6. Uygulama. dx < olduğunda ( )

Ebat: px
Şu sayfadan göstermeyi başlat:

Download "6. Uygulama. dx < olduğunda ( )"

Transkript

1 . Uygulama Hatırlatma: Rasgele Değşelerde Belee Değer Kavramı br rasgele değşe ve g : R R br osyo olma üzere, ) esl ve g ) ) < olduğuda D ) sürel ve g ) ) d < olduğuda g belee değer der. c R ve br doğal sayı olma üzere: * * E g g sayısıa, D E g g d sayısıa E c değere c ye göre c momet der. E değere c momet der. * E ( ) değere belee değer der. E E( ) değere varyası der. * Alışagelmş olara br rasgele değşe belee değer µ veya sadece µ, varyası se Var ( ), σ veya sadece σ le de gösterlmetedr. Varyası areöüe stadart sapma der ve br rasgele değşe stadart sapması σ veya sadece σ le gösterlmetedr. değere c çarpımsal momet der. * Var olması halde, M ( t E e ), h < t < h ( h > ) osyoua momet ürete osyou veya momet çıara osyou der. * E ( )( ) ( + ) t * ϕ ( t ) E ( e ), t < R osyoua momet araterst osyou der. Ragele Vetörlerde Belee Değer Kavramı (,..., ) br rasgele vetör ve g : R R ye br osyo olma üzere, esl dağılımlarda,... g,,...,,,..., ) < ve sürel dağılımlarda,,,...,

2 ... g,,...,,,..., d d... d,,..., olması halde,... g,,..., ),,...,,,..., ) E g (,,..., )... g,,..., ),,..., ) d d... d sayısıa g (,,..., ) belee değer der. <,,..., * (,..., ) br rasgele vetör olma üzere,,,..., ç E( )......,,..., ) +,,...,...,,..., d... d d... d,,..., + ) sayısı belee değer olma üzere, d ( ) Cov(, ) E E( ) ( E( )),,,,..., sayısıa le ovaryası ve Cov(, ) Cov(, ) Cov(, ) Cov(, ) Cov(, ) Cov(, ) Σ Cov(, ) Cov(, ) Cov(, ) rasgele değşeler varyas-ovaryas matrs der. matrse,...,. Cov(, ) sayısı σ ( σ Cov(, ) ) le de gösterlmetedr.,,..., ç σ Cov(, ) Var( ) (,..., ) br rasgele vetör ve Cov(, ) ρ,,,,,..., Var( ) Var( ) le arasıda orelasyo atsayısı olma üzere,

3 ρ, ρ, ρ, ρ, R ρ,, ρ matrse,..., rasgele değşeler orelasyo matrs der. * (,..., ) br rasgele vetör olma üzere (var olması halde), t+ t t ) M ( t, t..., t ) E e, h< t, t..., t < h,..., osyoua (,..., ) vetörüü momet çıara osyou veya,..., rasgele değşeler orta dağılımıı momet çıara osyou der. * ϕ (,..., ) br rasgele vetör olma üzere, ( t + t t ) ( t, t..., t ) E e, t, t..., t R,..., osyoua (,..., ) rasgele vetörüü araterst osyou der. Alıştırmalar:. a) a, b R olma üzere, ( a+ b) ) a ) + b ) a+ be( ) E( ) E( a+ b ) ( a+ b) ) d a ) d+ b ) d a+ be( ) E( ) ae + b b) Var( a+ b) E( a+ b E( a+ b) ) E( a+ b ae( ) b) ( ) ( ) E a ae a E E a Var

4 c) Var ( ) E ( E( )) E E( ) + ( E( )) ( E( )) + E E E E E d) Cov(, Y) E[ ( E( ))( Y E( Y ))] E[ Y E( ) Y E( Y ) + E( ) E( Y )] E( Y ) E( E( ) Y) E( E( Y )) + E( E( ) E( Y )) E( Y ) E( ) E( Y) E( Y ) E + E( ) E( Y ) E( Y ) E( ) E( Y) le Y bağımsız olduğuda, Cov(, Y) E( Y ) E( ) E Y E( ) E Y E( ) E Y e) Orta dağılıma sahp ola, Y gb rasgele değşe ç taımlaa, ρ, Y Cov(, Y ) Var( ) Var( Y ) orelasyo atsayısıa, Pearso orelasyo atsayısı der. ρ, Y orelasyo atsayısı le Y rasgele değşeler arasıda leer lş br ölçüsüdür. Şmd, ρ, Y olduğuu spatlayalım. E( ty ) E( ) te Y + t E Y, t R Bua göre, delem dsrmatı E Y t E Y t+ E( ) ( ) E Y E Y E 4 4 ( ) E Y E Y E( ) dır (Schwartz Eştszlğ). Burada, (( )( )) E E Y E Y E Y E (( )( )) E E Y E Y E Y E

5 (( )( )) E E Y E Y E Y E( ) ρ, Y elde edlr. Eştl olması ç gere ve yeter şart cy ( c R ) olması ρ, Y olduğuda le Y rasgele değşelere doğrusal lşszdr veya ısaca ρ orelasyo atsayısı yaı olduğuda lşszdr der., Y lş, - e yaı olduğuda güçlü egat lş vardır der. le Y arasıda güçlü pozt ley bağımsız ρ, Y ( ley doğrusal lşsz) ) a, b, c, d R olma üzere, Cov( a + b, c + d) E a b c d + + E a + b E c + d ace( ) + ade( ) + bce( ) + bd ace( ) E( ) ade( ) bce( ) bd ace( ) ace( ) E( ) accov(, ) g) ρ a+ b, c + b Cov( a + b, c + b) Var( a + b) Var( c + b) accov(, ) a Var( ) c Var( ) ac a c ρ, h),..., rasgele değşeler belee değerler ve ovaryasları mevcut olsu. a, a,..., a R olma üzere, E a a E( )

6 Var a a a Cov a Var + a a Cov (, ) ( ) (, ) +,..., rasgele değşeler bağımsız olduğuda ovaryaslar sıır olacağıda, Var a a Var( ) Var Var( ) Var( ± ) Var( ) + Var( ) ve a,,,..., ç Var Var( ),..., rasgele değşeler ayı ( µ ) ortalamalı, ayı ( σ ) varyaslı ve bağımsız oldularıda, σ E( ) E µ, Var( ) Var. Br rasgele değşe momet ürete osyou varsa, d M t E,, dt t

7 Belee değer şlec (operatörü) E, sürel rasgele değşelerde tegral, esl rasgele değşelerde toplam olma üzere, aşağıda E le d dt türev alma şlemler yer değştrebleceğ varsayılsı. d d t d t t M ( t) E( e ) E e E ( e ),,,,... dt dt dt olma üzere, Bezer yolda, elde edlr. d t M t E e E,,,,... dt t t M ( t, t..., t ),..., t M ( t, t..., t ),..., t t t, t,..., t t, t,..., t E ( ) E,..., rasgele değşeler bağımsız olduğuda,,..., t t ( t ) t t t ) M ( t, t..., t ) E e e... e E e E e... E e M ( t ) M ( t )... M ( t ),..., rasgele değşeler bağımsız ve ayı dağılımlı (ayı ortalamalı ve ayı varyaslı) olursa, olduça olay olmata soucuda ve ( ) M ( t) M ( t) M ( t) dağılımı ve rasgele değşeler dağılımlarıı elde etme t t t M ( t) M ( t) M M M soucuda dağılımı buluablr.

8 . rasgele değşe olasılı osyou, e λ λ,,,, ( λ > )! e λ λ olsu.,,,.. ç < olduğuda bütü mometler var! belee değer, λ λ e λ e λ E( )!! λ λ λ λ λe λe )!! λ + adesde aydalaara, elde edlr. Burada, buluur. λ ( ) e λ E E + E + λ! ( ) λ e λ + λ! λ + λ e λ + λ λ! ) λ Var E E λ rasgele değşe momet ürete osyou, λ λ t t t e λ e ( e λ) λ ( e λ) λ M ( t) e e e e!!! e t λ t λ ( e ) e, t R belee değer, dm ( t) t λ( t ) E( ) t λe e t λ dt c momet,

9 ve varyası, E d M ( t) t dt [ λete + ( λe ) e ] λ+ λ λ( e t ) ( t t λ e ) t Var( ) E( ) ( E ) λ + λ ( λ ) λ olara elde edlr. Öreğ, br rasgele değşe momet ürete osyou, t ( et ) e M ( t) e! se olasılı osyou, e ),,,,! 4. Br güde parça şleye br tora maası ç usursuz olara şledğ parçaları sayısı olsu. olasılı osyouu 4 ) 4,,,,,, ) olduğu bls. Br güde üretle usursuz parça sayısıı belee değer (ortalaması), 4 4 E( ) ) varyası, Var( ) E ( 4) 4) ) 4 4 ( 4) + ( 4) + ( 4) + ( 4) + (4 4) + ( 4) 4. Đşlememş parçaı alış değer a, şleme masraı b, usurlu şlemş parçaı hurda değer c ve usursuz şlemş parçaı satış değer d olma üzere gülü azacı belee değer edr? K rasgele değşe gülü azacı gösterme üzere, olara ade edleblr. K a + b + c + d ( c a b) + ( d c)

10 E( K) E ( c a b) + ( d c) ( c a b) + ( d c) E( ) Var( ) Var ( c a b) + ( d c) ( d c) Var( ) olma üzere, öreğ şlememş parçaı alış değer a TL, şleme masraı b TL, usurlu şlemş parçaı hurda değer c TL ve usursuz şlemş parçaı satış değer d TL olduğuda, K ( c a b) + ( d c) 9 + E( K) 9 + E( ) Var 4 Var( ) 7 σ 7. Gülü azacı belee değer, başa br ade le ortalama gülü azaç TL dr. Gülü azacı olasılı dağılımı, P( ) P( K ) olma üzere, bazı gülerde TL azaç olduğu gb, 9, ya da TL ayıp söz ousu olablr..,, rasgele değşeler orta olasılı osyou,,,,,, ) + ), 4,,, olsu. E( ),, ) + ),, 4 + ) ( ) olma üzere, bu belee değer maral dağılımıda da hezaplayablrz. maral olasılı osyou, ) + ),, 4 ve olasılı tablosu, olup ) / /

