Tanımlayıcı İstatistikler
|
|
|
- Ayla Ergün
- 9 yıl önce
- İzleme sayısı:
Transkript
1 TANIMLAYICI İSTATİSTİKLER MERKEZİ EĞİLİM ÖLÇÜLERİ Dr. Mehmet AKSARAYLI D.E.Ü. İ.İ.B.F. EKONOMETRİ BÖLÜMÜ Taımlayıcı İstatstkler Yer Ölçüler (Merkez Eğlm Ölçüler) Duyarlı Ortalamalar Artmetk ort. Tartılı Artmetk Geometrk ort. Karel ort. Harmok ort. Duyarlı Olmaya Ort. Mod Medya Kartller Değşkelk Ölçüler Değşm Aralığı (Rage) Stadart sapma Varyas Mutlak sapma Değşkelk katsayısı Kartl sapma katsayısı Ortalama sapma katsayısı Çarpıklık Ölçüler Bowley asmetr ölçüsü Pearso asmetr ölçüsü Basıklık Ölçüler
2 Artmetk Ortalama Üzerde celeme yapıla ver setdek elemaları toplaıp celee elema sayısıa bölümesyle elde edle yer ölçüsüe artmetk ortalama der. Halk dlde ortalama ades kullaıldığıda lk akla gele kavram artmetk ortalamadır. Örek: Sıav otlarıı ortalaması, Yaz aylarıda m ye düşe ortalama yağış mktarı Yer Ölçüler: Artmetk Ortalama - Mod - Medya Bast Verler İç Yaş: 4, 6, 0, 8, 4 X Artmetk Ortalama = X 8, 0, 4, 4, 6 Medya=4 Mod= 4 =( )/5 =.4
3 Yer Ölçüler: Artmetk Ortalama - Mod - Medya Grupladırılmış Verler İç 0 bayaı ayakkabı umaraları: 35, 38, 36, 36, 37, 36, 38, 35, 39, 37, 35, 35, 36, 36, 36, 37, 37, 38, 38, 39, Grup Frekas 3 0 X X X : rekas k: grup sayısı =,,3,.,k =367/0 =36.7 Medya = (0+)/=5,5. Ver = 36.5 Mod=e çok tekrar ede ver=36 Sıılamış Serler İç Artmetk Ortalama x k k m : rekas k : sıı sayısı =,,3,.,k m : sıı orta oktası k Sıılamış serlerde her br sıı çdek değerler eler olduğu blmedğde ve yalızca her br sııı rekas değerler bldğde dolayı sııı temsl etmek üzere sıı orta oktaları hesaplamada kullaılır. Kullaıla ormül gruplamış serler ç kullaıla ormüle bezerdr. 3
4 Örek: Sııladırılmış Verler İç Artmetk ortalama Sıılar m.m Brkml = 0 0 da az da az da az da az da az X m = 365/5 =4.6 Artmetk ortalamaı özellkler: Örek elemaları ortalama etraıda toplama eğlmdedr ya öreğ e y temsl ede tek br smetrk değerdr. x x x x x x 0 x x 0 x x 0 x x 0 Artmetk ortalamada sapmaları toplamı sıırdır. 4
5 AĞIRLIKLI ARİTMETİK ORTALAMA: İdex sayıları hesaplamasıda, yüzdeler ortalamasıda çarpımları ortalamasıı alımasıda kullaılır. wx x w w wx x xw w / w w Bast serler ç Frekas verler ç X w x... ˆ w xw w w x x w... x x Örek: İstatstk Bölge Brmler Sııladırmasıa göre Türkye toplam bölgeye ayrılmaktadır. Aşağıda bu bölgelere lşk 000 yılı üus ve kş başıa düşe GSYİH (YTL) mktarları verlmektedr. Bu verlerde yola çıkarak Türkye geele lşk ortalama kş başıa düşe GSYİH mktarıı buluuz. x w wx BÖLGE ADI GSYİH (000YTL) Toplam üus( ) Kuzeydoğu Aadolu Ortadoğu Aadolu Güeydoğu Aadolu İstabul Batı Marmara Ege Doğu Marmara Batı Aadolu Akdez Orta Aadolu Batı Karadez Doğu Karadez TOPLAM
6 Artmetk ortalama le hesaplaırsa: x.367 Sakıca edr? Ağırlıklı artmetk ortalama le hesaplaırsa: x w (..5) (.33.7)... (.73.) GEOMETRİK ORTALAMA: Örek ver değerler çarpımıı, örek hacm derecesde köküe eşttr. G x. x. x3... x Özellkler:. 0 olmalıdır. x.serdek değerler her br yere geometrk ortalama koulduğuda ser çarpım soucu değşmez = 3768 = Geometrk ortalamaı orjal gözlemler logartmk sapmaları eşttr. Bu özellkte dolayı ortalama oralara, değşme oralarıa, logartmk dağılmış şekller uygulaır. Öreğ; yat dekslerde geometrk ortalama alamlı souçlar verr. 6
7 4.Artmetk ortalama gerçekte sp ola değerler yere mutlak değerlemş gb br şleme bağlı tutularak çok arta sp değerler olduğuda azla gösterr. Bu yüzde yukarı eğlmldr. 5.Logartmk br dağılımda geometrk ortalamaı terch ede böyle br dağılımda mutlak sapmaları değl acak merkez eğlm etraıda sp sapmaları smetrk olma eğlmdr. 6.G brmler değerler arasıdak oraa göre değer alır. 7.Uç değerlerde kadar etklemez. 8.log x -log G 9. G < x 0.. x x x * *... G G G x. x... x. G Bast ser : G x logg x. x. x... x 3 log x log x...log x log x G x. x. x3... x G at log Frekas serlerde se geometrk ser hesaplaması: G x. x... x x x... x tae tae tae G xx... xxx... x... xx... x N N x x... x x x... x log G G at log log x log x... log x! log x log x log x 7
8 Bleşk Faz Formülü P 0 =başlayış mktarı r= az =yıl P = yıl sorak meblağ P r 0 r r P P P 0 P P 0 r P P o log P log Po log( r) Örek: 3 yılda 000$, 5000$ a artmıştır. Yıllık ortalama artış yüzdes edr? % 500 gb gözükse de bu ortalama % artışı doğru değldr. 3 r ortalama artış yüzdes göstermektedr Başlagıç 000 yıl sora 000(+r) yıl sora 000(+r) 3 yıl sora 000(+r) 3 =5000 r 3 5 r 3 5 8
9 HARMONİK ORTALAMA Gözlemler tersler artmetk ortalamasıı tersdr. H.O bell koşullar altıda ve bell yat tpler altıda zama serler ortalamak ç kullaılır. H x... x x x G H x veya H Harmok ortalama aşağı eğmldr. H.O da x 0 olmalıdır. Eğer x x... se x G H olur. x x Uygulamada sabt ve değşke brmler vardır. Öreğ; brmlk mal A kşs taraıda 30 dk da ve ye brmlk mal B kşs taraıda 0 dk da üretlyorsa mal mktarı sabt, zama değşkedr. Ortalaması alıa değşkedr ya zamadır. H dk da kg mal (ort.) üretlmektedr Uçakla 400 km, trele 60 km(570km) 4800 H. O 04km / h Harmok Ortalama uygulama yerler Zama brm başıa hız Para brm başıa satı alıa brm sayısı 9
10 Örek: A ve B gb k şehr arasıda 00km lk br yol vardır. Br otomobll yolu lk yarısıı 30 km/saat hızla gdyor. Dğer yarısıı 40 km/saat hızla gdyor. Hız ortalaması edr? v = ortalama hız ; t = geçe zama ; d = alıa yol t: Yolu lk yarısıda geçe zama t: Yolu kc yarısıda geçe zama d t ve t d v v d vt. vt. d vt t tt. v v v v d vt v 34.8 t vt x v v v v Harmok ortalama KUADRATİK ORTALAMA : Gözlemler kareler artmetk ortalamasıı köküdür. Stadart sapmaı hesaplamasıda kullaılır. Ortalama değerler ortalamasıda kullaılmaz. K x K x G H 0
11 Mod Br ver setde e çok gözlee ( e çok tekrar ede ) değere veya rekası e azla ola şas değşke değere mod adı verlr. Ver set modu olmayacağı gb brde azla da modu olablr. Mod geellkle keskl şas değşkel ç oluşturula gruplamış serlerde artmetk ortalama yere kullaılablr. Bast Serler İç Mod Örek: Br abrkada çalışa 7 edüstr müheds bldğ yabacı dl sayıları aşağıda verlmştr. Bua göre bu mühedsler bldğ yabacı dl sayısıı moduu hesaplayıız. x :,0,,,0,,0 0,0,0,,,,. Ver setde e çok tekrar ede elema 0 olduğuda (3 kez ) mod değer 0 dır. Eğer ver set,0,,,0,,0 şeklde olsaydı ver set k modlu olacaktı. ( 0 ve ) Eğer ver set,0,,,0, şeklde olsaydı ver set moduu olmadığı ade edlecekt.
