama Sınavı... 6 RASTGELE

Detaylı

İleri Diferansiyel Denklemler

İleri Diferansiyel Denklemler MIT AçıkDersSistemi http://ocw.mit.edu 18.034 İleri Diferansiyel Denklemler 2009 Bahar Bu bilgilere atıfta bulunmak veya kullanım koşulları hakkında bilgi için http://ocw.mit.edu/terms web sitesini ziyaret

Detaylı

FİNAL SORULARI GÜZ DÖNEMİ A A A A A A A

FİNAL SORULARI GÜZ DÖNEMİ A A A A A A A AKDENİZ ÜNİVERSİTESİ MATEMATİK BÖLÜMÜ BİTİRME ÖDEVİ FİNAL SORULARI 25-26 GÜZ DÖNEMİ ADI SOYADI :... NO :... SINAV TARİHİ VE SAATİ : A A A A A A A Bu sınav 4 sorudan oluşmaktadır ve sınav süresi 9 dakikadır.

Detaylı

DEVRE VE SİSTEM ANALİZİ ÇALIŞMA SORULARI

DEVRE VE SİSTEM ANALİZİ ÇALIŞMA SORULARI DEVRE VE SİSTEM ANALİZİ 01.1.015 ÇALIŞMA SORULARI 1. Aşağıda verilen devrede anahtar uzun süre konumunda kalmış ve t=0 anında a) v 5 ( geriliminin tam çözümünü diferansiyel denklemlerden faydalanarak bulunuz.

Detaylı

Birinci Mertebeden Diferansiyel Denklemler Edwards and Penney, Difarensiyel denklemler ve sınır değer problemleri (çeviri: Prof. Dr.

Birinci Mertebeden Diferansiyel Denklemler Edwards and Penney, Difarensiyel denklemler ve sınır değer problemleri (çeviri: Prof. Dr. Birinci Mertebeden Diferansiyel Denklemler Edwards and Penney, Difarensiyel denklemler ve sınır değer problemleri (çeviri: Prof. Dr. Ömer Akın) AYRILABİLİR DENKLEMLER Birinci mertebeden dy = f(x, y) (1)

Detaylı

DERS ÖĞRETİM PROGRAMI FORMU

DERS ÖĞRETİM PROGRAMI FORMU DERS ÖĞRETİM PROGRAMI FORMU Dersin Adı Kodu Normal Kredisi ECTS Ders 4 Yarıyılı Kredisi uygulama 0 Diferansiyel Denklemler 0252311 3 4 6 Laboratuvar 0 (Saat/Hafta) Dersin Dili Türkçe Dersin Türü Zorunlu

Detaylı

ÖSS MATEMATİK TÜREV FASİKÜLÜ

ÖSS MATEMATİK TÜREV FASİKÜLÜ ÖSS MATEMATİK TÜREV FASİKÜLÜ GRAFİK ÇİZİMİ Bir fonksiyonun denklemi verilip grafiği istendiğinde aşağıdaki yolu izlemeliyiz. ) Fonksiyonun en geniş tanım kümesi bulunur. ) ± için fonksiyonun limiti bulunur.

Detaylı

MAT 101, MATEMATİK I, FİNAL SINAVI 08 ARALIK (10+10 p.) 2. (15 p.) 3. (7+8 p.) 4. (15+10 p.) 5. (15+10 p.) TOPLAM

MAT 101, MATEMATİK I, FİNAL SINAVI 08 ARALIK (10+10 p.) 2. (15 p.) 3. (7+8 p.) 4. (15+10 p.) 5. (15+10 p.) TOPLAM TOBB-ETÜ, MATEMATİK BÖLÜMÜ, GÜZ DÖNEMİ 2014-2015 MAT 101, MATEMATİK I, FİNAL SINAVI 08 ARALIK 2014 Adı Soyadı: No: İMZA: 1. 10+10 p.) 2. 15 p.) 3. 7+8 p.) 4. 15+10 p.) 5. 15+10 p.) TOPLAM 1. a) NOT: Tam

