Parametrik Olmayan İstatistik Çözümlü Sorular - 2
|
|
|
- Emin Sökmen
- 10 yıl önce
- İzleme sayısı:
Transkript
1 Parametrk Olmaya İstatstk Çözümlü Sorular - Soru Böbrek hastalarıa at Kreat (KRT) değerlere lşk br araştırma yapılmak stemektedr. Buu ç rasgele seçle hastaya at Kreat değerler aşağıdak gb elde edlmştr : KRT : Bu verler ortalamasıı 5.8, varyasıı 3.7 ola Normal dağılıma uyumuu α =. alam düzeyde test edz. Tek öreklem Kolmogorov Smrov test. X : Kreat değerlere lşk dağılım Normal dağılımdır. : Kreat değerlere lşk dağılım Normal dağılım değldr. Kreat değer olmak üzere : ( µ = σ = ) ( µ = σ = ) : X N 5.8, 3.7 : X N 5.8, 3.7 α =. Öcelkle verler küçükte büyüğe doğru sıralarız : 3, 4, 4, 5, 5, 6, 7, 7, 8, 9 ( ) ( ) Ð = sup F F Test statğ D α ' ya göre tablo değer k ( ) sözü edle dağılım ( ( 5.8,3.7 )) F N Ð > D Red edlr. k = Frekas Brkml Frekas F ( ) z F ( z ) F F
2 z µ σ = = F ( z) F F ( z) = P( < Z z) = P( Z z) ( ) ( ) ( ) ( ) (.6) = P( Z.6) =.734 F.46 = P Z.46 = P Z.46 => = P Z <.46 =.979 =.7 F ( ) ( ) Ð = sup F F =.68 α =., = D =.369 Ð =.68 < D =.369 Red edlemez. k k Soru tae küçük kafese 5 er tae fare koulup bu kafestek dş fare sayıları gözleyor. Bua göre aşağıdak souçlar elde edlyor : Dş fareler sayısı : Kafes sayısı : Bu verler Bom dağılımıa uyumuu α =.5alam düzeyde test edz. K Kare uyum ylğ : : Dş fareler sayısı Bom dağılımıa sahptr. : Dş fareler sayısı Bom dağılımıa sahp değldr. Burada açıklama ç ; tae dş fare ola kafes sayısı 36 dır. Öcelkle beklee frekasları hesaplayalım. Beklee frekasları bulurke kullaacağımız dağılım Bom dağılımı olacaktır. tae kafes rasgele seçlmş ve = 5 dr. Fakat p değer bze verlmemş. Bu durumda p değer tahm edeceğz. er örekte (kafeste) 5 tae fare olduğua göre : 5 = 6 tae toplam fare vardır. Toplam dş fare sayısı p ˆ = 6 Toplam dş fare sayısı = = p ˆ = =.495 6
3 Beklee frekaslar : 5 5 f ( ) = (.495) (.495) = 5 5 f ( ) = (.495) (.495) = f ( ) = (.495) (.495) = f ( 3) = (.495) (.495) = f ( 4) = (.495) (.495) = f ( 5) = (.495) (.495) = Dş fare sayısı Gözlee frekaslar Beklee frekaslar <5 brleşecek <5 brleş-ecek. Brleştrme şlem yapılırke, gözlee frekasları 5 de küçük olup olmadığıı kotrol ederke ayı zamada beklee frekasları da kotrol etmek gerekmektedr. Dş fare sayısı sıfır ç gözlee frekas 5 ke, beklee frekası dür. Bu edele brleştrme şlem yapılmalıdır. Dş fare sayısı Gözlee Frekaslar Beklee Frekaslar ve de az ve 4 de çok
4 χ χ χ = 4 = ( f e ) e ( ) ( ) ( ) ( ) = =.9677 Sııf sayısı k = 4, p parametres tahm edldğ ç α =.5, sd = 4 = χt = χ = , = = ( α sd ) χ =.9677 < χ = 5.99 Red edlemez. T Yorum : α =.5 alam düzeyde dş fareler sayısı Bom dağılımıa sahptr. Soru 3 Etopk ACT üretm ola hastalar le lgl br çalışmada, gzl tümörü ola hastada ve belrg tümörü ola 6 hastada plazma ACT değerler tespt edlmştr. Söz kousu değerler aşağıdak tabloda verlmştr : Gzl Tümör ACT (Grup) : Açık Tümör ACT (Grup) : Gzl tümör ACT değerler dağılımı le Açık Tümör ACT değerler dağılımı arasıda fark olup olmadığıı α =.alamlılık düzeyde test edz. İk öreklem Kolmogorov Smrovtest : : Gzl tümör ACT değerler le Açık tümör ACT değerler dağılımları arasıda fark yoktur. : Gzl tümör ACT değerler le Açık tümör ACT değerler dağılımları arasıda fark vardır. ( ) = ( ) ( ) ( ) : F F : F F 4
5 , < 69 /, 69 < 8 /, 8 < 9 3/, 9 < 4/, < 3 F = 5/, 3 < 34 6/, 34 < 4 7 /, 4 < 65 8/, 65 < 3 9 /, 3 < 44, 44, < / 6, < 75 / 6, 75 < F6 = 3/ 6, < 5 4/ 6, 5 < 3 5/ 6, 3 < 4, 4 y F F 69 /- =. 8 /- =. 9 3/- =.3 3/-/6 =.333 4/-/6 = /-/6 = /-/6 = /-/6 = /-/6 = /-/6 = /-3/6 =.3 3 9/-3/6 = /6 =.5 5-4/6 = /6 = = m Ð,m,m T,6 ( ) ( ) = sup F F m Ð > D Red edlr. Ð =.6333 Tabloda = = ve = = 6 ç br değer yok. Bu edele = m = 6 ve = = ç ola değer alacağız. İk yalı kısmıda α =.9 a bakarsak : D = D = 7 / 3 =.5667 T ( α =., = 6, = ) Ð =.6333 > D =.5667 Red edlr,6 T Yorum :. α = alam düzeyde Gzl Tümör ACT değerler le Açık Tümör ACT değerler dağılımları arasıda fark vardır. 5
6 Soru 4 M sml lacı tasyo düşürmede etklğ test etmek ç hpertasyolu hasta rasgele seçlyor. Bu hastaları laç verlmede öcek Sstolk Ka Basıçları (SKB) ölçülüyor. Bu hastalara M lacı verlyor ve saat sora tekrar SKB değerler ölçülüyor. M lacıı tasyo üzerde etk olup olmadığıı α =.5 alam düzeyde test edz. M öces SKB skorları : M sorası SKB skorları : İk öreklem şaret test : : X Y = α =.5 : X Y > M lacı SKB üzerde etk olması ya lacı yleşme sağlaması, SKB ler düşmes olduğuda X Y >, X Y > ψ =, X Y Test Foksyou ξ = ψ = Test Đstatğ X M lacı öces SKB değerler Y M lacı sorası SKB değerler y İşaret ( ) ( ) ξ ξ + şaret sayısı = 8 şlem dışı = = ψ = 8 = > yα ( ξ ( ) α ) Red edlr P > y α y =? α Burada da Bom dağılım tablosuu kullaacağız. 6