12 Gruplamış Serler İç Mod Örek: Aşağıdak tabloda br TV baysdek LCD televzyoları ekra boyutlarıa göre satış mktarları verlmştr. Frekas dağılımıı artmetk ortalamasıı hesaplayıız. Ekra Satış Aded Frekas dağılımıa bakıldığıda e azla satış mktarı 94 ekra LCD televzyoda olduğuda dolayı ( 7 adet ) dağılımı moduu 94 olduğu söyler. Eğer 8 ekra LCD televzyolarıda da 7 adet satılsaydı dağılımı k modu olduğu ade edlrd. ( 8 ve 94 ) Sıılamış Serler İç Mod Sıılamış serlerde mod değer hesaplaırke lk olarak mod sııı belrler. Mod sııı rekası e yüksek ola sııtır. Mod sııı belrledkte sora bu sıı çersde yer ala modu tam değer sıı rekası ve kede komşu ola sıı rekasları dkkate alıarak hesaplaır.
13 Sıılar 0 0 da az 0-0 da az da az da az da az 5 Sııladırılmış Verler İç m m Mod Sııı Mod = L mod. Sıı aralığı Mod sıııı alt sıırı Mod sıııyla br öcek sıı r. arasıdak ark Mod sıııyla br sorak sıı r. arasıdak ark Medya Br ver set büyükte küçüğe veya küçükte büyüğe sıraladığımızda tam orta oktada ver set k eşt parçaya ayıra değere medya adı verlr. Ver setde aşırı uçlu elemalar olduğuda artmetk ortalamaya göre daha güvelrdr. Medya, ver setdek tüm elemalarda etklemez. 3
14 Bast Serler İç Medya Ver Set Hacm Tek Sayı İse; c gözlem değer medyadır. Ver Set Hacm Çt Sayı İse; ve c gözlem değer artmetk ortalaması medyadır. Örek: İstatstk I ders ala 0 öğrec vze otları aşağıdak gb sıralamıştır. Bua göre vze otları ç medya değer hesaplayıız. 30,4,56,6,68,79,8,88,90,98 / ve (/)+ c elemalar 68 ve 79 olup buları ortalaması 73,5 medya değerdr. Ver Set 30,4,56,6,68,79,8,88,90 şeklde 9 adet verde oluşsaydı (+)/ c elema ola 68 ver set medyaı olacaktı. 4
15 Gruplamış Serler İç Medya Gruplamış serlerde medya değer hesaplaırke ver set tam orta oktasıı hag gruba at olduğuu belrlemek ç kümülat rekas sütuu oluşturulur. Sıra umarası belrledkte sora o sıra umarasıa at grup medya değer olarak ade edlr. Grup Frekas Örek: Yadak tabloda br TV baysdek LCD televzyoları ekra boyutlarıa göre satış mktarları verlmştr. Frekas dağılımıı medyaıı hesaplayıız. / ve (/)+ c gözlem değerlere karşılık gele değerler (0vecsıra) 8olduğuda dolayı medya değer 8 dr. Grup Frekas Frekas dağılımı yadak gb olsaydı (+)/ c elemaa ( 8 c elemaa ) karşılık gele sayı 7 olduğuda dolayı ver set medyaı 7 olacak d. 5
16 Sıılamış Serler İç Medya Sıılamış serlerde medya değer hesaplaırke lk olarak medya sııı belrler. Medya sııı kümülat rekaslar dkkate alıdığıda toplam rekası yarısıı çde buludura sııtır. Medya sııı belrledkte sora medya sıııda br öcek sııı kümülat rekası ve medya sııı rekası dkkate alıarak hesaplaır. Sıılar 0 0 da az 0-0 da az da az da az da az 5 Sııladırılmış Verler İç m m Medya Sııı Med = Medya sıııı alt sıırı L med. med Medya sıııı rekası Medya sıııda br öcek sııı Yığmalı rekası Sıı aralığı 6
17 Sıılar 0 0 da az 0-0 da az da az da az da az 5 Sııladırılmış Verler İç m m Mod Sııı Mod = L mod. ( 0) ( 0) ( 6) Sıılar 0 0 da az 0-0 da az da az da az da az 5 Sııladırılmış Verler İç m m Medya Sııı Med = 5 med L med med 7
18 _0 0 _0 0_30 30_40 40_50 Mod = 6.67 Med =0.83 A.O.=4.6 Q L l 4 Q. Q Q Med L KARTİLLER l Q. Q Q L 3 3 l 4 Q. 3 Q3 %5 %5 %5 %5 Q Q Q 3 8
19 Sıılar 0-0 de az da az da az de az Q sııı Q L l Q 4. Q Sıılar 0-0 de az da az da az de az Q sııı Q Med L l Q. Q
20 Sıılar 0-0 de az da az da az de az Q 3 sııı Q 3 L 3 l Q 4. 3 Q
= k. Aritmetik Ortalama. Tanımlayıcı İstatistikler TANIMLAYICI İSTATİSTİKLER. Sınıflanmış Seriler İçin Aritmetik Ortalama
TANIMLAYICI İSTATİSTİKLER Taımlayıcı İstatstkler MERKEZİ EĞİLİM ÖLÇÜLERİ Dr. Mehmet AKSARAYLI D.E.Ü. İ.İ.B.F..B.F. EKONOMETRİ BÖLÜMÜ mehmet.aksarayl [email protected] Yer Ölçüler (Merkez Eğlm Ölçüler)
MERKEZİ EĞİLİM ÖLÇÜLERİ
MERKEZİ EĞİLİM ÖLÇÜLERİ Gözlee ver düzeleerek çzelgelerle, graklerle suulması çoğu kez yeterl olmaz. Geel durumu yasıtacak br takım ölçülere gereksm vardır. Bu ölçüler verler yalızca özlü br bçmde belrtmekle
Tanımlayıcı İstatistikler
Taımlayıcı İstatstkler Br veya brde azla dağılışı karşılaştırmak ç kullaıla ve ayrıca örek verlerde hareket le rekas dağılışlarıı sayısal olarak özetleye değerlere taımlayıcı statstkler der. Aalzlerde
Tanımlayıcı İstatistikler
Taımlayıcı İstatstkler Br veya brde fazla dağılışı karşılaştırmak ç kullaıla veya ayrıca örek verlerde hareketle frekas dağılışlarıı sayısal olarak düzeleye değerlere taımlayıcı statstkler der. Aalzlede
Tanımlayıcı İstatistikler
Taımlayıcı İstatstkler Br veya brde azla dağılışı karşılaştırmak ç kullaıla ve ayrıca örek verlerde hareket le rekas dağılışlarıı sayısal olarak özetleye değerlere taımlayıcı statstkler der. Aalzlerde
YER ÖLÇÜLERİ. Yer ölçüleri, verilerin merkezini veya yığılma noktasını belirleyen istatistiklerdir.