Detaylı

Ö.S.S MATEMATĐK II SORULARI ve ÇÖZÜMLERĐ

Ö.S.S MATEMATĐK II SORULARI ve ÇÖZÜMLERĐ Ö.S.S. 7 MATEMATĐK II SORULARI ve ÇÖZÜMLERĐ. Karmaşık sayılar kümesi üzerinde * işlemi, Z * Z Z + Z + Z Z biçiminde tanımlanıyor. Buna göre, ( i) * (+i) işleminin sonucu nedir? A) + 8i B) - 8i C) 8 + i

Detaylı

Bir özvektörün sıfırdan farklı herhangi bri sabitle çarpımı yine bir özvektördür.

Bir özvektörün sıfırdan farklı herhangi bri sabitle çarpımı yine bir özvektördür. ÖZDEĞER VE ÖZVEKTÖRLER A n n tipinde bir matris olsun. AX = λx (1.1) olmak üzere n 1 tipinde bileşenleri sıfırdan farklı bir X matrisi için λ sayıları için bu denklemi sağlayan bileşenleri sıfırdan farklı

Detaylı

7. f(x) = 2sinx cos2x fonksiyonunun. π x 3 2 A) y = 9. f(x) = 1 2 x2 3x + 4 eğrisinin hangi noktadaki teğetinin D) ( 10 3, 4 9 ) E) ( 2 3, 56

7. f(x) = 2sinx cos2x fonksiyonunun. π x 3 2 A) y = 9. f(x) = 1 2 x2 3x + 4 eğrisinin hangi noktadaki teğetinin D) ( 10 3, 4 9 ) E) ( 2 3, 56 , 006 MC Cebir Notları Gökhan DEMĐR, gdemir@ahoo.com.tr Türev TEST I 7. f() = sin cos fonksionunun. f()= sin( + )cos( ) için f'() nin eşiti nedir? A) B) C) 0 D) E) için erel minimum değeri nedir? A) B)

Detaylı

Final sınavı konularına aşağıdaki sorular dahil değildir: 1, 2, 3, 4, 5, 6, 7, 19, 20, 21, 25, 27, 28, 29, 30, 33-b.

Final sınavı konularına aşağıdaki sorular dahil değildir: 1, 2, 3, 4, 5, 6, 7, 19, 20, 21, 25, 27, 28, 29, 30, 33-b. Final sınavı konularına aşağıdaki sorular dahil değildir:,,,, 5, 6, 7, 9,,, 5, 7, 8, 9,, -b. MAT -MATEMATİK (- GÜZ DÖNEMİ) FİNAL ÇALIŞMA SORULARI. Tabanı a büyük eksenli, b küçük eksenli elips ile sınırlanan

Detaylı

18 Sağ son örnek x 3 yerine 3 x yazılacak 20 5 Soru denkleminin reel köklerinin olacak

18 Sağ son örnek x 3 yerine 3 x yazılacak 20 5 Soru denkleminin reel köklerinin olacak MAT 1 Hata 73 1 C 135 8 A 137 7 D şıkkına parantez konacak 143 Sol üst örnek Sıkça yapılan yanlış ün son cümlesi O halde. 144 Son örnek tam yerine doğal 208 9 18 yerine 18 8 5 225 2 A 246 6 Doğru cevap:

Detaylı

MATRİS - DETERMİNANT Test -1

MATRİS - DETERMİNANT Test -1 MRİS - DEERMİNN est - x y x 3., B olmak üzere, y y = B olduğuna göre, y x farkı kaçtır? 5. 5 4 0, B 4 3 7 3 matrisleri veriliyor. + B matrisi aşağıdakilerden hangisidir? 3 4 5 6 5 3 0 8 5 6 6 5 0 5 6 0

Detaylı

MATEMATİK ÖĞRETMENLİK ALAN BİLGİSİ - DENEME SINAVI DENEME. Diğer sayfaya geçiniz.

