ROBUST TAHMİN EDİCİLERİ VE ÖZELLİKLERİ * Robust Estimators and Properties
|
|
|
- Süleyman Kobal
- 9 yıl önce
- İzleme sayısı:
Transkript
1 Ç.Ü Fe Blmler Esttüsü Yıl:2008 Clt:7-5 ROBUST TAHMİN EDİCİLERİ VE ÖZELLİKLERİ * Robust Estmators ad Propertes Yekta Stara KOÇ İstatstk Aablm Dalı Fkr AKDENİZ İstatstk Aablm Dalı ÖZET Robust tahm edcler, ver kümesde güvel gözlemler homoje dağılmaması durumuda güvel souçlar bulmak ve sapa değerler etks azaltmak amacıyla kullaılır. Bu çalışmada temel amaç; klask regresyo aalzde sapa gözlemler varlığı edeyle stadart varsayımları sağlamaması durumuda e küçük kareler yöteme alteratf olarak suula robust regresyo yötemler celemesdr. Bu çalışmada öce sapa değerler, kırılma oktası ve etk foksyou kavramları ele alıacak, sora robust bast regresyo ve çoklu regresyodak tahm edcler celeecektr. Öreklerle bu tahm edcler, e küçük kareler tahm edcsyle karşılaştırılacaktır. Aahtar kelmeler: E küçük kareler tahm edc, E küçük medya kareler tahm edc, Kırılma oktası, Robust tahm edc, Sapa değer. ABSTRACT Robust estmators are used for reducg the effects(weghts) of outlyg observatos the data set to get more relable ad stable estmators. The am of ths study s to propose robust regresso procedures as a alteratve method to Least Squares procedure whch s wdely used classcal regresso aalyss ad very sestve to outlyg observatos. I ths thess, frstly outler ad breakg pot cocepts wll be troduced, secodly a geeral overvew of estmators for robust smple ad multple regresso wll be gve ad fally these estmators wll be compared wth classcal Least Squares estmators ad examples wll be provded. Keywords: Breakg Pot,, Least meda squares estmator, Least squares estmator, Outler, Robust estmator, Grş Regresyo aalzde amaç; gözlee değerlere uya e y deklem oluşturmaktır. Brçok regresyo tekğ olmasıa karşı bularda e kullaışlı; olaı klasklğ ve hesaplama kolaylığıda dolayı e küçük kareler (EKK) tahm *Yüksek Lsas Tez-MSc. Thess 76
2 Ç.Ü Fe Blmler Esttüsü Yıl:2008 Clt:7-5 edcsdr. Fakat bu tahm edc sapa değerlere karşı çok hassastır. Bu probleme çözüm bulmak amacıyla sapalar değerlerde çok etklemeye ye statstksel tekkler gelştrld. Böylece robust (dayaıklı) tahm edcler ortaya çıktı. Bu yötem ver çoğuluğua uygu br model tasarlamaya çalışır. Ya, ver kümes küçük br bölümü sapa değerlerde oluşsa ble kala büyük bölüm güvelr souçlar verr. Bu çalışmada bast regresyo ve çoklu regresyo olmak üzere k aa başlık altıda robust tahm edcler ele alımış ve buları souçları örekler aracılığıyla klask EKK aalzyle karşılaştırılmıştır. Materyal ve Metot Materyal Regresyo aalzde amaç; gözlee değerlere e y uya deklemler oluşturmaktır. Klask leer model, +. y = x x e =,,, () p p dr. Burada öreklem geşlğ, x,, x p açıklayıcı değşkeler, y yaıt değşkedr. e hatalarıı se 0 ortalamalı ve blmeye varyaslı ormal dağılıma sahp olduğu varsayılır. Blmeye parametre vektörü ya.. p verde tahm edlr. Ver ç olaylar x. x. x değşkeler... x p... x p... x p y. y. y 77
3 Ç.Ü Fe Blmler Esttüsü Yıl:2008 Clt:7-5 matrs gösterm kullaılsı. Böyle br ver kümese regresyo tahm edcs uyguladığıda. p elde edlr. Burada j tahmler, regresyo katsayıları olarak adladırılır. Gerçek blmemese rağme j tahm edcler le açıklayıcı değşkeler j çarpılarak (2) y x... x p p (3) tahm edle değerler elde edlr. Bu durumda -c olayı r rezdüsü, y gözlemş değerler le ŷ tahm edle değer farkı olarak taımlaır. Ya, r =y - y (4) dır. E popüler regresyo tahm edc, m ˆ 2 r fadese karşılık gelr. Bu tahm edc amacı bu fadey mmum yaparak model e y duruma getrmektr. Bu yötem çok y ble e küçük kareler yötemdr (EKK). Bu yötem, statstğ öeml br köşe taşıdır. Popüler olmasıı ede se alaşılmasıı kolaylığıdır. 800 lü yıllarda buluduğuda blgsayarlar yoktu ve EKK tahm edcs verde belrl br matrs cebr le kolayca hesaplaablrd. Güümüzde ble brçok statstksel paket program hala geleeksellğ ve hesaplama hızıda dolayı ayı tekğ kullamaktadır Daha yakı zamalarda brçok araştırmacı, gerçek verler klask varsayımları tamame sağlamadığıı farketmeye başladı. EKK yötemde br ver kopyalaırke ya da taşıırke hatalı grldğde model tamame değşmektedr. Bu edele x ve y yöüdek regresyo sapaları stadart EKK aalzlerde cdd br rsk oluşturur. Bu problem çıkışı olarak robust regresyou ortaya çıktı. Bu yaklaşım sapalar tarafıda çok güçlü br bçmde etklemeye tahm edcler tasarlamaya çalışır. Bell belrsz robustlık fkre sahp brçok statstkç robustlığı amacıı bast br bçmde sapaları hmal etmek olduğua adı fakat bu doğru değldr. Akse (5) 78
4 Ç.Ü Fe Blmler Esttüsü Yıl:2008 Clt:7-5 robust aalz lk olarak ver çoğuluğuu br regresyoa uydurmak ster ve o zama robust çözümüde geş rezdülere sahp oktalar olarak sapaları keşfeder. Metot Daha robust br regresyo tahm edcse doğru lk adım Edgeworth de(987) geld. Bu tahm edc şu şeklde taımlaır: m ˆ r (6) Bu tekk geelde L regresyou olarak blr, EKK se L2 regresyou olarak blr. L regresyouu y-yöüdek sapmaya karşı robusttır fakat x-yöüdek sapaa karşı hassastır. Bu edele solu örekl kırılma oktası hala / dr. Bu yöde sorak adım Huber (973) bulduğu M tahm edcler kullaımıdır. Bu tahm edc m ˆ p( r ) (7) şekldedr. Burada p smetrk br foksyodur [p(-t)=p(t), t ç] ve 0 da tek mmuma sahptr. ˆ regresyo katsayılarıa göre bu fade farkı ( r ) x = 0 (8) eştlğ verr. Burada, p türev ve satır vektörüdür: x ( x,..., x p ) 0 = ( 0,,0 ) x -c durumdak açıklayıcı değşke Bu edele yukarıdak fade gerçekte p tae deklem br sstemdr. Çözümüü bulmak her zama çok kolay değldr. Pratk olarak Hollad ve Welsch (977) yede ağırlakladırılmış EKK yöteme dayaa fadeler tekrar kullaılır. 79