7 ( ξ ( ) > ) α ξ Bom( = 8, p = / ) ( ξ ( ) > α ) = ( ξ ( ) α ) P y α P y P y yα 8 = k = k k = k yα 8 α, α =.5 k = k yα 8 k k.95 Bom tablosuda = 8, p = / ç.95 e eşt ya da.95 de büyük,.95 e e yakı olasılık değere göre (.9648) y α = 6 dır. ξ = 8 > y α = 6 Red edlr. Burada : ( ) Yorum : α =.5 alam düzeyde M lacıı sstolk ka basıçları üzerde etkl olduğu ( SKB ler düşürdüğü) söyleeblr. X Y > M lacı öces SKB le M lacı sorası SKB ları arasıdak fark poztf ( lacı etk olduğu ddası.) Soru 5 İk farklı tekkle tedav edle hastaları kalarıdak X değere lşk değerler aşağıdak gb elde edlmştr. Bu durumda, bu k öreklem ayı ktlede rasgele olarak seçlp seçlmedğ α =. alam düzeyde test edz. RUN Test : A tekğ grubu : B tekğ grubu : : Đk öreklem ayı ktlede rasgele olarak seçlmşlerdr. : Đk öreklem farklı ktlelerdedr. A tekğ grubu ( + ) şaret olarak şaretler. B tekğ grubu ( - ) şaret = 6, m = 8, N = =
8 µ σ m 6 8 = + = N 4 m m N = 3.9 σ =.7578 ( α / ) ( ) N ( N ) / U µ + Z = Test Đstatstğ σ Z > Z T Red edlr. U değer hesaplayalım : U = r + r r = r j j r = 4 + = 6 r = r j j r = 4 + = 5 ( uzuluğuda k (-) şaret sayısı ) ( uzuluğuda k ( + ) şaret sayısı ) U = r + r = = [ ] U µ + / / Z = =.7 σ.7578 α =. α / = ZT = Z.95 = = } olduğuda her ks.95'e eşt uzaklıkta Z =.7 =.7 > Z =.645 RED edlr. T Yorum : α =. alam düzeyde bu k öreklem ayı ktlede rasgele olarak GELMEMEKTEDİR. Soru 6 Kaburga kırığıda k farklı yötemle hastaları Ağrı Kesc Skorları (AKS) aşağıdak gb elde edlmştr. Grup ağrı skoruu Grup ağrı skoruda büyük olduğu ddasıı α =.5 alam düzeyde test edz. Grup AKS : Grup AKS :
9 Ma Whtey U Test : : Yığılar bezer dağılıma sahptr. : X 'ler Y 'lerde daha küçük olma eğlme sahptr. Grup ağrı skorları Grup ağrı skorları =, = 8, N = + = 8 X le Y y karıştırıp sıralayalım : X Y X X X X X X X X Y Y Y Y Y Y Y X Y Y ξ Yukarıdak sıralaışta X de küçük Y ler sayıları kotrol edlecektr. X 'de küçük ola Y 'ler U = ξ Test Đstatstğ : X 'ler Y 'lerde daha küçük olma eğlme sahptr. Şeklde olduğu ç : U < W α RED edlr. le kararımızı vereceğz. W α, α ya karşılık gele tablo değer verlermze baktığımızda : Y Y X tae 6 var. taes Y, br taes X. /3 olarak alacağız. Çükü 6, 3 tae. X de küçük Y değerlere, 6 da görüyoruz. Bu durumda test statstğ değer : U = 4 + / 3 = 3/ tae 6 da küçük X değer var (,4,4,5 ) 3 tae 6 var bu edele burası /3 tür. α =.5, =, = 8 W = U = < W = RED edlr. α α Yorum :.5 alam düzeyde Grup AKS değerler, Grup AKS değerlerde daha küçük olma eğlme sahptrler. 9
İki veri setinin yapısının karşılaştırılması
İk ver set yapısıı karşılaştırılması Dağılım: 6,6,6 Ortalama: 6 Medya: 6 Mod: 6 td. apma: 0 Dağılım: 0,6,1 Ortalama: 6 Medya: 6 Mod: çoklu mod td: apma: 6 Amaç: Görüe Ötese Bakablmek Verler değşkelk durumuu
Tahmin Edicilerin ve Test Đstatistiklerinin Simülasyon ile Karşılaştırılması
. Ders ĐSTATĐSTĐKTE SĐMÜLASYON Tahm Edcler ve Test Đstatstkler Smülasyo le Karşılaştırılması Đstatstk rasgelelk olgusu çere olay süreç ve sstemler modellemesde özellkle bu modellerde souç çıkarmada ve
UYUM ĐYĐLĐĞĐ TESTĐ. 2 -n olup. nin dağılımı χ dir ve sd = (k-1-p) dir. Burada k = sınıf sayısı, p = tahmin edilen parametre sayısıdır.
UYUM ĐYĐLĐĞĐ TESTĐ Posson: H o: Ver Posson dağılıma sahp br ktleden gelmektedr. H a : Ver Posson dağılıma sahp br ktleden gelmemektedr. Böyle br hpotez test edeblmek çn, önce Posson dağılım parametres
BEKLENEN DEĞER VE VARYANS
BEKLEE DEĞER VE VARYAS.1. İadel ve adesz öreklemede tüm mümkü örekler.. Beklee değer.3. Varyas.4. İk değşke ortak dağılımı.5. İstatstksel bağımsızlık.6. Tesadüf değşkeler doğrusal kombasyolarıı beklee
Regresyon ve Korelasyon Analizi. Regresyon Analizi
Regresyo ve Korelasyo Aalz Regresyo Aalz Regresyo Aalz Regresyo aalz, aralarıda sebep-souç lşks bulua k veya daha fazla değşke arasıdak lşky belrlemek ve bu lşky kullaarak o kou le lgl tahmler (estmato)
Ki- kare Bağımsızlık Testi
PARAMETRİK OLMAYAN İSTATİSTİKSEL TEKNİKLER Prof. Dr. Ali ŞEN Ki- kare Bağımsızlık Testi Daha öceki bölümlerde ölçümler arasıdaki ilişkileri asıl iceleeceğii gördük. Acak sıklıkla ilgileile veriler ölçüm
6. Uygulama. dx < olduğunda ( )
. Uygulama Hatırlatma: Rasgele Değşelerde Belee Değer Kavramı br rasgele değşe ve g : R R br osyo olma üzere, ) esl ve g ) ) < olduğuda D ) sürel ve g ) ) d < olduğuda g belee değer der. c R ve br doğal
YER ÖLÇÜLERİ. Yer ölçüleri, verilerin merkezini veya yığılma noktasını belirleyen istatistiklerdir.
