Zamanla Değişen Alanlar ve Maxwell Denklemleri
|
|
|
- Direnç Tuncer
- 10 yıl önce
- İzleme sayısı:
Transkript
1 Zamanla Değişen Alanlar e Maxwell Denklemleri
2 lekrik e Manyeik Kue ir elekrik alan içerisine küçük bir q es yükü yerleşirildiğinde, q nun konumunun fonksiyonu olan bir elekrik kuei oluşur F e F m q Manyeik alan içindeki es yükü hareke eiğinde, q yükü aynı zamanda bir manyeik kue ile karşılaşır q : Hareke eden yükün hızı [m/s] [N] [N] : Manyeik akı yoğunluğu [Wb/m 2 ] eya [T]
3 lekrik e Manyeik Kue arasındaki farklar lekrik alan arafından uygulanan kue alan çizgileri ile aynı yöndedir Manyeik alan arafından uygulanan kue ise alana dikir lekrik alan kuei hem harekeli hem de harekesiz yükler üzerinde ekiliyken, manyeik kue sadece harekeli yüklere eki eder
4 Sağ el kuralı Hız Manyeik Akı Yoğunluğu Kue F
5 lekrik e Manyeik Kue
6 lekromanyeik Kue (Lorenz Kuei) Harekeli yüke eki eden lekromanyeik kue; F q( )
7 örnek ] / [ ) ˆ ˆ ( s m ı ı y x hızıyla hareke eden q yüklü bir parçacığa ] / [ ) 2ˆ (ˆ 2 m Wb ı ı z x alanı içinde kue eki emiyorsa elekrik alan ekörünü bulunuz ] / ) [ ˆ 2ˆ (2ˆ m V ı ı ı q q F z y x
8 Örnek ir bölge için ıˆ y e ıˆ z dik alanları erilsin Küçük bir es yükü = anında alan içinde harekesiz olsun Hareke denklemlerini bulalım F q( ) d d x y dz q[ ˆ ıy ( xˆ ıx yˆ ıy zˆ ız ) ˆ ız ] m[ ˆ ıx ˆ ıy d d d d d x y dz [ q q x ]ˆ ıy q y ˆ ıx m[ ˆ ıx ˆ ıy ˆ ız ] d d d dy dx q q x m q y m d d ˆ ı ] z 2 d d x q m 2 x q m 2 İkinci dereceden diferansiyel denklemin çözümünden hız bileşenleri bulunur
9 w C w C d d w m q w w C w C c c x c y c c c x cos sin 1 sin cos , y x aşlangıç koşullarından C sabileri hesaplanır w w c y c x sin cos Hız bileşenlerinin zamana göre inegrali, konumun zamana göre değişimini erir 4 3 cos sin C w w y C w w x c c c c aşlangıç koşulları; = da x=y=o cos sin z w w y w w x c c c c
10 Hans Chrisian Ørsed, (d 14 Ağusos 1777 ö 9 Mar 1851) Danimarkalı profesör, fizikçi e kimyager 1819 yılında, Hollandalı bilim adamı Hans Chrisian Oersed, manyeizma ile elekrik arasında çok önemli bir ilişki keşfei Oersed, bir ilekenden geçen elekrik akımının sadece sürünmeden dolayı ısı üremediğini aynı zamanda kendi çeresinde bir manyeik alan oluşurduğunu fark ei
11 Michael Faraday, (d 22 ylül 1791, 25 Ağusos 1867) İngiliz bilim adamı Oersed in bu keşfinden sonra 1831 yılında İngiliz bilim adamı Michael Faraday, bir ilekenden geçen akımın manyeik alan oluşururken acaba bir manyeik alanın da bir ileken üzerinde akım oluşurup oluşuramayacağını (indüksiyon) merak ei unun üzerinde Faraday aşağıdaki resimdekine benzer bir düzenek hazırladı
12 Düşüncesine göre anaharı kapaığında sağdaki sargı nedeniyle demir çekirdek manyeik olacak e soldaki sargı da oluşan bu manyeik alan nedeniyle üzerinden akım geçireceki İndüklenen bu akım da, Oersed in keşfine göre pusula erafında manyeik alan oluşuracak e pusula iğnesi sapma yapacakı Ancak durum Faraday ın ahmin eiği gibi olmadı anaharı kapaıp beklediğinde pusula da herhangi bir sapma olmuyordu ancak anaharı kapaığı anda pusula çok hızlı bir şekilde sapıyor e eski pozisyonuna geri dönüyordu unu bir de anaharı açarak denedi e gördü ki bu kez pusula çok hızlı bir şekilde ers arafa sapmış e eski pozisyonuna geri dönmüşü Faraday bu deneyden, akımın beklediği gibi sabi bir manyeik alandan değil değişen manyeik alandan dolayı oluşuğunu (indüklendiğini) anladı e Faraday Yasası oraya çıkı
