Değişkenler: Bir problemin modeli kurulduktan sonra değeri hesaplanacak olan bilinmeyen simgelerdir.

Ebat: px
Şu sayfadan göstermeyi başlat:

Download "Değişkenler: Bir problemin modeli kurulduktan sonra değeri hesaplanacak olan bilinmeyen simgelerdir."

Transkript

1 2. DOĞRUSAL PROGRAMLAMA (DP) 2.1. DP i Taımı ve Bazı Temel Kavramlar Model: Bir sistemi değişe koşullar altıdaki davraışlarıı icelemek, kotrol etmek ve geleceği hakkıda varsayımlarda bulumak amacı ile sistemi elemaları arasıdaki bağıtıları kelimeler ya da matematik formüllerle belirleye ifadeler topluluğua model adı verilir. Matematiksel Model: Bir sistemi elemalarıı simgeler ile taımlaıp bular arasıdaki ilişkileri foksiyolar ile gösterimie "matematiksel model adı verilir. Karar Modeli: Sistemi yöeticisii kotrolü altıda olup, karar değişkei olarak isimledirile değişkelere, hagi değerleri verilmesi gerektiğii belirlemek amacıyla kullaıla matematiksel modellere karar modeli adı verilir. İşte YA da e yaygı kullaım alaı bula tekiklerde bir taesi ola Doğrusal Programlama (DP), doğrusal karar modelleriyle ilgili kavram ve tekikler bütüüdür. Doğrusal programlama, bütü model parametrelerii kesi olarak bilidiğii varsaya determiistik bir tekiktir. Bir doğrusal programlama problemi (DPP) üç bölümde oluşur: 1- Bir DP problemi, karar değişkelerii (x 1, x 2,...,x ) doğrusal bir foksiyou ola amaç foksiyou içerir. Amaç foksiyou maksimizasyo ya da miimizasyo amaçlı olabilir. 2- Bir DP problemi, karar değişkelerii alacağı değerleri sıırlaya kısıtlar seti içerir. Her bir kısıt seti doğrusal eşitlik ya da eşitsizlik şeklide ifade edilmelidir. 3- Bir DP problemi, karar değişkelerii egatif olmama gerekliliğii belirleye bir kısıt içerir. x j 0, (j=1,...,). Değişkeler: Bir problemi modeli kuruldukta sora değeri hesaplaacak ola bilimeye simgelerdir. Karar Değişkeleri: Bir karar modelii çözümlemesi sürecide değeri hesaplaacak ola karar usurlarıdır. Öreği bir işletmede A ve B tipide iki farklı ürü üretilmek isteilsi.

2 Karar değişkeleri x 1 ve x 2 sırasıyla, üretilecek ola A ve B tipideki iki farklı ürüü üretim miktarlarıı gösterirler. Sapma Değişkeleri: Faktör ve kapasite arasıdaki degesizliği gidermeye çalışırlar. Bir başka deyişle, kullaıla hammadde ve ou kapasitesi arasıdaki degeyi kurmaya çalışırlar. Faktör < Kapasite egatif sapma değişkei (atıl kapasite) Faktör > Kapasite pozitif sapma değişkei (artık-fazla kapasite) Bu bağlamda sapma değişkelerii iki sııfta toplamak mümküdür: 1. Gölge Değişkeler: Atıl kapasiteyi temsil ederler. şeklideki bir kısıt deklemii (=) şeklide ifade etmek amacıyla kullaılırlar. Örek: X 1 + X 2 5 X 1 + X 2 +S 1 = 5 2. Artık Değişkeler: Fazla kapasiteyi temsil ederler. şeklideki bir kısıt deklemii (=) şeklide ifade etmek amacıyla kullaılırlar. Örek: X 1 + X 2 5 X 1 + X 2 - E 1 = 5 Yukarıda sözü edile sapma değişkelerii yaı sıra Simpleks Çözüm Yötemide kullaıla bir başka değişke çeşidi "yapay değişke"dir. Yapay değişkeler Büyük M Yötemi (Bölüm ) iceleirke açıklaacaktır. Parametreler: DP modelii davraışıı etkileye sabit katsayılardır. DP modelideki c j, b i ve a ij (i=1...m; j=1... ) katsayıları parametreler olarak adladırılırlar.

3 Amaç Foksiyou: Karar değişkeleride ve bu değişkeleri parametreleride oluşa e iyi çözümü (maksimum ya da miimum) elde edilmesii sağlaya doğrusal bir foksiyodur. Kısıtlar: Bir modeldeki karar değişkeleri ya da karar değişkeleri ile parametreler arasıdaki zorulu ilişkileri her birie kısıt adı verilir. Kullaıla faktör ya da hammadde miktarlarıdır. Tekolojik Katsayılar: Her faaliyet içi gerekli ola kayak miktarıdır. Sağ Taraf Sabitleri: Mevcut kayak miktarlarıı göstere, problemdeki kısıt deklemlerii sağ taraflarıda yer ala parametrelerdir. Bu bilgilere bağlı olarak bir DP problemi simgesel olarak aşağıdaki gibi ifade edilir: Z maks/mi. = Σ c j x j j=1 Amaç Foksiyou: Kısıt Deklemleri: Σ a ij x j b i ( i=1,...m) j=1 > (j=1,...) Örek: Maksimizasyo amaçlı ve 2x2 boyutlu bir DP problemi aşağıdaki gibi ifade edilir. Z max = c 1 x 1 +c 2 x 2 a 11 x 1 +a 12 x 2 b 1 a 21 x 1 +a 22 x 2 b 2 x 1, x 2 0 Optimal Çözüm: Bir DP modelii karar değişkelerii, mevcut kısıtlar altıda amaç foksiyouu e iyilemesi (optimum kılıması) soucuda aldığı değerler optimal çözüm olarak adladırılır.

4 Optimal Değer: Optimal çözüme bağlı olarak amaç foksiyou aldığı değer optimal değer olarak adladırılır DP i Bazı Uygulama Alaları - Üretim Programı - Besleme Programı - Reklam Ortamı Seçimi - Sermaye Bütçeleme - Dağıtım Pogramı - Stok Kotrol - Üretim Hattı Degelemesi 2.3. DP i Varsayımları DP'i altı temel varsayımı vardır. Bu varsayımlar aşağıda verilmiştir: - Belirlilik (Certaiity) - Doğrusallık (Liearity) - Bölüebilirlik (Divisibility) - Toplaabilirlik (Additivity) - Oratısallık (Proportioality) - Negatif olmama (No-egativity) Belirlilik Varsayımı: Bir DP modelide yer ala parametreleri bilidiği ve değişmediği kabul edilir. Yai, birim başıa kar ya da maliyetleri (c j ), her faaliyet içi gerekli ola kayak miktarlarıı (a ij ) ve mevcut kayak miktarlarıı (b i ) sabit olduğu varsayılır. Bu varsayımı kabul edilmesiyle DP problemlerii çözümü kolaylaşmaktadır. Acak, uygulamada bu parametreleri sık sık değişme eğilimide olması, DP'i pratik faydasıı azaltmaktadır. Acak, problemi optimum çözümü elde edildikte sora duyarlılık aalizi başlığı altıda parametrelerdeki değişmeleri etkileri iceleerek DP ye diamik bir yapı kazadırılabilir. Bölüebilirlik Varsayımı: Belirlilik varsayımı ile karar değişkelerii sürekli değerler alabileceği kabul edilir. Öreği herhagi bir DP modelii çözümüde 4.6 adet araba

5 üretileceği gibi bir üretim çıktısı soucua ulaşılabilir. Optimal çözüme ulaşıldıkta sora kesirli değerler Tam Sayı Programlama algoritmalarıyla tamsayılaştırılabilir. Doğrusallık Varsayımı: Bir DP modelii amaç foksiyou ve kısıt deklemleri doğrusal olmalıdır. Bir başka deyişle x j ler birici derecede olmalıdır. Toplaabilirlik Varsayımı: Amaç foksiyouu ve kısıt deklemlerii değerlerie yapıla toplam katkı, her bir katkıı ayrı ayrı toplaması ile elde edilir. Öreği, bir iş iki iş-gücü saat ile diğer bir iş üç iş-gücü saat ile yapılıyorsa iki işi birde yapmak beş iş-gücü saati gerektirir. Oratısallık Varsayımı: Her bir karar değişkeii amaç foksiyoua ve kısıt deklemlerii sol tarafıa yapacağı katkı karar değişkeii değeri ile oratılıdır. Örek olarak 1 adet A tipi oyucağı amaç foksiyou katkısı TL ise 4 adet A tipi oyucağı amaç foksiyoua toplam katkısı buu dört katı ola TL (4x ) olacaktır. Bir adet A tipi oyucak plastik departmaıda 4 dakikada işleiyorsa, 5 adet A tipi oyucak buu beş katı ola 20 dakikada (4x5=20) işleecektir. Negatif Olmama Varsayımı: DP deki tüm değişkeleri egatif olmaya değerler alması gerekmektedir. Negatif üretimde söz edilemeyeceği içi değişkeleri pozitif ya da e azıda sıfıra eşit olması gerekmektedir DP i Özellikleri ve Düzeleiş Biçimleri DP i Özellikleri Bir DP problemii modeli, doğrusal eşitlikler ve/veya eşitsizlikler şeklideki kısıt deklemleri çerçeveside e iyileecek (optimum kılıacak) bir doğrusal amaç foksiyou içerir. Bu durumda bir DP problemi geel olarak aşağıdaki gibi ifade edilir: Z maks./mi. = Σ c j x j j=1 Σ a ij x j b i i=1,...,m