MATEMATİK ÖĞRETMENLİK ALAN BİLGİSİ - DENEME SINAVI DENEME. Diğer sayfaya geçiniz. MATEMATİK. DENEME ÖĞRETMENLİK ALAN BİLGİSİ - DENEME SINAVI. f : X tanımlı y = f() fonksiyonu için lim f ( ) = L ise aşağıdaki önermelerden kaç tanesi kesinlikle doğrudur? 0 I. X dir. 0 II. f() fonksiyonu

Detaylı

KAMU PERSONEL SEÇME SINAVI ÖĞRETMENLİK ALAN BİLGİSİ TESTİ ORTAÖĞRETİM MATEMATİK ÖĞRETMENLİĞİ TG 4 ÖABT ORTAÖĞRETİM MATEMATİK Bu testlerin her hakkı saklıdır. Hangi amaçla olursa olsun, testlerin tamamının

Detaylı

İçindekiler 3. Türev... 3.1 Türev kavramı.. 001 3.2 Bir fonksiyonun bir noktadaki türevi. 003. Alıştırmalar 3 1...

İçindekiler 3. Türev... 3.1 Türev kavramı.. 001 3.2 Bir fonksiyonun bir noktadaki türevi. 003. Alıştırmalar 3 1... İçindekiler. Türev......... Türev kavramı.. 00. Bir fonksiyonun bir noktadaki türevi. 00. Alıştırmalar.... 005. Bir fonksiyonun bir noktadaki soldan ve sağdan türevi..... 006.4 Bir fonksiyonun bir noktadaki

Detaylı

II. DERECEDEN DENKLEMLER Test -1

II. DERECEDEN DENKLEMLER Test -1 II. DERECEDEN DENKLEMLER Test -. 5 {, 5} {, 5} { 5, } {, 5} {, 5} 5. 5 {,, } {,, } {,, } {,, } {,, }.. 5 7 7 5 5,, 5 5, 5 5, 5 5, 6. 7. 5 95 { 5,, } {,, 5} { 5,, 9} {,, 5} { 9,, 5} 6 66 {, } {,, } {,,

Detaylı

İÇİNDEKİLER. Bölüm 2 CEBİR 43

İÇİNDEKİLER. Bölüm 2 CEBİR 43 İÇİNDEKİLER ÖNSÖZ III Bölüm 1 SAYILAR 13 1.1 Doğal Sayılar 15 1.1.1. Tek ve Çift Sayılar 15 1.1.2. Asal Sayılar 15 1.1.3 Doğal Sayıların Özellikleri 15 1.1.4 Doğal Sayılarda Özel Toplamlar 16 1.1.5. Faktöriyel

Detaylı

fonksiyonu için in aralığındaki bütün değerleri için sürekli olsun. in bu aralıktaki olsun. Fonksiyonda meydana gelen artma miktarı

fonksiyonu için in aralığındaki bütün değerleri için sürekli olsun. in bu aralıktaki olsun. Fonksiyonda meydana gelen artma miktarı 10.1 Türev Kavramı fonksiyonu için in aralığındaki bütün değerleri için sürekli olsun. in bu aralıktaki bir değerine kadar bir artma verildiğinde varılan x = x 0 + noktasında fonksiyonun değeri olsun.

Detaylı

Lineer Bağımlılık ve Lineer Bağımsızlık

Lineer Bağımlılık ve Lineer Bağımsızlık Lineer Bağımlılık ve Lineer Bağımsızlık Yazar Öğr.Grv.Dr.Nevin ORHUN ÜNİTE 5 Amaçlar Bu üniteyi çalıştıktan sonra; Vektör uzayı ve alt uzay yapısını daha iyi tanıyacak, Bir vektör uzayındaki vektörlerin

Detaylı

Diferansiyel Denklemler

Diferansiyel Denklemler 1 ĐÇĐNDEKĐLER KONU Sayfa No Diferansiyel Denklem, Mertebe ve Derecesi... 3 Diferansiyel Denklemlerin Çözümleri... 3 Konu ile ilgili Alıştırmalar... 3 1. Mertebeden Diferansiyel Denklemler... 4 Değişkenleri