YER ÖLÇÜLERİ Yer ölçüler, verler merkez veya yığılma oktasıı belrleye statstklerdr. Grafkler bze verler yığılma oktaları hakkıda ö blg vermede yardımcı olurlar. Acak bu değerler gerçek değerler değldr,
EME 3117 SİSTEM SIMÜLASYONU. Girdi Analizi Prosedürü. Dağılıma Uyum Testleri. Dağılıma Uyumun Kontrol Edilmesi. Girdi Analizi-II Ders 9
..7 EME 37 Girdi Aalizi Prosedürü SİSTEM SIMÜLASYONU Modelleecek sistemi (prosesi) dokümate et Veri toplamak içi bir pla geliştir Veri topla Verileri grafiksel ve istatistiksel aalizii yap Girdi Aalizi-II
Giriş. Değişkenlik Ölçüleri İSTATİSTİK I. Ders 5 Değişkenlik ve Asimetri Ölçüleri. Değişkenlik. X i ve Y i aşağıdaki gibi iki seri verilmiş olsun:
Grş İSTATİSTİK I Ders Değşkelk ve Asmetr Ölçüler Ortalamalar, serler karşılaştırılmasıda her zama yeterl ölçüler değldr. Ayı ortalamayı sahp serler arklı dağılım göstereblrler. Bu edele serler karşılaştırılmasıda,
PARAMETRİK OLMAYAN HİPOTEZ TESTLERİ. χ 2 Kİ- KARE TESTLERİ. Doç.Dr. Ali Kemal ŞEHİRLİOĞLU Araş.Gör. Efe SARIBAY
PARAMETRİK OLMAYAN HİPOTEZ TESTLERİ Kİ- KARE TESTLERİ Doç.Dr. Al Kemal ŞEHİRLİOĞLU Araş.Gör. Efe SARIAY Populasyonun nceledğmz br özellğnn dağılışı blenen dağılışlardan brsne, Normal Dağılış, t Dağılışı,
IŞIĞIN KIRILMASI. 1. Ortamların kırılma indisleri n K. , n M. , n L. arasındaki ilişki aşağıdaki gibidir. > n L. > n K. n M. > n M. n L. n K.
BÖÜ ŞĞ RAS AŞTRAAR ÇÖZÜER ŞĞ RAS Ortamları kırılma dsler,, arasıdak lşk aşağıdak gbdr 9 > > > > > > 6 0 > > > > > > 7 > > > > > > 0 7 0 0 > > > > > 76 OPTİ 7 0 0 > > > > > > 0 θ θ > > > > > > 9 0 O > >
7. Ders. Bazı Kesikli Olasılık Dağılımları
Hatırlatma: ( Ω, U, P) bir olasılık uzayı ve 7. Ders Bazı Kesikli Olasılık Dağılımları : Ω ω R ( ω) foksiyou Borel ölçülebilir, yai B B içi { ω Ω : ( ω) B } U oluyorsa foksiyoua bir Rasgele Değişke deir.
TAHMİNLEYİCİLERİN ÖZELLİKLERİ Sapmasızlık 3.2. Tutarlılık 3.3. Etkinlik minimum varyans 3.4. Aralık tahmini (güven aralığı)
3 TAHMİNLEYİCİLERİN ÖZELLİKLERİ 3.1. Sapmasızlık 3.. Tutarlılık 3.3. Etkilik miimum varyas 3.4. Aralık tahmii (güve aralığı) İyi bir tahmi edici dağılımı tahmi edilecek populasyo parametresie yakı civarda
İSTATİSTİKSEL TAHMİNLEME VE HİPOTEZ TESTİ
İSTATİSTİKSEL TAHMİNLEME VE HİPOTEZ TESTİ Bu bölümdeki yötemler, bilimeye POPULASYON PARAMETRE değeri hakkıda; TAHMİN yapmaya yöelik ve, KARAR vermekle ilgili, olmak üzere iki grupta icelemektedir. Parametre
TABAKALI ŞANS ÖRNEKLEME
6 TABAKAI ŞA ÖREKEME 6.. Populasyo ortalaması ve populasyo toplamıı tam 6.. Populasyo ortalamasıı ve toplamıı varyası 6... Populasyo ortalamasıı varyası 6... Populasyo toplamıı varyası 6..3. Ortalama ve
= k. Aritmetik Ortalama. Tanımlayıcı İstatistikler TANIMLAYICI İSTATİSTİKLER. Sınıflanmış Seriler İçin Aritmetik Ortalama
TANIMLAYICI İSTATİSTİKLER Taımlayıcı İstatstkler MERKEZİ EĞİLİM ÖLÇÜLERİ Dr. Mehmet AKSARAYLI D.E.Ü. İ.İ.B.F..B.F. EKONOMETRİ BÖLÜMÜ mehmet.aksarayl [email protected] Yer Ölçüler (Merkez Eğlm Ölçüler)
Korelasyon ve Regresyon
Korelasyon ve Regresyon 1 Korelasyon Analz İk değşken arasında lşk olup olmadığını belrlemek çn yapılan analze korelasyon analz denr. Korelasyon; doğrusal yada doğrusal olmayan dye kye ayrılır. Korelasyon
=... 29 İÇİNDEKİLER. E(X) = k... 22. 3.5. Pascal (Negatif Binom) Dağılımı... 22 1. 3.6. Hipergeometrik Dağılım... 22. N y= ... 24
İÇİNDEKİLER SİMGE LİSTESİ... KISALTMA LİSTESİ... v ÇİZELGE LİSTESİ... v ŞEKİL LİSTESİ... v ÖNSÖZ... v ÖZET... x ABSTRACT... x GİRİŞ... BÖLÜM : OLASILIK DAĞILIMLARI VE OLASILIK YOĞUNLUKLARI... BÖLÜM : OLASILIK