13 İnegral Formunda Faraday Kanunu ir elekrik akımı sabi bir manyeik alan içerisinde bulunduğu akirde buna bir elekromanyeik kuein eki edeceğini biliyoruz Meydana gelen e akıma ekiyen bu kue ekisi ile, üzerinden akım geçen ileken hareke eder unun karşıı olarak, ileken bir dere bir magneik alan içerisine konup hareke eirilirse, bu dereden bir akımın geçiği görülür u olay manyeik indüksiyon olayı olarak adlandırılır e dereden akım geçmesine neden olan bu elekromoor kuee de indüksiyon elekromoor kuei denir
14 İnegral Formunda Faraday Kanunu İleken derede böyle bir em Kuein doğuşu, bu dere içinden alanının geçirdiği akısının değişmesinden kaynaklanır Dereyi sabi alanı içinde hareke eirerek içinden geçen akıyı değişirebiliyoruz ğer dere hareke emezse akı sabi kalır e emk meydana gelmez emk, sabi bir dere içinden zamana göre değişen bir akı geçirerek de elde edilebilir
15
16 LNZ KANUNU İndüksiyon emk nın yönü, genel bir şekilde Lenz kanunu ile erilmişir u kanun İndüksiyon elekromanyeik kuei, kendini doğuran sebebe karşı koyar diye ifade eder
17
18 İndüksiyon akım yönlerini bulunuz arıyor arıyor azalıyor Yol, nin dışında azalıyor azalıyor
19 lekromanyeik İndüksiyon
20 DC Moor e Jeneraörler
21 DC Moor
22
23 Jeneraörler
24 lekrik mooru jeneraör lekrik mooru: lekrik enerjisini mekanik enerjiye dönüşürür Üzerinden akım akan çerim manyeik alan içinde döner Jeneraör: Mekanik elekrik enerji Manyeik alan içinde dönen ileken çerim, elekrik akımı üreir
25 Transformaör
26 Transformaör
27 Transformaör
28 ndüksiyon ile Isıma Prensibi ndüksiyon ısımanın genel prensibi elekromanyeik enerjinin ısı enerjisi haline dönüşürülmesine dayanır Değişken bir manyeik akım ileken madde üzerinde bir gerilim indükler ( Faraday kanunu ) İndüklenen bu gerilim, ( Lenz kanunu' na göre ) ileken üzerinde kendisine karşı oluşurulan akıma karşı koyacak şekilde bir akım yaraır İlekende yaraılan bu eddy akımı I²x R ile anımlanan gücü ısı enerjisi halinde açığa çıkarır
29 alanı içinde hızı ile hareke eden elemaner dq yüküne ekiyen kue: df dq olacakır u eşiliğin her iki arafını dq ya bölersek; df dq olur u da birim yüke eki eden kuei erir ir nokada birim yüke eki eden kue, o nokadaki elekrik alanın şiddeidir urada dq yükü harekeli bir yük olduğu için bu ifade elekrik alanı şiddeinin anımına am olarak uymazsa da boyu bakımından elekrik alandan farklı değildir iz bu alana dq yükü hızı ile hareke eiği için, elekromoor alan diyeceğiz m
30 m nin A e arasında hesaplanan eğrisel inegrali bu iki noka arasında hareke eden elekrik yükünün meydana geirdiği e yine Vol cinsinden ifade edilen indüksiyon em kueini erecekir e m k b a m dl A ( ) dl ğer dq yükü bir ilekenin A e gibi iki nokası arasında değil de kapalı bir dere oluşuran bir C eğrisi boyunca hareke ederse, meydana gelen indüksiyon elekromoor kuei aşağıdaki gibi olacakır e m k m dl ( ) dl
31 İndüksiyon emk nın Faraday arafından deneyle bulunmuş olan başka bir ifadesi aşağıdaki gibidir dm e m k N d N d d s ds c dl d ds FARADAY d s KANUNU ir kapalı eğri içinden geçen manyeik akı değişimi, bir gerilim doğmasına sebep olur
32 e m k = dl = d d
33 Örnek z= düzleminde 65 m 2 lik bir alan bir ilekenle çerilmişir 5cos1 3 ıˆ x ıˆ 2 z [ T] erildiğine göre indüklenen gerilimi bulunuz emk s dsˆ ı z s 5sin1 3 ıˆ x ıˆ 2 z dsˆ ı z 23sin1 3 z i z ds y Alan kosinüs fonksiyonunun ilk yarı domeninde azalmakadır Kapalı bir derede i nin yönü bu azalmaya karşı koyacak şekilde olmalıdır x i
34 Örnek Yarıçapı 4cm olan dairesel ileken xy düzleminde yer almakadır e 2 ohm luk dirence sahipir ölgedeki manyeik akı yoğunluğu;,2cos5 ˆ ı,75sin 4 ˆ ı 1,2cos314 ˆ ı [ T] x y z olduğuna göre çerçeede akacak akımın efekif değerini bulunuz ds r dr dˆ ız z 42 ds 1,2cos 314 r dr d x R=2 ohm y s,63cos 314 [ W ] d emk,63314sin 314 d,63314 efekif emk 133,9 [ V ] 2 I 133,9 2 6,69[ A]