11 E( ) + E( ) değer hesaplayalım. E( ),, ) + ),, 4 + ) ( ) olma üzere, bu değer (, ) vetörüü maral dağılımıda ( le maral orta dağılımıda) da bulablrz. le maral orta olasılı osyou,,, ),,,, ) + ) 4, (+ ), 4,, olma üzere, olasılı tablosu ) P( ) /4 /4 7/4 /4 /4 /4 4/4 /4 ) P( ) 9/4 /4 /4, E( ), ) (, ) + (,) + (, ) + (, ),,,, + (,) + (, ),, Tabloda görüldüğü gb, maral dağılımıı olasılı tablosu, ) 9/4 /4 /4

12 9 7 E( ) E( ) Var( ) E( ) ( E( )) 4 4 Şmd,, rasgele değşeler varyas-ovaryas matrs hesaplamaya çalışalım. Đl öce şerl maral dağılımları elde edelm. Yuarıda, le maral orta olasılı osyou,,, ),,,, ) + ) 4, (+ ), 4,, olma üzere, olasılı tablosu ) P( ) /4 /4 7/4 /4 /4 /4 4/4 /4 ) P( ) 9/4 /4 /4 olduğuu bulmuştu. Ayrıca, E( ), E( ), Var( ) E( ), E( ), Var( ) E( ), Cov(, ) E( ) E E( ) 9 değerler böyle br tabloda olayca hesaplayablrz. Bezer şelde, le ü maral orta olasılı osyou,,, ),,,, ) + ) 4 + ),,,,, olasılı tablosu, ) P( ) / / / / / / 4/ 9/ ) P( ) / / 7/ ve

13 E( ), E( ), E( ), Var( ) E( ), Cov(, ) E( ) E( ) E( ) 7 le ü maral orta olasılı osyou, olasılı tablosu,, ),, ) + ),,, 4 ( + ),,,, ) P( ) / 4/ / / / 9/ ) P( ) / / ve 4 E( ), E( ), E( ) 4 Cov(, ) E( ) E E( ),, rasgele değşeler varyas-ovaryas matrs Cov(, ) Cov(, ) Cov(, ) Σ Cov(, ) Cov(, ) Cov(, ) Cov(, ) Cov(, ) Cov(, ) Var( ) Cov(, ) Cov(, ) Cov(, ) Var( ) Cov(, ) Cov(, ) Cov(, ) Var( )

14 ve oralasyo matrs, R olara elde edlr.. (, Y ) rasgele vetörüü dağılımı, başa br ade le, Y rasgele değşeler orta dağılımı aşağıda olasılı tablosu le verls. y ) / / / / / / / / / / / Y ( y ) / / / olma üzere,, Y,, (),, Y, Y Y () olduğuda le Y bağımsız değldr. Faat, E( ) 4, E( ), Var( ) E( Y ) 4, E( Y ), Var( Y ) E( Y ), Cov(, Y) E( Y ) E( ) E( Y) ρ, Y Görüldüğü gb orelasyo atsayısı, Y ρ ola rasgele değşe bağımsız olmayablr.

15 Korelasyo atsayısıı büyülüğüü rdeleyelm y ) / / / / / / Y ( y ) / / / E( ), E( Y ), 4 E( Y ), 4 E( ), Var( ) 4 E( Y ), Var( Y ) Cov(, Y) E( Y ) E( ) E( Y ) ρ, Y Görüldüğü gb, P( Y) P( Y ), ya le Y arasıda tam br leer lş olma üzere, orelasyo atsayısı ρ, Y le Y rasgele değşeler arasıda pozt br lş söz ousudur. Rasgele değşelerde br büyü değer aldığıda dğer de büyü, br üçü değer aldığıda dğer de üçü değer almata y ) / / / / / / / / Y ( y ) / / / olması durumuda, E( ) 4, E( ), Var( ) E( Y ) 4, E( Y ), Var( Y ) E( Y ), Cov(, Y) E( Y ) E( ) E( Y ) ρ, Y. % le Y rasgele değşeler arasıda olduça güçlü pozt br leer lş söz ousudur.

16 y ) / / / / / / / / Y ( y ) / / / olması durumuda, E( ) 4, E( ), Var( ) E( Y ) 4, E( Y ), Var( Y ) E( Y ), Cov(, Y) E( Y ) E( ) E( Y ) ρ, Y. % le Y rasgele değşeler arasıda olduça güçlü egat br leer lş söz ousudur. y ) / / / / / / Y ( y ) / / / olması durumuda, 4 E( ), E( ), Var( ) 4 E( Y ), E( Y ), Var( Y ) E( Y ), Cov(, Y) E( Y ) E( ) E( Y ) ρ, Y le Y rasgele değşeler arasıda tam egat br leer lş söz ousudur.

17 olması durumuda, y ) / / / / / / / / / / Y ( y ) / / / E( ), E( Y ), 7 E( Y ), ρ, Y 4 E( ), Var( ) 4 E( Y ), Var( Y ) Cov(, Y) E( Y ) E( ) E( Y ).-% le Y rasgele değşeler arasıda zayı, egat br leer lş söz ousudur. Maral dağılımları ayı ola yuarıda olasılı dağılımlarıı, orelasyo atsayıları le brlte br ez daha göz öüe alalım. y / / / ρ, Y y / / / ρ, Y y / / / / / ρ, Y %

18 y / / / / / ρ, Y % y / / / / / / / ρ, Y - % y / / / / / / / / ρ, Y ve y ) 9/4 /4 9/4 / /4 4/4 /4 / 9/4 /4 9/4 / Y ( y ) / / / olması durumuda le Y rasgele değşeler bağımsız (orta olasılılar maraller çarpımı) olduğuda ρ, Y 7. (, Y, Z ) rasgele vetörüü olasılı yoğulu osyou, z + y) e, < <, < y <, z >, Y, Z, y, z), d. y. olsu. ve (, Y, Z ) vetörüü varyas-ovaryas matrs le orelasyo matrs bulalım. maral olasılı yoğulu osyou, z ) + y) e dydz z + y) + y) dy e dz + y) dy y+, <y< y

19 ve 7 E( ) ) d ( + ) d + 4 E( ) ) d + ) d Var( ) E( ) ( E( )) 44 Y maral olasılı yoğulu osyou, z ( y) + y) e ddz Y ve z + y) + y) dy e dz + y) d y+, << y y 7 E( Y ) yy ( y) dy y( y+ ) dy + Y y 4 y y E( Y ) y ( y) dy y ( y+ ) dy Var( Y) E( Y ) ( E( Y )) 44 Z maral olasılı yoğulu osyou, y z z ( z) + y) e ddy e + y) ddy Z z y) + z z e dy e y + dy e, z> Z rasgele değşe θ parametrel üstel dağılıma sahptr ve E( Z ) Var( Z )

20 le Y orta maral olasılı yoğulu osyou, olma üzere, z, Y, y) + y) e dz + y, < <, < y<, y, z), y) ( z), Y, Z, Y Z Z rasgele değşe le Y rasgele değşelerde bağımsız Bua göre, Cov(, Z) Cov( Y, Z) Cov(, Y) hesabıa gelce, olma üzere, E( Y) y, y) ddy, Y y+ y) ddy y ( y ) + dy y y y y + dy ( + ) y 7 7 Cov( Y ) E( Y ) E( ) E( Y ) 4 (, Y, Z ) rasgele vetörüü varyas-ovaryas matrs Var( ) Cov(, Y ) Cov(, Z) 44 4 Cov( Y, ) Var( Y ) Cov( Y, Z) Σ Cov( Z, ) Cov( Z, Y ) Var( Z) 4 44 ve oralasyo matrs,

21 R olara elde edlr.. a),..., rasgele değşeler bağımsız ve ayı λ parametrel Posso dağılıma sahp olsu. olma üzere, M t e λ,,..., ( e ) t, λ( et ) λ ( et ) M ( t) M ( t) ( e ) e rasgele değşe parametres λ ola Posso dağılımıa sahptr. b),..., rasgele değşeler bağımsız ve ayı θ parametrel üstel dağılıma sahp olsu. olma üzere, M t t ( θ ),,,..., ( θ ) M ( t) M ( t) ( t) ( θt) rasgele değşe parametreler Γ( θ, ) M t t θ t M ( θ ) ( t) α ve β θ ola gamma dağılımıa sahptr.

22 θ Γ ( α, β ) c),..., rasgele değşeler bağımsız, ayı µ ortalamalı ve ayı σ varyaslı Nµσ (, ) ormal dağılımıa sahp olsu. olma üzere, µ+ t σ t M ( t) e,,,..., + σ t t+ σ t t M ( t) M ( t) e e µ µ N( µ, σ ) t σ σ t t t t µ + µ + M ( t) M e e σ N( µ, ) 9.,..., rasgele değşeler bağımsız ve ayı b(, p ) Beroull dağılımıa sahp olduğuda, Y b(, p) rasgele değşe aldığı değerler, y,,,..., olma üzere olasılı osyou, y y Y ( y) P( Y y) P( y) p q, y,,,..., y Y rasgele değşe aldığı değerler, değerler alması olasılıları ) P( ) P( ) P( y) p y q y,,,,,..., y,,,,..., bu

23 . a) Bell br tür pl ç dayama süres N( µ ( saat), σ ) dağılımıa sahp olduğu bls. Bu dağılımı olasılı yoğulu osyouu grağ, Bu pller arasıda rasgele seçle pl dayama süreler ortalamasıı göz öüe alalım. tae pl dayama süreler,..., rasgele değşeler olma üzere, bu rasgele değşeler her br N ( µ, σ ) dağılımıa sahptr. Ayrıca,,..., ler bağımsız se, rasgele değşe olasılı yoğulu osyouu grağ, Nµ (, σ ) (, ) rasgele değşe olasılı yoğulu osyouu grağ,

24 b) Bell br tür eletro parça ç dayama süres ayı θ yıl ortalama le üstel dağılıma sahp olduğu bls. Bu dağılımı olasılı yoğulu osyouu grağ, Bu parçalar arasıda rasgele seçle taes dayama süreler ortalamasıı göz öüe alalım. tae parçaı dayama süreler,..., rasgele değşeler olma üzere, bu rasgele değşeler her br θ parametrel üstel dağılıma sahptr. Ayrıca,,..., ler bağımsız se, Γ ( α, β ) rasgele değşe olasılı yoğulu osyouu grağ, Γ ( α, β ) rasgele değşe olasılı yoğulu osyouu grağ,

25

2016 YILI I.DÖNEM AKTÜERLİK SINAVLARI RİSK ANALİZİ VE AKTÜERYAL MODELLEME. aşağıdaki seçeneklerden hangisinde verilmiştir? n exp 1.