Detaylı

İleri Diferansiyel Denklemler

İleri Diferansiyel Denklemler MIT AçıkDersSistemi http://ocw.mit.edu 18.034 İleri Diferansiyel Denklemler 2009 Bahar Bu bilgilere atıfta bulunmak veya kullanım koşulları hakkında bilgi için http://ocw.mit.edu/terms web sitesini ziyaret

Detaylı

UYGULAMALI DİFERANSİYEL DENKLEMLER

UYGULAMALI DİFERANSİYEL DENKLEMLER UYGULAMALI DİFERANSİYEL DENKLEMLER GİRİŞ Birçok mühendislik, fizik ve sosal kökenli problemler matematik terimleri ile ifade edildiği zaman bu problemler, bilinmeen fonksionun bir vea daha üksek mertebeden

Detaylı

KAMU PERSONEL SEÇME SINAVI ÖĞRETMENLİK ALAN BİLGİSİ TESTİ ORTAÖĞRETİM MATEMATİK ÖĞRETMENLİĞİ TG 15 ÖABT ORTAÖĞRETİM MATEMATİK Bu testlerin her hakkı saklıdır. Hangi amaçla olursa olsun, testlerin tamamının

Detaylı

LYS Y OĞRU MTMTİK TSTİ LYS-. u testte Matematik ile ilgili soru vardır.. evaplarınızı, cevap kâğıdının Matematik Testi için ayrılan kısmına işaretleyiniz.. u testteki süreniz 7 dakikadır.. a ve b asal

Detaylı

Birinci Mertebeden Adi Diferansiyel Denklemler

Birinci Mertebeden Adi Diferansiyel Denklemler Birinci Mertebeden Adi Diferansiyel Denklemler Bir veya daha çok bağımlı değişken, bir veya daha çok bağımsız değişken ve bağımlı değişkenin bağımsız değişkene göre (diferansiyel) türevlerini içeren bağıntıya

Detaylı

OLİMPİYATLARA HAZIRLIK İÇİN FONKSİYONEL DENKLEM PROBLEMLERİ ve ÇÖZÜMLERİ (L. Gökçe)

OLİMPİYATLARA HAZIRLIK İÇİN FONKSİYONEL DENKLEM PROBLEMLERİ ve ÇÖZÜMLERİ (L. Gökçe) OLİMPİYATLARA HAZIRLIK İÇİN FONKSİYONEL DENKLEM PROBLEMLERİ ve ÇÖZÜMLERİ (L. Gökçe) Merak uyandıran konulardan birisi olan fonksiyonel denklemlerle ilgili Türkçe kaynakların az oluşundan dolayı, matematik

Detaylı

İSTANBUL SABAHATTİN ZAİM ÜNİVERSİTESİ

İSTANBUL SABAHATTİN ZAİM ÜNİVERSİTESİ İSTANBUL SABAHATTİN ZAİM ÜNİVERSİTESİ BİLGİSAYAR MÜHENDİSLİĞİ BÖLÜMÜ 203-204 GÜZ DÖNEMİ Diferansiyel Denklemler Ders Notları Yrd.Doç.Dr. Ahmet Altundağ İSTANBUL 2 İçindekiler BİRİNCİ MERTEBEDEN DİFERANSİYEL

Detaylı

TUNCELİ ÜNİVERSİTESİ MÜHENDİSLİK FAKÜLTESİ LİNEER CEBİR DERSİ 2012 GÜZ DÖNEMİ ÇIKMIŞ VİZE,FİNAL VE BÜTÜNLEME SORULARI ÖĞR.GÖR.