5 Ç.Ü Fe Blmler Esttüsü Yıl:2008 Clt:7-5 Bu deklem çözümü y ekse büyütülmese azara uygu br şekle döüştürülemez. Bu edele ı belrl br tahm le rezdüler stadartlaştırmak zorudayız. Ya ( r / ˆ) x = 0 (9) yazılmalıdır. Burada ˆ eş zamalı tahm edlmeldr. Mmax asmtotk varyas tartışmalarıa ede olduğu ç Huber (973) şu foksyou kullamayı ler sürdü: ( t) m( c,max( t, c)) (0) M-tahm edcler statstksel açıda L regresyouda daha etkldr. Ayı zamada uzaktak y lere göre hala daha robusttır. Fakat kırılma oktaları uzaktak x etks yüzüde hala / dr. Kaldıraç oktalarıı bu yaralaablrlğ yüzüde geelleştrlmş M- tahm edcler ler sürüldü..mallows (975) suduğu bu tahm edc belrl br ağırlık foksyou aracılığıyla uzaktak x sapalarıı etks sıırladırmak esas amacıdır. Mallows şu eştlğ kulladı: w( x ) ( r / ˆ) x 0 () Schwepp, Mallows u akse şuu kulladı: w( x ) ( r / w( x ) ˆ) x 0 (2) Bu tahm edcler br tek sapa gözlem etks sıırladırmak umuduyla yapıldı. Buları etks etk foksyou Hampel (974) dye adladırıla foksyolar aracılığıyla ölçüleblr. Bu edele karşılık gele GM (Geelleştrlmş M) tahm edcler geel olarak şu a sıırladırılmış etk tahm edcler olarak adladırılacaktır. Burada şu souç çıkar: Bütü GM tahm edcler kırılma oktası p br foksyou gb azala br değerde daha y olmayablr. Burada p 80
6 Ç.Ü Fe Blmler Esttüsü Yıl:2008 Clt:7-5 ye regresyo katsayılarıı sayısıdır. Bu çok yeterl değldr. Çükü bu arta boyutla brlkte kırılma oktasıı azalması alamıa gelr. Burada sapaları meydaa gelmes ç daha fazla fırsat vardır. Bu çalışma ayı kırılma oktasıa ulaşmış bütü GM tahm edcler göstermeyecektr. Fakat elbette k esas problem daha yüksek boyutlulardadır. Çeştl başka tahm edcler öerld. Maalesef bast regresyoda bu oktaları hçbr %30 luk kırılma oktasıa ulaşamadı. Üstelk oları çoğu p>2 ç ble taımlaamadı. Bütü bular yüksek kırılma oktalı robust regresyouu tamame mümkü olup olmadığı hakkıdak soruları arttırdı. Buu doğrulayıcı cevabı Segel(982) tarafıda verld. Segel %50 kırılma oktalı tekrarlı medya tahm edcs ler sürdüler. Gerçekte %50 bekleeblecek e y kırılma oktasıdır. Segel tahm edcs aşağıdak gb taımlaablr: Herhag p gözlem ç x, y,..., xp, yp olsu. Bu oktalara tam olarak uya parametre vektörü hesaplaır. Bu vektörü j-c koordatı, ˆ j med(...( med( med j(,..., p p p )))...) (3) m med r ˆ 2 (4) m ˆ ( r ) 2 : (5) eştlğyle verlr. Burada ( r 2 ) :... ( r 2 ) : (6) kares alıarak sıralamış rezdülerdr. (2.6) formülü EKK ya çok bezer. Tek farkı sapalarda uzakta kalması ç modele uymasıa z vermes suretyle e geş kares alımış rezdüler toplamda kullaılmamasıdır. LMS gb bu tahm edc de x leer döüşümler ç uygu döüşümlüdür ve zdüşüm takbe bağlıdır. E sağlam oralar h /2 olduğuda başarıldı. Bu ora da kırılma oktasıı %50 ye ulaşması durumudur. 8
7 Ç.Ü Fe Blmler Esttüsü Yıl:2008 Clt:7-5 LMS ve LTS her ks de rezdüler saçılımıı robust ölçümüü mmze ederek taımlaır. Buu geelleştrrsek Rousseeuw ve Yoha (984) S-tahm edcs dye adladırıla m S ( ) (7) ˆ le fade edle tahm edcy buldular. Burada S( ) fades, r ( ),..., r ( ) rezdüler ölçümüü robust M-tahm bell br çeşddr. Burada karışık sabtler uygu br seçmyle kırılma oktası %50 ye de ulaşablr. Buda başka S-tahm edcler aslıda M-tahm edcler gb ayı asmtotk performasa sahp olduğu ortaya çıkar. Araştırma Bulguları ve Tartışma Robust regresyou oldukça yüksek etkl ola oktaları etks azalta tahm edcler tasarlamaya çalışır. Br robust yötem ver çoğuluğuu br modele uydurmaya çalışır. İy oktalarla bçmlemş modelde uzakta yerleşe kötü oktalar souç olarak robust modelde geş rezdülere sahp olacaktır. Bu edele sapaları hassas olmayışıa ek olarak br robust regresyo tahm edcs bu oktaları bulumasıı kolay br ş olarak yapar. Elbette EKK dak rezdüler bu amaçla kullaılamazlar çükü sapalar çok küçük EKK rezdülere sahpke EKK model bu sapa oktaları çok fazla çekeblr. Ver Tablo de lstelee 4 ölçekl 2 gözlemde oluşur. Ver amoyağı trk aste oksdasyou ç br btkdek şlem taımlıyor. Yığı Kaybı (y), x ora şlem, x2 soğutulmuş suyu grş sıcaklığı ve x 3 ast kosatrasyou le açıkladı. Özetle lteratür atıf almış buluşları gösterdğ,3,4 ve 2. gözlemler sapa olduğu soucuu brçok saı çıkardığı söyleeblr. Bazılarıa göre 2. gözlem de br sapadır. EKK regresyou şu deklem verr: y ˆ 0,76x,295x2 0,52x3 39,9, EKK gösterge grafğ Şekl de gösterlyor. Rezdüler stadartlaştırılması rezdüler her br kısmıa modele uygu ölçek tahm le uygulaır. Yatay şert 2.5 le 2.5 arasıda stadartlaştırılmış rezdüler etrafıı çevryor. Böyle Şekl de olduğu gb sapa göze çarpmıyor. EKK gösterge grafğde stadartlaştırılmış EKK rezdüler şerd çe tamame düştüğü ç ver kümes sapa çermedğ soucua varılır. Fakat Şekl 2 ye bakarsak e küçük medya kareler ( LMS ) le lşkl ola gösterge grafğ y ˆ 0,74x 0,357x2 0,000x3 34,5, 82
8 Ç.Ü Fe Blmler Esttüsü Yıl:2008 Clt:7-5 Tablo Yığı Kaybı Vers (Stackloss Data) İdeks Ora Sıcaklık Ast Kosatrasyou Yığı Kaybı ( ) ( x ) ( x 2 ) ( x 3 ) ( y) Kayak: Browlee (965) 83
9 Ç.Ü Fe Blmler Esttüsü Yıl:2008 Clt:7-5 Şekl. Yığı kaybı vers: EKK ye göre deks grafğ Şekl 2. Yığı kaybı vers: LMS e göre deks grafğ Bu grafk robust modele dayaır ve gerçekte zararlı oktaları varlığıı ortaya çıkarır. Bu gösterge grafğde, 3, 4 ve 2. gözlemler e uzakta olduğu 84