Đst201 Đstatistik Teorisi I
Đst20 Đstatstk Teors I DERSĐN TÜRÜ Zorulu DERSĐN DÖNEMĐ Yaz DERSĐN KREDĐSĐ Ulusal Kred: (4, 0, 0 ) 4 KTS: 7 DERSĐN VERĐLDĐĞĐ Bölüm: Đstatstk 200/20 Öğretm Yılı DERSĐN MCI Đstatstğ matematksel temeller
ĐÇI DEKILER 1. TEMEL ĐSTATĐSTĐK KAVRAMLAR VE OTASYO LAR 1
ĐÇI DEKILER Sayfa. TEMEL ĐSTATĐSTĐK KAVRAMLAR VE OTASYO LAR.. Grş.. Đstatstk.3. Populasyo.4. Örek.5. Brm.6. Parametre.7. Değşke 3.8. Ver ve Ver Tpler 3.9. Toplama Sembolü 4 ÇALIŞMA PROBLEMLERĐ 6. VERĐLERĐ
YÖNEYLEM ARAŞTIRMASI III. Dinamik Programlama. Örnek 3: Tıbbi Müdahale Ekiplerinin Ülkelere Dağıtımı
YÖNEYLEM ARAŞTIRMASI III Hafta Determstk Damk Programlama (devam) Damk Programlama Geçe derste küçük ölçekl problemler damk programlamayla yelemel olarak asıl çözüldüğüü gördük. Bu derste, öreklere devam
Tanımlayıcı İstatistikler
Taımlayıcı İstatstkler Br veya brde fazla dağılışı karşılaştırmak ç kullaıla veya ayrıca örek verlerde hareketle frekas dağılışlarıı sayısal olarak düzeleye değerlere taımlayıcı statstkler der. Aalzlede
PARAMETRİK OLMAYAN HİPOTEZ TESTLERİ Kİ-KARE TESTLERİ
PARAMETRİK OLMAYAN HİPOTEZ TESTLERİ Kİ-KARE TESTLERİ 1 Populasyonun nceledğmz br özellğnn dağılışı blenen dağılışlardan brsne, Normal Dağılış, t Dağılışı, F Dağılışı, gb br dağılışa uygun olduğu durumlarda
MERKEZİ EĞİLİM ÖLÇÜLERİ
MERKEZİ EĞİLİM ÖLÇÜLERİ Gözlee ver düzeleerek çzelgelerle, graklerle suulması çoğu kez yeterl olmaz. Geel durumu yasıtacak br takım ölçülere gereksm vardır. Bu ölçüler verler yalızca özlü br bçmde belrtmekle
İSTATİSTİK 2. Hipotez Testi 21/03/2012 AYŞE S. ÇAĞLI. [email protected]
İSTATİSTİK 2 Hipotez Testi 21/03/2012 AYŞE S. ÇAĞLI [email protected] 1 Güven aralığı ve Hipotez testi Güven aralığı µ? µ? Veriler, bir değer aralığında hangi değeri gösteriyor? (Parametrenin gerçek
ÇUKUROVA ÜNİVERSİTESİ FEN BİLİMLERİ ENSTİTÜSÜ YÜKSEK LİSANS TEZİ
ÇUKUROVA ÜNİVERSİTESİ FEN BİLİMLERİ ENSTİTÜSÜ YÜKSEK LİSANS TEZİ Gülesen ÜSTÜNDAĞ BAZI PARAMETRİK OLMAYAN İSTATİSTİKSEL YÖNTEMLERİN İNCELENMESİ İSTATİSTİK ANABİLİM DALI ADANA, 005 ÇUKUROVA ÜNİVERSİTESİ
Hipotez Testleri. Parametrik Testler
Hipotez Testleri Parametrik Testler Hipotez Testide Adımlar Bir araştırma sorusuu belirlemesi Araştırma sorusua dayaa istatistiki hipotezleri oluşturulması (H 0 ve H A ) Hedef populasyoda öreklemi elde
Tek Yönlü Varyans Analizi (ANOVA)
VARYANS ANALİZİ İ örne ortalaması arasında farın önem ontrolü, örne büyülüğüne göre z veya testlernden bryle yapılır. Bu testlerle, den fazla örne ortalamasını brlte test etme ve aralarında farın önem
A= {1,2,3}, B={1,3,5,7}kümeleri veriliyor. A dan B ye tanımlanan aşağıdaki bağıntılardan hangisi fonksiyon değildir?
ÖRNEK 1 : A= {1,,}, B={1,,5,7}kümeleri veriliyor. A da B ye taımlaa aşağıdaki bağıtılarda hagisi foksiyo değildir? A) {(1,), (,5), (,7)} B) {(1,), (1,5), (,1)} C) {(1,1), (,1), (,1)} D) {(1,5), (,1), (,7)}
Zaman Skalasında Box-Cox Regresyon Yöntemi
Dokuz Eylül Üverstes İktsad ve İdar Blmler Fakültes Dergs, Clt:7, Sayı:, Yıl:0, ss.57-70. Zama Skalasıda Bo-Co Regresyo Yötem Atlla Özur İŞÇİ Sbel PAŞALI GÖKTAŞ ATMACA 3 M. Nyaz ÇANKAYA 4 Özet Hata term
Tanımlayıcı İstatistikler (Descriptive Statistics) Dr. Musa KILIÇ
Taımlayıcı İstatstkler (Descrptve Statstcs) Dr. Musa KILIÇ TANIMLAYICI ÖRNEK İSTATİSTİKLERİ YER ÖLÇÜLERİ (Frekas dağılışıı abss eksedek durumuu belrtr.) DEĞİŞİM ÖLÇÜLERİ ( Frekas dağılışıı şekl belrtr.).