35 Şekildeki ilekende indüklenen gerilimi bulunuz ] / [ ˆ 25sin1 ] [ 4ˆ 3 s m ı T ı z y x y z 2 ] [ 2sin1 ˆ ) ˆ ( 1sin1 ] / [ ) ˆ ( 1sin V dx ı ı V m V ı x x x m Örnek
36 Diferansiyel Formda Faraday Kanunu (Maxwell-Faraday denklemi) Kapalı bir dere içerisinden geçen manyeik akının değişmesi derenin uçlarında bir akım indüklenmesine sebep olmakadır İndüksiyon elekromoor kuei aşağıdaki gibi anımlanmışı: c dl d d s ds Her iki arafın dierjansı alınırsa; c dl s ( ) ds d d s ds Maxwell- Faraday denklemi ( ) sabi eya
37 Süreklilik Denklemi e Kirchoff un Akım Yasası Durağan eya harekeli yükler yaraılamaz e yok edilemez S yüzeyi arafından sınırlandırılmış kapalı bir V hacmi düşünelim u bölgede ne Q yükü olsun Şaye bölgeden dışarıya bir I akımı akarsa, hacimdeki yük mikarı akıma eşi şekilde azalır I I J J ds ( J ) d dq d [ A/ d d 3 m ] d d d d Süreklilik denklemi
38 Sabi akımlar için yük yoğunluğu zamanla değişmez, J J ds s u denklem aşağıdaki gibi yazılabilir: j I Kirchoff un akım j yasası
39 ir ilekenin içinde üreilen yükler ileken yüzeyine doğru hareke ederler, denge koşulları alında hacimsel yük yoğunluğu e elekrik alan sıfır olacak şekilde yeniden dağılırlar 3 e [ C / m ] : = anı için yük yoğunluğudur aşlangıça yük yoğunluğu ise, =/ (s) zamanında 1/e değerine düşer : geşeme zamanı
40 Maxwell-Amper Denklemi Gauss kanunu, inegral formunda deplasman ekörü kullanılarak aşağıdaki gibi yazılabilir J Vekörünün sağladığı akım: Deplasman akımı Amper kanununda yerine konursa D ds q i i a dep s J ds dq d d d s D ds d dl J ds D ds s d s Sokes eoriminden J D s ) ds ( d J ds D ds d s s Maxwell-Amper denklemi
41 D J J şiliğin her iki arafının dierjansı alınırsa ) ( J D J Süreklilik denklemi ile karşılaşırılırsa ) ( J Maxwell in dierjans eşiliği
42 Deplasman (Yerdeğişirme) akımı e kondansaörler DC kaynak bağlandığı zaman dereden akan akım I= dır elli bir frekansa sahip gerilim kaynağı bağlandığı zaman ise, zamana göre değişen bir akım akığını görürüz
43 Deplasman (Yerdeğişirme) akımı e kondansaörler Plaka üzerindeki serbes yükler Gerilim zamana göre değişince, yük de zamana göre değişecekir 1 abaka 2 abaka Teldeki ilekenlik akımı Kondansaördeki deplasman akımı
44 D J ds D J H dl ds ds dl d D ds s s Maxwell Denklemlerinin Diferansiyel Formu Maxwell Denklemlerinin İnegral Formu
Elektromanyetik Dalga Teorisi
Elektromanyetik Dalga Teorisi Ders-1 Diferansiyel Formda Maxwell Denklemleri İntegral Formda Maxwell Denklemleri Fazörlerin Kullanımı Zamanda Harmonik Alanlar Malzeme Ortamı Dalga Denklemleri Michael Faraday,
FARADAY YASASI Dr. Ali ÖVGÜN
FİZK 104-202 Ders 9 FARADAY YASASI Dr. Ali ÖVGÜN DAÜ Fizik Bölümü Kaynaklar: -Fizik 2. Cilt (SERWAY) -Fiziğin Temelleri 2.Kitap (HALLIDAY & RESNIK) -Üniversite Fiziği (Cilt 2) (SEARS ve ZEMANSKY) http://fizk104.aovgun.com
Faraday Yasası. 31. Bölüm
Faraday Yasası 31. Bölüm 1. Faraday İndüksiyon Yasası Faraday ve Henri: Değişen manyetik alanlar da emk (dolayısıyla akım) oluşturur. Şekilde görüldüğü gibi akım ile değişen manyetik alan arasında bir
Bölüm 9 ELEKTROMANYETİK İNDÜKSİYON. Copyright 2008 Pearson Education Inc., publishing as Pearson Addison-Wesley
Bölüm 9 ELEKTROMANYETİK İNDÜKSİYON Hedef Öğretiler Faraday Kanunu Lenz kanunu Hareke bağlı EMK İndüksiyon Elektrik Alan Maxwell denklemleri ve uygulamaları Giriş Pratikte Mıknatısın hareketi akım oluşmasına
FİZİK-II DERSİ LABORATUVARI ( FL 2 4 )
FİZİK-II DERSİ LABORATUVARI ( FL 2 4 ) KURAM: Kondansaörün Dolma ve Boşalması Klasik olarak bildiğiniz gibi, iki ileken paralel plaka arasına dielekrik (yalıkan) bir madde konulursa kondansaör oluşur.