6 j=1 > j= 1,..., DP i özellikleri kısaca aşağıdaki gibi özetleebilir: 1) DP problemleride uygu çözüm birde çoktur. Fakat geelde optimum çözüm bir taedir (alteratif çözüm olabilir). 2) Kayak miktarları sıırlıdır. Amaca ulaşmak içi sosuz miktarda kayak kullaılamayacağı gibi, miktar olarak e kıt ola kayak çözüm alaıı belirler. 3) Problemde verile bilgiler, amaç ve kayaklar ile ilgili sıırlayıcı koşullar, matematiksel olarak eşitlikler ya da eşitsizlikler şeklide ifade edilmelidir. İfadeler doğrusal olmalıdır. 4) Karar değişkeleri (x j ) egatif olmamalıdır. x j - 0 (j=1,...,) 5) c j, b i ve a j (i=1,...,m ve j=1,..., ) değerleri öcede belirlemiştir. Her bir model içi sabit oldukları varsayılır ve parametreler olarak adladırılırlar DP i Düzeleiş Biçimleri DP modelleri değişik amaçlarla değişik biçimlerde düzeleirler. DP modellerii biçimleri aşağıdaki gibidir*. *-ÖZDEN, K. (1989), Yöeylem Araştırması, Hava Harp Okulu Yayıları, s ) Primal (özgü) form 2) Kaoik form 3) Stadart form 4) Dual (ikiz) form 1.) Primal (Özgü) Form: Herhagi bir DP problemi temel alıarak kurula ilk modele primal (özgü) problem adı verilir. Primal modeli matematiksel gösterimi aşağıdaki gibidir: Z maks./mi. = Σ c j x j j=1

7 Σ a ij x j b i i=1,...m j=1 > < j= 1,... x j - serbest Bua göre primal modelde, a.) E büyükleecek ya da e küçükleecek bir amaç foksiyou vardır. b.) Kısıt deklemlerii işaretleri ( ), (=), ( ) şeklide olabilir. c.) Amaç foksiyouda parametreler, kısıt deklemleride ise parametreler ve sağ taraf sabitleri yer alır. d.) Karar değişkeleri sıfıra eşit, sıfırda büyük ya da serbest işaretli olabilirler. Örek: Z maks. = 3x 1 + 5x 2 +2x 3 x 1 + 5x 2-2x x 1 + 2x 2 + 5x 3 = 80 x 1, x 2, x ) Kaoik Form: Bir DP problemi, kaoik formda aşağıdaki gibi ifade edilir: Z maks. = Σ c j x j j=1 Σ a ij x j b i j=1 i=1,...,m j= 1,..., Kaoik formu özellikleri aşağıdaki gibidir.

8 a.) Amaç foksiyou maksimizasyo amaçlı olmalıdır. b.) Kısıt deklemleri şeklide ifade edilmelidir. c.) Tüm değişkeler egatif olmaya değerler almalıdır. Bu forma uymaya DP problemleri aşağıdaki işlemlerle kaoik forma döüştürülürler: 1) Bir f(x) foksiyouu miimizasyou, bu foksiyou egatif işaretlisii (-f(x)) maksimizasyoua eşittir. 2) Herhagi bir yödeki eşitsizlik ( ya da ) (-1) ile çarpılarak karşıt yödeki eşitsizliğe ( ya da ) döüştürülebilir. Örek: a 11 x 1 + a 12 x 2 b 1 -a 11 x 1 -a 12 x 2 -b 1 3) Eşitlik şeklide verile bir kısıt deklemi zıt yöde iki eşitsizlik olarak ifade edilebilir. Örek: a 11 x 1 +a 12 x 2 =b 1 eşitliği a 11 x 1 +a 12 x 2 b 1 ve a 11 x 1 +a 12 x 2 b 1 şeklide iki eşitsizlik olarak yazılabilir. Burada, a 11 x 1 +a 12 x 2 b 1 ve -a 11 x 1 -a 12 x 2 -b 1 şeklide iki tae yölü eşitsizlik elde edilir. 4) Sol tarafı mutlak değer şeklide verile bir eşitsizlik iki eşitsizliğe döüştürülebilir. Örek: a 11 x 1 +a 12 x 2 b 1 eşitsizliği a 11 x 1 +a 12 x 2 -b 1 ve a 11 x 1 +a 12 x 2 b 1

9 şeklide iki eşitsizlik olarak yazılabilir. Burada, -a 11 x 1 -a 12 x 2 b 1 ve a 11 x 1 +a 12 x 2 b 1 şeklide iki tae yölü eşitsizlik elde edilir. 5) İşareti belirli olmaya bir değişke, iki tae egatif olmaya değişkei farkı olarak taımlaabilir. Öreği x 1 i işareti belirsiz ise, x 1 ıı 0 ve x 1 ı 0 koşuluyla x 1 = (x 1 ıı x 1 ı ) şeklide yazılabilir. Örek: Aşağıda verile DP problemii kaoik formda yazıız. Z mi. = 3x 1 + 5x 2 + 2x 3 10x 1 +16x 2 + 8x x 1 + 3x 2 + x 3 = x 1 + 2x 2 +10x x 2 10 x 1, x 2 0 ve x 3 - serbest 3.) Stadart Form: Bir DP problemi, stadart formda aşağıdaki gibi ifade edilir. Z maks./mi. = Σ c j x j j=1 Σ a ij x j = b i j=1 i=1,...,m j= 1,...,

10 Stadart formu özellikleri aşağıdaki gibidir. a.) Amaç foksiyou maksimizasyo ya da miimizasyo amaçlı olabilir. b.) Tüm kısıt deklemleri (=) şeklide ifade edilmelidir. c.) Sağ taraf sabitleri egatif olmaya değerler almalıdır. d.) Tüm değişkeler egatif olmaya değerler almalıdır. Bu forma uymaya DP problemleri aşağıdaki işlemlerle stadart forma döüştürülürler: 1) ( ) şeklideki bir kısıt deklemi, dekleme egatif sapma değişkeii eklemesi ile (=) şeklide ifade edilebilir. Eklee bu değişkee gölge değişke adı verilir. Örek: 3x 1 + 2x x 1 + 2x 2 + S 1 =30 2) ( ) şeklideki bir kısıt deklemi, dekleme pozitif sapma değişkeii eklemesi ile (=) şeklide ifade edilebilir. Eklee bu değişkee artık değişke adı verilir. Örek: 2x 1 + 3x 2 + x x 1 + 3x 2 + x 3 - E 1 = ) Sağ taraf sabiti (-) değerli ola eşitlik ya da eşitsizlik şeklideki bir kısıt deklemi, (-1) ile çarpılıp sağ taraf sabitii (+) değer alması sağlaır. Örek: -2x 1-3x 2 - x x 1 + 3x 2 + x x 1 + 3x 2 + x 3 + S 1 = ) İşareti belirli olmaya bir değişke, iki tae egatif olmaya değişkei farkı olarak taımlaabilir. Öreği x 1 i işareti belirsiz ise, x 1 ıı 0 ve x 1 ı 0 koşuluyla x 1 = (x 1 ıı x 1 ı ) şeklide yazılabilir.

11 Örek: Aşağıda verile DP problemii stadart formda yazıız. Z mi. = 3x 1 + x 2 x 1 3 x 1 + x 2 4 2x 1 - x 2 =3 x 1 0, x 2 -serbest 4.) Dual (İkiz) Form: Her DP problemii ilişkili olduğu bir ikiz problemi vardır. DP problemii asıl şeklie primal problem, buula ilişkili ikici şeklie dual (ikiz) problem adı verilir. Gerçekte de bir DP problemi, kedisiyle içsel bağlatılı başka bir DP problemie döüştürülebilir: Öreği, DP de maksimizasyo (miimizasyo) problemi, ayı verileri içere bezer bir miimizasyo (maksimizasyo) problemi olarak yazılabilir. DP de bu ikili yapı DUALİTE (İKİLİLİK) olarak adladırılmaktadır. Dual problemi çözümü öemli ekoomik yorumlar sağlar. Primal ve dual modeller arasıdaki ilişkileri aşağıdaki gibi sıralamak olasıdır: 1) Primal ve dual modeli optimal çözümleri içi Primal Dual maks. Z = mi. G mi. G = maks. Z eşitliği geçerlidir 2) Primal modeli amaç foksiyou katsayıları (cj), dual modeli sağ taraf sabitlerii (bi) oluştururlar. Primal Dual cj bi (j=1,...,) (i=1,...,m)

12 3) Primal modeli sağ taraf sabitleri (bi), dual modeli amaç foksiyou katsayılarıı (cj) oluştururlar. Primal Dual bi cj (j=1,...,) (i=1,...,m) 4) Primal modelde kısıt katsayılarıı oluşturduğu tekolojik katsayılar satırı, dual modelde tekolojik katsayılar sütu vektörüü oluştururlar. Primal Dual a ij a ij (j=1...), (i=1...m) -değişke m-kısıt deklemi -kısıt deklemi m-değişke O halde, primal model adet değişke, m adet kısıt deklemi içeriyorsa, dual model m adet değişke adet kısıt deklemi içerecektir. 5) Dual problemi duali primaldir. 6) Primal ve dual problemi karar değişkeleri egatif olmaya değişkelerdir., y i 0 Primal Dual y i 0 7) Primal problemdeki kısıt deklemleri, dual problemde yö değiştirirler. Primal Dual

13 A-) Normal Maksimum / Miimum Problemleri Dualii Alıması a) Normal Maksimum Problemi Asıl Model Dual Model m Z maks = Σ c j x j G mi = Σ b i y i j=1 i=1 m Σ a ij x j b i Σ a ij y i c j j=1 i=1 y i 0 (i=1,...,m) (j=1,...,) (j=1,...,) (i=1,...,m) Normal maksimum problemii duali kaoik formda ve stadart formda yararlaılarak alıabilir. i) Kaoik Form Normal maksimum problemi, maksimizasyo amaçlı ve yölü kısıt deklemli olacağı içi zate kaoik formda olacaktır. O halde, dual problem miimizasyo amaçlı ve yölü kısıt deklemli olacaktır. Örek: Aşağıdaki verile DP problemii kaoik formda yararlaarak dualii alı. Z maks. = 60x x x 3 8x 1 + 6x 2 + x x 1 + 2x x x x x 3 8 x 1,x 2, x 3 0 ii) Stadart Form Normal maksimum problemi stadart forma döüştürülerek duali alıır.