BAZI YARIGRUP AİLELERİ ve YAPILARI İÇİN SONLULUK KOŞULLARI ve ETKİNLİK *
BAZI YARIGRUP AİLELERİ ve YAPILARI İÇİN SONLULUK KOŞULLARI ve ETKİNLİK * Fteess Codtos For Soe Segroup Fales ad Costructos ad Effcecy Basr ÇALIŞKAN Mateatk Aabl Dalı Hayrullah AYIK Mateatk Aabl Dalı ÖZET
Bir KANUN ve Bir TEOREM. Büyük Sayılar Kanunu
Br KANUN ve Br TEOREM Büyük Türkçe Sözlük kau Đg. law Doğa olaylarıı oluş edeler ortaya koya ve gelecektek olayları öcede kestrme olaağı vere bağıtı; Newto kauu, Kepler kauları. (BSTS / Gökblm Termler
BÖLÜM 3 YER ÖLÇÜLERİ. Doç.Dr. Suat ŞAHİNLER
BÖLÜM 3 YER ÖLÇÜLERİ İkici bölümde verileri frekas tablolarıı hazırlaması ve grafikleri çizilmesideki esas amaç; gözlemleri doğal olarak ait oldukları populasyo dağılışıı belirlemek ve dağılışı geel özelliklerii
Quality Planning and Control
Qualty Plag ad Cotrol END 3618 KALİTE PLANLAMA VE KONTROL Prof. Dr. Mehmet ÇAKMAKÇI Dokuz Eylül Üverstes Edüstr Mühedslğ Aablm Dalı 1 Qualty Maagemet İstatstksel Proses Kotrol Kotrol Kartları 2 END 3618
Örnek A. Benzer tipteki 40 güç kaynağının dayanma süreleri aşağıdaki gibidir. Genişletilmiş frekans tablosu oluşturunuz;
Öre A. Bezer pe 40 güç ayağıı dayama süreler aşağıda gbdr. Geşlelmş reas ablosu oluşuruuz;, 4,7 3, 3,4 3,3 3, 3,9 4, 3,4 4, 3,8 3,7 3,6 3,8 3,7 3,0,,6 3, 3,,6,9 3, 3,0 3,3 4,3 3, 4, 4,6 3, 3,3 4,4 3,9,9
9. Ders. Đstatistikte Monte Carlo Çalışmaları
9. Ders Đstatstkte Mote Carlo Çalışmaları Đstatstk rasgelelk olgusu çere olay süreç ve sstemler modellemesde özellkle bu modellerde souç çıkarmada ve bu modeller geçerllğ sıamada kullaıla bazı blg ve yötemler
Tanımlayıcı İstatistikler
Taımlayıcı İstatstkler Taımlayıcı İstatstkler br değerler dzs statstksel olarak geel özellkler taımlaya ölçülerdr Taımlayıcı İstatstkler Yer Göstere Ölçüler Yaygılık Ölçüler Yer Göstere Ölçüler Br dağılımı
İSTATİSTİK DERS NOTLARI
Balıkesir Üiversitesi İşaat Mühedisliği Bölümü [email protected] İSTATİSTİK DERS NOTLARI Yrd. Doç. Dr. Umut OKKAN idrolik Aabilim Dalı Balıkesir Üiversitesi İşaat Mühedisliği Bölümü Bölüm 5 Örekleme
Polinom İnterpolasyonu
Polom İterpolasyou (Ara Değer Bulma Br foksyou solu sayıdak, K, R oktalarıda aldığı f (, f (,, f ( değerler bls (foksyou keds blmyor. Bu oktalarda geçe. derecede br tek, P a + a + a + + a (... polumu vardır
ÇOKLU REGRESYON MODELİ, ANOVA TABLOSU, MATRİSLERLE REGRESYON ÇÖZÜMLEMESİ,REGRES-YON KATSAYILARININ YORUMU
6.07.0 ÇOKLU REGRESON MODELİ, ANOVA TABLOSU, MATRİSLERLE REGRESON ÇÖZÜMLEMESİ,REGRES-ON KATSAILARININ ORUMU ÇOKLU REGRESON MODELİ Ekonom ve şletmeclk alanlarında herhang br bağımlı değşken tek br bağımsız
Kİ-KARE TESTLERİ A) Kİ-KARE DAĞILIMI VE ÖZELLİKLERİ
Kİ-KAR TSTLRİ A) Kİ-KAR DAĞILIMI V ÖZLLİKLRİ Örnekleme yoluyla elde edlen rakamların, anakütle rakamlarına uygun olup olmadığı; br başka fadeyle gözlenen değerlern teork( beklenen) değerlere uygunluk gösterp
Asimetri ve Basıklık Ölçüleri Ortalamalara dayanan (Pearson) Kartillere dayanan (Bowley) Momentlere dayanan asimetri ve basıklık ölçüleri
Asmetr ve Basıklık Ölçüler Ortalamalara dayanan (Pearson) Kartllere dayanan (Bowley) omentlere dayanan asmetr ve basıklık ölçüler Yrd. Doç. Dr. Tjen ÖVER ÖZÇELİK [email protected] III. Asmetr ve Basıklık
Kİ KARE ANALİZİ. Doç. Dr. Mehmet AKSARAYLI Ki-Kare Analizleri
Kİ KAR ANALİZİ 1 Doç. Dr. Mehmet AKSARAYLI www.mehmetaksarayl K-Kare Analzler OLAY 1: Genelde br statstk sınıfında, öğrenclern %60 ının devamlı, %30 unun bazen, %10 unun se çok az derse geldkler düşünülmektedr.
Anlık ve Ortalama Güç
ALTERNATİF AK-Dere Analz Bölü-4 AC Güç Anlık Güç Oralaa güç Güç fakörü Akf, reakf güç Kpleks güç Reakf güç düzele (Kpanzasyn aksu akf güç ransfer Anlık Güç, p( (herhang br ank güç p Anlık e Oralaa Güç
ÖRNEKLEME YÖNTEMLERİ ve ÖRNEKLEM GENİŞLİĞİ
03.05.013 ÖRNEKLEME YÖNTEMLERİ ve ÖRNEKLEM GENİŞLİĞİ 1 Nede Örekleme? Öreklemde çalışmak ktlede çalışmakta daha kolaydır. Ktle üzerde çalışmak çok daha masraflı olablr. Çoğu durumda tüm ktleye ulaşmak
Sayısal Türev Sayısal İntegrasyon İnterpolasyon Ekstrapolasyon. Bölüm Üç
Sayısal Türev Sayısal İtegrasyo İterpolasyo Ekstrapolasyo Bölüm Üç Bölüm III 8 III-. Pvot Noktaları Br ( ) oksyouu değer, geellkle ekse üzerdek ayrık oktalarda belrler. Bu oktalara pvot oktaları der. Bu
Bir Kompleks Sayının n inci Kökü.
Prof.Dr.Hüsy ÇAKALLI Br Komplks Sayıı c Kökü. hrhag br sab doğal sayı olmak ür, br komplks sayıı c kökü, c kuvv bu sayıya ş ola komplks sayıdır. ( r(cos s olsu v (cos s dylm. Bu akdrd ( [ (cos s] dr v
Tanımlayıcı İstatistikler
Taımlayıcı İstatstkler Br veya brde azla dağılışı karşılaştırmak ç kullaıla ve ayrıca örek verlerde hareket le rekas dağılışlarıı sayısal olarak özetleye değerlere taımlayıcı statstkler der. Aalzlerde
Doç. Dr. Mehmet AKSARAYLI
Doç. Dr. Mehmet AKSARALI www.mehmetaksarayl İstatstksel araştırmalarda k yada daha çok değşke arasıdak lşk celemes ç e çok kullaıla yötemlerde brs regresyo aalzdr. Değşkeler arasıdak lşk matematksel br
ÖNSÖZ. 2) Evde yapabileceklerinizi yapıp, laboratuar kılavuzundaki yerleri doldurun (!!! işaretli yerler).