10 Ç.Ü Fe Blmler Esttüsü Yıl:2008 Clt:7-5 ve 2. gözlem sapaları olduğu bölge sıırıda olduğu ç arada olduğu heme açık br bçmde görülür. Bu durum robust regresyo tekğmz bu very tek br hamlede asıl aalz edebldğ gösteryor. Bular ayı ver kümes lk aalzlerde zahmetl ve uzu ola bazılarıyla kıyaslaır. Bu örek sadece EKK rezdülere bakılmasıdak tehlkey br kere daha gösteryor. Her regresyo aalzde EKK ve robust yötem her ks stadartlaştırılmış rezdüler kıyaslamaı gerekl olduğuu söyleyeblrz. Eğer k yötemde souçları heme heme ayı se o zama EKK güvelr olablr. Eğer farklı se robust yötem sapaları ortaya çıkarmak ç uygu br araç olarak kullaılablr. Burada o zama sapalar tamame araştırılablr ve belk düzeltleblr ya da sleblr. Souçlar LMS, LTS, L,S, M ve GM tahm edcler taımladı, EKK ve brbrleryle kıyasladı ve e y kırılma oktasıa S tahm edcs ulaştığı ortaya çıktı. LMS tahm edcs dğerlere kıyasla daha kolay hesaplaablmesde dolayı daha kullaışlı olduğu ortaya çıktı. Bu çalışmada hareketle buda sora verlerle br şleme başlamada öce sapa değerler bulmak amacıyla robust tahm edclerde herhag br kullaılması öerleblr. Kayaklar BROWNLEE, K.A., 965. Statstcal Theory ad Methodology Scece ad Egeerg, 2d ed., Joh Wley & Sos, New York. EDGEWORTH, F.Y.,887. O observatos relatg to several quattes, Hermathea, 6, HAMPEL, F.R., 974. The fluece curve ad ts role robus estmato, J. Am. Stat. Assoc., 69, HUBER, P.J., 973. Robust Regresso: Asymptotcs, Cojectures Ad Mote Carlo, A. Stat.,, MALLOWS, C.L., 975. O Some Topcs Robustess, Upublshed Memoradum, Bell Telephoe Laboratores, Murray Hll, NJ. ROUSSEEUW, P.J., 983. Multvarate Estmato Wth Hgh Breakdow Pot, paper preseted at Fourth Paoa Symposum o Mathematcal Statstcs ad Probablty, Bad Tatzmadorf, Austra, September 4-9, 983. Abstract IMS Bull., 983, 2, p.234. Appeared (985), Mathematcal Statstcs ad Applcatos, Vol. B., edted by W. Grossma, G. Pflug, I. Veze, ve W. Wertz, Redel, Dordrecht, The etherlads, pp ROUSSEEUW, P.J., 984. Least Meda of Squares Regresso, J. Am. Stat. Assoc., 78, ROUSSEEUW, P.J. ad LEROY, A.M., 987. Robust Regresso ad Outler Detecto, Joh Wley & Sos SIEGEL, A.F., 982. Robust regresso usg repeated medas, Bometrca, 69,
Regresyon ve Korelasyon Analizi. Regresyon Analizi
Regresyo ve Korelasyo Aalz Regresyo Aalz Regresyo Aalz Regresyo aalz, aralarıda sebep-souç lşks bulua k veya daha fazla değşke arasıdak lşky belrlemek ve bu lşky kullaarak o kou le lgl tahmler (estmato)
Değişkenler Arasındaki İlişkiler Regresyon ve Korelasyon. Dr. Musa KILIÇ
Değşkeler Arasıdak İlşkler Regresyo ve Korelasyo Dr. Musa KILIÇ http://ks.deu.edu.tr/musa.klc 1. Grş Buda öcek bölümlerde celedğmz koular, br tek değşke ç yorumlamalar yapmaya yöelk statstk yötemler üzerde
Zaman Skalasında Box-Cox Regresyon Yöntemi
Dokuz Eylül Üverstes İktsad ve İdar Blmler Fakültes Dergs, Clt:7, Sayı:, Yıl:0, ss.57-70. Zama Skalasıda Bo-Co Regresyo Yötem Atlla Özur İŞÇİ Sbel PAŞALI GÖKTAŞ ATMACA 3 M. Nyaz ÇANKAYA 4 Özet Hata term
Sağlam Ridge Regresyon Analizi ve Bir Uygulama
Dokuz Eylül Üverstes İktsad ve İdar Blmler Fakültes Dergs, Clt:5, Sayı:, Yıl:010, ss.137-148. Sağlam Rdge Regresyo Aalz ve Br Uygulama Özlem ALPU 1 Hatce ŞAMKAR Ekrem ALTAN 3 Özet Çoklu regresyo aalzde
BEKLENEN DEĞER VE VARYANS
BEKLEE DEĞER VE VARYAS.1. İadel ve adesz öreklemede tüm mümkü örekler.. Beklee değer.3. Varyas.4. İk değşke ortak dağılımı.5. İstatstksel bağımsızlık.6. Tesadüf değşkeler doğrusal kombasyolarıı beklee
ÖRNEKLEME YÖNTEMLERİ ve ÖRNEKLEM GENİŞLİĞİ
03.05.013 ÖRNEKLEME YÖNTEMLERİ ve ÖRNEKLEM GENİŞLİĞİ 1 Nede Örekleme? Öreklemde çalışmak ktlede çalışmakta daha kolaydır. Ktle üzerde çalışmak çok daha masraflı olablr. Çoğu durumda tüm ktleye ulaşmak
MERKEZİ EĞİLİM ÖLÇÜLERİ
MERKEZİ EĞİLİM ÖLÇÜLERİ Gözlee ver düzeleerek çzelgelerle, graklerle suulması çoğu kez yeterl olmaz. Geel durumu yasıtacak br takım ölçülere gereksm vardır. Bu ölçüler verler yalızca özlü br bçmde belrtmekle
ÖLÇÜM, ÖLÇÜM HATALARI ve ANLAMLI RAKAMLAR
ÖLÇÜM, ÖLÇÜM HATALARI ve ANLAMLI RAKAMLAR Ölçme, her deeysel blm temel oluşturur. Fzk blmde de teorler sıaması ç çeştl deeyler tasarlaır ve bu deeyler sırasıda çok çeştl ölçümler yapılır. Br fzksel celğ
İSTATİSTİK ANABİLİM DALI
ÇUKUROVA ÜNİVERSİTESİ FEN BİLİMLERİ ENSTİTÜSÜ YÜKSEK LİSANS TEZİ Yekta Stara KOÇ ROBUST TAHMİN EDİCİLERİ VE ÖZELLİKLERİ İSTATİSTİK ANABİLİM DALI ADANA, 007 ÇUKUROVA ÜNİVERSİTESİ FEN BİLİMLERİ ENSTİTÜSÜ
Tanımlayıcı İstatistikler
Taımlayıcı İstatstkler Taımlayıcı İstatstkler br değerler dzs statstksel olarak geel özellkler taımlaya ölçülerdr Taımlayıcı İstatstkler Yer Göstere Ölçüler Yaygılık Ölçüler Yer Göstere Ölçüler Br dağılımı
Tahmin Edicilerin ve Test Đstatistiklerinin Simülasyon ile Karşılaştırılması
. Ders ĐSTATĐSTĐKTE SĐMÜLASYON Tahm Edcler ve Test Đstatstkler Smülasyo le Karşılaştırılması Đstatstk rasgelelk olgusu çere olay süreç ve sstemler modellemesde özellkle bu modellerde souç çıkarmada ve
DOGRUSAL REGRESYONDA SAGLAM TAHMiN EDiciLER VE BiR UYGULAMA Meral Candan ÇETiN1, Aynur ORSOY1
ANADOLU ÜNvERSTES BlM VE TEKNOLOJ DERGS ANADOLU UNIVERSITY JOURNAL OF SCIENCE AND TECHNOLOGY CltNol.:2 - Sayı/No: 2 : 265-270 (2001) ARAŞTIRMA MAKALESIRESEARCH ARTICLE DOGRUSAL REGRESYONDA SAGLAM TAHMN
REGRESYON ANALİZİNDE KULLANILAN EN KÜÇÜK KARELER VE EN KÜÇÜK MEDYAN KARELER YÖNTEMLERİNİN KARŞILAŞTIRILMASI
FEN DEGİSİ (E-DEGİ). 8, 3() 9-9 EGESYON ANALİZİNDE KULLANILAN EN KÜÇÜK KAELE VE EN KÜÇÜK MEDYAN KAELE YÖNTEMLEİNİN KAŞILAŞTIILMASI Özlem GÜÜNLÜ ALMA, Özgül VUPA Dokuz Eylül Üverstes, Fe-Edebyat Fakültes,
Doç. Dr. Mehmet AKSARAYLI
Doç. Dr. Mehmet AKSARALI www.mehmetaksarayl İstatstksel araştırmalarda k yada daha çok değşke arasıdak lşk celemes ç e çok kullaıla yötemlerde brs regresyo aalzdr. Değşkeler arasıdak lşk matematksel br
YER ÖLÇÜLERİ. Yer ölçüleri, verilerin merkezini veya yığılma noktasını belirleyen istatistiklerdir.