2016 YILI I.DÖNEM AKTÜERLİK SINAVLARI RİSK ANALİZİ VE AKTÜERYAL MODELLEME. aşağıdaki seçeneklerden hangisinde verilmiştir? n exp 1. 06 YILI I.DÖNEM AKTÜERLİK SINAVLARI Soru Toplam hasar miktarı S i olasılık ürete foksiyou X x i PS ( t) = E( t ) = exp λi( t ) ise P S(0) aşağıdaki seçeeklerde hagiside verilmiştir? A) 0 B) C) exp λ i

Detaylı

Tahmin Edicilerin ve Test Đstatistiklerinin Simülasyon ile Karşılaştırılması

Tahmin Edicilerin ve Test Đstatistiklerinin Simülasyon ile Karşılaştırılması . Ders ĐSTATĐSTĐKTE SĐMÜLASYON Tahm Edcler ve Test Đstatstkler Smülasyo le Karşılaştırılması Đstatstk rasgelelk olgusu çere olay süreç ve sstemler modellemesde özellkle bu modellerde souç çıkarmada ve

Detaylı

7. Ders. Bazı Kesikli Olasılık Dağılımları

7. Ders. Bazı Kesikli Olasılık Dağılımları Hatırlatma: ( Ω, U, P) bir olasılık uzayı ve 7. Ders Bazı Kesikli Olasılık Dağılımları : Ω ω R ( ω) foksiyou Borel ölçülebilir, yai B B içi { ω Ω : ( ω) B } U oluyorsa foksiyoua bir Rasgele Değişke deir.

Detaylı

TAHMİNLEYİCİLERİN ÖZELLİKLERİ Sapmasızlık 3.2. Tutarlılık 3.3. Etkinlik minimum varyans 3.4. Aralık tahmini (güven aralığı)

TAHMİNLEYİCİLERİN ÖZELLİKLERİ Sapmasızlık 3.2. Tutarlılık 3.3. Etkinlik minimum varyans 3.4. Aralık tahmini (güven aralığı) 3 TAHMİNLEYİCİLERİN ÖZELLİKLERİ 3.1. Sapmasızlık 3.. Tutarlılık 3.3. Etkilik miimum varyas 3.4. Aralık tahmii (güve aralığı) İyi bir tahmi edici dağılımı tahmi edilecek populasyo parametresie yakı civarda

Detaylı

Normal Dağılımlı Bir Yığın a İlişkin İstatistiksel Çıkarım

Normal Dağılımlı Bir Yığın a İlişkin İstatistiksel Çıkarım Normal Dağılımlı Bir Yığı a İlişi İstatistisel Çıarım Bir üretici edi ürüleride, piyasadai 3,5 cm li vidalarda yalıca boyları 3,4 cm ile 3,7 cm aralığıda olaları ullaabilmetedir. Üretici, piyasadai bu

Detaylı

Bağımsızlık özelliğinden hareketle Ortak olasılık fonksiyonu (sürekli ise

Bağımsızlık özelliğinden hareketle Ortak olasılık fonksiyonu (sürekli ise YTÜ-İktisat İstatistik II Örekleme ve Öreklem Dağılımları BASİT RASSAL ÖRNEKLEME N tae ese arasıda taelik bir öreklem seçilmesii istediğii düşüelim. eseli olaaklı her öreklemi seçilme şasıı eşit kıla seçim

Detaylı

İSTATİSTİKSEL TAHMİN. Prof. Dr. Levent ŞENYAY VIII - 1 İSTATİSTİK II

İSTATİSTİKSEL TAHMİN. Prof. Dr. Levent ŞENYAY VIII - 1 İSTATİSTİK II 8 İSTATİSTİKSEL TAHMİN 8.. İstatistiksel tahmileyiciler 8.. Tahmileyicileri Öellikleri 8... Sapmasılık 8... Miimum Varyaslılık 8..3. Etkilik 8.3. Aralık Tahmii 8.4. Tchebysheff teoremi Prof. Dr. Levet

Detaylı

Tahmin Edici Elde Etme Yöntemleri

Tahmin Edici Elde Etme Yöntemleri 6. Ders Tahmi Edici Elde Etme Yötemleri Öceki derslerde ve ödevlerde U(0; ) ; = (0; ) da¼g l m da, da¼g l m üst s r ola parametresi içi tahmi edici olarak : s ra istatisti¼gi ve öreklem ortalamas heme

Detaylı

Bir KANUN ve Bir TEOREM. Büyük Sayılar Kanunu

Bir KANUN ve Bir TEOREM. Büyük Sayılar Kanunu Br KANUN ve Br TEOREM Büyük Türkçe Sözlük kau Đg. law Doğa olaylarıı oluş edeler ortaya koya ve gelecektek olayları öcede kestrme olaağı vere bağıtı; Newto kauu, Kepler kauları. (BSTS / Gökblm Termler

Detaylı

Örnek A. Benzer tipteki 40 güç kaynağının dayanma süreleri aşağıdaki gibidir. Genişletilmiş frekans tablosu oluşturunuz;

Örnek A. Benzer tipteki 40 güç kaynağının dayanma süreleri aşağıdaki gibidir. Genişletilmiş frekans tablosu oluşturunuz; Öre A. Bezer pe 40 güç ayağıı dayama süreler aşağıda gbdr. Geşlelmş reas ablosu oluşuruuz;, 4,7 3, 3,4 3,3 3, 3,9 4, 3,4 4, 3,8 3,7 3,6 3,8 3,7 3,0,,6 3, 3,,6,9 3, 3,0 3,3 4,3 3, 4, 4,6 3, 3,3 4,4 3,9,9

Detaylı

ŞANS KISITLI STOKASTİK PROGRAMLAMA PROBLEMLERİNİN DETERMİNİSTİK EŞİTLİKLERİ Kumru Didem ATALAY 1, Ayşen APAYDIN 2 ÖZ

ŞANS KISITLI STOKASTİK PROGRAMLAMA PROBLEMLERİNİN DETERMİNİSTİK EŞİTLİKLERİ Kumru Didem ATALAY 1, Ayşen APAYDIN 2 ÖZ ANADOLU ÜNİVERSİTESİ BİLİM VE TEKNOLOJİ DERGİSİ B Teor Blmler ANADOLU UNIVERSITY JOURNAL OF SCIENCE AND TECHNOLOGY B Theoretcal Sceces Clt/Vol.:-Sayı/No: : -8 (0 ŞANS KISITLI STOKASTİK PROGRAMLAMA PROBLEMLERİNİN

Detaylı

Parametrik Olmayan İstatistik Çözümlü Sorular - 2

Parametrik Olmayan İstatistik Çözümlü Sorular - 2 Parametrk Olmaya İstatstk Çözümlü Sorular - Soru Böbrek hastalarıa at Kreat (KRT) değerlere lşk br araştırma yapılmak stemektedr. Buu ç rasgele seçle hastaya at Kreat değerler aşağıdak gb elde edlmştr

Detaylı

Polinom İnterpolasyonu

Polinom İnterpolasyonu Polom İterpolasyou (Ara Değer Bulma Br foksyou solu sayıdak, K, R oktalarıda aldığı f (, f (,, f ( değerler bls (foksyou keds blmyor. Bu oktalarda geçe. derecede br tek, P a + a + a + + a (... polumu vardır

Detaylı

ANKARA ÜNİVERSİTESİ FEN BİLİMLERİ ENTİTÜSÜ DOKTORA TEZİ SONLU KARMA DAĞILIMLARDA PARAMETRE TAHMİNİ. İnci AÇIKGÖZ İSTATİSTİK ANABİLİM DALI ANKARA 2007

ANKARA ÜNİVERSİTESİ FEN BİLİMLERİ ENTİTÜSÜ DOKTORA TEZİ SONLU KARMA DAĞILIMLARDA PARAMETRE TAHMİNİ. İnci AÇIKGÖZ İSTATİSTİK ANABİLİM DALI ANKARA 2007 ANKARA ÜNİVERSİTESİ FEN BİLİMLERİ ENTİTÜSÜ DOKTORA TEZİ SONLU KARMA DAĞILIMLARDA PARAMETRE TAHMİNİ İ AÇIKGÖZ İSTATİSTİK ANABİLİM DALI ANKARA 7 Her haı salıdır ÖZET Dotora Tez SONLU KARMA DAĞILIMLARDA PARAMETRE

Detaylı

Giriş. Değişkenlik Ölçüleri İSTATİSTİK I. Ders 5 Değişkenlik ve Asimetri Ölçüleri. Değişkenlik. X i ve Y i aşağıdaki gibi iki seri verilmiş olsun:

Giriş. Değişkenlik Ölçüleri İSTATİSTİK I. Ders 5 Değişkenlik ve Asimetri Ölçüleri. Değişkenlik. X i ve Y i aşağıdaki gibi iki seri verilmiş olsun: Grş İSTATİSTİK I Ders Değşkelk ve Asmetr Ölçüler Ortalamalar, serler karşılaştırılmasıda her zama yeterl ölçüler değldr. Ayı ortalamayı sahp serler arklı dağılım göstereblrler. Bu edele serler karşılaştırılmasıda,

Detaylı

4/16/2013. Ders 9: Kitle Ortalaması ve Varyansı için Tahmin

4/16/2013. Ders 9: Kitle Ortalaması ve Varyansı için Tahmin 4/16/013 Ders 9: Kitle Ortalaması ve Varyası içi Tahmi Kitle ve Öreklem Öreklem Dağılımı Nokta Tahmii Tahmi Edicileri Özellikleri Kitle ortalaması içi Aralık Tahmii Kitle Stadart Sapması içi Aralık Tahmii

Detaylı

12. Ders Büyük Sayılar Kanunları. Konuya geçmeden önce DeMoivre-Stirling formülünü ve DeMoivre-Laplace teoremini hatırlayalım. DeMoivre, genel terimi,

12. Ders Büyük Sayılar Kanunları. Konuya geçmeden önce DeMoivre-Stirling formülünü ve DeMoivre-Laplace teoremini hatırlayalım. DeMoivre, genel terimi, . Ders Büyü Sayılar Kauları Kouya geçmede öce DeMoivre-Stirlig formülüü ve DeMoivre-Laplace teoremii hatırlayalım. DeMoivre, geel terimi, a!,,, 3,... e ola dizii yaısa olduğuu göstermiş, aca limitii bulamamış.