14 Örek: Yukarıda verile DP problemii stadart formda yararlaarak dualii alıız. b) Normal Miimum Problemi Asıl Model m Dual Model G mi. = Σ b i y i Z maks. = Σ c j x j i=1 j=1 m Σ a ij y j c j Σ a ij x j b i i=1 j=1 y j 0 (i=1,...,m) (j=1,...,) (j=1,...,) (i=1,...,m) Normal miimum problemii dual problemi maksimizasyo amaçlı ve yölü kısıt deklemli olacaktır. Örek: Aşağıda verile DP problemii dualii alıız. G mi. = 50y y y y 4 400y y y y y 1 + 2y 2 6 2y 1 + 2y 2 + 4y 3 + 4y y 1 + 4y 2 + y 3 + 5y 4 8 y 1, y 2, y 3, y 4 0 i- Stadart Form Normal miimum problemi stadart forma döüştürüldükte sora duali alıır. Örek: Yukarıda verile DP problemii stadart formda yararlaarak dualii alıız. O halde, ormal maksimum ve miimum problemlerii stadart formda duali alıırke aşağıdaki kurallar geçerlidir.

15 1. Maksimizasyo amaçlı ormal DP problemi stadart forma döüştürüldükte sora duali alıdığı zama, dual problem miimizasyo amaçlı ve yölü kısıt deklemli olacaktır. 2. Miimizasyo amaçlı ormal DP problemi stadart forma döüştürüldükte sora duali alıdığı zama, dual problem maksimizasyo amaçlı ve yölü kısıt deklemli olacaktır. B.) Asimetrik DP Problemii Dualii Alıması DP problemi ormal forma (Normal Maksimum/Normal Miimum) döüştürüldükte sora duali alıır. Tablo-Primal-Dual Problem Arasıdaki İlişki Primal Problem (Dual Problem) Maksimizyo Z(G) i. kısıt deklemi şeklide = şeklide şeklide x j -değişke x j 0 sıırladırılmamış x j 0 Dual Problem (Primal Problem) Miimizasyo G(Z) y i - değişke y i 0 sıırladırılmamış y i 0 j.kısıt deklemi şeklide = şeklide şeklide Kayak: HILLIER, F.S. ve LIEBERMAN, G.J. (1995), Itroductio to Mathematical Programmig, McGraw-Hill Publishig Compay, p.213.

Standart Formun Yapısı. Kanonik Form. DP nin Formları SİMPLEX YÖNTEMİ DP nin Düzenleniş Şekilleri. 1) Optimizasyonun anlamını değiştirme

Standart Formun Yapısı. Kanonik Form. DP nin Formları SİMPLEX YÖNTEMİ DP nin Düzenleniş Şekilleri. 1) Optimizasyonun anlamını değiştirme 5.0.06 DP i Düzeleiş Şekilleri DP i Formları SİMPLEX YÖNTEMİ ) Primal (özgü) form ) Kaoik form 3) Stadart form 4) Dual (ikiz) form Ayrı bir kou olarak işleecek Stadart formlar Simplex Yötemi içi daha elverişli

Detaylı

DOĞRUSAL PROGRAMLAMADA DUALİTE (DUALITY)

DOĞRUSAL PROGRAMLAMADA DUALİTE (DUALITY) DOĞRUSAL PROGRAMLAMADA DUALİTE (DUALITY) 1 DOĞRUSAL PROGRAMLAMADA İKİLİK (DUALİTE-DUALITY) Doğrusal programlama modelleri olarak adlandırılır. Aynı modelin değişik bir düzende oluşturulmasıyla Dual (İkilik)

Detaylı

İşlenmemiş veri: Sayılabilen yada ölçülebilen niceliklerin gözlemler sonucu elde edildiği hali ile derlendiği bilgiler.

İşlenmemiş veri: Sayılabilen yada ölçülebilen niceliklerin gözlemler sonucu elde edildiği hali ile derlendiği bilgiler. OLASILIK VE İSTATİSTİK DERSLERİ ÖZET NOTLARI İstatistik: verileri toplaması, aalizi, suulması ve yorumlaması ile ilgili ilkeleri ve yötemleri içere ve bu işlemleri souçlarıı probabilite ilkelerie göre

Detaylı

Matematiksel modellerin elemanları

Matematiksel modellerin elemanları Matematiksel modellerin elemanları Op#mizasyon ve Doğrusal Programlama Maksimizasyon ve Minimizasyon örnekleri, Doğrusal programlama modeli kurma uygulamaları 6. DERS 1. Karar değişkenleri: Bir karar verme

Detaylı

Yatırım Projelerinde Kaynak Dağıtımı Analizi. Analysis of Resource Distribution in Investment Projects

Yatırım Projelerinde Kaynak Dağıtımı Analizi. Analysis of Resource Distribution in Investment Projects Uşak Üiversitesi Sosyal Bilimler Dergisi (2012) 5/2, 89-101 Yatırım Projeleride Kayak Dağıtımı Aalizi Bahma Alp RENÇBER * Özet Bu çalışmaı amacı, yatırım projeleride kayak dağıtımıı icelemesidir. Yatırım

Detaylı

Yöneylem Araştırması II

Yöneylem Araştırması II Yöneylem Araştırması II Öğr. Gör. Dr. Hakan ÇERÇİOĞLU cercioglu@gazi.edu.tr BÖLÜM I: Doğrusal Programlama Tekrarı Doğrusal Programlama Tanımı Doğrusal Programlama Varsayımları Grafik Çözüm Metodu Simpleks

Detaylı

3.2. DP Modellerinin Simpleks Yöntem ile Çözümü Primal Simpleks Yöntem

3.2. DP Modellerinin Simpleks Yöntem ile Çözümü Primal Simpleks Yöntem 3.2. DP Modellerinin Simpleks Yöntem ile Çözümü 3.2.1. Primal Simpleks Yöntem Grafik çözüm yönteminde gördüğümüz gibi optimal çözüm noktası, her zaman uygun çözüm alanının bir köşe noktası ya da uç noktası

Detaylı

Simpleks Yönteminde Kullanılan İlave Değişkenler (Eşitliğin yönüne göre):

Simpleks Yönteminde Kullanılan İlave Değişkenler (Eşitliğin yönüne göre): DP SİMPLEKS ÇÖZÜM Simpleks Yöntemi, amaç fonksiyonunu en büyük (maksimum) veya en küçük (minimum) yapacak en iyi çözüme adım adım yaklaşan bir algoritma (hesaplama yöntemi) dir. Bu nedenle, probleme bir

Detaylı

28 C j -Z j /2 0

28 C j -Z j /2 0 3.2.6. Dual Problem ve Ekonomik Yorumu Primal Model Z maks. = 4X 1 + 5X 2 (kar, pb/gün) X 1 + 2X 2 10 6X 1 + 6X 2 36 8X 1 + 4X 2 40 (işgücü, saat/gün) (Hammadde1, kg/gün) (Hammadde2, kg/gün) 4 5 0 0 0

Detaylı

Tahmin Edici Elde Etme Yöntemleri

Tahmin Edici Elde Etme Yöntemleri 6. Ders Tahmi Edici Elde Etme Yötemleri Öceki derslerde ve ödevlerde U(0; ) ; = (0; ) da¼g l m da, da¼g l m üst s r ola parametresi içi tahmi edici olarak : s ra istatisti¼gi ve öreklem ortalamas heme

Detaylı

NOT: BU DERS NOTLARI TEMEL EKONOMETRİ-GUJARATİ KİTABINDAN DERLENMİŞTİR. HAFTA 1 İST 418 EKONOMETRİ

NOT: BU DERS NOTLARI TEMEL EKONOMETRİ-GUJARATİ KİTABINDAN DERLENMİŞTİR. HAFTA 1 İST 418 EKONOMETRİ NOT: BU DERS NOTLARI TEMEL EKONOMETRİ-GUJARATİ KİTABINDAN DERLENMİŞTİR. KULLANILAN ŞEKİLLERİN VE NOTLARIN TELİF HAKKI KİTABIN YAZARI VE BASIM EVİNE AİTTİR. HAFTA 1 İST 418 EKONOMETRİ Ekoometri: Sözcük

Detaylı

POLİNOMLARDA İNDİRGENEBİLİRLİK. Derleyen Osman EKİZ Eskişehir Fatih Fen Lisesi 1. GİRİŞ

POLİNOMLARDA İNDİRGENEBİLİRLİK. Derleyen Osman EKİZ Eskişehir Fatih Fen Lisesi 1. GİRİŞ POLİNOMLARDA İNDİRGENEBİLİRLİK Derleye Osma EKİZ Eskişehir Fatih Fe Lisesi. GİRİŞ Poliomları idirgeebilmesi poliomları sıfırlarıı bulmada oldukça öemlidir. Şimdi poliomları idirgeebilmesi ile ilgili bazı

Detaylı

KISITLI OPTİMİZASYON

KISITLI OPTİMİZASYON KISITLI OPTİMİZASYON SİMPLEKS YÖNTEMİ Simpleks Yöntemi Simpleks yöntemi iteratif bir prosedürü gerektirir. Bu iterasyonlar ile gerçekçi çözümlerin olduğu bölgenin (S) bir köşesinden başlayarak amaç fonksiyonunun