YER ÖLÇÜLERİ Yer ölçüler, verler merkez veya yığılma oktasıı belrleye statstklerdr. Grafkler bze verler yığılma oktaları hakkıda ö blg vermede yardımcı olurlar. Acak bu değerler gerçek değerler değldr,
İki veri setinin yapısının karşılaştırılması
İk ver set yapısıı karşılaştırılması Dağılım: 6,6,6 Ortalama: 6 Medya: 6 Mod: 6 td. apma: 0 Dağılım: 0,6,1 Ortalama: 6 Medya: 6 Mod: çoklu mod td: apma: 6 Amaç: Görüe Ötese Bakablmek Verler değşkelk durumuu
Quality Planning and Control
Qualty Plag ad Cotrol END 3618 KALİTE PLANLAMA VE KONTROL Prof. Dr. Mehmet ÇAKMAKÇI Dokuz Eylül Üverstes Edüstr Mühedslğ Aablm Dalı 1 Qualty Maagemet İstatstksel Proses Kotrol Kotrol Kartları 2 END 3618
= k. Aritmetik Ortalama. Tanımlayıcı İstatistikler TANIMLAYICI İSTATİSTİKLER. Sınıflanmış Seriler İçin Aritmetik Ortalama
TANIMLAYICI İSTATİSTİKLER Taımlayıcı İstatstkler MERKEZİ EĞİLİM ÖLÇÜLERİ Dr. Mehmet AKSARAYLI D.E.Ü. İ.İ.B.F..B.F. EKONOMETRİ BÖLÜMÜ mehmet.aksarayl [email protected] Yer Ölçüler (Merkez Eğlm Ölçüler)
Olabilirlik Oranı Yöntemine Dayalı, Yapısal Homojen Olmayan Varyans Testlerinin Piyasa Modeli İçin Karşılaştırılması
Dokuz Eylül Üverstes İktsad ve İdar Blmler Fakültes Dergs, Clt:6, Sayı:, Yıl:011, ss.135-144 Olablrlk Oraı Yöteme Dayalı, Yaısal Homoje Olmaya Varyas Testler Pyasa Model İç Karşılaştırılması Flz KARDİYEN
denklemini sağlayan tüm x kompleks sayılarını bulunuz. denklemini x = 64 = 2 i şeklinde yazabiliriz. Bu son kompleks sayıları için x = 2iy
Ders Sorumlusu: Doç. Dr. Necp ŞİMŞEK Problem. deklem sağlaya tüm kompleks sayılarıı buluu. Çöüm deklem şeklde yaablr. Bu so y kompleks sayıları ç y yaalım. Bu taktrde deklemde, baı y ( ) y elde edlr. Burada
Tanımlayıcı İstatistikler (Descriptive Statistics) Dr. Musa KILIÇ
Taımlayıcı İstatstkler (Descrptve Statstcs) Dr. Musa KILIÇ TANIMLAYICI ÖRNEK İSTATİSTİKLERİ YER ÖLÇÜLERİ (Frekas dağılışıı abss eksedek durumuu belrtr.) DEĞİŞİM ÖLÇÜLERİ ( Frekas dağılışıı şekl belrtr.).
değerine bu matrisin bir girdisi(elemanı,bileşeni) denir. Bir sütundan (satırdan) oluşan bir matrise bir sütun (satır) matrisi denir.
Bölüm 2 Matrsler aım 2.1 F br csm, m, brer doğal sayı olsu. a F ( 1,.., m; j 1,..., ) olmak üzere, a11... a1 fadese m satır sütuda oluşa (veya m tpde) br F matrs der. am 1... a m Böyle br matrs daha sade
TEZ ONAYI Nur ÇELİK tarafıda hazırlaa ANOVA Modellerde Çarpık Dağılımlar Kullaılarak Dayaıklı İstatstksel Souç Çıkarımı ve Uygulamaları adlı tez çalış
ANKARA ÜNİVERSİTESİ EN BİLİERİ ENSTİTÜSÜ DOKTORA TEZİ ANOVA MODELLERİNDE ÇARPIK DAĞILIAR KULLANILARAK DAYANIKLI İSTATİSTİKSEL SONUÇ ÇIKARIMI VE UYGULAMALARI Nur ÇELİK İSTATİSTİK ANABİLİM DALI ANKARA 0
Polinom İnterpolasyonu
Polom İterpolasyou (Ara Değer Bulma Br foksyou solu sayıdak, K, R oktalarıda aldığı f (, f (,, f ( değerler bls (foksyou keds blmyor. Bu oktalarda geçe. derecede br tek, P a + a + a + + a (... polumu vardır
Eğitimle İlgili Sapan Değer İçeren Veri Kümelerinde En Küçük Kareler ve Robust M Tahmin Edicilerin Karşılaştırılması
Eğtmle İlgl Sapa Değer İçere Ver Kümelerde E Küçük Kareler ve Robust M Tahm Edcler Karşılaştırılması Orku COŞKUNTUNCEL * Özet Eğtm araştırmalarıda regresyo katsayılarıı tahm etmek ç e çok kullaıla yötem
Đst201 Đstatistik Teorisi I
Đst20 Đstatstk Teors I DERSĐN TÜRÜ Zorulu DERSĐN DÖNEMĐ Yaz DERSĐN KREDĐSĐ Ulusal Kred: (4, 0, 0 ) 4 KTS: 7 DERSĐN VERĐLDĐĞĐ Bölüm: Đstatstk 200/20 Öğretm Yılı DERSĐN MCI Đstatstğ matematksel temeller
Giriş. Değişkenlik Ölçüleri İSTATİSTİK I. Ders 5 Değişkenlik ve Asimetri Ölçüleri. Değişkenlik. X i ve Y i aşağıdaki gibi iki seri verilmiş olsun:
Grş İSTATİSTİK I Ders Değşkelk ve Asmetr Ölçüler Ortalamalar, serler karşılaştırılmasıda her zama yeterl ölçüler değldr. Ayı ortalamayı sahp serler arklı dağılım göstereblrler. Bu edele serler karşılaştırılmasıda,
Orkun COŞKUNTUNCEL a Mersin Üniversitesi
Kuram ve Uygulamada Eğtm Blmler Educatoal Sceces: Theory & Practce - 3(4) 39-58 03 Eğtm Daışmalığı ve Araştırmaları İletşm Hzmetler Tc. Ltd. Şt. www.edam.com.tr/kuyeb DOI: 0.738/estp.03.4.867 Sosyal Blmlerde
Ridge Regresyonda M Tahmin Edicilerinin Kullanımı Üzerine Bir Uygulama 1
Douz Eylül Üverstes İtsad ve İdar Blmler Faültes Dergs, Clt:6, Sayı:, Yıl:0, ss.67-77. Rdge Regresyoda Tahm Edcler Kullaımı Üzere Br Uygulama Hatce ŞAKAR Özlem ALPU 3 Erem ALTAN 4 Özet Bu çalışmada y yöüde
T.C. SELÇUK ÜNİVERSİTESİ FEN BİLİMLERİ ENSTİTÜSÜ
T.C. SELÇUK ÜNİVERSİTESİ FEN BİLİMLERİ ENSTİTÜSÜ BAZI DAĞILIMLAR İÇİN EN ÇOK OLABİLİRLİK VE FARKLI KAYIP FONKSİYONLARI ALTINDA BAYES TAHMİN EDİCİLERİNİN PERFORMANSLARININ KARŞILAŞTIRILMASI Gülca GENCER