Detaylı

İSTATİSTİK 2. Tahmin Teorisi 07/03/2012 AYŞE S. ÇAĞLI. aysecagli@beykent.edu.tr

İSTATİSTİK 2. Tahmin Teorisi 07/03/2012 AYŞE S. ÇAĞLI. aysecagli@beykent.edu.tr İSTATİSTİK 2 Tahmi Teorisi 07/03/2012 AYŞE S. ÇAĞLI aysecagli@beyket.edu.tr İstatistik yötemler İstatistik yötemler Betimsel istatistik Çıkarımsal istatistik Tahmi Hipotez testleri Nokta tahmii Aralık

Detaylı

UYUM ĐYĐLĐĞĐ TESTĐ. 2 -n olup. nin dağılımı χ dir ve sd = (k-1-p) dir. Burada k = sınıf sayısı, p = tahmin edilen parametre sayısıdır.

UYUM ĐYĐLĐĞĐ TESTĐ. 2 -n olup. nin dağılımı χ dir ve sd = (k-1-p) dir. Burada k = sınıf sayısı, p = tahmin edilen parametre sayısıdır. UYUM ĐYĐLĐĞĐ TESTĐ Posson: H o: Ver Posson dağılıma sahp br ktleden gelmektedr. H a : Ver Posson dağılıma sahp br ktleden gelmemektedr. Böyle br hpotez test edeblmek çn, önce Posson dağılım parametres

Detaylı

= k. Aritmetik Ortalama. Tanımlayıcı İstatistikler TANIMLAYICI İSTATİSTİKLER. Sınıflanmış Seriler İçin Aritmetik Ortalama

= k. Aritmetik Ortalama. Tanımlayıcı İstatistikler TANIMLAYICI İSTATİSTİKLER. Sınıflanmış Seriler İçin Aritmetik Ortalama TANIMLAYICI İSTATİSTİKLER Taımlayıcı İstatstkler MERKEZİ EĞİLİM ÖLÇÜLERİ Dr. Mehmet AKSARAYLI D.E.Ü. İ.İ.B.F..B.F. EKONOMETRİ BÖLÜMÜ mehmet.aksarayl aksarayl@deu.edu.tr Yer Ölçüler (Merkez Eğlm Ölçüler)

Detaylı

ˆp x p p(1 p)/n. Ancak anakütle oranı p bilinmediğinden bu ilişki doğrudan kullanılamaz.

ˆp x p p(1 p)/n. Ancak anakütle oranı p bilinmediğinden bu ilişki doğrudan kullanılamaz. YTÜ-İktisat İstatistik II Aralık Tahmii II 1 ANAKÜTLE ORANININ (p GÜVEN ARALIKLARI (BÜYÜK ÖRNEKLEMLERDE Her birii başarı olasılığı p ola birbiride bağımsız Beroulli deemeside öreklemdeki başarı oraıı ˆp

Detaylı

Sayısal Türev Sayısal İntegrasyon İnterpolasyon Ekstrapolasyon. Bölüm Üç

Sayısal Türev Sayısal İntegrasyon İnterpolasyon Ekstrapolasyon. Bölüm Üç Sayısal Türev Sayısal İtegrasyo İterpolasyo Ekstrapolasyo Bölüm Üç Bölüm III 8 III-. Pvot Noktaları Br ( ) oksyouu değer, geellkle ekse üzerdek ayrık oktalarda belrler. Bu oktalara pvot oktaları der. Bu

Detaylı

3. Ders Parametre Tahmini Tahmin Edicilerde Aranan Özellikler

3. Ders Parametre Tahmini Tahmin Edicilerde Aranan Özellikler 3. Ders Parametre Tahmii Tahmi Edicilerde Araa Özellikler Gerçek düyada rasgelelik olgusu içere bir özellik ile ilgili ölçme işlemie karş l k gele X rasgele de¼gişkeii olas l k (yo¼guluk) foksiyou, F ff(;

Detaylı

BİYOİSTATİSTİK İstatistiksel Tahminleme ve Hipotez Testlerine Giriş Dr. Öğr. Üyesi Aslı SUNER KARAKÜLAH

BİYOİSTATİSTİK İstatistiksel Tahminleme ve Hipotez Testlerine Giriş Dr. Öğr. Üyesi Aslı SUNER KARAKÜLAH BİYOİSTATİSTİK İstatistiksel Tahmileme ve Hipotez Testlerie Giriş Dr. Öğr. Üyesi Aslı SUNER KARAKÜLAH Ege Üiversitesi, Tıp Fakültesi, Biyoistatistik ve Tıbbi Bilişim AD. Web: www.biyoistatistik.med.ege.edu.tr

Detaylı

İşlenmemiş veri: Sayılabilen yada ölçülebilen niceliklerin gözlemler sonucu elde edildiği hali ile derlendiği bilgiler.

İşlenmemiş veri: Sayılabilen yada ölçülebilen niceliklerin gözlemler sonucu elde edildiği hali ile derlendiği bilgiler. OLASILIK VE İSTATİSTİK DERSLERİ ÖZET NOTLARI İstatistik: verileri toplaması, aalizi, suulması ve yorumlaması ile ilgili ilkeleri ve yötemleri içere ve bu işlemleri souçlarıı probabilite ilkelerie göre

Detaylı

YER ÖLÇÜLERİ. Yer ölçüleri, verilerin merkezini veya yığılma noktasını belirleyen istatistiklerdir.

YER ÖLÇÜLERİ. Yer ölçüleri, verilerin merkezini veya yığılma noktasını belirleyen istatistiklerdir. YER ÖLÇÜLERİ Yer ölçüler, verler merkez veya yığılma oktasıı belrleye statstklerdr. Grafkler bze verler yığılma oktaları hakkıda ö blg vermede yardımcı olurlar. Acak bu değerler gerçek değerler değldr,

Detaylı

TOBB Ekonomi ve Teknoloji Üniversitesi İKT351 Ekonometri I, Ara Sınavı

TOBB Ekonomi ve Teknoloji Üniversitesi İKT351 Ekonometri I, Ara Sınavı TOBB Ekoom ve Tekoloj Üverstes İKT351 Ekoometr I, Ara Sıavı Öğr.Gör.: Yrd. Doç. Dr. A. Talha YALTA Ad, Soyad: Açıklamalar: Bu sıav toplam 100 pua değerde 4 soruda oluşmaktadır. Sıav süres 90 dakkadır ve

Detaylı

İki veri setinin yapısının karşılaştırılması

İki veri setinin yapısının karşılaştırılması İk ver set yapısıı karşılaştırılması Dağılım: 6,6,6 Ortalama: 6 Medya: 6 Mod: 6 td. apma: 0 Dağılım: 0,6,1 Ortalama: 6 Medya: 6 Mod: çoklu mod td: apma: 6 Amaç: Görüe Ötese Bakablmek Verler değşkelk durumuu

Detaylı

T.C. SELÇUK ÜNİVERSİTESİ FEN BİLİMLERİ ENSTİTÜSÜ AZALAN BOZULMA ORANINA SAHİP ÜÇ PARAMETRELİ YENİ BİR YAŞAM ZAMAN DAĞILIMI

T.C. SELÇUK ÜNİVERSİTESİ FEN BİLİMLERİ ENSTİTÜSÜ AZALAN BOZULMA ORANINA SAHİP ÜÇ PARAMETRELİ YENİ BİR YAŞAM ZAMAN DAĞILIMI T.C. SELÇUK ÜNİVERSİTESİ FEN BİLİMLERİ ENSTİTÜSÜ AZALAN BOZULMA ORANINA SAHİP ÜÇ PARAMETRELİ YENİ BİR YAŞAM ZAMAN DAĞILIMI MUSTAFA ÇAĞATAY KORKMAZ YÜKSEK LİSANS TEZİ İSTATİSTİK ANA BİLİM DALI KONYA, 2

Detaylı

Rasgele Değişken Üretme Teknikleri

Rasgele Değişken Üretme Teknikleri Rasgele Değşken Üretme Teknkler Amaç Smülasyon modelnn grdlern oluşturacak örneklern üretlmes Yaygın olarak kullanılan ayrık veya sürekl dağılımların örneklenmes sürecn anlamak Yaygın olarak kullanılan

Detaylı

İstatistik Ders Notları 2018 Cenap Erdemir BÖLÜM 5 ÖRNEKLME DAĞILIMLARI. 5.1 Giriş

İstatistik Ders Notları 2018 Cenap Erdemir BÖLÜM 5 ÖRNEKLME DAĞILIMLARI. 5.1 Giriş İstatistik Ders Notları 08 Ceap Erdemir BÖLÜM 5 ÖRNEKLME DAĞILIMLARI 5. Giriş Öreklem istatistikleri kullaılarak kitle parametreleri hakkıda çıkarsamalar yapmak istatistik yötemleri öemli bir bölümüü oluşturur.gülük