YER ÖLÇÜLERİ Yer ölçüler, verler merkez veya yığılma oktasıı belrleye statstklerdr. Grafkler bze verler yığılma oktaları hakkıda ö blg vermede yardımcı olurlar. Acak bu değerler gerçek değerler değldr,
Merkezi Eğilim (Yer) Ölçüleri
Merkez Eğlm (Yer) Ölçüler Ver setn tanımlamak üzere kullanılan ve genellkle tüm elemanları dkkate alarak ver setn özetlemek çn kullanılan ölçülerdr. Ver setndek tüm elemanları temsl edeblecek merkez noktasına
Tanımlayıcı İstatistikler
Taımlayıcı İstatstkler Taımlayıcı İstatstkler br değerler dzs statstksel olarak geel özellkler taımlaya ölçülerdr Taımlayıcı İstatstkler Yer Göstere Ölçüler Yaygılık Ölçüler Yer Göstere Ölçüler Br dağılımı
Giriş. Değişkenlik Ölçüleri İSTATİSTİK I. Ders 5 Değişkenlik ve Asimetri Ölçüleri. Değişkenlik. X i ve Y i aşağıdaki gibi iki seri verilmiş olsun:
Grş İSTATİSTİK I Ders Değşkelk ve Asmetr Ölçüler Ortalamalar, serler karşılaştırılmasıda her zama yeterl ölçüler değldr. Ayı ortalamayı sahp serler arklı dağılım göstereblrler. Bu edele serler karşılaştırılmasıda,
Tanımlayıcı İstatistikler (Descriptive Statistics) Dr. Musa KILIÇ
Taımlayıcı İstatstkler (Descrptve Statstcs) Dr. Musa KILIÇ TANIMLAYICI ÖRNEK İSTATİSTİKLERİ YER ÖLÇÜLERİ (Frekas dağılışıı abss eksedek durumuu belrtr.) DEĞİŞİM ÖLÇÜLERİ ( Frekas dağılışıı şekl belrtr.).
İki veri setinin yapısının karşılaştırılması
İk ver set yapısıı karşılaştırılması Dağılım: 6,6,6 Ortalama: 6 Medya: 6 Mod: 6 td. apma: 0 Dağılım: 0,6,1 Ortalama: 6 Medya: 6 Mod: çoklu mod td: apma: 6 Amaç: Görüe Ötese Bakablmek Verler değşkelk durumuu
TANIMLAYICI İSTATİSTİKLER
4 TANIMLAYICI İSTATİSTİKLER 4.. Merkez Eğlm Ölçüler 4... Artmetk Ortalama 4... Ağırlıklı Artmetk Ortalama 4..3. Keslmş artmetk ortalama 4..4. Geometrk Ortalama 4..5. Harmok Ortalama 4..6. Kuadratk Ortalama
İstatistik ve Olasılık
İstatistik ve Olasılık Ders 3: MERKEZİ EĞİLİM VE DAĞILMA ÖLÇÜLERİ Prof. Dr. İrfa KAYMAZ Taım Araştırma souçlarıı açıklamasıda frekas tablosu ve poligou isteile bilgiyi her zama sağlamayabilir. Verileri
İstatistik ve Olasılık
İstatistik ve Olasılık Ders 3: MERKEZİ EĞİLİM VE DAĞILMA ÖLÇÜLERİ Prof. Dr. İrfa KAYMAZ Taım Araştırma souçlarıı açıklamasıda frekas tablosu ve poligou isteile bilgiyi her zama sağlamayabilir. Verileri
BÖLÜM 3 YER ÖLÇÜLERİ. Doç.Dr. Suat ŞAHİNLER
BÖLÜM 3 YER ÖLÇÜLERİ İkici bölümde verileri frekas tablolarıı hazırlaması ve grafikleri çizilmesideki esas amaç; gözlemleri doğal olarak ait oldukları populasyo dağılışıı belirlemek ve dağılışı geel özelliklerii
BEKLENEN DEĞER VE VARYANS
BEKLEE DEĞER VE VARYAS.1. İadel ve adesz öreklemede tüm mümkü örekler.. Beklee değer.3. Varyas.4. İk değşke ortak dağılımı.5. İstatstksel bağımsızlık.6. Tesadüf değşkeler doğrusal kombasyolarıı beklee
ÖRNEKLEME YÖNTEMLERİ ve ÖRNEKLEM GENİŞLİĞİ
03.05.013 ÖRNEKLEME YÖNTEMLERİ ve ÖRNEKLEM GENİŞLİĞİ 1 Nede Örekleme? Öreklemde çalışmak ktlede çalışmakta daha kolaydır. Ktle üzerde çalışmak çok daha masraflı olablr. Çoğu durumda tüm ktleye ulaşmak
Bölüm 3. Tanımlayıcı İstatistikler. Tanımlayıcı İstatistikler. Tanımlayıcı İstatistikler. Yer Ölçüleri
0.0.06 Taımlayıcı İstatstler Bölüm 3 Taımlayıcı İstatstler Br ver set taıma veya brde azla ver set arşılaştırma ç ullaıla ve ayrıca öre verlerde hareet le reas dağılışlarıı sayısal olara özetleye değerlere
Regresyon ve Korelasyon Analizi. Regresyon Analizi
Regresyo ve Korelasyo Aalz Regresyo Aalz Regresyo Aalz Regresyo aalz, aralarıda sebep-souç lşks bulua k veya daha fazla değşke arasıdak lşky belrlemek ve bu lşky kullaarak o kou le lgl tahmler (estmato)
ĐÇI DEKILER 1. TEMEL ĐSTATĐSTĐK KAVRAMLAR VE OTASYO LAR 1
ĐÇI DEKILER Sayfa. TEMEL ĐSTATĐSTĐK KAVRAMLAR VE OTASYO LAR.. Grş.. Đstatstk.3. Populasyo.4. Örek.5. Brm.6. Parametre.7. Değşke 3.8. Ver ve Ver Tpler 3.9. Toplama Sembolü 4 ÇALIŞMA PROBLEMLERĐ 6. VERĐLERĐ
Asimetri ve Basıklık Ölçüleri Ortalamalara dayanan (Pearson) Kartillere dayanan (Bowley) Momentlere dayanan asimetri ve basıklık ölçüleri
Asmetr ve Basıklık Ölçüler Ortalamalara dayanan (Pearson) Kartllere dayanan (Bowley) omentlere dayanan asmetr ve basıklık ölçüler Yrd. Doç. Dr. Tjen ÖVER ÖZÇELİK [email protected] III. Asmetr ve Basıklık
Box ve Whisker Grafiği
www.memetaarayl.com Bölümü Amaçları DEĞİŞKELİK ÖLÇÜLERİ Dr. Mehmet AKSARAYLI D.E.Ü. İ.İ.B.F..B.F. EKOOMETRİ BÖLÜMÜ [email protected] Bu Bölümü tamamladıta ora eler yapablecez: Bo ve Wher grağ ouma