ÖNSÖZ Bu laboratuar kılavuzu ĐST 5 Đstatstk Laboratuarı deeyler ç hazırlamıştır. Buradak deeyler ve çalışmaları amacı, şu aa kadar görüle dersler çerçevesde, rasgelelk olgusuu alaşılması ve alatılması
TOBB Ekonomi ve Teknoloji Üniversitesi İKT351 Ekonometri I, Ara Sınavı
TOBB Ekoom ve Tekoloj Üverstes İKT351 Ekoometr I, Ara Sıavı Öğr.Gör.: Yrd. Doç. Dr. A. Talha YALTA Ad, Soyad: Açıklamalar: Bu sıav toplam 100 pua değerde 4 soruda oluşmaktadır. Sıav süres 90 dakkadır ve
12.İSTATİSTİK SORU VE CEVAPLARI
.İSTATİSTİK SORU VE CEVAPLARI.. DESKRİPTİF İSTATİSTİK Soru. Br ş yerde çalışaları maaşlarıa, kşler kıdem derecelere göre aşağıdak şeklde zam yapılmıştır.acaba bu şyerde çalışa şahısları tartılı ortalama
Sürekli Olasılık Dağılım (Birikimli- Kümülatif)Fonksiyonu. Yrd. Doç. Dr. Tijen ÖVER ÖZÇELİK
Sürekl Olasılık Dağılım Brkml- KümülatFonksyonu Yrd. Doç. Dr. Tjen ÖVER ÖZÇELİK [email protected] Sürekl olasılık onksyonları X değşken - ;+ aralığında tanımlanmış br sürekl rassal değşken olsun. Aşağıdak
HİPOTEZ TESTLERİ. Yrd. Doç. Dr. Emre ATILGAN
HİPOTEZ TESTLERİ Yrd. Doç. Dr. Emre ATILGAN Hipotez Nedir? HİPOTEZ: parametre hakkındaki bir inanıştır. Parametre hakkındaki inanışı test etmek için hipotez testi yapılır. Hipotez testleri sayesinde örneklemden
Kİ-KARE TESTLERİ. şeklinde karesi alındığında, Z i. değerlerinin dağılımı ki-kare dağılımına dönüşür.
Kİ-KARE TESTLERİ A) Kİ-KARE DAĞILIMI VE ÖZELLİKLERİ Örnekleme yoluyla elde edlen rakamların, anakütle rakamlarına uygun olup olmadığı; br başka fadeyle gözlenen değerlern teork( beklenen) değerlere uygunluk
ÖLÇÜM, ÖLÇÜM HATALARI ve ANLAMLI RAKAMLAR
ÖLÇÜM, ÖLÇÜM HATALARI ve ANLAMLI RAKAMLAR Ölçme, her deeysel blm temel oluşturur. Fzk blmde de teorler sıaması ç çeştl deeyler tasarlaır ve bu deeyler sırasıda çok çeştl ölçümler yapılır. Br fzksel celğ
İstatistik ve Olasılık
İstatistik ve Olasılık Ders 3: MERKEZİ EĞİLİM VE DAĞILMA ÖLÇÜLERİ Prof. Dr. İrfa KAYMAZ Taım Araştırma souçlarıı açıklamasıda frekas tablosu ve poligou isteile bilgiyi her zama sağlamayabilir. Verileri
Matematik olarak normal dağılım fonksiyonu. 1 exp X 2
Matematk olarak ormal dağılım foksyou f ( ) ep ( ) Şeklde fade edlr. Burada μ artmetk ortalama, σ se stadart sapma değer gösterr ve dağılım foksyou N(μ, σ) otasyou le gösterlr. Bu deklem geometrk görütüsü
Yüksek Mertebeden Sistemler İçin Ayrıştırma Temelli Bir Kontrol Yöntemi
Yüksek Mertebede Sstemler İç Ayrıştırma Temell Br Kotrol Yötem Osma Çakıroğlu, Müjde Güzelkaya, İbrahm Eks 3 Kotrol ve Otomasyo Mühedslğ Bölümü Elektrk Elektrok Fakültes İstabul Tekk Üverstes,34369, Maslak,
X = 11433, Y = 45237,
A.Ü. SBF, IV Malye EKONOMETRİ I ARA SINAVI 4..006 Süre 90 dakkadır..,. ve 3. sorular 0 ar, 4. ve 5. sorular 30 ar pua, ödev 0 pua değerdedr. Tüm formüller ve şlemlerz açıkça gösterz. ) Y = Xβ + u doğrusal
X, R, p, np, c, u ve diğer kontrol diyagramları istatistiksel kalite kontrol diyagramlarının
1 DİĞER ÖZEL İSTATİSTİKSEL KALİTE KONTROL DİYAGRAMLARI X, R, p, np, c, u ve dğer kontrol dyagramları statstksel kalte kontrol dyagramlarının temel teknkler olup en çok kullanılanlarıdır. Bu teknkler ell
ˆp x p p(1 p)/n. Ancak anakütle oranı p bilinmediğinden bu ilişki doğrudan kullanılamaz.
YTÜ-İktisat İstatistik II Aralık Tahmii II 1 ANAKÜTLE ORANININ (p GÜVEN ARALIKLARI (BÜYÜK ÖRNEKLEMLERDE Her birii başarı olasılığı p ola birbiride bağımsız Beroulli deemeside öreklemdeki başarı oraıı ˆp
denklemini sağlayan tüm x kompleks sayılarını bulunuz. denklemini x = 64 = 2 i şeklinde yazabiliriz. Bu son kompleks sayıları için x = 2iy
Ders Sorumlusu: Doç. Dr. Necp ŞİMŞEK Problem. deklem sağlaya tüm kompleks sayılarıı buluu. Çöüm deklem şeklde yaablr. Bu so y kompleks sayıları ç y yaalım. Bu taktrde deklemde, baı y ( ) y elde edlr. Burada
Diziler ve Seriler ÜNİTE. Amaçlar. İçindekiler. Yazar Prof.Dr. Vakıf CAFEROV
Diziler ve Seriler Yazar Prof.Dr. Vakıf CAFEROV ÜNİTE 7 Amaçlar Bu üiteyi çalıştıkta sora; dizi kavramıı taıyacak, dizileri yakısaklığıı araştırabilecek, sosuz toplamı alamıı bilecek, serileri yakısaklığıı
VERİ. gelir (bin) y l ÜNİTE 66 VERİ 2,5 1,5 1,2 KAVRAMSAL ADIM. Sayfa No VERİ... 478 496. σ = 1. İstatistik, Veri ve Grafikler...