TUNCELİ ÜNİVERSİTESİ MÜHENDİSLİK FAKÜLTESİ LİNEER CEBİR DERSİ 2012 GÜZ DÖNEMİ ÇIKMIŞ VİZE,FİNAL VE BÜTÜNLEME SORULARI ÖĞR.GÖR. UNCELİ ÜNİVERSİESİ MÜHENDİSLİK FAKÜLESİ LİNEER CEBİR DERSİ 0 GÜZ DÖNEMİ ÇIKMIŞ VİZE,FİNAL VE BÜÜNLEME SORULARI ÖĞR.GÖR.İNAN ÜNAL www.inanunal.com UNCELİ ÜNİVERSİESİ MÜHENDİSLİK FAKÜLESİ MAKİNE MÜHENDİSLİĞİ

Detaylı

Fizik 101: Ders 23 Gündem

Fizik 101: Ders 23 Gündem Fizik 101: Ders 3 Gündem Basit Harmonik Hereket Yatay yay ve kütle Sinus ve cosinus lerin anlamı Düşey yay ve kütle Enerji yaklaşımı Basit sarkaç Çubuk sarkaç Basit Harmonik Hareket (BHH) Ucunda bir kütle

Detaylı

3) dy/dt 3y=7 diferansiyel denklemini y(0)=15 başlangıç koşulu için çözünüz.

3) dy/dt 3y=7 diferansiyel denklemini y(0)=15 başlangıç koşulu için çözünüz. 04/10/ 011 011 01 Eğitim Öğretim Yılı Güz Dönemi Diferansiel Denklemler Dersi Çalışma Sorları denklemini çözünüz. 1) d + ( cot + sin ) d 0 denklemini çözünüz. ) (4+t)d/dt + 6+t diferansiel denklemini çözünüz.

Detaylı

S4 u(x, y) = ln ( sin y. S5 u(x, y) = 2α 2 sec(α(x 4α 2 t)) fonksiyonunun

S4 u(x, y) = ln ( sin y. S5 u(x, y) = 2α 2 sec(α(x 4α 2 t)) fonksiyonunun Kısmi Türevli Denklemler Problem Seti-I S1 u = u(x, y ve a, b, c R olmak uzere, ξ = ax + by ve η = bx ay degisken degistirmesi yaparak n cozunuz. au x + bu y + cy = 0 S2 Aşa gidaki denklemleri Adi Diferensiyel

Detaylı

3.2. Euler Yüksek Mertebeden Değişken Katsayılı Diferansiyel Denklemi

3.2. Euler Yüksek Mertebeden Değişken Katsayılı Diferansiyel Denklemi 3.2. Euler Yüksek Mertebeden Değişken Katsaılı Diferansiel Denklemi (n). (n) + (n-). (n-) + + 2. +. + = Q() Değişken dönüşümü apalım. Diferansiel denklemi sabit katsaılı ( erine t bağımsız değişkeni )

Detaylı

12-B. Polinomlar - 1 TEST. olduğuna göre P(x - 2, y + 4) polinomunun katsayılar toplamı kaçtır? olduğuna göre A B kaçtır? A) 78 B) 73 C) 62 D 58 E) 33

12-B. Polinomlar - 1 TEST. olduğuna göre P(x - 2, y + 4) polinomunun katsayılar toplamı kaçtır? olduğuna göre A B kaçtır? A) 78 B) 73 C) 62 D 58 E) 33 -B TEST Polinomlar -. Py _, i= y- y + 5y- olduğuna göre P( -, y + ) polinomunun katsayılar toplamı. - 6 = A - 5 + - + B - olduğuna göre A B 78 B) 7 6 D 58 E) B) D) - E) -. -a- b = _ + -5i_ -ci eşitliğine

Detaylı

2012 LYS MATEMATİK SORU VE ÇÖZÜMLERİ Niyazi Kurtoğlu

2012 LYS MATEMATİK SORU VE ÇÖZÜMLERİ Niyazi Kurtoğlu .SORU 8 sayı tabanında verilen (5) 8 sayısının sayı tabanında yazılışı nedir?.soru 6 3 3 3 3 4 6 8? 3.SORU 3 ise 5? 5 4.SORU 4 5 olduğuna göre, ( )? 5.SORU (y z) z(y ) y z yz bulunuz. ifadesinin en sade

Detaylı

KUADRATİK FORM. Tanım: Kuadratik Form. Bir q(x 1,x 2,,x n ) fonksiyonu

KUADRATİK FORM. Tanım: Kuadratik Form. Bir q(x 1,x 2,,x n ) fonksiyonu KUADRATİK FORMLAR KUADRATİK FORM Tanım: Kuadratik Form Bir q(x,x,,x n ) fonksiyonu q x : n şeklinde tanımlı ve x i x j bileşenlerinin doğrusal kombinasyonu olan bir fonksiyon ise bir kuadratik formdur.