Ankara Üniversitesi Fen Fakültesi Kimya 2014-2015 Bahar Yarıyılı 10. Bölüm Özeti 26.05.2015 Ankara Aysuhan OZANSOY
FİZ102 FİZİK-II Ankara Üniversitesi Fen Fakültesi Kimya 2014-2015 Bahar Yarıyılı 10. Bölüm Özeti 26.05.2015 Ankara Aysuhan OZANSOY Bölüm 10: Faraday Yasası 1. İndüksiyon (Etkileme) Deneyleri 2. Faraday
Manyetik Alan Şiddeti ve Ampere Devre Yasası
Manyetik Alan Şiddeti ve Ampere Devre Yasası Elektrik alanlar için elektrik akı yoğunluğunu, elektrik alan şiddeti cinsinden tanımlamıştık. Buna benzer şekilde manyetik alan şiddetiyle manyetik akı yoğunluğu
Statik Manyetik Alan
Statik Manyetik Alan Amper Kanunu Manyetik Vektör Potansiyeli Maxwell in diverjans eşitliği Endüktans 1 Amper Kanununun İntegral Formu 2 Amper Kanununun İntegral Formu z- ekseni boyunca uzanan çok uzun
2-MANYETIK ALANLAR İÇİN GAUSS YASASI
2-MANYETIK ALANLAR İÇİN GAUSS YASASI Elektrik yükleri yani pozitif ve negatif yükler birbirlerinden ayrı ve izole halde düşünülebilirler. Bu durum, Kuzey ve güney manyetik kutuplar için de söz konusu olabilir
Fizik II Elektrik ve Manyetizma Faraday Yasası
Ders Hakkında Fizik-II Elektrik ve Manyetizma Dersinin Amacı Bu dersin amacı, fen ve mühendislik öğrencilerine elektrik ve manyetizmanın temel kanunlarını lisans düzeyinde öğretmektir. Dersin İçeriği Hafta
FİZ 216 ELEKTRİK ve MANYETİZMA GRADİYENT DİVERJANS ROTASYONEL (KÖRL) HELMHOLTZ TEOREMİ KOORDİNAT SİSTEMLERİ
FİZ 216 ELEKTRİK ve MANYETİZMA GRADİYENT DİVERJANS ROTASYONEL (KÖRL) HELMHOLTZ TEOREMİ KOORDİNAT SİSTEMLERİ (del) operatörü, Bir f skaler alanına etkirse: f GRADİYENT Bir A vektör alanı ile skaler çarpılırsa:
BOBĐNLER. Bobinler. Sayfa 1 / 18 MANYETĐK ALANIN TEMEL POSTULATLARI. Birim yüke elektrik alan içerisinde uygulanan kuvveti daha önce;
BOBĐER MAYETĐK AAI TEME POSTUATARI Birim yüke elekrik alan içerisinde uygulanan kuvvei daha önce; F e = qe formülüyle vermişik. Manyeik alan içerisinde ise bununla bağlanılı olarak hareke halindeki bir
Manyetik Alanlar. Benzer bir durum hareketli yükler içinde geçerli olup bu yüklerin etrafını elektrik alana ek olarak bir manyetik alan sarmaktadır.
Manyetik Alanlar Manyetik Alanlar Duran ya da hareket eden yüklü parçacığın etrafını bir elektrik alanın sardığı biliyoruz. Hatta elektrik alan konusunda şu sonuç oraya konulmuştur. Durgun bir deneme yükü
DAİRESEL HAREKET Katı Cisimlerin Dairesel Hareketi
BÖLÜM 1 DAİRESEL HAREKET 1. DAİRESEL HAREKET 1.1. Kaı Cisimlerin Dairesel Harekei Açısal Yer Değişim: Bir eksen erafında dönmeke olan bir cismin (eker ezgah mili, volan vb.) dönme ekisi ile bir iş yapılır.