Detaylı

5 İKİNCİ MERTEBEDEN LİNEER DİF. DENKLEMLERİN SERİ ÇÖZÜMLERİ

5 İKİNCİ MERTEBEDEN LİNEER DİF. DENKLEMLERİN SERİ ÇÖZÜMLERİ 5 İKİNCİ MERTEBEDEN LİNEER DİF. DENKLEMLERİN SERİ ÇÖZÜMLERİ Bir lieer deklemi geel çözümüü bulmak homoje kısmı temel çözümlerii belirlemesie bağlıdır. Sabit katsayılı diferasiyel deklemleri temel çözümlerii

Detaylı

doğrusal programlama DOĞRUSAL PROGRAMLAMA (GENEL)

doğrusal programlama DOĞRUSAL PROGRAMLAMA (GENEL) DOĞRUSAL PROGRAMLAMA (GENEL) Belirli bir amacın gerçekleşmesini etkileyen bazı kısıtlayıcı koşulların ve bu kısıtlayıcı koşulların doğrusal eşitlik ya da eşitsizlik biçiminde verilmesi durumunda amaca

Detaylı

ALTERNATİF SİSTEMLERİN KARŞILAŞTIRILMASI

ALTERNATİF SİSTEMLERİN KARŞILAŞTIRILMASI ALTERNATİF SİSTEMLERİN KARŞILAŞTIRILMASI Bezetimi e öemli faydalarıda birisi, uygulamaya koymada öce alteratifleri karşılaştırmaı mümkü olmasıdır. Alteratifler; Fabrika yerleşim tasarımları Alteratif üretim

Detaylı

4/16/2013. Ders 9: Kitle Ortalaması ve Varyansı için Tahmin

4/16/2013. Ders 9: Kitle Ortalaması ve Varyansı için Tahmin 4/16/013 Ders 9: Kitle Ortalaması ve Varyası içi Tahmi Kitle ve Öreklem Öreklem Dağılımı Nokta Tahmii Tahmi Edicileri Özellikleri Kitle ortalaması içi Aralık Tahmii Kitle Stadart Sapması içi Aralık Tahmii

Detaylı

Öğrenci Numarası İmzası: Not Adı ve Soyadı

Öğrenci Numarası İmzası: Not Adı ve Soyadı Öğreci Numarası İmzası: Not Adı ve Soyadı SORU 1. a) Ekoomii taımıı yapıız, amaçlarıı yazıız. Tam istihdam ile ekoomik büyüme arasıdaki ilişkiyi açıklayıız. b) Arz-talep kauu edir? Arz ve talep asıl artar

Detaylı

LİNEER OLMAYAN DENKLEMLERİN SAYISAL ÇÖZÜM YÖNTEMLERİ-2

LİNEER OLMAYAN DENKLEMLERİN SAYISAL ÇÖZÜM YÖNTEMLERİ-2 LİNEER OLMAYAN DENKLEMLERİN SAYISAL ÇÖZÜM YÖNTEMLERİ SABİT NOKTA İTERASYONU YÖNTEMİ Bu yötemde çözüme gitmek içi f( olarak verile deklem =g( şeklie getirilir. Bir başlagıç değeri seçilir ve g ( ardışık

Detaylı

Doğrusal Programlama. Prof. Dr. Ferit Kemal Sönmez

Doğrusal Programlama. Prof. Dr. Ferit Kemal Sönmez Doğrusal Programlama Prof. Dr. Ferit Kemal Sönmez Doğrusal Programlama Belirli bir amacın gerçekleşmesini etkileyen bazı kısıtlayıcı koşulların ve bu kısıtlayıcı koşulların doğrusal eşitlik ya da eşitsizlik

Detaylı

İleri Diferansiyel Denklemler

İleri Diferansiyel Denklemler MIT AçıkDersSistemi http://ocw.mit.edu 18.034 İleri Diferasiyel Deklemler 2009 Bahar Bu bilgilere atıfta bulumak veya kullaım koşulları hakkıda bilgi içi http://ocw.mit.edu/terms web sitesii ziyaret ediiz.

Detaylı

ALTERNATİF SİSTEMLERİN KARŞILAŞTIRILMASI

ALTERNATİF SİSTEMLERİN KARŞILAŞTIRILMASI µ µ içi Güve Aralığı ALTERNATİF İTEMLERİN KARŞILAŞTIRILMAI Bezetimi e öemli faydalarıda birisi, uygulamaya koymada öce alteratifleri karşılaştırmaı mümkü olmasıdır. Alteratifler; Fabrika yerleşim tasarımları

Detaylı

İstatistik Nedir? Sistem-Model Kavramı

İstatistik Nedir? Sistem-Model Kavramı İstatistik Nedir? İstatistik rasgelelik içere olaylar, süreçler, sistemler hakkıda modeller kurmada, gözlemlere dayaarak bu modelleri geçerliğii sıamada ve bu modellerde souç çıkarmada gerekli bazı bilgi

Detaylı

(3) Eğer f karmaşık değerli bir fonksiyon ise gerçel kısmı Ref Lebesgue. Ref f. (4) Genel karmaşık değerli bir fonksiyon için. (6.

(3) Eğer f karmaşık değerli bir fonksiyon ise gerçel kısmı Ref Lebesgue. Ref f. (4) Genel karmaşık değerli bir fonksiyon için. (6. Problemler 3 i Çözümleri Problemler 3 i Çözümleri Aşağıdaki özellikleri kaıtlamaızı ve buu yaıda daha fazla soyut kaıt vermeizi isteyeceğiz. h.h. eşitliğii ölçümü sıfır ola bir kümei tümleyei üzeride eşit

Detaylı

çözümler bulabilen,kapasite kullanma miktarı sınırlı,kolay ve basit bir model grubunun

çözümler bulabilen,kapasite kullanma miktarı sınırlı,kolay ve basit bir model grubunun DOĞRUSAL PROGRAMLAMADA PRIMAL VE DUAL İLİŞKİSİNİN İRDELENMESİ VE BİR ÖRNEK UYGULAMASI The primal ad dual problem s focuses i Liear Programmig Sait PATIR* ÖZET Doğrusal programlama,işletme sorularıda kullaıla

Detaylı

Yöneylem Araştırması I Dersi 2. Çalışma Soruları ve Cevapları/

Yöneylem Araştırması I Dersi 2. Çalışma Soruları ve Cevapları/ Yöneylem Araştırması I Dersi 2. Çalışma Soruları ve Cevapları/25.12.2016 1. Bir deri firması standart tasarımda el yapımı çanta ve bavul üretmektedir. Firma üretmekte olduğu her çanta başına 400TL, her

Detaylı

BİR ÇUBUĞUN MODAL ANALİZİ. A.Saide Sarıgül

BİR ÇUBUĞUN MODAL ANALİZİ. A.Saide Sarıgül BİR ÇUBUĞUN MODAL ANALİZİ A.Saide Sarıgül DENEYİN AMACI: Akastre bir çubuğu modal parametrelerii (doğal frekas, titreşim biçimi, iç söümü) elde edilmesi. TANIMLAMALAR: Modal aaliz: Titreşe bir sistemi

Detaylı

4.1. Gölge Fiyat Kavramı

4.1. Gölge Fiyat Kavramı 4. Gölge Fiyat Kavramı 4.1. Gölge Fiyat Kavramı Gölge fiyatlar doğrusal programlama modellerinde kısıtlarla açıklanan kaynakların bizim için ne kadar değerli olduklarını gösterirler. Şimdi bir örnek üzerinde

Detaylı

Ki- kare Bağımsızlık Testi

Ki- kare Bağımsızlık Testi PARAMETRİK OLMAYAN İSTATİSTİKSEL TEKNİKLER Prof. Dr. Ali ŞEN Ki- kare Bağımsızlık Testi Daha öceki bölümlerde ölçümler arasıdaki ilişkileri asıl iceleeceğii gördük. Acak sıklıkla ilgileile veriler ölçüm

Detaylı

ÖZET Doktora Tezi KISITLI DURUM KALMAN FİLTRESİ VE BAZI UYGULAMALARI Esi KÖKSAL BABACAN Akara Üiversitesi Fe Bilimleri Estitüsü İstatistik Aabilim Dal

ÖZET Doktora Tezi KISITLI DURUM KALMAN FİLTRESİ VE BAZI UYGULAMALARI Esi KÖKSAL BABACAN Akara Üiversitesi Fe Bilimleri Estitüsü İstatistik Aabilim Dal ANKARA ÜNİVERSİTESİ FEN BİLİMLERİ ENSTİTÜSÜ DOKTORA TEZİ KISITLI DURUM KALMAN FİLTRESİ VE BAZI UYGULAMALARI Esi KÖKSAL BABACAN İSTATİSTİK ANABİLİM DALI ANKARA 2009 Her hakkı saklıdır ÖZET Doktora Tezi

Detaylı

Maksimizasyon s.t. İşçilik, saat) (Kil, kg)

Maksimizasyon s.t. İşçilik, saat) (Kil, kg) Simplex ile Çözüm Yöntemi Doç. Dr. Fazıl GÖKGÖZ 1 Doğrusal Programlama Modeli Maksimizasyon s.t. İşçilik, saat) (Kil, kg) 2 Doç. Dr. Fazıl GÖKGÖZ Yrd.Doç. Dr. Fazıl GÖKGÖZ 1 Modelin Standard Hali Maksimizasyon

Detaylı

BÖLÜM 3 YER ÖLÇÜLERİ. Doç.Dr. Suat ŞAHİNLER

BÖLÜM 3 YER ÖLÇÜLERİ. Doç.Dr. Suat ŞAHİNLER BÖLÜM 3 YER ÖLÇÜLERİ İkici bölümde verileri frekas tablolarıı hazırlaması ve grafikleri çizilmesideki esas amaç; gözlemleri doğal olarak ait oldukları populasyo dağılışıı belirlemek ve dağılışı geel özelliklerii