Değişkenlik (Yayılım) Ölçüleri
Değşel (Yayılım) Ölçüler İ arlı aaütley brbrde ayırma ç her zama yalızca yer ölçüler yeterl olmayablr. Dağılımları brbrde ayırt etmede ullaıla ve geellle artmet ortalama etraıda değşm date alara heaplaa
DEĞİŞİM ÖLÇÜLERİ 4. TAŞINMAZ GELİŞTİRME TEZSİZ YÜKSEK LİSANS PROGRAMI. Ünite: 4 DEĞİŞİM ÖLÇÜLERİ. Doç. Dr. Yüksel TERZİ İÇİNDEKİLER İÇİNDEKİLER
TAŞINMAZ GELİŞTİRME Üte: DEĞİŞİM ÖLÇÜLERİ Doç. Dr. üksel TERZİ TAŞINMAZ GELİŞTİRME TEZSİZ ÜKSEK LİSANS PROGRAMI İÇİNDEKİLER.1. GİRİŞ.. DEĞİŞİM ÖLÇÜLERİ..1. Değşm Geşlğ... Kartller Arası fark... Ortalama
DEĞİŞKENLİK ÖLÇÜLERİ
DEĞİŞKENLİK ÖLÇÜLERİ Değşel (Yayılım) Ölçüler İ arlı aaütley brbrde ayırma ç her zama yalızca yer ölçüler yeterl olmayablr. Dağılımları brbrde ayırt etmede ullaıla ve geellle artmet ortalama etraıda değşm
Bölüm 3. Tanımlayıcı İstatistikler
Bölüm 3 Tanımlayıcı İstatistikler 1 Tanımlayıcı İstatistikler Bir veri setini tanımak veya birden fazla veri setini karşılaştırmak için kullanılan ve ayrıca örnek verilerinden hareket ile frekans dağılışlarını
Tahmin Edicilerin ve Test Đstatistiklerinin Simülasyon ile Karşılaştırılması
. Ders ĐSTATĐSTĐKTE SĐMÜLASYON Tahm Edcler ve Test Đstatstkler Smülasyo le Karşılaştırılması Đstatstk rasgelelk olgusu çere olay süreç ve sstemler modellemesde özellkle bu modellerde souç çıkarmada ve
Sayısal Türev Sayısal İntegrasyon İnterpolasyon Ekstrapolasyon. Bölüm Üç
Sayısal Türev Sayısal İtegrasyo İterpolasyo Ekstrapolasyo Bölüm Üç Bölüm III 8 III-. Pvot Noktaları Br ( ) oksyouu değer, geellkle ekse üzerdek ayrık oktalarda belrler. Bu oktalara pvot oktaları der. Bu
Yayılma (Değişkenlik) Ölçüleri
Yayılma (Değşel) Ölçüler Br ver set taıma yada farlı ver set brbrde ayırt etme ç her zama yalızca yer ölçüler yeterl olmayablr. Dağılımları brbrde ayırt etmede ullaıla ve geellle artmet ortalama etrafıda
DEĞİŞKENLİK ÖLÇÜLERİ
DEĞİŞKENLİK ÖLÇÜLERİ Değşel (Yayılım) Ölçüler İ arlı aaütley brbrde ayırma ç her zama yalızca yer ölçüler yeterl olmayablr. Dağılımları brbrde ayırt etmede ullaıla ve geellle artmet ortalama etraıda değşm
ÖLÇÜM, ÖLÇÜM HATALARI ve ANLAMLI RAKAMLAR
ÖLÇÜM, ÖLÇÜM HATALARI ve ANLAMLI RAKAMLAR Ölçme, her deeysel blm temel oluşturur. Fzk blmde de teorler sıaması ç çeştl deeyler tasarlaır ve bu deeyler sırasıda çok çeştl ölçümler yapılır. Br fzksel celğ
Değişkenlik (Yayılım) Ölçüleri
DEĞİŞKENLİK ÖLÇÜLERİ Değşel (Yayılım) Ölçüler İ arlı aaütley brbrde ayırma ç her zama yalızca yer ölçüler yeterl olmayablr. Dağılımları brbrde ayırt etmede ullaıla ve geellle artmet ortalama etraıda değşm
Quality Planning and Control
Qualty Plag ad Cotrol END 3618 KALİTE PLANLAMA VE KONTROL Prof. Dr. Mehmet ÇAKMAKÇI Dokuz Eylül Üverstes Edüstr Mühedslğ Aablm Dalı 1 Qualty Maagemet İstatstksel Proses Kotrol Kotrol Kartları 2 END 3618
4/16/2013. Ders 9: Kitle Ortalaması ve Varyansı için Tahmin
4/16/013 Ders 9: Kitle Ortalaması ve Varyası içi Tahmi Kitle ve Öreklem Öreklem Dağılımı Nokta Tahmii Tahmi Edicileri Özellikleri Kitle ortalaması içi Aralık Tahmii Kitle Stadart Sapması içi Aralık Tahmii
Tanımlayıcı İstatistikler. Yrd. Doç. Dr. Emre ATILGAN
Tanımlayıcı İstatistikler Yrd. Doç. Dr. Emre ATILGAN 1 Tanımlayıcı İstatistikler Yer Gösteren Ölçüler Yaygınlık Ölçüleri Merkezi Eğilim Ölçüleri Konum Ölçüleri 2 3 Aritmetik Ortalama Aritmetik ortalama,
DEĞİŞKENLİK ÖLÇÜLERİ
DEĞİŞKENLİK ÖLÇÜLERİ Değşel (Yayılım) Ölçüler İ arlı aaütley brbrde ayırma ç her zama yalızca yer ölçüler yeterl olmayablr. Dağılımları brbrde ayırt etmede ullaıla ve geellle artmet ortalama etraıda değşm
6. Uygulama. dx < olduğunda ( )
. Uygulama Hatırlatma: Rasgele Değşelerde Belee Değer Kavramı br rasgele değşe ve g : R R br osyo olma üzere, ) esl ve g ) ) < olduğuda D ) sürel ve g ) ) d < olduğuda g belee değer der. c R ve br doğal
4/4/2013. Ders 8: Verilerin Düzenlenmesi ve Analizi. Betimsel İstatistik Merkezsel Eğilim Ölçüleri Dağılım Ölçüleri Grafiksel Gösterimler
Ders 8: Verileri Düzelemesi ve Aalizi Betimsel İstatistik Merkezsel Eğilim Ölçüleri Dağılım Ölçüleri Grafiksel Gösterimler Bir kitlei tamamıı, ya da kitlede alıa bir öreklemi özetlemekle (betimlemekle)
değerine bu matrisin bir girdisi(elemanı,bileşeni) denir. Bir sütundan (satırdan) oluşan bir matrise bir sütun (satır) matrisi denir.