13 Hareket. Test 1 in Çözümleri. 4. Konum-zaman grafiklerinde eğim hızı verir. v1 t
3 Hareke Tes in Çözümleri X Y. cisminin siseme er- diği döndürme ekisi 3mgr olup yönü saa ibresinin ersinedir. cisminin siseme erdiği döndürme ekisi mgr olup yönü saa ibresi yönündedir. 3mgr daha büyük
ELEKTROMANYETİK DALGALAR
ELEKTROMANYETİK DALGALAR Hareket eden bir yük manyetik alan oluşturur. Yük sabit hızla hareket ederse, sabit bir akım ve sabit bir manyetik alan oluşturur. Yük osilasyon hareketi yaparsa değişken bir manyetik
ELEKTRİKSEL POTANSİYEL
ELEKTRİKSEL POTANSİYEL Elektriksel Potansiyel Enerji Elektriksel potansiyel enerji kavramına geçmeden önce Fizik-1 dersinizde görmüş olduğunuz iş, potansiyel enerji ve enerjinin korunumu kavramları ile
TEMEL İŞLEMLER KAVRAMLAR
EM 420 Yüksek Gerilim Tekniği TEMEL İŞLEMLER VE KAVRAMLAR YRD.DOÇ. DR. CABBAR VEYSEL BAYSAL ELEKTRIK & ELEKTRONIK YÜK. MÜH. Not: Tüm slaytlar listelenen ders kaynaklarından alıntı yapılarak ve faydalanılarak
Bölüm 9 FET li Yükselteçler
Bölüm 9 FET li Yükseleçler DENEY 9-1 Orak-Kaynaklı (CS) JFET Yükseleç DENEYİN AMACI 1. Orak kaynaklı JFET yükselecin öngerilim düzenlemesini anlamak. 2. Orak kaynaklı JFET yükselecin saik ve dinamik karakerisiklerini
Doğrusal Demet Işıksallığı 2. Fatma Çağla Öztürk
Doğrusal Demet Işıksallığı Fatma Çağla Öztürk İçerik Demet Yönlendirici Mıknatıslar Geleneksel Demir Baskın Mıknatıslar 3.07.01 HPFBU Toplantı, OZTURK F. C. Demet Yönlendirici Mıknatıslar Durgun mıknatıssal
Statik Manyetik Alan
Statik Manyetik Alan Noktasal Yüke Etki eden Manyetik Kuvvet Akım Elemanına Etki Eden Manyetik Kuvvet Biot-Savart Kanunu Statik Manyetik Alan Statik manyetik alan, sabit akımdan veya bir sürekli mıknatıstan
7 FARADAY IN İNDÜKSİYON KANUNU
7 FARADAY IN İNDÜKİYON KANUNU Elektrik alanları durgun yüklerden manyetik alan ise hareketli yüklerden oluşur. Iletkenin üzerine bir elektrik alan uygulandığında akıma sebep olan bir manyetik alan üretir.
Yeryüzünde Hareket. Test 1 in Çözümleri. 3. I. yol. K noktasından 30 m/s. hızla düşen cismin L 50 noktasındaki hızı m/s, M noktasındaki 30
4 eryüzünde Hareke es in Çözümleri. nokasından serbes bırakılan cisim, 4 lik yolu e 3 olmak üzere iki eşi zamanda alır. Cismin 4 yolu sonundaki ızının büyüklüğü ise yolu sonundaki ızının büyüklüğü olur..
= t. v ort. x = dx dt
BÖLÜM.4 DOĞRUSAL HAREKET 4. Mekanik Mekanik konusu, kinemaik ve dinamik olarak ikiye ayırmak mümkündür. Kinemaik cisimlerin yalnızca harekei ile ilgilenir. Burada cismin hareke ederken izlediği yol önemlidir.
ELEKTROMANYETIK DALGALAR
ELEKTROMANYETIK DALGALAR EEM 10/1/2018 AG 1 kaynaklar: 1) Muhendislikelektromenyetiginin temelleri, David K. Cheng, Palme Yayincilik 2) Electromagnetic Field Theory Fundamentals, Guru&Hiziroglu 3) A Student
Pervane 10. PERVANE TEORİLERİ. P 2 v 2. P 1 v 1. Gemi İlerleme Yönü P 0 = P 2. Geliştirilmiş pervane teorileri aşağıdaki gibi sıralanabilir:
. PEVANE TEOİLEİ Geliştirilmiş perane teorileri aşağıdaki gibi sıralanabilir:. Momentum Teorisi. Kanat Elemanı Teorisi 3. Sirkülasyon (Girdap) Teorisi. Momentum Teorisi Momentum teorisinde aşağıdaki kabuller
Akışkan Kinematiği 1
Akışkan Kinematiği 1 Akışkan Kinematiği Kinematik, akışkan hareketini matematiksel olarak tanımlarken harekete sebep olan kuvvetleri ve momentleri gözönüne almadan; Yerdeğiştirmeler Hızlar ve İvmeler cinsinden
Hareket halindeki elektrik yüklerinin oluşturduğu bir sistem düşünelim. Belirli bir bölgede net bir yük akışı olduğunda, akımın mevcut olduğu
Akım ve Direnç Elektriksel olaylarla ilgili buraya kadar yaptığımız tartışmalar durgun yüklerle veya elektrostatikle sınırlı kalmıştır. Şimdi, elektrik yüklerinin hareket halinde olduğu durumları inceleyeceğiz.
Bölüm 24 Gauss Yasası
Bölüm 24 Gauss Yasası Elektrik Akısı Gauss Yasası Gauss Yasasının Yüklü Yalıtkanlara Uygulanması Elektrostatik Dengedeki İletkenler Öğr. Gör. Dr. Mehmet Tarakçı http://kisi.deu.edu.tr/mehmet.tarakci/ Elektrik
Akışkanların Dinamiği
Akışkanların Dinamiği Akışkanların Dinamiğinde Kullanılan Temel Prensipler Gaz ve sıvı akımıyla ilgili bütün problemlerin çözümü kütlenin korunumu, enerjinin korunumu ve momentumun korunumu prensibe dayanır.