Detaylı

Çözüm: Z 3 = 27 = 27CiS( +2k ) Z k =3CiS ( ) 3 3 k = 0 için z 0 = 2 k=1 için z 1 = 3

Çözüm: Z 3 = 27 = 27CiS( +2k ) Z k =3CiS ( ) 3 3 k = 0 için z 0 = 2 k=1 için z 1 = 3 p ve q iki önerme olsun p q q p dir. p: = 3 ve q: y< 8 alınırsa I ve III ün denk olduğu görülür. Yanıt B Z 3 = 7 = 7CiS( +k ) k Z k =3CiS ( ) 3 3 k = 0 için z 0 = k=1 için z 1 = 3 k = için z = Yanıt A

Detaylı

HATA VE HATA KAYNAKLARI...

HATA VE HATA KAYNAKLARI... İÇİNDEKİLER 1. GİRİŞ... 1 1.1 Giriş... 1 1.2 Sayısal Analizin İlgi Alanı... 2 1.3 Mühendislik Problemlerinin Çözümü ve Sayısal Analiz... 2 1.4 Sayısal Analizde Bilgisayarın Önemi... 7 1.5 Sayısal Çözümün

Detaylı

İç-Çarpım Uzayları ÜNİTE. Amaçlar. İçindekiler. Yazar Öğr. Grv. Dr. Nevin ORHUN

İç-Çarpım Uzayları ÜNİTE. Amaçlar. İçindekiler. Yazar Öğr. Grv. Dr. Nevin ORHUN İç-Çarpım Uzayları Yazar Öğr. Grv. Dr. Nevin ORHUN ÜNİTE Amaçlar Bu üniteyi çalıştıktan sonra; R n, P n (R), M nxn vektör uzaylarında iç çarpım kavramını tanıyacak ve özelliklerini görmüş olacaksınız.

Detaylı

1989 ÖYS. olduğuna göre a-b kaçtır? A) 2 B) 2 C) 2 2 D) 2 2 E) 4

1989 ÖYS. olduğuna göre a-b kaçtır? A) 2 B) 2 C) 2 2 D) 2 2 E) 4 989 ÖYS. a a a b 8 olduğuna göre a-b kaçtır? C). a ile b nin aritmetik ortalaması 5 tir. a ile geometrik ortalaması 0, b ile geometrik ortalaması 0 olan sayı nedir? 0 C) 8 ise a+b+d toplamı ne-. a+b+c=d

Detaylı

0 1 2 n 1. Doğu Akdeniz Üniversitesi Matematik Bölümü Mate 322

0 1 2 n 1. Doğu Akdeniz Üniversitesi Matematik Bölümü Mate 322 Bölüm 3. İkici Mertebede Lieer ve Sabit Katsaılı Diferesiel Deklemler 4 3. Geel Taımlar ( ) ( ) ( ) a ( ) + a ( ) + a ( ) +... + a ( ) + a ( ) = f ( ) () 0 şeklideki bir deklem. mertebede lieer deklem

Detaylı

İleri Diferansiyel Denklemler

İleri Diferansiyel Denklemler MIT AçıkDersSistemi http://ocw.mit.edu 18.034 İleri Diferansiyel Denklemler 2009 Bahar Bu bilgilere atıfta bulunmak veya kullanım koşulları hakkında bilgi için http://ocw.mit.edu/terms web sitesini ziyaret