Detaylı

Önsöz... XIII Önsöz (Hava Harp Okulu Basımı)...XV BÖLÜM 1 1. YÖNEYLEM ARAŞTIRMASINA GİRİŞ... 1

Önsöz... XIII Önsöz (Hava Harp Okulu Basımı)...XV BÖLÜM 1 1. YÖNEYLEM ARAŞTIRMASINA GİRİŞ... 1 İÇİNDEKİLER Önsöz... XIII Önsöz (Hava Harp Okulu Basımı)...XV BÖLÜM 1 1. YÖNEYLEM ARAŞTIRMASINA GİRİŞ... 1 1.1. Yöneticilik / Komutanlık İşlevi ve Gerektirdiği Nitelikler... 2 1.1.1. Yöneticilik / Komutanlık

Detaylı

ISF404 SERMAYE PİYASALARI VE MENKUL KIYMETYÖNETİMİ

ISF404 SERMAYE PİYASALARI VE MENKUL KIYMETYÖNETİMİ 8. HAFTA ISF404 SERMAYE PİYASALARI VE MENKUL KIYMETYÖNETİMİ PORTFÖY YÖNETİMİ II Doç.Dr. Murat YILDIRIM muratyildirim@karabuk.edu.tr Geleeksel Portföy Yaklaşımı, Bu yaklaşıma göre portföy bir bilim değil,

Detaylı

6. BÖLÜM VEKTÖR UZAYI VEKTÖR UZAYI VEKTÖR UZAYLARI

6. BÖLÜM VEKTÖR UZAYI VEKTÖR UZAYI VEKTÖR UZAYLARI 6. BÖLÜM VEKTÖR LARI -BOYUTLU (ÖKLİT) I Taım: Eğer pozitif bir tam sayı ise sıralı -sayı, gerçel sayılar kümesideki adet sayıı (a 1, a 2,, a ) bir dizisidir. Tüm sıralı -sayılarıı kümesi -boyutlu uzay

Detaylı

Tümevarım_toplam_Çarpım_Dizi_Seri. n c = nc i= 1 n ca i. k 1. i= r n. Σ sembolü ile bilinmesi gerekli bazı formüller : 1) k =1+ 2 + 3+...

Tümevarım_toplam_Çarpım_Dizi_Seri. n c = nc i= 1 n ca i. k 1. i= r n. Σ sembolü ile bilinmesi gerekli bazı formüller : 1) k =1+ 2 + 3+... MC formülüü doğruluğuu tümevarım ilkesi ile gösterelim. www.matematikclub.com, 00 Cebir Notları Gökha DEMĐR, gdemir@yahoo.com.tr Tümevarım_toplam_Çarpım_Dizi_Seri Tümevarım Metodu : Matematikte kulladığımız

Detaylı

SAYISAL ÇÖZÜMLEME. Sayısal Çözümleme

SAYISAL ÇÖZÜMLEME. Sayısal Çözümleme SAYISAL ÇÖZÜMLEME Saısal Çözümleme SAYISAL ÇÖZÜMLEME 8. Hafta İNTERPOLASYON Saısal Çözümleme 2 İÇİNDEKİLER Ara Değer Hesabı İterpolaso Doğrusal Ara Değer Hesabı MATLAB ta İterpolaso Komutuu Kullaımı Lagrace

Detaylı

DENEY 4 Birinci Dereceden Sistem

DENEY 4 Birinci Dereceden Sistem DENEY 4 Birici Derecede Sistem DENEYİN AMACI. Birici derecede sistemi geçici tepkesii icelemek.. Birici derecede sistemi karakteristiklerii icelemek. 3. Birici derecede sistemi zama sabitii ve kararlı-durum

Detaylı

18.06 Professor Strang FİNAL 16 Mayıs 2005

18.06 Professor Strang FİNAL 16 Mayıs 2005 8.6 Professor Strag FİNAL 6 Mayıs 25 ( Pua) P,..., P R deki oktalar olsu. ( ai, ai2,..., a i) P i i koordiatlarıdır. Bütü P i oktasıı içere bir cx +... + cx = hiperdüzlemi bulmak istiyoruz. a) Bu hiperdüzlemi

Detaylı

REGRESYON DENKLEMİNİN HESAPLANMASI Basit Doğrusal Regresyon Basit doğrusal regresyon modeli: .. + n gözlem için matris gösterimi,. olarak verilir.

REGRESYON DENKLEMİNİN HESAPLANMASI Basit Doğrusal Regresyon Basit doğrusal regresyon modeli: .. + n gözlem için matris gösterimi,. olarak verilir. 203-204 Bahar REGRESYON DENKLEMİNİN HESAPLANMASI Basit Doğrusal Regresyo Basit doğrusal regresyo modeli: y i = β 0 + β x i + ε i Modeli matris gösterimi, y i = [ x i ] β 0 β + ε i şeklidedir. x y 2 gözlem

Detaylı

Simpleks Yöntemde Duyarlılık Analizleri

Simpleks Yöntemde Duyarlılık Analizleri 3.2.4. Simpleks Yöntemde Duyarlılık Analizleri Duyarlılık analizinde doğrusal programlama modelinin parametrelerindeki değişikliklerinin optimal çözüm üzerindeki etkileri araştırılmaktadır. Herhangi bir

Detaylı

TUTGA ve C Dereceli Nokta Koordinatlarının Gri Sistem ile Tahmin Edilmesi

TUTGA ve C Dereceli Nokta Koordinatlarının Gri Sistem ile Tahmin Edilmesi TMMOB Harita ve Kadastro Mühedisleri Odası, 5. Türkiye Harita Bilimsel ve Tekik Kurultayı, 5 8 Mart 5, Akara. TUTGA ve C Dereceli Nokta Koordiatlarıı Gri istem ile Tahmi Edilmesi Kürşat Kaya *, Levet Taşcı,

Detaylı

SAÜ. Mühendislik Fakültesi Endüstri Mühendisliği Bölümü DİFERENSİYEL DENKLEMLER Dönemi Ders Notları. Prof. Dr.

SAÜ. Mühendislik Fakültesi Endüstri Mühendisliği Bölümü DİFERENSİYEL DENKLEMLER Dönemi Ders Notları. Prof. Dr. SAÜ. Mühedislik Fakültesi Edüstri Mühedisliği Bölümü DİFERENSİYEL DENKLEMLER - Döemi Ders Notları Pro. Dr. Cemaletti KUBAT .Çok Değişkeli Foksiolarda Talor-McLauri Açılımları, Ekstremum Noktalar..Talor-McLauri

Detaylı

6. BÖLÜM VEKTÖR UZAYLARI

6. BÖLÜM VEKTÖR UZAYLARI 6. BÖLÜM VEKTÖR UZAYLARI -BOYUTLU (ÖKLİT) UZAYI Taım: Eğer pozitif bir tam sayı ise sıralı -sayı, gerçel sayılar kümesideki adet sayıı (a, a,, a ) bir dizisidir. Tüm sıralı -sayılarıı kümesi -boyutlu uzay

Detaylı

Diziler ve Seriler ÜNİTE. Amaçlar. İçindekiler. Yazar Prof.Dr. Vakıf CAFEROV

Diziler ve Seriler ÜNİTE. Amaçlar. İçindekiler. Yazar Prof.Dr. Vakıf CAFEROV Diziler ve Seriler Yazar Prof.Dr. Vakıf CAFEROV ÜNİTE 7 Amaçlar Bu üiteyi çalıştıkta sora; dizi kavramıı taıyacak, dizileri yakısaklığıı araştırabilecek, sosuz toplamı alamıı bilecek, serileri yakısaklığıı

Detaylı

İTÜ İŞLETME FAKÜLTESİ İŞLETME MÜHENDİSLİĞİ BÖLÜMÜ

İTÜ İŞLETME FAKÜLTESİ İŞLETME MÜHENDİSLİĞİ BÖLÜMÜ İTÜ İŞLETME FAKÜLTESİ İŞLETME MÜHENDİSLİĞİ BÖLÜMÜ YÖNEYLEM ARAŞTIRMASI-I DERS NOTLARI Doç. Dr. Demet BAYRAKTAR Yard. Doç. Dr. Ferhan ÇEBİ Eylül 2003-Istanbul 1. KARAR VERMEDE YÖNEYLEM ARAŞTIRMASI 1.1.

Detaylı

ANA NİRENGİ AĞLARINDA NİRENGİ SAYISINA GÖRE GPS ÖLÇÜ SÜRELERİNİN KURAMSAL OLARAK BULUNMASI

ANA NİRENGİ AĞLARINDA NİRENGİ SAYISINA GÖRE GPS ÖLÇÜ SÜRELERİNİN KURAMSAL OLARAK BULUNMASI TMMOB Harita ve Kadastro Mühedisleri Odası 13. Türkiye Harita Bilimsel ve Tekik Kurultayı 18 22 Nisa 2011, Akara ANA NİRENGİ AĞLARINDA NİRENGİ SAYISINA GÖRE GPS ÖLÇÜ SÜRELERİNİN KURAMSAL OLARAK BULUNMASI

Detaylı

İSTATİSTİK 2. Tahmin Teorisi 07/03/2012 AYŞE S. ÇAĞLI. aysecagli@beykent.edu.tr

İSTATİSTİK 2. Tahmin Teorisi 07/03/2012 AYŞE S. ÇAĞLI. aysecagli@beykent.edu.tr İSTATİSTİK 2 Tahmi Teorisi 07/03/2012 AYŞE S. ÇAĞLI aysecagli@beyket.edu.tr İstatistik yötemler İstatistik yötemler Betimsel istatistik Çıkarımsal istatistik Tahmi Hipotez testleri Nokta tahmii Aralık

Detaylı

SAÜ. Mühendislik Fakültesi Endüstri Mühendisliği Bölümü DİFERENSİYEL DENKLEMLER Dönemi Karma Eğitim Ders Notları. Doç. Dr.