ELEKTROMANYETIK ALAN TEORISI
ELEKTROMANYETIK ALAN TEORISI kaynaklar: 1) Electromagnetic Field Theory Fundamentals Guru&Hiziroglu 2) A Student s Guide to Maxwell s Equations Daniel Fleisch 3) Mühendislik Elektromanyetiğinin Temelleri
MANYETİK ALAN KAYNAKLARI Biot Savart Yasası
Fiz 1012 Ders 6 MANYETİK ALAN KAYNAKLARI Biot Savart Yasası Hareket Eden Parçacığın Manyetik Alanı Akım Taşıyan İletkenin Manyetik Alanı Ampère Yasası Manyetik Akı Gauss Yasası Yerdeğiştirme Akımı (Ampère
Elektromanyetik Dalga Teorisi
Elektromanyetik Dalga Teorisi Ders-2 Dalga Denkleminin Çözümü Düzlem Elektromanyetik Dalgalar Enine Elektromanyetik Dalgalar Kayıplı Ortamda Düzlem Dalgalar Düzlem Dalgaların Polarizasyonu Dalga Denkleminin
Diverjans teoremi ise bir F vektörüne ait hacim ve yüzey İntegralleri arasındaki ilişkiyi ortaya koyar ve. biçiminde ifade edilir.
Maxwell denklemlerini intagral bicimlerinin elde edilmesinde Stokes ve Diverjans Teoremlerinden yararlanilir. Stokes Teoremiaşağıdaki gibi ifade edilir, bir F vektörüne ait yüzey integrali ile çizgi integrali
FİZ 216 ELEKTRİK ve MANYETİZMA GRADİYENT DİVERJANS ROTASYONEL (KÖRL) KOORDİNAT SİSTEMLERİ HELMHOLTZ TEOREMİ
FİZ 216 ELEKTRİK ve MANYETİZMA GRADİYENT DİVERJANS ROTASYONEL (KÖRL) KOORDİNAT SİSTEMLERİ HELMHOLTZ TEOREMİ GRADİYENT: f(,y,z) her noktada sürekli ve türevlenebilir bir skaler alan olsun. Herhangi bir
6.2. Güç Denklemleri: Güç, tanım olarak transfer edilen enerji veya yapılan işin oranıdır. Matematiksel olarak, W P = (6.1) t
BÖLÜM 6 GÜÇ 6.1.Giriş: Günümüz dünyasının karşı karşıya olduğu önemli sorunlardan birisi de enerji krizleridir. Perolden üreilen enerji hızla ükeildiğinden dolayı yeni enerji kaynakları bulunması zorunluluk
FİZİK II LABORATUVARI DENEY FÖYÜ
ELAL BAYA ÜNİESİTESİ / FEN-EDEBİYAT FAKÜLTESİ / FİZİK BÖLÜMÜ FİZİK LOATUA DENEY FÖYÜ. DİENÇ E ELEKTOMOTO KUETİNİN ÖLÇÜLMESİ. OHM YASAS. KHHOFF YASALA 4. ELEKTİK YÜKLEİNİN DEPOLANŞ E AKŞ AD SOYAD: NUMAA:
ELEKTROMANYETIK DALGALAR
ELEKTROMANYETIK DALGALAR EEM 10/6/2017 AG 1 kaynaklar: 1) Muhendislikelektromenyetiginin temelleri, David K. Cheng, Palme Yayincilik 2) Electromagnetic Field Theory Fundamentals, Guru&Hiziroglu 3) A Student
Doğru Akım Devreleri
Doğru Akım Devreleri ELEKTROMOTOR KUVVETİ Kapalı bir devrede sabit bir akımın oluşturulabilmesi için elektromotor kuvvet (emk) adı verilen bir enerji kaynağına ihtiyaç duyulmaktadır. Şekilde devreye elektromotor
Fizik II Elektrik ve Manyetizma Elektriksel Potansiyel
Ders Hakkında FizikII Elektrik ve Manyetizma Dersinin Amacı Bu dersin amacı, fen ve mühendislik öğrencilerine elektrik ve manyetizmanın temel kanunlarını lisans düzeyinde öğretmektir. Dersin İçeriği Hafta
FİZİK II LABORATUVARI DENEY FÖYÜ
MANİSA ELAL BAYA ÜNİESİTESİ FEN-EDEBİYAT FAKÜLTESİ FİZİK BÖLÜMÜ FİZİK LOATUA DENEY FÖYÜ. OHM YASAS. DİENÇ E ELEKTOMOTO KUETİNİN ÖLÇÜLMESİ. KHHOFF YASALA 4. ELEKTİK YÜKLEİNİN DEPOLANŞ E AKŞ MANİSA - 9 Deney.