Detaylı

değerine bu matrisin bir girdisi(elemanı,bileşeni) denir. Bir sütundan (satırdan) oluşan bir matrise bir sütun (satır) matrisi denir.

değerine bu matrisin bir girdisi(elemanı,bileşeni) denir. Bir sütundan (satırdan) oluşan bir matrise bir sütun (satır) matrisi denir. Bölüm 2 Matrsler aım 2.1 F br csm, m, brer doğal sayı olsu. a F ( 1,.., m; j 1,..., ) olmak üzere, a11... a1 fadese m satır sütuda oluşa (veya m tpde) br F matrs der. am 1... a m Böyle br matrs daha sade

Detaylı

Đst201 Đstatistik Teorisi I

Đst201 Đstatistik Teorisi I Đst20 Đstatstk Teors I DERSĐN TÜRÜ Zorulu DERSĐN DÖNEMĐ Yaz DERSĐN KREDĐSĐ Ulusal Kred: (4, 0, 0 ) 4 KTS: 7 DERSĐN VERĐLDĐĞĐ Bölüm: Đstatstk 200/20 Öğretm Yılı DERSĐN MCI Đstatstğ matematksel temeller

Detaylı

Kuyruk Teorisi Ders Notları: Bazı Kuyruk Modelleri

Kuyruk Teorisi Ders Notları: Bazı Kuyruk Modelleri uyruk Teorisi Ders Notları: Bazı uyruk Modelleri Mehmet YILMAZ mehmetyilmaz@akara.edu.tr 10 ASIM 2017 11. HAFTA 6 Çok kaallı, solu N kapasiteli, kuyruk sistemi M/M//N/ Birimleri sisteme gelişleri arasıdaki

Detaylı

Tanımlayıcı İstatistikler

Tanımlayıcı İstatistikler Taımlayıcı İstatstkler Taımlayıcı İstatstkler br değerler dzs statstksel olarak geel özellkler taımlaya ölçülerdr Taımlayıcı İstatstkler Yer Göstere Ölçüler Yaygılık Ölçüler Yer Göstere Ölçüler Br dağılımı

Detaylı

Bir Rasgele Değişkenin Fonksiyonunun Olasılık Dağılımı

Bir Rasgele Değişkenin Fonksiyonunun Olasılık Dağılımı 5.Ders Döüşümler Bir Rasgele Değişkei Foksiyouu Olasılık Dağılımı Bu kısımda olasılık dağılımı bilie bir rasgele değişkei foksiyoları ola rasgele değişkeleri olasılık dağılımlarıı buluması ile ilgileeceğiz.

Detaylı

AKT201 MATEMATİKSEL İSTATİSTİK I ÖDEV 6 ÇÖZÜMLERİ

AKT201 MATEMATİKSEL İSTATİSTİK I ÖDEV 6 ÇÖZÜMLERİ AKT MATEMATİKSEL İSTATİSTİK I ÖDEV 6 ÇÖZÜMLERİ KESİKLİ RASLANTI DEĞİŞKENLERİ & KESİKLİ DAĞILIMLAR. X aşağıdaki olasılık foksiyoua sahip kesikli bir r.d. olsu. Bua göre;. ; x =.. ; x =. 4. ; x =. 5 p X

Detaylı

Regresyon ve Korelasyon Analizi. Regresyon Analizi

Regresyon ve Korelasyon Analizi. Regresyon Analizi Regresyo ve Korelasyo Aalz Regresyo Aalz Regresyo Aalz Regresyo aalz, aralarıda sebep-souç lşks bulua k veya daha fazla değşke arasıdak lşky belrlemek ve bu lşky kullaarak o kou le lgl tahmler (estmato)

Detaylı

İstatistik ve Olasılık

İstatistik ve Olasılık İstatistik ve Olasılık Ders 3: MERKEZİ EĞİLİM VE DAĞILMA ÖLÇÜLERİ Prof. Dr. İrfa KAYMAZ Taım Araştırma souçlarıı açıklamasıda frekas tablosu ve poligou isteile bilgiyi her zama sağlamayabilir. Verileri

Detaylı

) ( k = 0,1,2,... ) iterasyon formülü kullanılarak sabit

) ( k = 0,1,2,... ) iterasyon formülü kullanılarak sabit Karadez Te Üverstes Blgsayar Mühedslğ Bölümü 5-6 Güz Yarıyılı Sayısal Çözümleme Ara Sıav Soruları Tarh: Kasım 5 Perşembe Süre: daa. f ( ( + a e fosyouu sabt otası olmadığı bldğe göre, a 'ı alableceğ e

Detaylı

1. GRUPLAR. 2) Aşağıdaki kümelerin verilen işlem altında bir grup olup olmadığını belirleyiniz.

1. GRUPLAR. 2) Aşağıdaki kümelerin verilen işlem altında bir grup olup olmadığını belirleyiniz. Sorular ve Çözümleri 1. GRUPLAR 1) G bir grup olmak üzere aşağıdaki eşitlikleri gösteriiz. i) e G birim elema olmak üzere e 1 = e. ii) a G olmak üzere (a 1 ) 1 = a. iii) a 1, a 2,, a G içi (a 1 a 2 a )

Detaylı

İSTATİSTİK DERS NOTLARI

İSTATİSTİK DERS NOTLARI Balıkesir Üiversitesi İşaat Mühedisliği Bölümü umutokka@balikesir.edu.tr İSTATİSTİK DERS NOTLARI Yrd. Doç. Dr. Umut OKKAN idrolik Aabilim Dalı Balıkesir Üiversitesi İşaat Mühedisliği Bölümü Bölüm 5 Örekleme

Detaylı

ÖRNEKLEME YÖNTEMLERİ ve ÖRNEKLEM GENİŞLİĞİ

ÖRNEKLEME YÖNTEMLERİ ve ÖRNEKLEM GENİŞLİĞİ 03.05.013 ÖRNEKLEME YÖNTEMLERİ ve ÖRNEKLEM GENİŞLİĞİ 1 Nede Örekleme? Öreklemde çalışmak ktlede çalışmakta daha kolaydır. Ktle üzerde çalışmak çok daha masraflı olablr. Çoğu durumda tüm ktleye ulaşmak

Detaylı

OLASILIK DAĞILIŞLARI. Ek 1. Moment Türeten Fonksiyon

OLASILIK DAĞILIŞLARI. Ek 1. Moment Türeten Fonksiyon 6 OLASILIK DAĞILIŞLARI 6.. Kesikli Olasılık Dağılışları 6.. Kesikli Uıform Dağılışı 6... Beroulli Dağılışı 6..3. Biom Dağılışı 6..4. Hyer-Geometrik Olasılık Dağılışı ( İadesiz Örekleme ) 6..5. Geometrik

Detaylı

EME 3117 SİSTEM SIMÜLASYONU. Girdi Analizi Prosedürü. Dağılıma Uyum Testleri. Dağılıma Uyumun Kontrol Edilmesi. Girdi Analizi-II Ders 9

EME 3117 SİSTEM SIMÜLASYONU. Girdi Analizi Prosedürü. Dağılıma Uyum Testleri. Dağılıma Uyumun Kontrol Edilmesi. Girdi Analizi-II Ders 9 ..7 EME 37 Girdi Aalizi Prosedürü SİSTEM SIMÜLASYONU Modelleecek sistemi (prosesi) dokümate et Veri toplamak içi bir pla geliştir Veri topla Verileri grafiksel ve istatistiksel aalizii yap Girdi Aalizi-II

Detaylı

Box ve Whisker Grafiği

Box ve Whisker Grafiği www.memetaarayl.com Bölümü Amaçları DEĞİŞKELİK ÖLÇÜLERİ Dr. Mehmet AKSARAYLI D.E.Ü. İ.İ.B.F..B.F. EKOOMETRİ BÖLÜMÜ mehmet.aarayl@deu.edu.tr Bu Bölümü tamamladıta ora eler yapablecez: Bo ve Wher grağ ouma

Detaylı

BÖLÜM 5 İKİ VEYA DAHA YÜKSEK BOYUTLU RASGELE DEĞİŞKENLER İki Boyutlu Rasgele Değişkenler

BÖLÜM 5 İKİ VEYA DAHA YÜKSEK BOYUTLU RASGELE DEĞİŞKENLER İki Boyutlu Rasgele Değişkenler BÖLÜM 5 İKİ VEYA DAHA YÜKSEK BOYUTLU RASGELE DEĞİŞKENLER 5.. İk Boyutlu Rasgele Değşkenler Br deney yapıldığında, aynı deneyle lgl brçok rasgele değşkenn aynı andak durumunu düşünmek gerekeblr. Böyle durumlarda

Detaylı

ÖNSÖZ. 2) Evde yapabileceklerinizi yapıp, laboratuar kılavuzundaki yerleri doldurun (!!! işaretli yerler).