SAÜ. Mühendislik Fakültesi Endüstri Mühendisliği Bölümü DİFERENSİYEL DENKLEMLER Dönemi Karma Eğitim Ders Notları. Doç. Dr. SAÜ. Mühedislik Fakültesi Edüstri Mühedisliği Bölümü DİFERENSİYEL DENKLEMLER 9- Döemi Karma Eğitim Ders Notları Doç. Dr. Cemaletti KUBAT .Çok Değişkeli Foksiolarda Talor-McLauri Açılımları, Ekstremum Noktalar..Talor-McLauri

Detaylı

BASAMAK ATLAYARAK VEYA FARKLI ZIPLAYARAK İLERLEME DURUMLARININ SAYISI

BASAMAK ATLAYARAK VEYA FARKLI ZIPLAYARAK İLERLEME DURUMLARININ SAYISI Projesii Kousu: Bir çekirgei metre, metre veya 3 metre zıplayarak uzuluğu verile bir yolu kaç farklı şekilde gidebileceği ya da bir kişii veya (veya 3) basamak atlayarak basamak sayısı verile bir merdivei

Detaylı

TAHMİNLEYİCİLERİN ÖZELLİKLERİ Sapmasızlık 3.2. Tutarlılık 3.3. Etkinlik minimum varyans 3.4. Aralık tahmini (güven aralığı)

TAHMİNLEYİCİLERİN ÖZELLİKLERİ Sapmasızlık 3.2. Tutarlılık 3.3. Etkinlik minimum varyans 3.4. Aralık tahmini (güven aralığı) 3 TAHMİNLEYİCİLERİN ÖZELLİKLERİ 3.1. Sapmasızlık 3.. Tutarlılık 3.3. Etkilik miimum varyas 3.4. Aralık tahmii (güve aralığı) İyi bir tahmi edici dağılımı tahmi edilecek populasyo parametresie yakı civarda

Detaylı

İstatistik ve Olasılık

İstatistik ve Olasılık İstatistik ve Olasılık Ders 3: MERKEZİ EĞİLİM VE DAĞILMA ÖLÇÜLERİ Prof. Dr. İrfa KAYMAZ Taım Araştırma souçlarıı açıklamasıda frekas tablosu ve poligou isteile bilgiyi her zama sağlamayabilir. Verileri

Detaylı

TOPOLOJİK TEMEL KAVRAMLAR

TOPOLOJİK TEMEL KAVRAMLAR TOPOLOJİK TEMEL KAVRAMLAR 1.1. Kümeler ve Foksiyolar A ı bir elemaıa B i yalız bir elemaıı eşleye bağıtıya bir foksiyo deir. f : A B, Domf = U A ve ragef B dir. Taım 1.1.1. f : A B foksiyou içi V A olsu.

Detaylı

Duyarlılık Analizi, modelde veri olarak kabul edilmiş parametrelerde meydana gelen değişimlerin optimum çözüme etkisinin incelenmesidir.

Duyarlılık Analizi, modelde veri olarak kabul edilmiş parametrelerde meydana gelen değişimlerin optimum çözüme etkisinin incelenmesidir. ISLE 403 YÖNEYLEM ARAŞTIRMASI I DERS IV NOTLAR Bağlayıcı Kısıtlar ve Bağlayıcı Olmayan Kısıtlar: Bağlayıcı Kısıtlar, denklemleri optimum çözüm noktasında kesişen kısıtlardır. Bağlayıcı-Olmayan Kısıtlar,

Detaylı

TAMSAYILI PROGRAMLAMADA DAL KESME YÖNTEMİ VE BİR EKMEK FABRİKASINDA OLUŞTURULAN ARAÇ ROTALAMA PROBLEMİNE UYGULANMASI

TAMSAYILI PROGRAMLAMADA DAL KESME YÖNTEMİ VE BİR EKMEK FABRİKASINDA OLUŞTURULAN ARAÇ ROTALAMA PROBLEMİNE UYGULANMASI Uludağ Üiversitesi İktisadi ve İdari Bilimler Fakültesi Dergisi Cilt XXIV, Sayı 1, 2005, s. 101-114 TAMSAYILI PROGRAMLAMADA DAL KESME YÖNTEMİ VE BİR EKMEK FABRİKASINDA OLUŞTURULAN ARAÇ ROTALAMA PROBLEMİNE

Detaylı

BİYOİSTATİSTİK İstatistiksel Tahminleme ve Hipotez Testlerine Giriş Dr. Öğr. Üyesi Aslı SUNER KARAKÜLAH

BİYOİSTATİSTİK İstatistiksel Tahminleme ve Hipotez Testlerine Giriş Dr. Öğr. Üyesi Aslı SUNER KARAKÜLAH BİYOİSTATİSTİK İstatistiksel Tahmileme ve Hipotez Testlerie Giriş Dr. Öğr. Üyesi Aslı SUNER KARAKÜLAH Ege Üiversitesi, Tıp Fakültesi, Biyoistatistik ve Tıbbi Bilişim AD. Web: www.biyoistatistik.med.ege.edu.tr

Detaylı

KALİTE VE SÜREÇ İYİLEŞTİRME İÇİN MÜŞTERİ GERİ BİLDİRİMLERİNİN DEĞERLENDİRİLMESİ

KALİTE VE SÜREÇ İYİLEŞTİRME İÇİN MÜŞTERİ GERİ BİLDİRİMLERİNİN DEĞERLENDİRİLMESİ Altı Sigma Yalı Koferasları (9- Mayıs 8) KALİTE VE SÜREÇ İYİLEŞTİRME İÇİN MÜŞTERİ GERİ BİLDİRİMLERİNİN DEĞERLENDİRİLMESİ Serka ATAK Evre DİREN Çiğdem CİHANGİR Murat Caer TESTİK ÖZET Ürü ve hizmet kalitesii

Detaylı

İstatistik ve Olasılık

İstatistik ve Olasılık İstatistik ve Olasılık Ders 3: MERKEZİ EĞİLİM VE DAĞILMA ÖLÇÜLERİ Prof. Dr. İrfa KAYMAZ Taım Araştırma souçlarıı açıklamasıda frekas tablosu ve poligou isteile bilgiyi her zama sağlamayabilir. Verileri

Detaylı

YÖNEYLEM ARAŞTIRMASI - I

YÖNEYLEM ARAŞTIRMASI - I YÖNEYLEM ARAŞTIRMASI - I /0 İçerik Matematiksel Modelin Kurulması Grafik Çözüm DP Terminolojisi DP Modelinin Standart Formu DP Varsayımları 2/0 Grafik Çözüm İki değişkenli (X, X2) modellerde kullanılabilir,

Detaylı

KİMYASAL DENGE (GİBBS SERBEST ENERJİSİ MİNİMİZASYONU) MODELLEMESİ

KİMYASAL DENGE (GİBBS SERBEST ENERJİSİ MİNİMİZASYONU) MODELLEMESİ KİMYASAL DENGE (GİBBS SERBEST ENERJİSİ MİNİMİZASYONU) MODELLEMESİ M. Turha ÇOBAN Ege Üiversitesi, Mühedislik Fakultesi, Makie Mühedisliği Bölümü, Borova, İZMİR Turha.coba@ege.edu.tr Özet: Kimyasal degei

Detaylı

Mühendislik Fakültesi Endüstri Mühendisliği Bölümü. Doç. Dr. Nil ARAS ENM411 Tesis Planlaması Güz Dönemi

Mühendislik Fakültesi Endüstri Mühendisliği Bölümü. Doç. Dr. Nil ARAS ENM411 Tesis Planlaması Güz Dönemi Mühedislik Fakültesi Edüstri Mühedisliği Bölümü Doç. Dr. Nil ARAS ENM4 Tesis Plalaması 6-7 Güz Döemi 3 Sisteme ekleecek tesis sayısı birde fazladır. Yei tesisler birbirleri ile etkileşim halide olabilirler

Detaylı

İkinci dersin notlarında yer alan Gepetto Marangozhanesi örneğini hatırlayınız.

İkinci dersin notlarında yer alan Gepetto Marangozhanesi örneğini hatırlayınız. ISLE 403 YÖNEYLEM ARAŞTIRMASI DERS 3 NOTLAR DP Modellerinin Standart Biçimde Gösterimi: İkinci dersin notlarında yer alan Gepetto Marangozhanesi örneğini hatırlayınız. Gepetto Marangozhanesi için DP modeli

Detaylı

MATRİSEL ÇÖZÜM TABLOLARIYLA DUYARLILIK ANALİZİ

MATRİSEL ÇÖZÜM TABLOLARIYLA DUYARLILIK ANALİZİ SİMPLEKS TABLONUN YORUMU MATRİSEL ÇÖZÜM TABLOLARIYLA DUYARLILIK ANALİZİ Şu ana kadar verilen bir DP probleminin çözümünü ve çözüm şartlarını inceledik. Eğer orijinal modelin parametrelerinde bazı değişiklikler

Detaylı

0 1 2 n 1. Doğu Akdeniz Üniversitesi Matematik Bölümü Mate 322

0 1 2 n 1. Doğu Akdeniz Üniversitesi Matematik Bölümü Mate 322 Bölüm 3. İkici Mertebede Lieer ve Sabit Katsaılı Diferesiel Deklemler 4 3. Geel Taımlar ( ) ( ) ( ) a ( ) + a ( ) + a ( ) +... + a ( ) + a ( ) = f ( ) () 0 şeklideki bir deklem. mertebede lieer deklem