BİR KARMAŞIK SİSTEMİN GÜVENİLİRLİK BLOK DİYAGRAMI İÇİN OLASILIK YOĞUNLUK FONKSİYONUNUN OLUŞTURULMASI VE İSTATİSTİKSEL GÜVENİLİRLİK HESAPLAMALARI*
BİR KARMAŞIK SİSTEMİN GÜVENİLİRLİK BLOK DİYAGRAMI İÇİN OLILIK YOĞUNLUK FONKSİYONUNUN OLUŞTURULMI VE İSTATİSTİKSEL GÜVENİLİRLİK HESAPLAMALARI* Costructo O Probablty Desty Fucto For The Relablty Block Dagram
Genelleştirilmiş Ortalama Fonksiyonu ve Bazı Önemli Eşitsizliklerin Öğretimi Üzerine
Geelleşrlmş Oralama Foksyou ve Bazı Öeml Eşszlkler Öğrem Üzere Gabl ADİLOV, Gülek TINAZTEPE & Serap KEALİ * Öze Armek oralama, Geomerk oralama, Harmok oralama, Kuvadrak oralama ve bular arasıdak lşk vere
Önceki bölümde özetlenen Taylor metodlarında yerel kesme hata mertebesinin yüksek oluşu istenilen bir özelliktir. Diğer taraftan
III.5.RUNGE-KUTTA METODLARI Öcek bölümde özelee Talor meodlarıda erel kesme aa merebes üksek oluşu sele br özellkr. Dğer araa ürevler buluma ve esaplaması pek çok problem ç karmaşık ve zama alıcı olduğuda
Tahmin Edici Elde Etme Yöntemleri
6. Ders Tahmi Edici Elde Etme Yötemleri Öceki derslerde ve ödevlerde U(0; ) ; = (0; ) da¼g l m da, da¼g l m üst s r ola parametresi içi tahmi edici olarak : s ra istatisti¼gi ve öreklem ortalamas heme
6. Uygulama. dx < olduğunda ( )
. Uygulama Hatırlatma: Rasgele Değşelerde Belee Değer Kavramı br rasgele değşe ve g : R R br osyo olma üzere, ) esl ve g ) ) < olduğuda D ) sürel ve g ) ) d < olduğuda g belee değer der. c R ve br doğal
TALEP TAHMİNLERİ. Y.Doç.Dr. Alpagut YAVUZ
TALEP TAHMİNLERİ Y.Doç.Dr. Alpagut YAVUZ Yöetm e temel foksyolarıda br ola plalama, e kaba taımıyla, şletme geleceğe yöelk alıa kararları br bleşkesdr. Geleceğe yöelk alıa kararları başarısı yöetcler yaptıkları
HĐPERSTATĐK SĐSTEMLER
HĐPERSTATĐK SĐSTELER Taım: Bütü kest zorları, şekldeğştrmeler ve yerdeğştrmeler belrlemes ç dege deklemler yeterl olmadığı sstemlere hperstatk sstemler der. Hperstatk sstemler hesabı ç, a) Dege deklemlere,
=... 29 İÇİNDEKİLER. E(X) = k... 22. 3.5. Pascal (Negatif Binom) Dağılımı... 22 1. 3.6. Hipergeometrik Dağılım... 22. N y= ... 24
İÇİNDEKİLER SİMGE LİSTESİ... KISALTMA LİSTESİ... v ÇİZELGE LİSTESİ... v ŞEKİL LİSTESİ... v ÖNSÖZ... v ÖZET... x ABSTRACT... x GİRİŞ... BÖLÜM : OLASILIK DAĞILIMLARI VE OLASILIK YOĞUNLUKLARI... BÖLÜM : OLASILIK
Bir KANUN ve Bir TEOREM. Büyük Sayılar Kanunu
Br KANUN ve Br TEOREM Büyük Türkçe Sözlük kau Đg. law Doğa olaylarıı oluş edeler ortaya koya ve gelecektek olayları öcede kestrme olaağı vere bağıtı; Newto kauu, Kepler kauları. (BSTS / Gökblm Termler
RANKI 2 OLAN SERBEST LIE CEBİRLERİNİN OTOMORFİZM GRUPLARININ SUNUMLARI 1 Reports Of Free Groups Otomorfizm Rank 2 Lie Algebras
RANKI OLAN SERBEST LIE CEBİRLERİNİN OTOMORFİZM GRUPLARININ SUNUMLARI Reports Of Free Groups Otomorfzm Rak Le Algebras Özge ÖZTEKİN Matematk Aa Blm Dalı Name EKİCİ Matematk Aa Blm Dalı ÖZET Bu çalışmada,
İleri Teknoloji Bilimleri Dergisi Journal of Advanced Technology Sciences ISSN:2147-3455
İler Tekoloj Blmler Dergs Joural of Advaced Techology Sceces ISSN:47-3455 GÜÇ SİSTEMLERİNDE HARMONİKLERİN KRİTİK DEĞERLERE ETKİSİ Yusuf ALAŞAHAN İsmal ERCAN Al ÖZTÜRK 3 Salh TOSUN 4,4 Düzce Üv, Tekoloj
YÖNEYLEM ARAŞTIRMASI III. Dinamik Programlama. Örnek 3: Tıbbi Müdahale Ekiplerinin Ülkelere Dağıtımı
YÖNEYLEM ARAŞTIRMASI III Hafta Determstk Damk Programlama (devam) Damk Programlama Geçe derste küçük ölçekl problemler damk programlamayla yelemel olarak asıl çözüldüğüü gördük. Bu derste, öreklere devam
POISSON REGRESYON ANALİZİ
İstabul Tcaret Üverstes Fe Blmler Dergs Yıl:4 Sayı:7 Bahar 005/ s. 59-7 POISSON REGRESYON ANALİZİ Özlem DENİZ * ÖZET Herhag br olayı belrlee br süreç çersde yaıla deemeler soucuda meydaa gelme sayısı,
1. GAZLARIN DAVRANI I
. GZLRIN DRNI I İdeal Gazlar ç: lm 0 RT İdeal gazlar ç: RT Hacm() basıçla() değşk sıcaklıklarda değşm ekl.. de gösterlmştr. T >T 8 T T T 3 asıç T 4 T T 5 T 7 T 8 Molar Hacm ekl.. Gerçek br gazı değşk sıcaklıklardak
Tanımlayıcı İstatistikler
Taımlayıcı İstatstkler Br veya brde fazla dağılışı karşılaştırmak ç kullaıla veya ayrıca örek verlerde hareketle frekas dağılışlarıı sayısal olarak düzeleye değerlere taımlayıcı statstkler der. Aalzlede
SELÇUK ÜNİVERSİTESİ FEN BİLİMLERİ ENSTİTÜSÜ
SELÇUK ÜNİVERSİTESİ FEN BİLİMLERİ ENSTİTÜSÜ DOĞRUSAL OLMAYAN POISSON REGRESYON M. Kazım KÖREZ YÜKSEK LİSANS İSTATİSTİK Aablm Dalı Ağustos- KONYA Her Hakkı Saklıdır ÖZET YÜKSEK LİSANS DOĞRUSAL OLMAYAN
ALTERNATİF SİSTEMLERİN KARŞILAŞTIRILMASI
ALTERNATİF SİSTEMLERİN KARŞILAŞTIRILMASI Bezetimi e öemli faydalarıda birisi, uygulamaya koymada öce alteratifleri karşılaştırmaı mümkü olmasıdır. Alteratifler; Fabrika yerleşim tasarımları Alteratif üretim