ÖNSÖZ. 2) Evde yapabileceklerinizi yapıp, laboratuar kılavuzundaki yerleri doldurun (!!! işaretli yerler). ÖNSÖZ Bu laboratuar kılavuzu ĐST 5 Đstatstk Laboratuarı deeyler ç hazırlamıştır. Buradak deeyler ve çalışmaları amacı, şu aa kadar görüle dersler çerçevesde, rasgelelk olgusuu alaşılması ve alatılması

Detaylı

ÖRNEKLEME TEORİSİ VE TAHMİN TEORİSİ

ÖRNEKLEME TEORİSİ VE TAHMİN TEORİSİ İSTATİSTİKSEL TAHMİNLEME VE İSTATİSTİKSEL YORUMLAMA TAHMİNLEME SÜRECİ VE YORUMLAMA SÜRECİ ÖRNEKLEME TEORİSİ VE TAHMİN TEORİSİ ÖRNEKLEME VE ÖRNEKLEME ÖRNEKLEME DAĞILIMLARI VE ÖRNEKLEME DAĞILIMLARI Yorumlama

Detaylı

Ders 6: Sürekli Olasılık Dağılımları

Ders 6: Sürekli Olasılık Dağılımları Ders 6: Sürekli Olasılık Dağılımları Normal Dağılım Standart Normal Dağılım Binom Dağılımına Normal Yaklaşım Düzgün (uniform) Dağılım Üstel Dağılım Dağılımlar arası ilişkiler Bir rastgele değişkenin, normal

Detaylı

9. Ders. Đstatistikte Monte Carlo Çalışmaları

9. Ders. Đstatistikte Monte Carlo Çalışmaları 9. Ders Đstatstkte Mote Carlo Çalışmaları Đstatstk rasgelelk olgusu çere olay süreç ve sstemler modellemesde özellkle bu modellerde souç çıkarmada ve bu modeller geçerllğ sıamada kullaıla bazı blg ve yötemler

Detaylı

TMOZ TMOZ. Pólya nın Sayma Teorisi. 1. Isınma Problemleri. Eylül 2006 Saygın Dinçer

TMOZ TMOZ. Pólya nın Sayma Teorisi. 1. Isınma Problemleri. Eylül 2006 Saygın Dinçer / Türye Matemat Öğretmeler Zümres Eylül 006 Saygı Dçer saygdcer@gmal.com Bazı ombator problemlerde çözümler sayısı, problem sahp olduğu smetrde dolayı, drger. Pólya ı sayma teors bu tür ombator problemler

Detaylı

çözüm: C=19500 TL n=4 ay t=0,25 I i 1.yol: Senedin iskonto tutarı x TL olsun. Bu durumda senedin peşin değeri: P C I (19500 x) TL olarak alınabilir.

çözüm: C=19500 TL n=4 ay t=0,25 I i 1.yol: Senedin iskonto tutarı x TL olsun. Bu durumda senedin peşin değeri: P C I (19500 x) TL olarak alınabilir. 1 6)Kred değer 19500 TL ola br seet vadese 4 ay kala, yıllık %25 skoto oraı üzerde br bakaya skoto ettrlyor. Hesaplamada ç skoto metodu kullaıldığıa göre, seed skoto tutarı kaç TL dr? C=19500 TL =4 ay

Detaylı

denklemini sağlayan tüm x kompleks sayılarını bulunuz. denklemini x = 64 = 2 i şeklinde yazabiliriz. Bu son kompleks sayıları için x = 2iy

denklemini sağlayan tüm x kompleks sayılarını bulunuz. denklemini x = 64 = 2 i şeklinde yazabiliriz. Bu son kompleks sayıları için x = 2iy Ders Sorumlusu: Doç. Dr. Necp ŞİMŞEK Problem. deklem sağlaya tüm kompleks sayılarıı buluu. Çöüm deklem şeklde yaablr. Bu so y kompleks sayıları ç y yaalım. Bu taktrde deklemde, baı y ( ) y elde edlr. Burada

Detaylı

ÖLÇÜM, ÖLÇÜM HATALARI ve ANLAMLI RAKAMLAR

ÖLÇÜM, ÖLÇÜM HATALARI ve ANLAMLI RAKAMLAR ÖLÇÜM, ÖLÇÜM HATALARI ve ANLAMLI RAKAMLAR Ölçme, her deeysel blm temel oluşturur. Fzk blmde de teorler sıaması ç çeştl deeyler tasarlaır ve bu deeyler sırasıda çok çeştl ölçümler yapılır. Br fzksel celğ

Detaylı

ALTERNATİF SİSTEMLERİN KARŞILAŞTIRILMASI

ALTERNATİF SİSTEMLERİN KARŞILAŞTIRILMASI µ µ içi Güve Aralığı ALTERNATİF İTEMLERİN KARŞILAŞTIRILMAI Bezetimi e öemli faydalarıda birisi, uygulamaya koymada öce alteratifleri karşılaştırmaı mümkü olmasıdır. Alteratifler; Fabrika yerleşim tasarımları

Detaylı

f n dµ = lim gerçeklenir. Gösteriniz (Bu teorem Monoton yakınsaklık teoreminde yakınsaklık f n = f ve (f n ) monoton artan dizi

f n dµ = lim gerçeklenir. Gösteriniz (Bu teorem Monoton yakınsaklık teoreminde yakınsaklık f n = f ve (f n ) monoton artan dizi 4.2. Pozitif Foksiyoları İtegrali SOU : f ), M +, A) kümeside bulua foksiyoları mooto arta dizisi ve h.h.h. f = f ise f dµ = f dµ gerçekleir. Gösteriiz Bu teorem Mooto yakısaklık teoremide yakısaklık yerie

Detaylı

ALTERNATİF SİSTEMLERİN KARŞILAŞTIRILMASI

ALTERNATİF SİSTEMLERİN KARŞILAŞTIRILMASI ALTERNATİF SİSTEMLERİN KARŞILAŞTIRILMASI Bezetimi e öemli faydalarıda birisi, uygulamaya koymada öce alteratifleri karşılaştırmaı mümkü olmasıdır. Alteratifler; Fabrika yerleşim tasarımları Alteratif üretim

Detaylı

Fark Denklemlerinin Çözümünde Parametrelerin Değişimi Yöntemi

Fark Denklemlerinin Çözümünde Parametrelerin Değişimi Yöntemi Far Delemler Çzümüde Parametreler Değşm Ytem *Hüsey Koama Saarya Üverstes, Fe-Edebyat Faültes, Matemat Blümü, 587, Saarya Özet: İçersde e az br mertebede,,,, E b solu arları buluduğu osyoel delemlere Far

Detaylı

6 (saatte 6 müşteri aramaktadır), servis hızı ise. 0.6e

6 (saatte 6 müşteri aramaktadır), servis hızı ise. 0.6e İST KUYRUK TEORİSİ ARASIAV SORULARI ( MAYIS ). Bir baaı müşteri hizmetleride te işi hizmet vermetedir. Müşteriler ortalama daiada bir arama yapmatadır bua arşı ortalama servis süresi ise daia sürmetedir.

Detaylı

Yrd. Doç. Dr. İhsa KARABULUT u daışmalığıda, Begül ARKANT tarafıda hazırlaa bu çalışma 3/07/008 tarhde aşağıdak jür tarafıda oy brlğ le Akara Üverstes

Yrd. Doç. Dr. İhsa KARABULUT u daışmalığıda, Begül ARKANT tarafıda hazırlaa bu çalışma 3/07/008 tarhde aşağıdak jür tarafıda oy brlğ le Akara Üverstes ANKARA ÜNİVERSİTESİ FEN BİLİMLERİ ENSTİTÜSÜ YÜKSEK LİSANS TEZİ BAĞIMLI GÖZLEMLERLE BOOTSTRAP YÖNTEMİ Begül ARKANT İSTATİSTİK ANABİLİM DALI ANKARA 008 Her hakkı saklıdır Yrd. Doç. Dr. İhsa KARABULUT u daışmalığıda,

Detaylı

REEL ANALĐZ UYGULAMALARI

REEL ANALĐZ UYGULAMALARI www.uukcevik.com REE NĐZ UYGUMRI Sou : (, Α, µ ) ölçü uzayı olsu. = N, Α= ( N ) ve µ ( E) olduğuu östeiiz. N üzeide alması içi eek ve yete koşul < di. Gösteiiz. µ oksiyouu veile taımıı uyulayalım; µ (

Detaylı

Simülasyonda İstatiksel Modeller. Banks, Carson, Nelson & Nicol Discrete-Event System Simulation

Simülasyonda İstatiksel Modeller. Banks, Carson, Nelson & Nicol Discrete-Event System Simulation Simülasyonda İstatiksel Modeller Banks, Carson, Nelson & Nicol Discrete-Event System Simulation Amaç Model-geliştirici dünyaya deterministik değil olasıksal olarak bakar. İstatiksel modeller değişimleri

Detaylı

ANADOLU ÜNİVERSİTESİ BİLİM VE TEKNOLOJİ DERGİSİ ANADOLU UNIVERSITY JOURNAL OF SCIENCE AND TECHNOLOGY Cilt/Vol.:7 Sayı/No: 1 : (2006)

ANADOLU ÜNİVERSİTESİ BİLİM VE TEKNOLOJİ DERGİSİ ANADOLU UNIVERSITY JOURNAL OF SCIENCE AND TECHNOLOGY Cilt/Vol.:7 Sayı/No: 1 : (2006) ANADOLU ÜNİVERSİTESİ BİLİM VE TEKNOLOJİ DERGİSİ ANADOLU UNIVERSITY JOURNAL OF SCIENCE AND TECHNOLOGY Clt/Vol.:7 Sayı/No: : 65-74 (26 DERLEME/REVIEW YAŞAM TESTİNDE KULLANILAN ÜSTEL VE WEİBULL DAĞILIMLARININ

Detaylı

WEIBULL DAĞILIM PARAMETRELERİNİ BELİRLEME METODLARININ KARŞILAŞTIRILMASI

WEIBULL DAĞILIM PARAMETRELERİNİ BELİRLEME METODLARININ KARŞILAŞTIRILMASI VII. Ulusal Temiz Eerji Sempozyumu, UTES 008 7-9 Aralı 008, İstabul WEIBULL DAĞILIM PARAMETRELERİNİ BELİRLEME METODLARININ KARŞILAŞTIRILMASI Seyit Ahmet AKDAĞ, Öder GÜLER İstabul Tei Üiversitesi, Eerji

Detaylı

5. Ders. Dağılımlardan Rasgele Sayı Üretilmesi Ters Dönüşüm Yöntemi

5. Ders. Dağılımlardan Rasgele Sayı Üretilmesi Ters Dönüşüm Yöntemi 5. Drs Dağılımlarda Rasgl Sayı Ürtilmsi Trs Döüşüm Yötmi sürkli bir rasgl dğişk v bu rasgl dğişki dağılım foksiyou olsu. Dağılımı dstk kümsi üzrid dağılım foksiyou arta v bir-bir bir foksiyo olmaktadır.