Detaylı

TG Haziran 2013 KAMU PERSONEL SEÇME SINAVI LİSANS ÖĞRETMENLİK ALAN BİLGİSİ İLKÖĞRETİM MATEMATİK TESTİ ÇÖZÜM KİTAPÇIĞI

TG Haziran 2013 KAMU PERSONEL SEÇME SINAVI LİSANS ÖĞRETMENLİK ALAN BİLGİSİ İLKÖĞRETİM MATEMATİK TESTİ ÇÖZÜM KİTAPÇIĞI KAMU PERSONEL SEÇME SINAVI LİSANS ÖĞRETMENLİK ALAN BİLGİSİ İLKÖĞRETİM MATEMATİK TESTİ ÇÖZÜM KİTAPÇIĞI T.C. KİMLİK NUMARASI : ADI : SOYADI : TG 9 Haziran DİKKAT! ÇÖZÜMLERLE İLGİLİ AŞAĞIDA VERİLEN UYARILARI

Detaylı

Otomatik Kontrol. Kapalı Çevrim Kontrol Sistemin Genel Gereklilikleri. Hazırlayan: Dr. Nurdan Bilgin

Otomatik Kontrol. Kapalı Çevrim Kontrol Sistemin Genel Gereklilikleri. Hazırlayan: Dr. Nurdan Bilgin Otomatik Kontrol Kapalı Çevrim Kontrol Sistemin Genel Gereklilikleri Hazırlayan: Dr. Nurdan Bilgin Kapalı Çevrim Kontrol Kapalı Çevrim Kontrol Sistemin Genel Gereklilikleri Tüm uygulamalar için aşağıdaki

Detaylı

( ) ( ) { } ( ] f(x) = sinx fonksiyonunun x=0 için türevi aşağıdakilerden hangisidir. 3 ün (mod 7) ye göre denk olduğu sayı aşağıdakilerden

( ) ( ) { } ( ] f(x) = sinx fonksiyonunun x=0 için türevi aşağıdakilerden hangisidir. 3 ün (mod 7) ye göre denk olduğu sayı aşağıdakilerden . 4 ün (mod 7) ye göre denk olduğu sayı aşağıdakilerden hangisidir? B) 4 E ) (mod 7) (mod 7) 6 (mod 7) 6 4 (mod 7) 4 (mod 7). R R olduğuna göre f : f() = - fonksiyonunun tanım kümesi nedir? { :-< < } B)

Detaylı

MAT 101, MATEMATİK I, ARA SINAV 13 KASIM (10+10 p.) 2. (10+10 p.) 3. ( p.) 4. (6x5 p.) TOPLAM

MAT 101, MATEMATİK I, ARA SINAV 13 KASIM (10+10 p.) 2. (10+10 p.) 3. ( p.) 4. (6x5 p.) TOPLAM TOBB-ETÜ, MATEMATİK BÖLÜMÜ, GÜZ DÖNEMİ 2014-2015 MAT 101, MATEMATİK I, ARA SINAV 13 KASIM 2014 Adı Soyadı: No: İMZA: 1. (10+10 p.) 2. (10+10 p.) 3. (10+10+10 p.) 4. (65 p.) TOPLAM NOT: Tam puan almak için

Detaylı

16 Ocak 2015 A A A A A A A. 3. Sınavda pergel, cetvel, hesap makinesi gibi yardımcıaraçlar ve müsvedde kağıdıkullanılmasıyasaktır.

16 Ocak 2015 A A A A A A A. 3. Sınavda pergel, cetvel, hesap makinesi gibi yardımcıaraçlar ve müsvedde kağıdıkullanılmasıyasaktır. KDENİZ ÜNİVERSİTESİ MTEMTİK BÖLÜMÜ BİTİRME ÖDEVİ FİNL SORULRININ ÇÖZÜMLERİ 16 Ocak 015 DI SOYDI :... NO :... SINV TRİHİ VE STİ : Bu sınav 40 sorudan oluşmaktadır ve sınav süresi 90 dakikadır. SINVL İLGİLİ

Detaylı

Chapter 1 İçindekiler

Chapter 1 İçindekiler Chapter 1 İçindekiler Kendinizi Test Edin iii 10 Birinci Mertebeden Diferansiel Denklemler 565 10.1 Arılabilir Denklemler 566 10. Lineer Denklemler 571 10.3 Matematiksel Modeller 576 10.4 Çözümü Olmaan

Detaylı

Diferensiyel denklemler sürekli sistemlerin hareketlerinin ifade edilmesinde kullanılan denklemlerdir.