ALTERNATİF SİSTEMLERİN KARŞILAŞTIRILMASI
µ µ içi Güve Aralığı ALTERNATİF İTEMLERİN KARŞILAŞTIRILMAI Bezetimi e öemli faydalarıda birisi, uygulamaya koymada öce alteratifleri karşılaştırmaı mümkü olmasıdır. Alteratifler; Fabrika yerleşim tasarımları
Sayısal Türev Sayısal İntegrasyon İnterpolasyon Ekstrapolasyon. Bölüm Üç
Sayısal Türev Sayısal İtegrasyo İterpolasyo Ekstrapolasyo Bölüm Üç Bölüm III 8 III-. Pvot Noktaları Br ( ) oksyouu değer, geellkle ekse üzerdek ayrık oktalarda belrler. Bu oktalara pvot oktaları der. Bu
KUKLA DEĞİŞKENLERİN T İSTATİSTİĞİ İLE AYKIRI GÖZLEMLER TESPİT EDİLEMEZ
Eoometr ve İstatst Sayı:5 0-4 İSTANBUL ÜNİVERSİTESİ İKTİSAT FAKÜLTESİ EKONOMETRİ VE İSTATİSTİK DERGİSİ KUKLA DEĞİŞKENLERİN T İSTATİSTİĞİ İLE AYKIRI GÖZLEMLER TESPİT EDİLEMEZ Arzdar KİRACI* Özet Gücel yazıda,
Çok Aşamalı Sıralı Küme Örneklemesi Tasarımlarının Etkinlikleri Üzerine Bir Çalışma
Süleyma Demrel Üverstes, Fe Blmler Esttüsü Dergs, 15- ( 011),17-134 Çok Aşamalı Sıralı Küme Öreklemes Tasarımlarıı Etklkler Üzere Br Çalışma Nlay AKINCI 1, Yaprak Arzu ÖZDEMİR * 1 TRT Geel Müdürlüğü Reklam
DEÜ MÜHENDİSLİK FAKÜLTESİ FEN BİLİMLERİ DERGİSİ
DEÜ MÜHENDİSLİK FAKÜLTESİ FEN BİLİMLERİ DERGİSİ Clt: 2 Sayı: 3 sh 87-02 Ekm 200 VOLTERRA SERİLERİ METODU İLE DOĞRUSAL OLMAYAN SİSTEMLERİN FREKANS BOYUTUNDA ANALİZİ İÇİN NET TABANLI ARAYÜZ TASARIMI (DESIGN
FARKLI REGRESYON YÖNTEMLERİ İLE BETA KATSAYISI ANALİZİ
FARKLI REGRESYON YÖNTEMLERİ İLE BETA KATSAYISI ANALİZİ M.Ensar YEŞİLYURT (*) Flz YEŞİLYURT (**) Özet: Özellkle uzak verlere sahp ver setlernn analz edlmesnde en küçük kareler tahmnclernn kullanılması sapmalı
Operasyonel Risk İleri Ölçüm Modelleri
Bakacılar Dergs, Sayı 58, 006 Grş Operasyoel Rsk İler Ölçüm Modeller Çalışma k bölümde oluşmaktadır. İlk bölümde operasyoel rskler ölçülmes kapsamıda hag ler ölçüm modeller kullaılması gerektğ, söz kousu
PORTFÖY OPTİMİZASYONUNDA ORTALAMA MUTLAK SAPMA MODELİ VE MARKOWITZ MODELİNİN KULLANIMI VE İMKB VERİLERİNE UYGULANMASI
Süleyma Demrel Üverstes İktsad ve İdar Blmler Fakültes Dergs Y.2008, C.3, S.2 s.335-350. Suleyma Demrel Uversty The Joural of Faculty of Ecoomcs ad Admstratve Sceces Y.2008, vol.3, No.2 pp.335-350. PORTFÖY
(DERS NOTLARI) Hazırlayan: Prof.Dr. Orhan ÇAKIR. Ankara Üniversitesi, Fen Fakültesi, Fizik Bölümü
FİZ433 FİZİKTE BİLGİSAYAR UYGULAMALARI DERS NOTLARI Hazırlaya: Pro.Dr. Orha ÇAKIR Akara Üverstes, Fe Fakültes, Fzk Bölümü Akara, 7! İÇİNDEKİLER. LİNEER OLMAYAN DENKLEMLERİN KÖKLERİNİN BULUNMASI I/II. LİNEER
Parametrik Olmayan İstatistik Çözümlü Sorular - 2
Parametrk Olmaya İstatstk Çözümlü Sorular - Soru Böbrek hastalarıa at Kreat (KRT) değerlere lşk br araştırma yapılmak stemektedr. Buu ç rasgele seçle hastaya at Kreat değerler aşağıdak gb elde edlmştr
α kararlı dağılım, VaR, Koşullu VaR,, Finansal α KARARLI DAĞILIMLARLA FİNANSAL RİSK
Marmara Üverstes İ.İ.B.F. Dergs YIL 00 CİLT XXVIII SAYI I S. 549-57 Özet KARARLI DAĞILIMLARLA FİNANSAL RİSK ÖLÇÜMÜ Ömer ÖNALAN * Bu çalışmada fasal kayıları kalı kuyruklu kararlı dağılım zledğ varsayımı
DEÜ MÜHENDİSLİK FAKÜLTESİ FEN ve MÜHENDİSLİK DERGİSİ Cilt: 9 Sayı: 1 s. 1-7 Ocak 2007 HİDROLİK PROBLEMLERİNİN ÇÖZÜMÜNDE TAŞIMA MATRİSİ YÖNTEMİ
DEÜ MÜHENDİSLİK FAKÜLESİ FEN ve MÜHENDİSLİK DERGİSİ lt: 9 Sayı: s -7 Ocak 7 HİDROLİK PROBLEMLERİNİN ÇÖÜMÜNDE AŞIMA MARİSİ YÖNEMİ (MEHOD OF RANSFER MARIX O HE ANALYSIS OF HYDRAULI PROBLEMS) Rasoul DANESHFARA*,
GÜÇLÜ BETA HESAPLAMALARI. Güray Küçükkocaoğlu-Arzdar Kiracı
GÜÇLÜ BETA HESAPLAMALAI Güray Küçükkocaoğlu-Arzdar Kracı Özet Bu çalışaı aacı Fasal Varlıkları Fyatlaa Model (Captal Asset Prcg Model) Beta katsayısıı hesaplarke yaygı olarak kulladığı sırada e küçük kareler
TAHMİNLEYİCİLERİN ÖZELLİKLERİ Sapmasızlık 3.2. Tutarlılık 3.3. Etkinlik minimum varyans 3.4. Aralık tahmini (güven aralığı)
3 TAHMİNLEYİCİLERİN ÖZELLİKLERİ 3.1. Sapmasızlık 3.. Tutarlılık 3.3. Etkilik miimum varyas 3.4. Aralık tahmii (güve aralığı) İyi bir tahmi edici dağılımı tahmi edilecek populasyo parametresie yakı civarda
BAZI YARIGRUP AİLELERİ ve YAPILARI İÇİN SONLULUK KOŞULLARI ve ETKİNLİK *
BAZI YARIGRUP AİLELERİ ve YAPILARI İÇİN SONLULUK KOŞULLARI ve ETKİNLİK * Fteess Codtos For Soe Segroup Fales ad Costructos ad Effcecy Basr ÇALIŞKAN Mateatk Aabl Dalı Hayrullah AYIK Mateatk Aabl Dalı ÖZET
ARAŞTIRMA MAKALESİ / RESEARCH ARTICLE
ANADOLU ÜNİVERSİTESİ BİLİM VE TEKNOLOJİ DERGİSİ A Uygulamalı Blmler ve Mühedslk ANADOLU UNIVERSITY JOURNAL OF SCIENCE AND TECHNOLOGY A Appled Sceces ad Egeerg Clt/Vol.: 3-Sayı/No: : 5-63 (202 ARAŞTIRMA