Bölüm 2 Matrsler aım 2.1 F br csm, m, brer doğal sayı olsu. a F ( 1,.., m; j 1,..., ) olmak üzere, a11... a1 fadese m satır sütuda oluşa (veya m tpde) br F matrs der. am 1... a m Böyle br matrs daha sade
Mühendislikte İstatistik Yöntemler
.0.0 Mühendislikte İstatistik Yöntemler İstatistik Parametreler Tarih Qma.3.98 4..98 0.3.983 45 7..984 37.3.985 48 0.4.986 67.4.987 5 0.3.988 45.5.989 34.3.990 59.4.99 3 4 34 5 37 6 45 7 45 8 48 9 5 0
Doç. Dr. Mehmet AKSARAYLI
Doç. Dr. Mehmet AKSARALI www.mehmetaksarayl İstatstksel araştırmalarda k yada daha çok değşke arasıdak lşk celemes ç e çok kullaıla yötemlerde brs regresyo aalzdr. Değşkeler arasıdak lşk matematksel br
DEĞİŞKENLİK ÖLÇÜLERİ
DEĞİŞKENLİK ÖLÇÜLERİ Değşel (Yayılım) Ölçüler İ arlı aaütley brbrde ayırma ç her zama yalızca yer ölçüler yeterl olmayablr. Dağılımları brbrde ayırt etmede ullaıla ve geellle artmet ortalama etraıda değşm
ÖRNEKLEME TEORİSİ VE TAHMİN TEORİSİ
İSTATİSTİKSEL TAHMİNLEME VE İSTATİSTİKSEL YORUMLAMA TAHMİNLEME SÜRECİ VE YORUMLAMA SÜRECİ ÖRNEKLEME TEORİSİ VE TAHMİN TEORİSİ ÖRNEKLEME VE ÖRNEKLEME ÖRNEKLEME DAĞILIMLARI VE ÖRNEKLEME DAĞILIMLARI Yorumlama
Korelasyon ve Regresyon
Korelasyon ve Regresyon 1 Korelasyon Analz İk değşken arasında lşk olup olmadığını belrlemek çn yapılan analze korelasyon analz denr. Korelasyon; doğrusal yada doğrusal olmayan dye kye ayrılır. Korelasyon
Bölüm 3. Tanımlayıcı İstatistikler. Tanımlayıcı İstatistikler. Tanımlayıcı İstatistikler. Yer Ölçüleri
Taımlayıcı İtattler Bölüm 3 Taımlayıcı İtattler Br ver et taıma veya brde azla ver et arşılaştırma ç ullaıla ve ayrıca öre verlerde hareet le rea dağılışlarıı ayıal olara özetleye değerlere taımlayıcı
Örnek A. Benzer tipteki 40 güç kaynağının dayanma süreleri aşağıdaki gibidir. Genişletilmiş frekans tablosu oluşturunuz;
Öre A. Bezer pe 40 güç ayağıı dayama süreler aşağıda gbdr. Geşlelmş reas ablosu oluşuruuz;, 4,7 3, 3,4 3,3 3, 3,9 4, 3,4 4, 3,8 3,7 3,6 3,8 3,7 3,0,,6 3, 3,,6,9 3, 3,0 3,3 4,3 3, 4, 4,6 3, 3,3 4,4 3,9,9
Bölüm 3. Tanımlayıcı İstatistikler
Bölüm 3 Tanımlayıcı İstatstkler Tanımlayıcı İstatstkler Br ver setn tanımak veya brden fazla ver setn karşılaştırmak çn kullanılan ve örnek verlernden hareket le frekans dağılışlarını sayısal olarak özetleyen
Önceki bölümde özetlenen Taylor metodlarında yerel kesme hata mertebesinin yüksek oluşu istenilen bir özelliktir. Diğer taraftan
III.5.RUNGE-KUTTA METODLARI Öcek bölümde özelee Talor meodlarıda erel kesme aa merebes üksek oluşu sele br özellkr. Dğer araa ürevler buluma ve esaplaması pek çok problem ç karmaşık ve zama alıcı olduğuda
Öğr. Elemanı: Dr. Mustafa Cumhur AKBULUT
Ünte 11: İndeksler Öğr. Elemanı: Dr. Mustafa Cumhur AKBULUT İndeks 2 Üntede Ele Alınan Konular 11. İndeksler 11.1. Bast İndeksler 11.1.1. Fyat İndeks 11.1.2. Mktar İndeks 11.1.3. Mekan İndeks 11.2. Bleşk
İSTATİSTİK 2. Tahmin Teorisi 07/03/2012 AYŞE S. ÇAĞLI. [email protected]
İSTATİSTİK 2 Tahmi Teorisi 07/03/2012 AYŞE S. ÇAĞLI [email protected] İstatistik yötemler İstatistik yötemler Betimsel istatistik Çıkarımsal istatistik Tahmi Hipotez testleri Nokta tahmii Aralık
BİYOİSTATİSTİK Merkezi Eğilim ve Değişim Ölçüleri Yrd. Doç. Dr. Aslı SUNER KARAKÜLAH
BİYOİSTATİSTİK Merkezi Eğilim ve Değişim Ölçüleri Yrd. Doç. Dr. Aslı SUNER KARAKÜLAH Ege Üniversitesi, Tıp Fakültesi, Biyoistatistik ve Tıbbi Bilişim AD. Web: www.biyoistatistik.med.ege.edu.tr 1 İstatistik
BÖLÜM 4 KLASİK OPTİMİZASYON TEKNİKLERİ (KISITLI OPTİMİZASYON)
BÖÜM 4 KASİK OPTİMİZASYON TEKNİKERİ KISITI OPTİMİZASYON 4. GİRİŞ Öcek bölülerde de belrtldğ b optzaso probleler çoğuluğu kısıtlaıcı oksolar çerektedr. Kısıtlaasız optzaso problelerde optu değer ede oksou
Bölüm 3. Tanımlayıcı İstatistikler
Bölüm 3 Tanımlayıcı İstatstkler Tanımlayıcı İstatstkler Br ver setn tanımak veya brden fazla ver setn karşılaştırmak çn kullanılan ve ayrıca örnek verlernden hareket le frekans dağılışlarını sayısal olarak
TOBB Ekonomi ve Teknoloji Üniversitesi İKT351 Ekonometri I, Ara Sınavı