Diferensiyel denklemler sürekli sistemlerin hareketlerinin ifade edilmesinde kullanılan denklemlerdir. .. Diferensiyel Denklemler y f (x) de F ( x, y, y, y,...) 0 veya y f ( x, y, y,...) x ve y değişkenlerinin kendileri ve türevlerini içinde bulunduran denklemlerdir. (Türevler; "Bağımlı değişkenin değişiminin

Detaylı

Ders Adı Ders Kodu T+U K AKTS Snf Program ATATÜRK İLKELERİ VE INKİLAP TARİHİ I AIIT Matematik ANALİTİK GEOMETRİ I MAT

Ders Adı Ders Kodu T+U K AKTS Snf Program ATATÜRK İLKELERİ VE INKİLAP TARİHİ I AIIT Matematik ANALİTİK GEOMETRİ I MAT Ders Adı Ders Kodu T+U K AKTS Snf Program ATATÜRK İLKELERİ VE INKİLAP TARİHİ I AIIT101 2+0 2 2 1 Matematik ANALİTİK GEOMETRİ I MAT101 3+0 3 5 1 Matematik ANALİTİK GEOMETRİ II MAT102 3+0 3 5 1 Matematik

Detaylı

DİFERANSİYEL DENKLEMLER-2

DİFERANSİYEL DENKLEMLER-2 DİFERANSİYEL DENKLEMLER- SINIR DEĞER ve ÖZDEĞER PROBLEMLERİ Bu bölümde adi diferansiyel denklemlerde sınır ve özdeğer problemleri ( n) ( n1) incelenecektir. F( y, y,..., y, x) 0 şeklinde verilen bir diferansiyel

Detaylı

1. GİRİŞ Örnek: Bir doğru boyunca hareket eden bir cismin başlangıç noktasına göre konumu s (metre), zamanın t (saniye) bir fonksiyonu olarak

1. GİRİŞ Örnek: Bir doğru boyunca hareket eden bir cismin başlangıç noktasına göre konumu s (metre), zamanın t (saniye) bir fonksiyonu olarak DERS: MATEMATİK I MAT0(09) ÜNİTE: TÜREV ve UYGULAMALARI KONU: A. TÜREV. GİRİŞ Bir doğru boyunca hareket eden bir cismin başlangıç noktasına göre konumu s (metre) zamanın t (saniye) bir fonksiyonu olarak

Detaylı

TÜREV VE UYGULAMALARI

TÜREV VE UYGULAMALARI TÜREV VE UYGULAMALARI 1-TÜREVİN TANIMI VE GÖSTERİLİŞİ a,b R olmak üzere, f:[a,b] R fonksiyonu verilmiş olsun. x 0 (a,b) için lim x X0 f(x)-f( x 0 ) limiti bir gerçel sayı ise bu limit değerine f fonksiyonunun

Detaylı

ÖĞRENME ALANI TEMEL MATEMATİK BÖLÜM TÜREV. ALT ÖĞRENME ALANLARI 1) Türev 2) Türev Uygulamaları TÜREV

ÖĞRENME ALANI TEMEL MATEMATİK BÖLÜM TÜREV. ALT ÖĞRENME ALANLARI 1) Türev 2) Türev Uygulamaları TÜREV - 1 - ÖĞRENME ALANI TEMEL MATEMATİK BÖLÜM TÜREV ALT ÖĞRENME ALANLARI 1) Türev 2) Türev Uygulamaları TÜREV Kazanım 1 : Türev Kavramını fiziksel ve geometrik uygulamalar yardımıyla açıklar, türevin tanımını

Detaylı