BÖLÜM 4 KLASİK OPTİMİZASYON TEKNİKLERİ (KISITLI OPTİMİZASYON)
BÖÜM 4 KASİK OPTİMİZASYON TEKNİKERİ KISITI OPTİMİZASYON 4. GİRİŞ Öcek bölülerde de belrtldğ b optzaso probleler çoğuluğu kısıtlaıcı oksolar çerektedr. Kısıtlaasız optzaso problelerde optu değer ede oksou
4/16/2013. Ders 9: Kitle Ortalaması ve Varyansı için Tahmin
4/16/013 Ders 9: Kitle Ortalaması ve Varyası içi Tahmi Kitle ve Öreklem Öreklem Dağılımı Nokta Tahmii Tahmi Edicileri Özellikleri Kitle ortalaması içi Aralık Tahmii Kitle Stadart Sapması içi Aralık Tahmii
Tanımlayıcı İstatistikler
Taımlayıcı İstatstkler Br veya brde azla dağılışı karşılaştırmak ç kullaıla ve ayrıca örek verlerde hareket le rekas dağılışlarıı sayısal olarak özetleye değerlere taımlayıcı statstkler der. Aalzlerde
ÖZET Yüksek Lsas Tez NORMAL DAĞILIM VE NORMAL DAĞILIMLA İLGİLİ ÇIKARIMLAR Şeol ÇELİK Akara Üverstes Fe Blmler Esttüsü İstatstk Aablm Dalı Daışma : Doç
ANKARA ÜNİVERSİTESİ FEN BİLİMLERİ ENSTİTÜSÜ YÜKSEK LİSANS TEZİ NORMAL DAĞILIM VE NORMAL DAĞILIMLA İLGİLİ ÇIKARIMLAR Şeol ÇELİK İSTATİSTİK ANABİLİM DALI ANKARA 006 Her hakkı saklıdır ÖZET Yüksek Lsas Tez
GENELLEŞTİRİLMİŞ BULANIK KÜMELER. Mehmet Şahin Gaziantep Üniversitesi, Matematik Bölümü, 27310, Gaziantep
GENEEŞTİRİMİŞ UANIK KÜMEER Mehme Şah Gazaep Üverses, Maemak ölümü, 27310, Gazaep ÖZET: u çalışmada öcelkle P ( br al ale olarak buludura bulaık kümeler GF ales br halka olarak yapıladırılmaka ve bu yapıı
Yığın Hacminin Tahmini İçin Bulanık Doğrusal Regresyon Modelinde Ters Tahmin Metodu
S Ü Fe Ed Fa Fe Derg Saı (003) 65-0, KONYA Yığı Hacm Tahm İç Bulaı Doğrusal Regreso Modelde Ters Tahm Metodu Mustafa SEMİZ, Aşır GENÇ Özet: Bu çalışmada ığı hacm tahm ç farlı br alaşım suulmatadır. Yığı
ÇUKUROVA ÜNİVERSİTESİ FEN BİLİMLERİ ENSTİTÜSÜ
ÇUKUROVA ÜNİVERSİTESİ FEN BİLİMLERİ ENSTİTÜSÜ YÜKSEK LİSANS TEZİ Ayça Hatce TÜRKAN GÜVENİLİRLİK ANALİZİNDE KULLANILAN İSTATİSTİKSEL DAĞILIM MODELLERİ İSTATİSTİK ANABİLİM DALI ADANA, 007 ÇUKUROVA ÜNİVERSİTESİ
LİNEER OLMAYAN DENKLEMLERİN SAYISAL ÇÖZÜM YÖNTEMLERİ-2
LİNEER OLMAYAN DENKLEMLERİN SAYISAL ÇÖZÜM YÖNTEMLERİ SABİT NOKTA İTERASYONU YÖNTEMİ Bu yötemde çözüme gitmek içi f( olarak verile deklem =g( şeklie getirilir. Bir başlagıç değeri seçilir ve g ( ardışık
ÇUKUROVA ÜNİVERSİTESİ FEN BİLİMLERİ ENSTİTÜSÜ
ÇUKUROVA ÜNİVERSİTESİ FEN BİLİMLERİ ENSTİTÜSÜ YÜKSEK LİSANS TEZİ Pel İYİ GENETİK ALGORİTMA UYGULANARAK VE BİLGİ KRİTERLERİ KULLANILARAK ÇOKLU REGRESYONDA MODEL SEÇİMİ İSTATİSTİK ANABİLİM DALI ADANA, 006
Regresyon Analizi Basit Do rusal Regresyon Analizi En Küçük Kareler Tekni i Varyans n(v 2 ) Tahmini Basit Do rusal Regresyonda Aral k Tahmini
5 STAT ST K-II Amaçlar m z Bu ütey tamamlad kta sora; k de flke aras dak lflky aç klaya do rusal model kurablecek, k de flke aras dak lflk dereces belrleyeblecek blg ve becerlere sahp olacaks z. Aahtar
BÖLÜM 3 YER ÖLÇÜLERİ. Doç.Dr. Suat ŞAHİNLER
BÖLÜM 3 YER ÖLÇÜLERİ İkici bölümde verileri frekas tablolarıı hazırlaması ve grafikleri çizilmesideki esas amaç; gözlemleri doğal olarak ait oldukları populasyo dağılışıı belirlemek ve dağılışı geel özelliklerii
TOPOLOJİK TEMEL KAVRAMLAR
TOPOLOJİK TEMEL KAVRAMLAR 1.1. Kümeler ve Foksiyolar A ı bir elemaıa B i yalız bir elemaıı eşleye bağıtıya bir foksiyo deir. f : A B, Domf = U A ve ragef B dir. Taım 1.1.1. f : A B foksiyou içi V A olsu.
9. Ders. Đstatistikte Monte Carlo Çalışmaları
9. Ders Đstatstkte Mote Carlo Çalışmaları Đstatstk rasgelelk olgusu çere olay süreç ve sstemler modellemesde özellkle bu modellerde souç çıkarmada ve bu modeller geçerllğ sıamada kullaıla bazı blg ve yötemler
İleri Diferansiyel Denklemler
MIT AçıkDersSistemi http://ocw.mit.edu 18.034 İleri Diferasiyel Deklemler 2009 Bahar Bu bilgilere atıfta bulumak veya kullaım koşulları hakkıda bilgi içi http://ocw.mit.edu/terms web sitesii ziyaret ediiz.
TÜRKİYE ŞEKERPANCARI ÜRETİMİNDE FAKTÖR TALEP ANALİZİ ( ) (TRANSLOG MALİYET FONKSİYONU UYGULAMASI) Yaşar AKÇAY 1 Kemal ESENGÜN 2
l Ta rr ım ı Ekooms Kog rres 6-8 - Eylül l 2000 Tek rrdağ TÜRKİYE ŞEKERPANCARI ÜRETİMİNDE FAKTÖR TALEP ANALİZİ (980-998) (TRANLOG MALİYET FONKİYONU UYGULAMAI) Yaşar AKÇAY Kemal EENGÜN 2. GİRİŞ Türkye tarımı
MUTLAK SAPMALARIN ORTALAMASINI MİNUMUM YAPMA * (MİNMAD) REGRESYON ANALİZİ* Minimizing Mean Absolute Deviations (MINMAD) Regression Analysis*
MUTLAK SAPMALARIN ORTALAMASINI MİNUMUM YAPMA (MİNMAD) REGRESYON ANALİZİ Mmzg Mea Absolute Devatos (MINMAD) Regresso Aalss Hüla TOSUN Ç.Ü.Fe Blmler Esttüsü Matematk Aablm Dalı Selahatt KAÇIRANLAR Ç.Ü.Fe
SAÜ. Mühendislik Fakültesi Endüstri Mühendisliği Bölümü DİFERENSİYEL DENKLEMLER Dönemi Ders Notları. Prof. Dr.