TOBB Ekoom ve Tekoloj Üverstes İKT351 Ekoometr I, Ara Sıavı Öğr.Gör.: Yrd. Doç. Dr. A. Talha YALTA Ad, Soyad: Açıklamalar: Bu sıav toplam 100 pua değerde 4 soruda oluşmaktadır. Sıav süres 90 dakkadır ve
Sürekli Olasılık Dağılım (Birikimli- Kümülatif)Fonksiyonu. Yrd. Doç. Dr. Tijen ÖVER ÖZÇELİK
Sürekl Olasılık Dağılım Brkml- KümülatFonksyonu Yrd. Doç. Dr. Tjen ÖVER ÖZÇELİK [email protected] Sürekl olasılık onksyonları X değşken - ;+ aralığında tanımlanmış br sürekl rassal değşken olsun. Aşağıdak
Değişkenler Arasındaki İlişkiler Regresyon ve Korelasyon. Dr. Musa KILIÇ
Değşkeler Arasıdak İlşkler Regresyo ve Korelasyo Dr. Musa KILIÇ http://ks.deu.edu.tr/musa.klc 1. Grş Buda öcek bölümlerde celedğmz koular, br tek değşke ç yorumlamalar yapmaya yöelk statstk yötemler üzerde
Tanımlayıcı İstatistikler
Dr. Mehmet AKSARAYLI MERKEZİ EĞİLİM ve DEĞİŞKENLİK ÖLÇÜLERİ Ders / Tanımayıcı İstatstker Yer Öçüer (Merkez Eğm Öçüer) Duyarı Ortaamaar Artmetk ort. Tartıı Artmetk Geometrk ort. Kare ort. Harmonk ort. Duyarı
Polinom İnterpolasyonu
Polom İterpolasyou (Ara Değer Bulma Br foksyou solu sayıdak, K, R oktalarıda aldığı f (, f (,, f ( değerler bls (foksyou keds blmyor. Bu oktalarda geçe. derecede br tek, P a + a + a + + a (... polumu vardır
TAHMİNLEYİCİLERİN ÖZELLİKLERİ Sapmasızlık 3.2. Tutarlılık 3.3. Etkinlik minimum varyans 3.4. Aralık tahmini (güven aralığı)
3 TAHMİNLEYİCİLERİN ÖZELLİKLERİ 3.1. Sapmasızlık 3.. Tutarlılık 3.3. Etkilik miimum varyas 3.4. Aralık tahmii (güve aralığı) İyi bir tahmi edici dağılımı tahmi edilecek populasyo parametresie yakı civarda
1. GAZLARIN DAVRANI I
. GZLRIN DRNI I İdeal Gazlar ç: lm 0 RT İdeal gazlar ç: RT Hacm() basıçla() değşk sıcaklıklarda değşm ekl.. de gösterlmştr. T >T 8 T T T 3 asıç T 4 T T 5 T 7 T 8 Molar Hacm ekl.. Gerçek br gazı değşk sıcaklıklardak
EMEKLİLİK YATIRIM FONLARI DEĞERLENDİRMESİ AÇIKLAMA NOTLARI VE VARSAYIMLAR
EMEKLİLİK YATIRIM FONLARI DEĞERLENDİRMESİ AÇIKLAMA NOTLARI VE VARSAYIMLAR 2013 yılı fo getrs 02/01/2013-02/01/2014 tarhl brm pay değerler kullaılması le hesaplamıştır. 2013 yılı karşılaştırma ölçütü getrs
İşlenmemiş veri: Sayılabilen yada ölçülebilen niceliklerin gözlemler sonucu elde edildiği hali ile derlendiği bilgiler.
OLASILIK VE İSTATİSTİK DERSLERİ ÖZET NOTLARI İstatistik: verileri toplaması, aalizi, suulması ve yorumlaması ile ilgili ilkeleri ve yötemleri içere ve bu işlemleri souçlarıı probabilite ilkelerie göre
ISF404 SERMAYE PİYASALARI VE MENKUL KIYMETYÖNETİMİ
8. HAFTA ISF404 SERMAYE PİYASALARI VE MENKUL KIYMETYÖNETİMİ PORTFÖY YÖNETİMİ II Doç.Dr. Murat YILDIRIM [email protected] Geleeksel Portföy Yaklaşımı, Bu yaklaşıma göre portföy bir bilim değil,
taşinmaz DEĞERLEME- DE İSTATİKSEL ANALİZ
3 İstatst Serler ve Freas Tabloları TAŞINMAZ GELİŞTİRME TEZSİZ YÜKSEK LİSANS PROGRAMI taşinmaz DEĞERLEME- DE İSTATİKSEL ANALİZ Doç. Dr. Mehmet Al CENGİZ Üte: 3 İSTATİSTİK SERİLERİ ve FREKANS TABLOLARI
KONTROL KARTLARI 1)DEĞİŞKENLER İÇİN KONTROL KARTLARI
1 KONTOL KATLAI 1)DEĞİŞKENLE İÇİN KONTOL KATLAI Ölçe,gözle veya deey yolu le elde edle verler değşke(ölçüleblr-sürekl) ve özellk (sayılablr-keskl) olak üzere başlıca k gruba ayrılır. Değşke verler belrl
Biyoistatistiğe Giriş: Temel Tanımlar ve Kavramlar DERS I VE II
Biyoistatistiğe Giriş: Temel Tanımlar ve Kavramlar DERS I VE II İstatistik Nedir? İstatistik kelimesi farklı anlamlar taşımaktadır. Bunlar; Genel anlamda; üretim, tüketim, nüfus, sağlık, eğitim, tarım,
İSTATİSTİKSEL KALİTE KONTROLDE KULLANILAN TEMEL İSTATİSTİKSEL ÖLÇÜLER (MERKEZİ EĞİLİM VE DAĞILIM ÖLÇÜLERİ)
İTATİTİKEL KALİTE KOTROLDE KULLAILA TEMEL İTATİTİKEL ÖLÇÜLER (MERKEZİ EĞİLİM VE DAĞILIM ÖLÇÜLERİ) Kalite Mühendisliği kapsamında İstatistik Proses Kontrolde (İPK) kullanılan temel istatistik ölçüler ve
Parametrik Olmayan İstatistik Çözümlü Sorular - 2
Parametrk Olmaya İstatstk Çözümlü Sorular - Soru Böbrek hastalarıa at Kreat (KRT) değerlere lşk br araştırma yapılmak stemektedr. Buu ç rasgele seçle hastaya at Kreat değerler aşağıdak gb elde edlmştr