Detaylı

Kuyruk Teorisi Ders Notları: Bazı Kuyruk Modelleri

Kuyruk Teorisi Ders Notları: Bazı Kuyruk Modelleri uyruk Teorisi Ders Notları: Bazı uyruk Modelleri Mehmet YILMAZ mehmetyilmaz@akara.edu.tr 10 ASIM 2017 11. HAFTA 6 Çok kaallı, solu N kapasiteli, kuyruk sistemi M/M//N/ Birimleri sisteme gelişleri arasıdaki

Detaylı

MAK312 ÖLÇME ve DEĞERLENDİRME OTOMATİK KONTROL LABORATUARI 1. Elektriksel Ölçümler ve İşlemsel Kuvvetlendiriciler

MAK312 ÖLÇME ve DEĞERLENDİRME OTOMATİK KONTROL LABORATUARI 1. Elektriksel Ölçümler ve İşlemsel Kuvvetlendiriciler MAK32 ÖLÇME ve DEĞELENDİME OTOMATİK KONTOL LABOATUAI Elektriksel Ölçümler ve İşlemsel Kuvvetlediriciler AMAÇLA:. Multimetre ile direç, gerilim ve akım ölçümleri, 2. Direç ölçümüde belirsizlik aalizii yapılması

Detaylı

Başlangıç Temel Programının Bilinmemesi Durumu

Başlangıç Temel Programının Bilinmemesi Durumu aşlangıç Temel Programının ilinmemesi Durumu İlgili kısıtlarda şartlar ( ) ise bunlara gevşek (slack) değişkenler eklenerek eşitliklere dönüştürülmektedir. Ancak sınırlayıcı şartlar ( ) veya ( = ) olduğu

Detaylı

Bir Rasgele Değişkenin Fonksiyonunun Olasılık Dağılımı

Bir Rasgele Değişkenin Fonksiyonunun Olasılık Dağılımı 5.Ders Döüşümler Bir Rasgele Değişkei Foksiyouu Olasılık Dağılımı Bu kısımda olasılık dağılımı bilie bir rasgele değişkei foksiyoları ola rasgele değişkeleri olasılık dağılımlarıı buluması ile ilgileeceğiz.

Detaylı

BAŞKENT ÜNİVERSİTESİ Makine Mühendisliği Bölümü

BAŞKENT ÜNİVERSİTESİ Makine Mühendisliği Bölümü BAŞKENT ÜNİVERSİTESİ Makie Mühedisliği Bölümü 1 STAJLAR: Makie Mühedisliği Bölümü öğrecileri, öğreim süreleri boyuca 3 ayrı staj yapmakla yükümlüdürler. Bularda ilki üiversite içide e fazla 10 iş güü süreli

Detaylı

ˆp x p p(1 p)/n. Ancak anakütle oranı p bilinmediğinden bu ilişki doğrudan kullanılamaz.

ˆp x p p(1 p)/n. Ancak anakütle oranı p bilinmediğinden bu ilişki doğrudan kullanılamaz. YTÜ-İktisat İstatistik II Aralık Tahmii II 1 ANAKÜTLE ORANININ (p GÜVEN ARALIKLARI (BÜYÜK ÖRNEKLEMLERDE Her birii başarı olasılığı p ola birbiride bağımsız Beroulli deemeside öreklemdeki başarı oraıı ˆp

Detaylı

YÖNEYLEM ARAŞTIRMASI - III

YÖNEYLEM ARAŞTIRMASI - III YÖNEYLEM ARAŞTIRMASI - III Prof. Dr. Cemalettin KUBAT Yrd. Doç. Dr. Özer UYGUN İçerik Bu bölümde eşitsizlik kısıtlarına bağlı bir doğrusal olmayan kısıta sahip problemin belirlenen stasyoner noktaları

Detaylı

sorusu akla gelebilir. Örneğin, O noktasından A noktasına hareket, OA sembolü ile gösterilir

sorusu akla gelebilir. Örneğin, O noktasından A noktasına hareket, OA sembolü ile gösterilir BÖLÜM 1: VEKTÖRLER Vektörleri taımlamak içi iki yol vardır: uzayda oktalara karşılık gele bir koordiat sistemideki oktalar veya büyüklük ve yöü ola eseler. Bu kısımda, ede iki vektör taımıı buluduğu açıklaacak

Detaylı

4/4/2013. Ders 8: Verilerin Düzenlenmesi ve Analizi. Betimsel İstatistik Merkezsel Eğilim Ölçüleri Dağılım Ölçüleri Grafiksel Gösterimler

4/4/2013. Ders 8: Verilerin Düzenlenmesi ve Analizi. Betimsel İstatistik Merkezsel Eğilim Ölçüleri Dağılım Ölçüleri Grafiksel Gösterimler Ders 8: Verileri Düzelemesi ve Aalizi Betimsel İstatistik Merkezsel Eğilim Ölçüleri Dağılım Ölçüleri Grafiksel Gösterimler Bir kitlei tamamıı, ya da kitlede alıa bir öreklemi özetlemekle (betimlemekle)

Detaylı

4. Gölge Fiyat Kavramı ve Duyarlılık Analizleri:

4. Gölge Fiyat Kavramı ve Duyarlılık Analizleri: 4. Gölge Fiyat Kavramı ve Duyarlılık Analizleri: 4.1. Gölge Fiyat Kavramı Gölge fiyatlar doğrusal programlama modellerinde kısıtlarla açıklanan kaynakların bizim için ne kadar değerli olduklarını gösterirler.

Detaylı

Atatürk Üniversitesi İktisadi ve İdari Bilimler Dergisi, Cilt: 23, Sayı: 4, 2009 43 ÜRETİM PLANLAMA VE İŞ YÜKLEME METOTLARI

Atatürk Üniversitesi İktisadi ve İdari Bilimler Dergisi, Cilt: 23, Sayı: 4, 2009 43 ÜRETİM PLANLAMA VE İŞ YÜKLEME METOTLARI Atatürk Üiversitesi İktisadi ve İdari Bilimler Dergisi, Cilt: 23, Sayı: 4, 2009 43 ÜRETİM PLANLAMA VE İŞ YÜKLEME METOTLARI Osma DEMİRDÖĞEN (*) Dilşad GÜZEL (**) Özet: Üretim plalama süreci, üretim öcesideki

Detaylı

ORTALAMA EŞĐTSĐZLĐKLERĐNE GĐRĐŞ

ORTALAMA EŞĐTSĐZLĐKLERĐNE GĐRĐŞ ORTALAMA EŞĐTSĐZLĐKLERĐNE GĐRĐŞ Lokma Gökçe Olimpiyat problemlerii çözümüde eşitsizlik teorisi öemli bir yer tutar. Baze bir maksimum miimum değer problemide, baze bir geometrik eşitsizlik kaıtıda, baze

Detaylı

Temelleri. Doç.Dr.Ali Argun Karacabey

Temelleri. Doç.Dr.Ali Argun Karacabey Doğrusal Programlamanın Temelleri Doç.Dr.Ali Argun Karacabey Doğrusal Programlama Nedir? Bir Doğrusal Programlama Modeli doğrusal kısıtlar altında bir doğrusal ğ fonksiyonun değerini ğ maksimize yada minimize

Detaylı

Ders 2: Küme Teorisi, Örnek Uzay, Permütasyonlar ve Kombinasyonlar

Ders 2: Küme Teorisi, Örnek Uzay, Permütasyonlar ve Kombinasyonlar Ders 2: üme Teorisi, Örek Uzay, Permütasyolar ve ombiasyolar üme avramı üme İşlemleri Deey, Örek Uzay, Örek Nokta ve Olay avramları Örek Noktaları Sayma Permütasyolar ombiasyolar Parçalamalar (Partitio)

Detaylı

MONTE CARLO BENZETİMİ

MONTE CARLO BENZETİMİ MONTE CARLO BENZETİMİ U(0,) rassal değişkeler kullaılarak (zamaı öemli bir rolü olmadığı) stokastik ya da determiistik problemleri çözümüde kullaıla bir tekiktir. Mote Carlo simülasyou, geellikle statik

Detaylı

HİPOTEZ TESTLERİ. İstatistikte hipotez testleri, karar teorisi olarak adlandırılır. Ortaya atılan doğru veya yanlış iddialara hipotez denir.

HİPOTEZ TESTLERİ. İstatistikte hipotez testleri, karar teorisi olarak adlandırılır. Ortaya atılan doğru veya yanlış iddialara hipotez denir. HİPOTEZ TETLERİ İstatistikte hipotez testleri, karar teorisi olarak adladırılır. Ortaya atıla doğru veya yalış iddialara hipotez deir. Öreği para hilesizdir deildiğide bu bir hipotezdir. Ortaya atıla iddiaya

Detaylı

Cebirsel Olarak Çözüme Gitmede Wegsteın Yöntemi

Cebirsel Olarak Çözüme Gitmede Wegsteın Yöntemi 3 Cebirsel Olarak Çözüme Gitmede Wegsteı Yötemi Bu yötem bir izdüşüm tekiğie dayaır ve yalış pozisyo olarak isimledirile matematiksel tekiğe yakıdır. Buradaki düşüce f() çizgisi üzerideki bilie iki oktada

Detaylı

KONU 13: GENEL UYGULAMA

KONU 13: GENEL UYGULAMA KONU : GENEL UYGULAMA Kahve üretimi apan bir şirket anı zamanda cezve ve fincan üretmektedir. Üretilen cezveler ve fincanlar boama kısmında işlem görmekte ve arıca fincanlar kaplanmaktadır. Bir cezve apımı

Detaylı

İSTATİSTİKSEL TAHMİNLEME VE HİPOTEZ TESTİ

İSTATİSTİKSEL TAHMİNLEME VE HİPOTEZ TESTİ İSTATİSTİKSEL TAHMİNLEME VE HİPOTEZ TESTİ Bu bölümdeki yötemler, bilimeye POPULASYON PARAMETRE değeri hakkıda; TAHMİN yapmaya yöelik ve, KARAR vermekle ilgili, olmak üzere iki grupta icelemektedir. Parametre