SAÜ. Mühedislik Fakültesi Edüstri Mühedisliği Bölümü DİFERENSİYEL DENKLEMLER - Döemi Ders Notları Pro. Dr. Cemaletti KUBAT .Çok Değişkeli Foksiolarda Talor-McLauri Açılımları, Ekstremum Noktalar..Talor-McLauri
ÇOKLU REGRESYON MODELİ, ANOVA TABLOSU, MATRİSLERLE REGRESYON ÇÖZÜMLEMESİ,REGRES-YON KATSAYILARININ YORUMU
6.07.0 ÇOKLU REGRESON MODELİ, ANOVA TABLOSU, MATRİSLERLE REGRESON ÇÖZÜMLEMESİ,REGRES-ON KATSAILARININ ORUMU ÇOKLU REGRESON MODELİ Ekonom ve şletmeclk alanlarında herhang br bağımlı değşken tek br bağımsız
Yrd. Doç. Dr. İhsa KARABULUT u daışmalığıda, Begül ARKANT tarafıda hazırlaa bu çalışma 3/07/008 tarhde aşağıdak jür tarafıda oy brlğ le Akara Üverstes
ANKARA ÜNİVERSİTESİ FEN BİLİMLERİ ENSTİTÜSÜ YÜKSEK LİSANS TEZİ BAĞIMLI GÖZLEMLERLE BOOTSTRAP YÖNTEMİ Begül ARKANT İSTATİSTİK ANABİLİM DALI ANKARA 008 Her hakkı saklıdır Yrd. Doç. Dr. İhsa KARABULUT u daışmalığıda,
KUVVET SİSTEMLERİ KUVVET. Vektörel büyüklük. - Kuvvetin büyüklüğü - Kuvvetin doğrultusu - Kuvvetin uygulama noktası - Kuvvetin yönü. Serbest vektör.
İ.T.Ü. aka akültes ekak Aa Blm Dalı STATİK - Bölüm KUVVET SİSTELEİ KUVVET Vektörel büyüklük - Kuvvet büyüklüğü - Kuvvet doğrultusu - Kuvvet uygulama oktası - Kuvvet yöü S = (,,..., ) = + +... + = Serbest
ETKİN SINIR VE BETA KATSAYI KISITLI PORTFÖY SEÇİM MODELİ ÜZERİNE BİR UYGULAMA
İstabul Tcaret Üverstes Fe Blmler Dergs Yıl: 11 Sayı: Güz 01 s. 19-35 ETKİN SINIR VE BETA KATSAYI KISITLI PORTFÖY SEÇİM MODELİ ÜZERİNE BİR UYGULAMA Cası KAYA 1, Oza KOCADAĞLI Gelş: 30.05.01 Kabul: 14.1.01
Örnek A. Benzer tipteki 40 güç kaynağının dayanma süreleri aşağıdaki gibidir. Genişletilmiş frekans tablosu oluşturunuz;
Öre A. Bezer pe 40 güç ayağıı dayama süreler aşağıda gbdr. Geşlelmş reas ablosu oluşuruuz;, 4,7 3, 3,4 3,3 3, 3,9 4, 3,4 4, 3,8 3,7 3,6 3,8 3,7 3,0,,6 3, 3,,6,9 3, 3,0 3,3 4,3 3, 4, 4,6 3, 3,3 4,4 3,9,9
GRİ MARKOV KESTİRİM MODELİ KULLANILARAK DÖVİZ KURU TAHMİNİ
Joural of Ecoomcs, Face ad Accoutg (JEFA), ISSN: 48-6697 Year: 4 Volume: Issue: 3 CURRENCY EXCHANGE RATE ESTIMATION USING THE GREY MARKOV PREDICTION MODEL Omer Oala¹ ¹Marmara Uversty. [email protected]
TABAKALI ŞANS ÖRNEKLEME
6 TABAKAI ŞA ÖREKEME 6.. Populasyo ortalaması ve populasyo toplamıı tam 6.. Populasyo ortalamasıı ve toplamıı varyası 6... Populasyo ortalamasıı varyası 6... Populasyo toplamıı varyası 6..3. Ortalama ve
Tanımlayıcı İstatistikler
Taımlayıcı İstatstkler Br veya brde azla dağılışı karşılaştırmak ç kullaıla ve ayrıca örek verlerde hareket le rekas dağılışlarıı sayısal olarak özetleye değerlere taımlayıcı statstkler der. Aalzlerde
18.06 Professor Strang FİNAL 16 Mayıs 2005
8.6 Professor Strag FİNAL 6 Mayıs 25 ( Pua) P,..., P R deki oktalar olsu. ( ai, ai2,..., a i) P i i koordiatlarıdır. Bütü P i oktasıı içere bir cx +... + cx = hiperdüzlemi bulmak istiyoruz. a) Bu hiperdüzlemi
Tanımlayıcı İstatistikler
TANIMLAYICI İSTATİSTİKLER MERKEZİ EĞİLİM ÖLÇÜLERİ Dr. Mehmet AKSARAYLI D.E.Ü. İ.İ.B.F. EKONOMETRİ BÖLÜMÜ [email protected] Taımlayıcı İstatstkler Yer Ölçüler (Merkez Eğlm Ölçüler) Duyarlı Ortalamalar
BÖLÜM 6 6. REGRESYON MODELİNİN TEMEL KONTROLÜ
BÖLÜM 6 6. REGRESYON MODELİNİN TEMEL KONTROLÜ Bu bölüde regresyo odel üzerde gerçekleştrlecek teel kotrol yöteler celeecektr. Bu kısıda açıklaacak ola tekkler sadece doğrusal regresyo ç değl doğrusal olaya
Matematik olarak normal dağılım fonksiyonu. 1 exp X 2
Matematk olarak ormal dağılım foksyou f ( ) ep ( ) Şeklde fade edlr. Burada μ artmetk ortalama, σ se stadart sapma değer gösterr ve dağılım foksyou N(μ, σ) otasyou le gösterlr. Bu deklem geometrk görütüsü
Bir Alışveriş Merkezinde Hizmet Sektörü Đçin En Kısa Yol Problemi ile Bir Çözüm
Br Alışverş Merkezde Hzmet Sektörü Đç E Kısa Yol Problem le Br Çözüm Pıar Düdar, Mehmet Al Balcı, Zeyep Örs Yorgacıoğlu Ege Üverstes, Matematk Bölümü, Đzmr Yaşar Üverstes, Matematk Bölümü, Đzmr [email protected],
DEĞİŞİM ÖLÇÜLERİ 4. TAŞINMAZ GELİŞTİRME TEZSİZ YÜKSEK LİSANS PROGRAMI. Ünite: 4 DEĞİŞİM ÖLÇÜLERİ. Doç. Dr. Yüksel TERZİ İÇİNDEKİLER İÇİNDEKİLER
TAŞINMAZ GELİŞTİRME Üte: DEĞİŞİM ÖLÇÜLERİ Doç. Dr. üksel TERZİ TAŞINMAZ GELİŞTİRME TEZSİZ ÜKSEK LİSANS PROGRAMI İÇİNDEKİLER.1. GİRİŞ.. DEĞİŞİM ÖLÇÜLERİ..1. Değşm Geşlğ... Kartller Arası fark... Ortalama
QUANTILE REGRESYON * Quantile Regression
QUANTILE REGRESYON * Quantile Regression Fikriye KURTOĞLU İstatistik Anabilim Dalı Olcay ARSLAN İstatistik Anabilim Dalı ÖZET Bu çalışmada, Lineer Regresyon analizinde kullanılan en küçük kareler yöntemine