ÜİTE KAVRAMSAL ADIM Sayfa o.... 8 9 İstatistik, Veri ve Grafikler.... 8 Merkezi, Eğilim ve Yayılım Ölçüleri... 8 Açıklık, Çeyrekler Açıklığı........................................................ 8 Varyas
EKONOMETRİYE GİRİŞ II ÖDEV 4 ÇÖZÜM
EKONOMETRİYE GİRİŞ II ÖDEV 4 ÇÖZÜM (Örgün e İknc Öğretm çn) 1. 754 hanehalkına at DOMerset sml Excel dosyasında yer alan erler kullanarak tahmnlenen DOM sonuçları: Dependent Varable: CALISANKADIN Sample:
MIT Açık Ders Malzemeleri Bu materyallerden alıntı yapmak veya Kullanım Koşulları hakkında bilgi almak için
MIT Açık Ders Malzemeler http://ocm.mt.edu Bu materyallerden alıntı yapmak veya Kullanım Koşulları hakkında blg almak çn http://ocm.mt.edu/terms veya http://tuba.açık ders.org.tr adresn zyaret ednz. 18.102
MODEL SORU - 1 DEKİ SORULARIN ÇÖZÜMLERİ
1. BÖÜM A DAGAARI MDE SRU - 1 DEİ SRUARIN ÇÖZÜMERİ 1. 5. T x x x uvvet vektörüü degede uzaklaşa ucu ile hız vektörüü ları çakışık olalıdır. Bua göre şeklide. Dal ga la rı ge li ği de ge ok ta sı a ola
İstatistik ve Olasılık
İstatistik ve Olasılık Ders 3: MERKEZİ EĞİLİM VE DAĞILMA ÖLÇÜLERİ Prof. Dr. İrfa KAYMAZ Taım Araştırma souçlarıı açıklamasıda frekas tablosu ve poligou isteile bilgiyi her zama sağlamayabilir. Verileri
Rasgele sayıda bağımlı aktüeryal risklerin beklenen değeri için alt ve üst sınırlar
www.saskcler.org İsaskçler Dergs (8) 64-74 İsaskçler Dergs Rasgele sayıda bağımlı aküeryal rskler beklee değer ç al ve üs sıırlar Fah Tak Kırıkkale Üverses Fe-Edebya Faküles, İsask Bölümü 7-ahşha,Kırıkkale,
BİYOİSTATİSTİK İstatistiksel Tahminleme ve Hipotez Testlerine Giriş Dr. Öğr. Üyesi Aslı SUNER KARAKÜLAH
BİYOİSTATİSTİK İstatistiksel Tahmileme ve Hipotez Testlerie Giriş Dr. Öğr. Üyesi Aslı SUNER KARAKÜLAH Ege Üiversitesi, Tıp Fakültesi, Biyoistatistik ve Tıbbi Bilişim AD. Web: www.biyoistatistik.med.ege.edu.tr
NORMAL DAĞILIM İÇİN UYUM İYİLİĞİ TESTLERİ VE BİR SİMÜLASYON ÇALIŞMASI. Nurcan YILDIRIM YÜKSEK LİSANS TEZİ İSTATİSTİK
NORML DĞILIM İÇİN UYUM İYİLİĞİ TETLERİ VE BİR İMÜLYON ÇLIŞMI Nurca YILDIRIM YÜE LİN TEİ İTTİTİ Gİ ÜNİVERİTEİ FEN BİLİMLERİ ENTİTÜÜ ŞUBT 3 NR Nurca YILDIRIM tarafıda hazırlaa NORML DĞILIM İÇİN UYUM İYİLİĞİ
A İSTATİSTİK. 4. X kesikli rasgele (random) değişkenin moment çıkaran. C) 4 9 Buna göre, X in beklenen değeri kaçtır?
. Br torbada 6 syah, 4 beyaz top vardır. Bu torbadan yerne koyarak top seçlyor. A İSTATİSTİK KPSS/-AB-PÖ/006. Normal dağılıma sahp br rasgele (random) değşkenn varyansı 00 dür. Seçlen topların ksnn de
1. KEYNESÇİ PARA TALEBİ TEORİSİ
DERS NOTU 07 KEYNESÇİ PARA TALEBİ TEORİSİ, LM EĞRİSİ VE PARA TALEBİ FAİZ ESNEKLİĞİ Bugünk dersn çerğ: 1. KEYNESÇİ PARA TALEBİ TEORİSİ... 1 1.1 İŞLEMLER (MUAMELELER) TALEBİ... 2 1.2 ÖNLEM (İHTİYAT) TALEBİ...
Tümevarım_toplam_Çarpım_Dizi_Seri. n c = nc i= 1 n ca i. k 1. i= r n. Σ sembolü ile bilinmesi gerekli bazı formüller : 1) k =1+ 2 + 3+...
MC formülüü doğruluğuu tümevarım ilkesi ile gösterelim. www.matematikclub.com, 00 Cebir Notları Gökha DEMĐR, [email protected] Tümevarım_toplam_Çarpım_Dizi_Seri Tümevarım Metodu : Matematikte kulladığımız
Bilgisayarla Görüye Giriş
Blgsayarla Görüye Grş Ders 8 Görüntü Eşleme Alp Ertürk [email protected] Panorama Oluşturma Görüntüler eşlememz / çakıştırmamız gerekmektedr Panorama Oluşturma İk görüntüden özntelkler çıkar Panorama
T.C. SELÇUK ÜNİVERSİTESİ FEN BİLİMLERİ ENSTİTÜSÜ
T.C. SELÇUK ÜNİVERSİTESİ FEN BİLİMLERİ ENSTİTÜSÜ STRES DAYANIKLILIK GÜVENİLİRLİĞİNİN MASKELİ VERİLERE DAYALI TAHMİNİ Demet SEZER DOKTORA TEZİ İstatstkAablm Dalı Aralık-03 KONYA Her Hakkı Saklıdır TEZ
değerine bu matrisin bir girdisi(elemanı,bileşeni) denir. Bir sütundan (satırdan) oluşan bir matrise bir sütun (satır) matrisi denir.
Bölüm 2 Matrsler aım 2.1 F br csm, m, brer doğal sayı olsu. a F ( 1,.., m; j 1,..., ) olmak üzere, a11... a1 fadese m satır sütuda oluşa (veya m tpde) br F matrs der. am 1... a m Böyle br matrs daha sade
EME 3105 SİSTEM SİMÜLASYONU. Girdi Analizi Prosedürü. Dağılıma Uyum Testleri. Dağılıma Uyumun Kontrol Edilmesi. Girdi Analizi-II Ders 9
EME 3105 1 Girdi Analizi Prosedürü SİSTEM SİMÜLASYONU Modellenecek sistemi (prosesi) dokümante et Veri toplamak için bir plan geliştir Veri topla Verilerin grafiksel ve istatistiksel analizini yap Girdi
Yrd. Doç. Dr. İhsa KARABULUT u daışmalığıda, Begül ARKANT tarafıda hazırlaa bu çalışma 3/07/008 tarhde aşağıdak jür tarafıda oy brlğ le Akara Üverstes
ANKARA ÜNİVERSİTESİ FEN BİLİMLERİ ENSTİTÜSÜ YÜKSEK LİSANS TEZİ BAĞIMLI GÖZLEMLERLE BOOTSTRAP YÖNTEMİ Begül ARKANT İSTATİSTİK ANABİLİM DALI ANKARA 008 Her hakkı saklıdır Yrd. Doç. Dr. İhsa KARABULUT u daışmalığıda,
HİPOTEZ TESTLERİ. İstatistikte hipotez testleri, karar teorisi olarak adlandırılır. Ortaya atılan doğru veya yanlış iddialara hipotez denir.