ALTERNATİF AKIMIN DENKLEMİ
1 ALTERNATİF AKIMIN DENKLEMİ Ani ve Maksimum Değerler Alternatif akımın elde edilişi incelendiğinde iletkenin 90 ve 270 lik dönme hareketinin sonunda maksimum emk nın indüklendiği görülür. Alternatif akımın
13 Hareket. Test 1 in Çözümleri
13 Hareke 1 Tes 1 in Çözümleri 3. X Y 1. cisminin siseme er- diği döndürme ekisi 3mgr olup yönü saa ibresinin ersinedir. cisminin siseme erdiği döndürme ekisi mgr olup yönü saa ibresi yönündedir. 3mgr
BAĞIL HAREKET BÖLÜM 6
ĞI HREET ÖÜ 6 1 ODE SORU 1 DE SORURI ÇÖZÜER ( ) (+) 4 ve araçlarının birbi- rine göre hızları en küçük olur P 2 yaay yol CEP 3 2 5 olur aracındaki gözlemciye göre aracının hızı; 5 6 olur 2 Şekildeki konum-
7.DENEY RAPORU AKIM GEÇEN TELE ETKİYEN MANYETİK KUVVETLERİN ÖLÇÜMÜ
7.DENEY RAPORU AKIM GEÇEN TELE ETKİYEN MANYETİK KUVVETLERİN ÖLÇÜMÜ Arş. Gör. Ahmet POLATOĞLU Fizik II-Elektrik Laboratuvarı 9 Mart 2018 DENEY RAPORU DENEYİN ADI: Akım Geçen Tele Etkiyen Manyetik Kuvvetlerin
KARABÜK ÜNİVERSİTESİ Öğretim Üyesi: Doç.Dr. Tamila ANUTGAN 1
KARABÜK ÜNİVERSİTESİ Öğretim Üyesi: Doç.Dr. Tamila ANUTGAN 1 Elektriksel olaylarla ilgili buraya kadar yaptığımız, tartışmalarımız, durgun yüklerle veya elektrostatikle sınırlı kalmıştır. Şimdi, elektrik
İÇİNDEKİLER. 1. DÖNEL YÜZEYLER a Üreteç Eğrisi Parametrik Değilse b Üreteç Eğrisi Parametrik Olarak Verilmişse... 4
İÇİNDEKİLER 1. DÖNEL YÜZEYLER... 1 1.a Üreeç Eğrisi Paramerik Değilse... 1 1.b Üreeç Eğrisi Paramerik Olarak Verilmişse.... DÖNEL YÜZEYLERLE İLGİLİ ÖRNEKLER... 5.a α f,,0 Eğrisinin Dönel Yüzeyleri... 5.b
Şekil-1. Doğru ve Alternatif Akım dalga şekilleri
2. Alternatif Akım =AC (Alternating Current) Değeri ve yönü zamana göre belirli bir düzen içerisinde değişen akıma AC denir. En çok bilinen AC dalga biçimi Sinüs dalgasıdır. Bununla birlikte farklı uygulamalarda
A A = A 2 x + A 2 y + A 2 z (1) A A. Üç-boyutlu uzayda, iki tane vektörü kartezyen koordinatlarda dikkate alalım: A = Axˆx + A y ŷ + A z ẑ,
Vektör Analizi(Özet) Bir vektörün büyüklüğü(boyu) Birim vektör A A = A 2 + A 2 y + A 2 z (1) A â A (2) İki vektörün skaler(nokta) çarpımı Üç-boyutlu uzayda, iki tane vektörü kartezyen koordinatlarda dikkate
ENDÜVİ REAKSİYONU VE KOMİTASYON
1 ENDÜVİ REAKSİYONU VE KOMİTASYON Doğru Akım Makinelerinde Endüvi Reaksiyonu ve Endüvi Reaksiyonu Endüvi sargılarında herhangi bir akım yok iken kutupların oluşturduğu manyetik akı, endüvi üzerinde düzgün
Makine Mühendisliği İçin Elektrik-Elektronik Bilgisi. Ders Notu-3 Doğru Akım Devreleri Hazırlayan: Yrd. Doç. Dr. Ahmet DUMLU
Makine Mühendisliği İçin Elektrik-Elektronik Bilgisi Ders Notu-3 Doğru Akım Devreleri Hazırlayan: Yrd. Doç. Dr. Ahmet DUMLU ELEKTROMOTOR KUVVETİ Kapalı bir devrede sabit bir akımın oluşturulabilmesi için
8. ALTERNATİF AKIM VE SERİ RLC DEVRESİ
8. ATENATİF AKIM E SEİ DEESİ AMAÇA 1. Alternatif akım ve gerilim ölçmeyi öğrenmek. Direnç, kondansatör ve indüktans oluşan seri bir alternatif akım devresini analiz etmek AAÇA oltmetre, ampermetre, kondansatör
Dalgalar. Matematiksel olarak bir dalga, hem zamanın hem de konumun bir fonksiyonudur: İlerleyen bir dalganın genel bağıntısı (1- boyut ): y f ( x t)
Dalgalar Tireşimlerin bir uyarının veya bir sarsınının uzay içinde zamanla ilerlemesine dalga denir. Maemaiksel olarak bir dalga, hem zamanın hem de konumun bir fonksiyonudur: İlerleyen bir dalganın genel
TRANSİSTÖRLÜ YÜKSELTEÇLER
Karadeniz Teknik Üniversiesi Mühendislik Fakülesi * Elekrik-Elekronik Mühendisliği Bölümü Elekronik Anabilim Dalı * Elekronik Laborauarı I 1. Deneyin Amacı TRANSİSTÖRLÜ YÜKSELTEÇLER Transisörlerin yükseleç
Akışkanların Dinamiği
Akışkanların Dinamiği Akışkanların Dinamiğinde Kullanılan Temel Prensipler Gaz ve sıvı akımıyla ilgili bütün problemlerin çözümü kütlenin korunumu, enerjinin korunumu ve momentumun korunumu prensibe dayanır.