Merkezi Eğilim ve Dağılım Ölçüleri
Merkezi Eğilim ve Dağılım Ölçüleri Soru Öğrencilerin derse katılım düzeylerini ölçmek amacıyla geliştirilen 16 soruluk bir test için öğrencilerin ilk 8 ve son 8 soruluk yarılardan aldıkları puanlar arasındaki
FİNANSAL YÖNETİM. Finansal Yönetim Örnek Sorular Güz 2015. Yrd. Doç. Dr. Rüstem Barış Yeşilay 1. Örnek. Örnek. Örnek. Örnek. Örnek
Fasal Yöetm Örek lar Güz 2015 Güz 2015 Fasal Yöetm Örek lar 2 Örek FİNNSL YÖNETİM ÖRNEKLER 1000 TL %10 fazde kaç yıl süreyle yatırıldığıda 1600 TL olur? =1000 TL, FV=1600 TL, =0.1 FV (1 ) FV 1600 (1 )
Bir KANUN ve Bir TEOREM. Büyük Sayılar Kanunu
Br KANUN ve Br TEOREM Büyük Türkçe Sözlük kau Đg. law Doğa olaylarıı oluş edeler ortaya koya ve gelecektek olayları öcede kestrme olaağı vere bağıtı; Newto kauu, Kepler kauları. (BSTS / Gökblm Termler
(DERS NOTLARI) Hazırlayan: Prof.Dr. Orhan ÇAKIR. Ankara Üniversitesi, Fen Fakültesi, Fizik Bölümü
FİZ433 FİZİKTE BİLGİSAYAR UYGULAMALARI DERS NOTLARI Hazırlaya: Pro.Dr. Orha ÇAKIR Akara Üverstes, Fe Fakültes, Fzk Bölümü Akara, 7! İÇİNDEKİLER. LİNEER OLMAYAN DENKLEMLERİN KÖKLERİNİN BULUNMASI I/II. LİNEER
KUVVET SİSTEMLERİ KUVVET. Vektörel büyüklük. - Kuvvetin büyüklüğü - Kuvvetin doğrultusu - Kuvvetin uygulama noktası - Kuvvetin yönü. Serbest vektör.
İ.T.Ü. aka akültes ekak Aa Blm Dalı STATİK - Bölüm KUVVET SİSTELEİ KUVVET Vektörel büyüklük - Kuvvet büyüklüğü - Kuvvet doğrultusu - Kuvvet uygulama oktası - Kuvvet yöü S = (,,..., ) = + +... + = Serbest
A t a b e y M e s l e k Y ü k s e k O k u l u İstatistik Sunum 4 Öğr.Gör. Şükrü L/O/G/O KAYA www.sukrukaya.org www.themegallery.com 1 Yer Ölçüleri Yer ölçüleri, verilerin merkezini veya yığılma noktasını
Olasılık, Rastgele Değişkenler ve İstatistik
Olasılık, Rastgele Değşkeler ve İstatstk Dr. Caht Karakuş Eseyurt Üverstes İçdekler. İSTATİSTİK... 5.. Merkez Eğlm Ölçümler... 5. Olasılık... 5.. Olasılıklarda toplama ve çarpma kuralları... 8.. Koşullu
Matematik olarak normal dağılım fonksiyonu. 1 exp X 2
Matematk olarak ormal dağılım foksyou f ( ) ep ( ) Şeklde fade edlr. Burada μ artmetk ortalama, σ se stadart sapma değer gösterr ve dağılım foksyou N(μ, σ) otasyou le gösterlr. Bu deklem geometrk görütüsü
Sıklık Tabloları ve Tek Değişkenli Grafikler
Sıklık Tabloları ve Tek Değşkenl Grafkler Sıklık Tablosu Ver dzsnde yer alan değerlern tekrarlama sayılarını çeren tabloya sıklık tablosu denr. Sıklık Tabloları tek değşken çn marjnal tablo olarak adlandırılır.
ETKİN SINIR VE BETA KATSAYI KISITLI PORTFÖY SEÇİM MODELİ ÜZERİNE BİR UYGULAMA
İstabul Tcaret Üverstes Fe Blmler Dergs Yıl: 11 Sayı: Güz 01 s. 19-35 ETKİN SINIR VE BETA KATSAYI KISITLI PORTFÖY SEÇİM MODELİ ÜZERİNE BİR UYGULAMA Cası KAYA 1, Oza KOCADAĞLI Gelş: 30.05.01 Kabul: 14.1.01
ÇOKLU REGRESYON MODELİ, ANOVA TABLOSU, MATRİSLERLE REGRESYON ÇÖZÜMLEMESİ,REGRES-YON KATSAYILARININ YORUMU
6.07.0 ÇOKLU REGRESON MODELİ, ANOVA TABLOSU, MATRİSLERLE REGRESON ÇÖZÜMLEMESİ,REGRES-ON KATSAILARININ ORUMU ÇOKLU REGRESON MODELİ Ekonom ve şletmeclk alanlarında herhang br bağımlı değşken tek br bağımsız
Mühendislikte Olasılık, İstatistik, Risk ve Güvenilirlik Altay Gündüz. Mühendisler için İstatistik Prof. Dr. Mehmetçik Bayazıt, Prof. Dr.
İSTATİSTİK DERSİ (BAÜ Müh-Mm Fakültes Dr. Bau Yağcı KAYNAKLAR Mühedslkte Olasılık, İstatstk, Rsk ve Güvelrlk Altay Güdüz Blgsayar (Ecel Destekl Uygulamalı İstatstk Pro. Dr. Mustaa Akkurt Mühedsler ç İstatstk
İSTATİSTİKSEL TAHMİN. Prof. Dr. Levent ŞENYAY VIII - 1 İSTATİSTİK II
8 İSTATİSTİKSEL TAHMİN 8.. İstatistiksel tahmileyiciler 8.. Tahmileyicileri Öellikleri 8... Sapmasılık 8... Miimum Varyaslılık 8..3. Etkilik 8.3. Aralık Tahmii 8.4. Tchebysheff teoremi Prof. Dr. Levet
İSTATİSTİKSEL MERKEZİ EĞİLİM ÖLÇÜLERİ DUYARLI ORTALAMALAR
SAÜ. BÖLÜM İSTATİSTİKSEL MERKEZİ EĞİLİM ÖLÇÜLERİ DUYARLI ORTALAMALAR PROF. DR. MUSTAFA AKAL İÇİNDEKİLER 1. ORTALAMANIN TANIMI VE FAYDALARI. HASSAS ORTALAMALAR.1. Aritmetik Ortalama.. Kareli Ortalama..