Detaylı

İstatistik ve Olasılık

İstatistik ve Olasılık İstatistik ve Olasılık Ders 3: MERKEZİ EĞİLİM VE DAĞILMA ÖLÇÜLERİ Prof. Dr. İrfa KAYMAZ Taım Araştırma souçlarıı açıklamasıda frekas tablosu ve poligou isteile bilgiyi her zama sağlamayabilir. Verileri

Detaylı

BÖLÜM III. Kongrüanslar. ise a ile b, n modülüne göre kongrüdür denir ve

BÖLÜM III. Kongrüanslar. ise a ile b, n modülüne göre kongrüdür denir ve BÖLÜM III Kogrüaslar Taım 3. N sabit bir sayı, a, b Z olma üzere, eğer ( a b) ise a ile b, modülüe göre ogrüdür deir ve a b(mod ) şelide gösterilir. Asi halde, yai F ( a b) ise a ile b ye modülüe göre

Detaylı

MERKEZİ EĞİLİM ÖLÇÜLERİ

MERKEZİ EĞİLİM ÖLÇÜLERİ MERKEZİ EĞİLİM ÖLÇÜLERİ Gözlee ver düzeleerek çzelgelerle, graklerle suulması çoğu kez yeterl olmaz. Geel durumu yasıtacak br takım ölçülere gereksm vardır. Bu ölçüler verler yalızca özlü br bçmde belrtmekle

Detaylı

EME 3117 SISTEM SIMÜLASYONU. Üçgensel Dağılım. Sürekli Düzgün Dağılım. Sürekli Rassal Değişkenlerin Modellemesinde Kullanılan Dağılımlar

EME 3117 SISTEM SIMÜLASYONU. Üçgensel Dağılım. Sürekli Düzgün Dağılım. Sürekli Rassal Değişkenlerin Modellemesinde Kullanılan Dağılımlar 0..07 EME 37 SISTEM SIMÜLASYONU Simulasyonda İstatistiksel Modeller-II Ders 5 Sürekli Rassal Değişkenlerin Modellemesinde Kullanılan Dağılımlar Sürekli Düzgün (Uniform) Dağılım Normal Dağılım Üstel (Exponential)

Detaylı

Asimetri ve Basıklık Ölçüleri Ortalamalara dayanan (Pearson) Kartillere dayanan (Bowley) Momentlere dayanan asimetri ve basıklık ölçüleri

Asimetri ve Basıklık Ölçüleri Ortalamalara dayanan (Pearson) Kartillere dayanan (Bowley) Momentlere dayanan asimetri ve basıklık ölçüleri Asmetr ve Basıklık Ölçüler Ortalamalara dayanan (Pearson) Kartllere dayanan (Bowley) omentlere dayanan asmetr ve basıklık ölçüler Yrd. Doç. Dr. Tjen ÖVER ÖZÇELİK tover@sakarya.edu.tr III. Asmetr ve Basıklık

Detaylı

İSTATİSTİKSEL TAHMİNLEME VE HİPOTEZ TESTİ

İSTATİSTİKSEL TAHMİNLEME VE HİPOTEZ TESTİ İSTATİSTİKSEL TAHMİNLEME VE HİPOTEZ TESTİ Bu bölümdeki yötemler, bilimeye POPULASYON PARAMETRE değeri hakkıda; TAHMİN yapmaya yöelik ve, KARAR vermekle ilgili, olmak üzere iki grupta icelemektedir. Parametre

Detaylı

=... 29 İÇİNDEKİLER. E(X) = k... 22. 3.5. Pascal (Negatif Binom) Dağılımı... 22 1. 3.6. Hipergeometrik Dağılım... 22. N y= ... 24

=... 29 İÇİNDEKİLER. E(X) = k... 22. 3.5. Pascal (Negatif Binom) Dağılımı... 22 1. 3.6. Hipergeometrik Dağılım... 22. N y= ... 24 İÇİNDEKİLER SİMGE LİSTESİ... KISALTMA LİSTESİ... v ÇİZELGE LİSTESİ... v ŞEKİL LİSTESİ... v ÖNSÖZ... v ÖZET... x ABSTRACT... x GİRİŞ... BÖLÜM : OLASILIK DAĞILIMLARI VE OLASILIK YOĞUNLUKLARI... BÖLÜM : OLASILIK

Detaylı

PARAMETRİK OLMAYAN HİPOTEZ TESTLERİ. χ 2 Kİ- KARE TESTLERİ. Doç.Dr. Ali Kemal ŞEHİRLİOĞLU Araş.Gör. Efe SARIBAY

PARAMETRİK OLMAYAN HİPOTEZ TESTLERİ. χ 2 Kİ- KARE TESTLERİ. Doç.Dr. Ali Kemal ŞEHİRLİOĞLU Araş.Gör. Efe SARIBAY PARAMETRİK OLMAYAN HİPOTEZ TESTLERİ Kİ- KARE TESTLERİ Doç.Dr. Al Kemal ŞEHİRLİOĞLU Araş.Gör. Efe SARIAY Populasyonun nceledğmz br özellğnn dağılışı blenen dağılışlardan brsne, Normal Dağılış, t Dağılışı,

Detaylı

YÖNEYLEM ARAŞTIRMASI III. Dinamik Programlama. Örnek 3: Tıbbi Müdahale Ekiplerinin Ülkelere Dağıtımı

YÖNEYLEM ARAŞTIRMASI III. Dinamik Programlama. Örnek 3: Tıbbi Müdahale Ekiplerinin Ülkelere Dağıtımı YÖNEYLEM ARAŞTIRMASI III Hafta Determstk Damk Programlama (devam) Damk Programlama Geçe derste küçük ölçekl problemler damk programlamayla yelemel olarak asıl çözüldüğüü gördük. Bu derste, öreklere devam

Detaylı

Analiz II Çalışma Soruları-2

Analiz II Çalışma Soruları-2 Aaliz II Çalışma Soruları- So gücelleme: 04040 (I Aşağıdaki foksiyoları (ilgili değişkelere göre türevlerii buluuz 7 cos π 8 log (si π ( si ta e 9 4 5 6 + cot 0 sec sit t si( e + e arccos ( e cos(ta (II

Detaylı

v = ise v ye spacelike vektör,

v = ise v ye spacelike vektör, D.P.Ü. Fe Bilimleri Estitüsü 1. ayı Mayıs 6 emi-pozitif Ortogoal Matrisler içi Alteratif İi Yötem WO ALERNAIVE MEHOD FOR EMI-POIIVE OROGONAL MARICE B. BÜKCÜ* *Gaziosmapaşa Üiversitesi, Fe-Edebiyat Faültesi,

Detaylı

ÖZET Yüksek Lsas Tez NORMAL DAĞILIM VE NORMAL DAĞILIMLA İLGİLİ ÇIKARIMLAR Şeol ÇELİK Akara Üverstes Fe Blmler Esttüsü İstatstk Aablm Dalı Daışma : Doç

ÖZET Yüksek Lsas Tez NORMAL DAĞILIM VE NORMAL DAĞILIMLA İLGİLİ ÇIKARIMLAR Şeol ÇELİK Akara Üverstes Fe Blmler Esttüsü İstatstk Aablm Dalı Daışma : Doç ANKARA ÜNİVERSİTESİ FEN BİLİMLERİ ENSTİTÜSÜ YÜKSEK LİSANS TEZİ NORMAL DAĞILIM VE NORMAL DAĞILIMLA İLGİLİ ÇIKARIMLAR Şeol ÇELİK İSTATİSTİK ANABİLİM DALI ANKARA 006 Her hakkı saklıdır ÖZET Yüksek Lsas Tez

Detaylı

ŞANS DEĞİŞKENLERİNİN BEKLENEN DEĞER VE MOMENTLERİ

ŞANS DEĞİŞKENLERİNİN BEKLENEN DEĞER VE MOMENTLERİ BÖLÜ 3 ŞANS DĞİŞKNLRİNİN BKLNN DĞR ONTLRİ atematsel belet avamı şas oyulaıda doğmuştu. yalı bçmyle, b oyucuu azaableceğ mta le azama olasılığıı çapımıdı. Sözgelm büyü ödülü 4800TL olduğu b çelşte 0.000

Detaylı

Yayılma (Değişkenlik) Ölçüleri

Yayılma (Değişkenlik) Ölçüleri Yayılma (Değşel) Ölçüler Br ver set taıma yada farlı ver set brbrde ayırt etme ç her zama yalızca yer ölçüler yeterl olmayablr. Dağılımları brbrde ayırt etmede ullaıla ve geellle artmet ortalama etrafıda

Detaylı

HİPOTEZ TESTLERİ. İstatistikte hipotez testleri, karar teorisi olarak adlandırılır. Ortaya atılan doğru veya yanlış iddialara hipotez denir.

HİPOTEZ TESTLERİ. İstatistikte hipotez testleri, karar teorisi olarak adlandırılır. Ortaya atılan doğru veya yanlış iddialara hipotez denir. HİPOTEZ TETLERİ İstatistikte hipotez testleri, karar teorisi olarak adladırılır. Ortaya atıla doğru veya yalış iddialara hipotez deir. Öreği para hilesizdir deildiğide bu bir hipotezdir. Ortaya atıla iddiaya

Detaylı

Kuyruk Teorisi Ders Notları: Bazı Kuyruk Modelleri

Kuyruk Teorisi Ders Notları: Bazı Kuyruk Modelleri Kuyruk Teorisi Ders Notları: Bazı Kuyruk Modelleri Mehmet YILMAZ mehmetyilmaz@ankara.edu.tr 10 KASIM 2017 5. HAFTA 2.7 M/M/1/ / sistemi için Bekleme zamanının dağılımı ( ) 1 T j rastgele değişkeni j. birimin

Detaylı

Ara Değer Hesabı (İnterpolasyon)

Ara Değer Hesabı (İnterpolasyon) Ar Değer Hesbı İterpolso Ardeğer hesbı mühedsl problemlerde sılıl rşılşıl br şlemdr. İterpolso Ble değerlerde blmee rdeğer d değerler bulumsı şlemdr. Geel olr se br osouu 0,,, gb rı otlrd verle 0,,, değerler

Detaylı

ANADOLU ÜNİVERSİTESİ. ENM 317 Prof. Dr. Nihal ERGİNEL

ANADOLU ÜNİVERSİTESİ. ENM 317 Prof. Dr. Nihal ERGİNEL ANADOLU ÜNİVERSİTESİ ENM 317 Prof. Dr. Nihal ERGİNEL 2 ÖRNEKLEME Anakütleden n birimlik örnek alınması ve anakütle parametrelerinin örnekten tahmin edilmesidir. 3 ÖRNEKLEME ALMANIN NEDENLERİ Anakütleye

Detaylı

Tanım : Bir rassal deney yapıldığında bir deneyin sonucu sadece iki sonuç içeriyorsa bu deneye Bernoulli deneyi denir.