Detaylı

YÖNEYLEM ARAŞTIRMASI - I

YÖNEYLEM ARAŞTIRMASI - I YÖNEYLEM ARAŞTIRMASI - I 1/36 İçerik Optimalliği etkileyen değişimler 2/36 (Optimallik Sonrası Analiz): Eğer orijinal modelin parametrelerinde bazı değişiklikler meydana gelirse optimal çözüm değişecek

Detaylı

SİSTEMLERİN ZAMAN CEVABI

SİSTEMLERİN ZAMAN CEVABI DÜZCE ÜNİVERSİTESİ MÜHENDİSLİK FAKÜLTESİ MAKİNE MÜHENDİSLİĞİ BÖLÜMÜ MM306 SİSTEM DİNAMİĞİ SİSTEMLERİN ZAMAN CEVABI Kutuplar, Sıfırlar ve Zama Cevabı Kavramı Birici Mertebede Sistemleri Zama Cevabı İkici

Detaylı

DOĞRUSAL PROGRAMLAMA PROBLEMLERİNİN EXCEL İLE ÇÖZÜMÜ

DOĞRUSAL PROGRAMLAMA PROBLEMLERİNİN EXCEL İLE ÇÖZÜMÜ C.Ü. İktisdi ve İdri Bilimler Dergisi, Cilt 5, Syı 5 DOĞRUSAL PROGRAMLAMA PROBLEMLERİNİN EXCEL İLE ÇÖZÜMÜ Öğr. Gör. Dr. Mehmet Ali ALAN Cumhuriyet Üiversitesi İktisdi ve İdri Bilimler Fkültesi Öğr. Gör.

Detaylı

İKİ ÖLÇÜTLÜ PARALEL MAKİNELİ ÇİZELGELEME PROBLEMİ: MAKSİMUM TAMAMLANMA ZAMANI VE MAKSİMUM ERKEN BİTİRME

İKİ ÖLÇÜTLÜ PARALEL MAKİNELİ ÇİZELGELEME PROBLEMİ: MAKSİMUM TAMAMLANMA ZAMANI VE MAKSİMUM ERKEN BİTİRME V. Ulusal Üretim Araştırmaları Sempozyumu, İstabul Ticaret Üversitesi, 25-27 Kasım 2005 İKİ ÖLÇÜTLÜ PARALEL MAKİNELİ ÇİZELGELEME PROBLEMİ: MAKSİMUM TAMAMLANMA ZAMANI VE MAKSİMUM ERKEN BİTİRME Tamer EREN

Detaylı

Veri nedir? p Veri nedir? p Veri kalitesi p Veri önişleme. n Geometrik bir bakış açısı. n Olasılıksal bir bakış açısı

Veri nedir? p Veri nedir? p Veri kalitesi p Veri önişleme. n Geometrik bir bakış açısı. n Olasılıksal bir bakış açısı Veri edir? p Veri edir? Geometrik bir bakış açısı p Bezerlik Olasılıksal bir bakış açısı p Yoğuluk p Veri kalitesi p Veri öişleme Birleştirme Öreklem Veri küçültme p Temel bileşe aalizi (Pricipal Compoet

Detaylı

Duyarlılık analizi, bir doğrusal programlama probleminde belirlenen katsayı değerlerinin

Duyarlılık analizi, bir doğrusal programlama probleminde belirlenen katsayı değerlerinin DUYARLILIK ANALİZİ Duyarlılık analizi, bir doğrusal programlama probleminde belirlenen katsayı değerlerinin değişmesinin problemin optimal çözümü üzerine etkisini incelemektedir. Oluşturulan modeldeki

Detaylı

YÖNEYLEM ARAŞTIRMASI YÜKSEK LİSANS DERSİ

YÖNEYLEM ARAŞTIRMASI YÜKSEK LİSANS DERSİ LINDO (Linear Interactive and Discrete Optimizer) YÖNEYLEM ARAŞTIRMASI YÜKSEK LİSANS DERSİ 2010-2011 Güz-Bahar Yarıyılı YRD.DOÇ.DR.MEHMET TEKTAŞ ÖRNEK 6X 1 + 3X 2 96 X 1 + X 2 18 2X 1 + 6X 2 72 X 1, X

Detaylı

POLİNOMLAR. reel sayılar ve n doğal sayı olmak üzere. n n. + polinomu kısaca ( ) 2 3 n. ifadeleri polinomun terimleri,

POLİNOMLAR. reel sayılar ve n doğal sayı olmak üzere. n n. + polinomu kısaca ( ) 2 3 n. ifadeleri polinomun terimleri, POLİNOMLAR Taım : a0, a, a,..., a, a reel sayılar ve doğal sayı olmak üzere P x = a x + a x +... + a x + a x + a biçimideki ifadelere x e bağlı reel katsayılı poliom (çok terimli) deir. 0 a 0 ax + a x

Detaylı

KONU 4: DOĞRUSAL PROGRAMLAMA MODELİ İÇİN ÇÖZÜM YÖNTEMLERİ I

KONU 4: DOĞRUSAL PROGRAMLAMA MODELİ İÇİN ÇÖZÜM YÖNTEMLERİ I KONU 4: DOĞRUSAL PROGRAMLAMA MODELİ İÇİN ÇÖZÜM YÖNTEMLERİ I 4.1. Dışbükeylik ve Uç Nokta Bir d.p.p. de model kısıtlarını aynı anda sağlayan X X X karar değişkenleri... n vektörüne çözüm denir. Eğer bu

Detaylı

MEKANİK TESİSATTA EKONOMİK ANALİZ

MEKANİK TESİSATTA EKONOMİK ANALİZ MEKANİK TESİSATTA EKONOMİK ANALİZ Mustafa ÖZDEMİR İ. Cem PARMAKSIZOĞLU ÖZET Düya çapıda rekabeti ö plaa çıktığı bu gükü şartlarda, e gelişmiş ürüü, e kısa sürede, e ucuza üretmek veya ilk yatırım ve işletme

Detaylı

5. BORULARDAKİ VİSKOZ (SÜRTÜNMELİ) AKIM

5. BORULARDAKİ VİSKOZ (SÜRTÜNMELİ) AKIM 5. ORURKİ İSKOZ (SÜRTÜNMEİ) KIM 5.0. oru Sistemleri Çözüm Yötemleri oru sistemleriyle ilgili problemleri çözümüde tip çözüm yötemi vardır. ular I. Tip, II. Tip ve III. Tip çözüm yötemleridir. u çözüm yötemleride

Detaylı

SÜREKLİ SİSTEM YAPI MODELLERİNDE İLERİ MODLARIN KATKISININ İNCELENMESİ

SÜREKLİ SİSTEM YAPI MODELLERİNDE İLERİ MODLARIN KATKISININ İNCELENMESİ 14-16 Ekim 015 DEÜ İZMİR SÜREKLİ SİSTEM YAPI MODELLERİNDE İLERİ MODLARIN KATKISININ İNCELENMESİ ÖZET: H. T. Türker 1 ve H. Çolak 1 Yardımcı Doçet Doktor, İşaat Müh. Bölümü, İskederu Tekik Üiversitesi,

Detaylı

1. GRUPLAR. 2) Aşağıdaki kümelerin verilen işlem altında bir grup olup olmadığını belirleyiniz.

1. GRUPLAR. 2) Aşağıdaki kümelerin verilen işlem altında bir grup olup olmadığını belirleyiniz. Sorular ve Çözümleri 1. GRUPLAR 1) G bir grup olmak üzere aşağıdaki eşitlikleri gösteriiz. i) e G birim elema olmak üzere e 1 = e. ii) a G olmak üzere (a 1 ) 1 = a. iii) a 1, a 2,, a G içi (a 1 a 2 a )

Detaylı

Biga Yöresinde Çeltik Üretim Alanı ile Makina Sayısı ve Büyüklüğü Arasındaki İlişkinin Doğrusal Programlama Kullanarak Belirlenmesi*

Biga Yöresinde Çeltik Üretim Alanı ile Makina Sayısı ve Büyüklüğü Arasındaki İlişkinin Doğrusal Programlama Kullanarak Belirlenmesi* Tarım Makiaları Bilimi Dergisi 2006, 2 (1), 79-85 Biga Yöreside Çeltik Üretim Alaı ile Makia Sayısı ve Büyüklüğü Arasıdaki İlişkii Doğrusal Programlama Kullaarak Belirlemesi* Gıyasetti Çiçek 1, İsmail

Detaylı

yöneylem araştırması Nedensellik üzerine diyaloglar I

yöneylem araştırması Nedensellik üzerine diyaloglar I yöneylem araştırması Nedensellik üzerine diyaloglar I i Yayın No : 3197 Eğitim Dizisi : 149 1. Baskı Ocak 2015 İSTANBUL ISBN 978-605 - 333-225 1 Copyright Bu kitabın bu basısı için Türkiye deki yayın hakları

Detaylı

ÇOK SERBESTLĐK DERECELĐ SĐSTEMLERĐN ZAMAN TANIM ARALIĞINDA DĐNAMĐK ANALĐZĐ

ÇOK SERBESTLĐK DERECELĐ SĐSTEMLERĐN ZAMAN TANIM ARALIĞINDA DĐNAMĐK ANALĐZĐ DOKUZ EYLÜL ÜNĐVERSĐTESĐ FEN BĐLĐMLERĐ ENSTĐTÜSÜ ÇOK SERBESTLĐK DERECELĐ SĐSTEMLERĐN ZAMAN TANIM ARALIĞINDA DĐNAMĐK ANALĐZĐ Kerem GÜRBÜZ Hazira, 011 ĐZMĐR ÇOK SERBESTLĐK DERECELĐ SĐSTEMLERĐN ZAMAN TANIM

Detaylı