HİPOTEZ TETLERİ İstatistikte hipotez testleri, karar teorisi olarak adladırılır. Ortaya atıla doğru veya yalış iddialara hipotez deir. Öreği para hilesizdir deildiğide bu bir hipotezdir. Ortaya atıla iddiaya
Deney No: 2. Sıvı Seviye Kontrol Deneyi. SAKARYA ÜNİVERSİTESİ Dijital Kontrol Laboratuvar Deney Föyü Deneyin Amacı
SRY ÜNİVERSİESİ Djtal ontrol Laboratuvar Deney Föyü Deney No: 2 Sıvı Sevye ontrol Deney 2.. Deneyn macı Bu deneyn amacı, doğrusal olmayan sıvı sevye sstemnn belrlenen br çalışma noktası cvarında doğrusallaştırılmış
Genelleştirilmiş Ortalama Fonksiyonu ve Bazı Önemli Eşitsizliklerin Öğretimi Üzerine
Geelleşrlmş Oralama Foksyou ve Bazı Öeml Eşszlkler Öğrem Üzere Gabl ADİLOV, Gülek TINAZTEPE & Serap KEALİ * Öze Armek oralama, Geomerk oralama, Harmok oralama, Kuvadrak oralama ve bular arasıdak lşk vere
2016 YILI I.DÖNEM AKTÜERLİK SINAVLARI RİSK ANALİZİ VE AKTÜERYAL MODELLEME. aşağıdaki seçeneklerden hangisinde verilmiştir? n exp 1.
06 YILI I.DÖNEM AKTÜERLİK SINAVLARI Soru Toplam hasar miktarı S i olasılık ürete foksiyou X x i PS ( t) = E( t ) = exp λi( t ) ise P S(0) aşağıdaki seçeeklerde hagiside verilmiştir? A) 0 B) C) exp λ i
BÖLÜM 4 KLASİK OPTİMİZASYON TEKNİKLERİ (KISITLI OPTİMİZASYON)
BÖÜM 4 KASİK OPTİMİZASYON TEKNİKERİ KISITI OPTİMİZASYON 4. GİRİŞ Öcek bölülerde de belrtldğ b optzaso probleler çoğuluğu kısıtlaıcı oksolar çerektedr. Kısıtlaasız optzaso problelerde optu değer ede oksou
{ 1 3 5} { 2 4 6} OLASILIK HESABI
OLASILIK HESABI Bu derste, uygulamalarda sıkça karşılaşıla, Olasılık Uzaylarıda bazılarıa değieceğiz ve verilmiş bir Olasılık Uzayıda olasılık hesabı yapacağız. Ω. Ω solu sayıda elemaa sahip olsu. Ω {
ÖRNEKLEME TEORİSİ VE TAHMİN TEORİSİ
İSTATİSTİKSEL TAHMİNLEME VE İSTATİSTİKSEL YORUMLAMA TAHMİNLEME SÜRECİ VE YORUMLAMA SÜRECİ ÖRNEKLEME TEORİSİ VE TAHMİN TEORİSİ ÖRNEKLEME VE ÖRNEKLEME ÖRNEKLEME DAĞILIMLARI VE ÖRNEKLEME DAĞILIMLARI Yorumlama
i 01 Ekim 2008 tarihinde yurürlüğe.giren 5510 sayılı Sosyal Sigortalar ve Genel Sağlık
. '" ıo:."'. >.. ~. T.C. BAŞBAKANLIK Sosyal Yardımlaşma ve Dayanışma Genel Müdürlüğü Sayı, Konu :B.02.ı.SYD.0.08.300.5990/8237 :tılkemz Vatandaşı Olmayan ve Muhtaç Durumda Bulunan Yabancılara S\'D Vakınarından
TEZ ONAYI Nur ÇELİK tarafıda hazırlaa ANOVA Modellerde Çarpık Dağılımlar Kullaılarak Dayaıklı İstatstksel Souç Çıkarımı ve Uygulamaları adlı tez çalış
ANKARA ÜNİVERSİTESİ EN BİLİERİ ENSTİTÜSÜ DOKTORA TEZİ ANOVA MODELLERİNDE ÇARPIK DAĞILIAR KULLANILARAK DAYANIKLI İSTATİSTİKSEL SONUÇ ÇIKARIMI VE UYGULAMALARI Nur ÇELİK İSTATİSTİK ANABİLİM DALI ANKARA 0
Tanımlayıcı İstatistikler
TANIMLAYICI İSTATİSTİKLER MERKEZİ EĞİLİM ÖLÇÜLERİ Dr. Mehmet AKSARAYLI D.E.Ü. İ.İ.B.F. EKONOMETRİ BÖLÜMÜ [email protected] Taımlayıcı İstatstkler Yer Ölçüler (Merkez Eğlm Ölçüler) Duyarlı Ortalamalar
4/16/2013. Ders 9: Kitle Ortalaması ve Varyansı için Tahmin
4/16/013 Ders 9: Kitle Ortalaması ve Varyası içi Tahmi Kitle ve Öreklem Öreklem Dağılımı Nokta Tahmii Tahmi Edicileri Özellikleri Kitle ortalaması içi Aralık Tahmii Kitle Stadart Sapması içi Aralık Tahmii
BÖLÜM 5 İKİ VEYA DAHA YÜKSEK BOYUTLU RASGELE DEĞİŞKENLER İki Boyutlu Rasgele Değişkenler
BÖLÜM 5 İKİ VEYA DAHA YÜKSEK BOYUTLU RASGELE DEĞİŞKENLER 5.. İk Boyutlu Rasgele Değşkenler Br deney yapıldığında, aynı deneyle lgl brçok rasgele değşkenn aynı andak durumunu düşünmek gerekeblr. Böyle durumlarda
Tarihli Mühendislik ekonomisi final sınavı. Sınav süresince görevlilere soru sormayın. Başarılar dilerim.
6..27 Tarhl Mühedslk ekooms fal sıavı Süre 9 dakka Sıav Saat: Sıav süresce görevllere soru sormayı. Başarılar dlerm. D: SOYD: ÖĞRENCİ NO: İMZ: Tek ödemel akümüle değer faktörü Tek ödemel gücel değer faktörü