Tanım : Bir rassal deney yapıldığında bir deneyin sonucu sadece iki sonuç içeriyorsa bu deneye Bernoulli deneyi denir. BRNOULLİ DAĞILIMI Broulli dağılımı bir rassal dy yaıldığıda yalızca iyi öü olumlu-olumsuz başarılı-başarısız gibi sadc ii souç ld dildiğid ullaılır. Taım : Bir rassal dy yaıldığıda bir dyi soucu sadc ii

Detaylı

BAZI YARIGRUP AİLELERİ ve YAPILARI İÇİN SONLULUK KOŞULLARI ve ETKİNLİK *

BAZI YARIGRUP AİLELERİ ve YAPILARI İÇİN SONLULUK KOŞULLARI ve ETKİNLİK * BAZI YARIGRUP AİLELERİ ve YAPILARI İÇİN SONLULUK KOŞULLARI ve ETKİNLİK * Fteess Codtos For Soe Segroup Fales ad Costructos ad Effcecy Basr ÇALIŞKAN Mateatk Aabl Dalı Hayrullah AYIK Mateatk Aabl Dalı ÖZET

Detaylı

ISF404 SERMAYE PİYASALARI VE MENKUL KIYMETYÖNETİMİ

ISF404 SERMAYE PİYASALARI VE MENKUL KIYMETYÖNETİMİ 8. HAFTA ISF404 SERMAYE PİYASALARI VE MENKUL KIYMETYÖNETİMİ PORTFÖY YÖNETİMİ II Doç.Dr. Murat YILDIRIM muratyildirim@karabuk.edu.tr Geleeksel Portföy Yaklaşımı, Bu yaklaşıma göre portföy bir bilim değil,

Detaylı

0,1,..., n p polinomu bulma işlemine interpolasyon ve px ( )

0,1,..., n p polinomu bulma işlemine interpolasyon ve px ( ) Ç.Ü Fe Blmler Esttüsü Yl:29 Clt:2-1 İNTERPOLASYON VE KALAN TEORİSİ Iterpolto d Remder Theory Fge GÜLTÜRK Mtemt Ablm Dl Yusuf KARAKUŞ Mtemt Ablm Dl ÖZET Bu çlşmd İterpolsyo tmlmş, Lgrge İterpolsyo Formülü

Detaylı

EME 3117 SİSTEM SİMÜLASYONU. Üçgensel Dağılım. Sürekli Düzgün Dağılım. Sürekli Rassal Değişkenlerin Modellemesinde Kullanılan Dağılımlar

EME 3117 SİSTEM SİMÜLASYONU. Üçgensel Dağılım. Sürekli Düzgün Dağılım. Sürekli Rassal Değişkenlerin Modellemesinde Kullanılan Dağılımlar 9.0.06 Sürekli Rassal Değişkenlerin Modellemesinde Kullanılan Dağılımlar EME 7 SİSTEM SİMÜLASYONU Simulasyonda İstatistiksel Modeller (Sürekli Dağılımlar) Ders 5 Sürekli Düzgün Dağılım Sürekli Düzgün (Uniform)

Detaylı

Tanımlayıcı İstatistikler (Descriptive Statistics) Dr. Musa KILIÇ

Tanımlayıcı İstatistikler (Descriptive Statistics) Dr. Musa KILIÇ Taımlayıcı İstatstkler (Descrptve Statstcs) Dr. Musa KILIÇ TANIMLAYICI ÖRNEK İSTATİSTİKLERİ YER ÖLÇÜLERİ (Frekas dağılışıı abss eksedek durumuu belrtr.) DEĞİŞİM ÖLÇÜLERİ ( Frekas dağılışıı şekl belrtr.).

Detaylı

Tanımlayıcı İstatistikler

Tanımlayıcı İstatistikler Taımlayıcı İstatstkler Br veya brde azla dağılışı karşılaştırmak ç kullaıla ve ayrıca örek verlerde hareket le rekas dağılışlarıı sayısal olarak özetleye değerlere taımlayıcı statstkler der. Aalzlerde

Detaylı

4. Ders Fisher informasyonu s f rdan büyük ve sonlu, yani 0 < I() < 1; R f(x; )dx (kesikli da¼g l mlarda R yerine P.

4. Ders Fisher informasyonu s f rdan büyük ve sonlu, yani 0 < I() < 1; R f(x; )dx (kesikli da¼g l mlarda R yerine P. 4. Ders tkilik Küçük varyasl olmak, tahmi edicileri vazgeçilmez bir özelli¼gidir. Bir tahmi edicii, yal veya yas z, küçük varyasl olmas isteir. Parametrei kedisi () veya bir foksiyou (g()) ile ilgili tahmi

Detaylı

SAÜ. Mühendislik Fakültesi Endüstri Mühendisliği Bölümü DİFERENSİYEL DENKLEMLER Dönemi Karma Eğitim Ders Notları. Doç. Dr.

SAÜ. Mühendislik Fakültesi Endüstri Mühendisliği Bölümü DİFERENSİYEL DENKLEMLER Dönemi Karma Eğitim Ders Notları. Doç. Dr. SAÜ. Mühedislik Fakültesi Edüstri Mühedisliği Bölümü DİFERENSİYEL DENKLEMLER 9- Döemi Karma Eğitim Ders Notları Doç. Dr. Cemaletti KUBAT .Çok Değişkeli Foksiolarda Talor-McLauri Açılımları, Ekstremum Noktalar..Talor-McLauri

Detaylı

Zaman Skalasında Box-Cox Regresyon Yöntemi

Zaman Skalasında Box-Cox Regresyon Yöntemi Dokuz Eylül Üverstes İktsad ve İdar Blmler Fakültes Dergs, Clt:7, Sayı:, Yıl:0, ss.57-70. Zama Skalasıda Bo-Co Regresyo Yötem Atlla Özur İŞÇİ Sbel PAŞALI GÖKTAŞ ATMACA 3 M. Nyaz ÇANKAYA 4 Özet Hata term

Detaylı

NİÇİN ÖRNEKLEME YAPILIR?

NİÇİN ÖRNEKLEME YAPILIR? İÇİ ÖREKEME YAPIIR? Zama Kısıdı Maliyeti Azaltma Hata Oraıı Azaltma Souca Ulaşma Hızı Doç.Dr. Ali Kemal ŞEHİRİOĞU Araş.Gör. Efe SARIBAY Örekleme Teorisi kousuu içide, Örekleme Tipleri populasyoda örek

Detaylı

1. KODLAMA KURAMINA GİRİŞ 1

1. KODLAMA KURAMINA GİRİŞ 1 ÖNSÖZ Bu çalışmaı oluşumu esasıda emeğ, blgs ve sosuz desteğyle baa yol göstere değerl hocam Prof. Dr. Erol BALKANAY a; alayışı, desteğ ve atılarıda ötürü değerl hocam Yrd. Doç. Dr. Recep KORKMAZ a teşeürlerm

Detaylı

BÖLÜM 3 YER ÖLÇÜLERİ. Doç.Dr. Suat ŞAHİNLER

BÖLÜM 3 YER ÖLÇÜLERİ. Doç.Dr. Suat ŞAHİNLER BÖLÜM 3 YER ÖLÇÜLERİ İkici bölümde verileri frekas tablolarıı hazırlaması ve grafikleri çizilmesideki esas amaç; gözlemleri doğal olarak ait oldukları populasyo dağılışıı belirlemek ve dağılışı geel özelliklerii

Detaylı

6.046J/18.401J DERS 9. Post mortem (süreç sonrası) Prof. Erik Demaine

6.046J/18.401J DERS 9. Post mortem (süreç sonrası) Prof. Erik Demaine Algoritmalara Giriş 6.046J/8.40J DERS 9 Rastgele yapılamış iili arama ağaçları Belee düğüm deriliği üseliği çözümleme Dışbüeyli öuramı Jese i eşitsizliği Üstel yüseli Post mortem (süreç sorası Pro. Eri

Detaylı

BEKLENEN DEĞER VE VARYANS

BEKLENEN DEĞER VE VARYANS BEKLEE DEĞER VE VARYAS.1. İadel ve adesz öreklemede tüm mümkü örekler.. Beklee değer.3. Varyas.4. İk değşke ortak dağılımı.5. İstatstksel bağımsızlık.6. Tesadüf değşkeler doğrusal kombasyolarıı beklee

Detaylı

ANADOLU ÜNİVERSİTESİ. Hipotez Testleri. ENM317 Mühendislik İstatistiği Prof. Dr. Nihal ERGİNEL

ANADOLU ÜNİVERSİTESİ. Hipotez Testleri. ENM317 Mühendislik İstatistiği Prof. Dr. Nihal ERGİNEL ANADOLU ÜNİVERSİTESİ Hipotez Testleri ENM317 Mühendislik İstatistiği Prof. Dr. Nihal ERGİNEL HİPOTEZ TESTLERİ Pek çok problemde bazı parametrelere bağlı bir ifadeyi kabul yada red etmek için karar vermek

Detaylı