YÖNEYLEM ARAŞTIRMASI III. Dinamik Programlama. Örnek 3: Tıbbi Müdahale Ekiplerinin Ülkelere Dağıtımı
YÖNEYLEM ARAŞTIRMASI III Hafta Determstk Damk Programlama (devam) Damk Programlama Geçe derste küçük ölçekl problemler damk programlamayla yelemel olarak asıl çözüldüğüü gördük. Bu derste, öreklere devam
İSTATİSTİK DERS NOTLARI
Balıkesir Üiversitesi İşaat Mühedisliği Bölümü [email protected] İSTATİSTİK DERS NOTLARI Yrd. Doç. Dr. Umut OKKAN idrolik Aabilim Dalı Balıkesir Üiversitesi İşaat Mühedisliği Bölümü Bölüm 5 Örekleme
ÜNİTE. İSTATİSTİĞE GİRİŞ Prof.Dr.Erkan OKTAY İÇİNDEKİLER HEDEFLER İNDEKSLER
HEDEFLER İÇİNDEKİLER İNDEKSLER Basit İdeksler Bileşik İdeksler Tartısız İdeksler Tartılı İdeksler Mekâ İdeksleri İSTATİSTİĞE GİRİŞ Prof.Dr.Erka OKTAY İktisadi göstergeleri daha iyi yorumlayıp karşılaştırılabilecek
İSTATİSTİK. Doç. Dr. Suat ŞAHİNLER Arş.Gör. Özkan GÖRGÜLÜ
İSTATİSTİK Doç. Dr. Suat ŞAHİNLER Arş.Gör. Özka GÖRGÜLÜ Tavsye Edle Kayak Ktaplar Her öğrec keds tuttuğu düzel otlar.. Akar, M. ve S. Şahler, (997). İstatstk. Ç.Ü. Zraat Fakültes Geel Yayı No: 74, Ders
Đst201 Đstatistik Teorisi I
Đst20 Đstatstk Teors I DERSĐN TÜRÜ Zorulu DERSĐN DÖNEMĐ Yaz DERSĐN KREDĐSĐ Ulusal Kred: (4, 0, 0 ) 4 KTS: 7 DERSĐN VERĐLDĐĞĐ Bölüm: Đstatstk 200/20 Öğretm Yılı DERSĐN MCI Đstatstğ matematksel temeller
Yrd. Doç. Dr. Fatih TOSUNOĞLU Erzurum Teknik Üniversitesi Mühendislik Fakültesi İnşaat Mühendisliği Bölümü
Mühendislikte İstatistiksel Yöntemler Yrd. Doç. Dr. Fatih TOSUNOĞLU Erzurum Teknik Üniversitesi Mühendislik Fakültesi İnşaat Mühendisliği Bölümü 1 Araştırma sonuçlarının açıklanmasında frekans tablosu
denklemini sağlayan tüm x kompleks sayılarını bulunuz. denklemini x = 64 = 2 i şeklinde yazabiliriz. Bu son kompleks sayıları için x = 2iy
Ders Sorumlusu: Doç. Dr. Necp ŞİMŞEK Problem. deklem sağlaya tüm kompleks sayılarıı buluu. Çöüm deklem şeklde yaablr. Bu so y kompleks sayıları ç y yaalım. Bu taktrde deklemde, baı y ( ) y elde edlr. Burada
TEMEL KAVRAMLAR GİRİŞ
TEMEL KAVRAMLAR GİRİŞ İstatistik kelimesii kökei Almaca olup devlet alamıa gelmektedir. İstatistik kelimesi gülük hayatta farklı alamlarda kullaılmaktadır. Televizyoda bir futbol müsabakasıı izleye bir
ANADOLU ÜNİVERSİTESİ İST 213 OLASILIK DERSİ TANIMLAR VE VERİ SINIFLAMASI
ANADOLU ÜNİVERSİTESİ İST 213 OLASILIK DERSİ TANIMLAR VE VERİ SINIFLAMASI DOÇ. DR. NİHAL ERGİNEL TANIMLAR VE VERİ SINIFLAMASI Olasılık, ilgilenilen olay/olayların meydana gelme olabilirliğinin ölçülmesidir.
Temel Yapılar: Kümeler, Fonksiyonlar, Diziler ve Toplamlar
Temel Yapılar: Kümeler, Fokyolar, Dzler ve Toplamlar CSC-9 yrık Yapılar Kotat uch - LSU Kümeler Küme, eeler düzez toparlamaıdır İglz alabedek el harler: V { a, e,, o, u} a V bv küçük pozt tek ayılar: Küme
Ki- kare Bağımsızlık Testi
PARAMETRİK OLMAYAN İSTATİSTİKSEL TEKNİKLER Prof. Dr. Ali ŞEN Ki- kare Bağımsızlık Testi Daha öceki bölümlerde ölçümler arasıdaki ilişkileri asıl iceleeceğii gördük. Acak sıklıkla ilgileile veriler ölçüm
KONU2 MERKEZİ EĞİLİM ÖLÇÜLERİ EĞİLİM ÖLÇÜLERİ ANALİTİK ORTALAMALAR ANALİTİK OLMAYAN MERKEZİ. Aritmetik ortalama **Medyan(median)
KONU2 MERKEZİ EĞİLİM ÖLÇÜLERİ 1 MERKEZİ EĞİLİM ÖLÇÜLERİ ANALİTİK ORTALAMALAR Bir örneklemde mevcut olan tüm veriler hesaba katılır. ANALİTİK OLMAYAN MERKEZİ EĞİLİM ÖLÇÜLERİ Bir örneklemdeki verilerin bir
İSTATİSTİKSEL TAHMİNLEME VE
1 ölüm maçları İSTTİSTİKSEL THMİLEME VE YORUMLM SÜRECİ ÖREKLEME VE ÖREKLEME DĞILIMLRI u bölümde öğreeceklerz. Örekleme gereksm ve yötemler celemek. Örekleme hatası kavramıı taımlamak Örekleme dağılışı
Test İstatistikleri AHMET SALİH ŞİMŞEK
Test İstatistikleri AHMET SALİH ŞİMŞEK İçindekiler Test İstatistikleri Merkezi Eğilim Tepe Değer (Mod) Ortanca (Medyan) Aritmetik Ortalama Merkezi Dağılım Dizi Genişliği (Ranj) Standart Sapma Varyans Çarpıklık
HİPOTEZ TESTLERİ. İstatistikte hipotez testleri, karar teorisi olarak adlandırılır. Ortaya atılan doğru veya yanlış iddialara hipotez denir.
HİPOTEZ TETLERİ İstatistikte hipotez testleri, karar teorisi olarak adladırılır. Ortaya atıla doğru veya yalış iddialara hipotez deir. Öreği para hilesizdir deildiğide bu bir hipotezdir. Ortaya atıla iddiaya