1. Sunum: Kapasitans ve İndüktans. Kaynak: Temel Mühendislik Devre Analizi, J. David IRWIN- R. Mark NELMS
1. Sunum: Kapasitans ve İndüktans Kaynak: Temel Mühendislik Devre Analizi, J. David IRWIN- R. Mark NELMS Kapasitans ve İndüktans Kondansatörler elektrik alanlarında, indüktörler ise manyejk alanlarında
YAVAŞ DEĞİŞEN ÜNİFORM OLMAYAN AKIM
YAVAŞ DEĞİŞEN ÜNİFORM OLMAYAN AKIM Yavaş değişen akımların analizinde kullanılacak genel denklem bir kanal kesitindeki toplam enerji yüksekliği: H = V g + h + z x e göre türevi alınırsa: dh d V = dx dx
ERCİYES ÜNİVERSİTESİ MÜHENDİSLİK FAKÜLTESİ ENERJİ SİSTEMLERİ MÜHENDİSLİĞİ BÖLÜMÜ
ERCİYES ÜNİVERSİTESİ MÜHENDİSLİK FAKÜLTESİ ENERJİ SİSTEMLERİ MÜHENDİSLİĞİ BÖLÜMÜ DENEY FÖYÜ DENEY ADI AC AKIM, GERİLİM VE GÜÇ DENEYİ DERSİN ÖĞRETİM ÜYESİ DENEY SORUMLUSU DENEY GRUBU: DENEY TARİHİ : TESLİM
DENEY 1 1.1. DC GERİLİM ÖLÇÜMÜ DENEYİN AMACI
DENEY 1 1.1. DC GERİLİM ÖLÇÜMÜ 1. DC gerilimin nasıl ölçüldüğünü öğrenmek. 2. KL-21001 Deney Düzeneğini tanımak. 3. Voltmetrenin nasıl kullanıldığını öğrenmek. Devre elemanı üzerinden akım akmasını sağlayan
4 ELEKTRİK AKIMLARI. Elektik Akımı ve Akım Yoğunluğu. Elektrik yüklerinin akışına elektrik akımı denir. Yük
4 ELEKTRİK AKIMLARI Elektik Akımı ve Akım Yoğunluğu Elektrik yüklerinin akışına elektrik akımı denir. Yük topluluğu bir A alanı boyunca yüzeye dik olarak hareket etsin. Bu yüzeyden t zaman aralığında Q
11. SINIF SORU BANKASI. 2. ÜNİTE: KUVVET VE HAREKET 5. Konu ELEKTROMANYETİK İNDÜKSİYON TEST ÇÖZÜMLERİ
11. SINIF SORU ANKASI. ÜNİTE: KUVVET VE HAREKET 5. Konu ELEKTROMANYETİK İNDÜKSİYON TEST ÇÖZÜMLERİ 5 Elektromanyetik Indüksiyon Test 1 in Çözümleri 3. 1. Faraday Yasasına göre; indüksiyon emk sı manyetik
Şekil 2 Hareketin başladığı an
Şekil 2 Hareketin başladığı an Bir savaş uçağı şekildeki gibi 1500 km/sa hızla sorti (dalışa geçerek bombardıman gerçekleştirmek) için harekete başlıyor ve eğrilik yarıçapı 300m. olan dairesel yörüngede
HİDROLİK. Yrd. Doç. Dr. Fatih TOSUNOĞLU
HİDROLİK Yrd. Doç. Dr. Fatih TOSUNOĞLU Ders Hakkında Genel Bilgiler Görüşme Saatleri:---------- Tavsiye edilen kitaplar: 1-Hidrolik (Prof. Dr. B. Mutlu SÜMER, Prof. Dr. İstemi ÜNSAL. ) 2-Akışkanlar Mekaniği
Temel Yasalar ve Uygulamaları
Temel Yasalar ve Uygulamaları 1) Yeryüzünde hangi doğrultuda tutup, hangi yönde hareket ettireceğiniz bir iletkende maksimum gerilim indüklenir / yada hangilerinde indüklenmez. Yanıt 1: Maksimum emk nin
Manyetizma. Manyetik alan çizgileri, çizim. Manyetik malzeme türleri. Manyetik alanlar. BÖLÜM 29 Manyetik alanlar
ÖLÜM 29 Manyetik alanlar Manyetik alan Akım taşıyan bir iletkene etkiyen manyetik kuvvet Düzgün bir manyetik alan içerisindeki akım ilmeğine etkiyen tork Yüklü bir parçacığın düzgün bir manyetik alan içerisindeki
İÇİNDEKİLER xiii İÇİNDEKİLER LİSTESİ BÖLÜM 1 ELEKTRİK YÜKÜ 1.1. ELEKTRİK YÜKÜ VE ÖZELLİKLERİ YALITKANLAR VE İLETKENLER...
İÇİNDEKİLER xiii İÇİNDEKİLER LİSTESİ BÖLÜM 1 ELEKTRİK YÜKÜ 1.1. ELEKTRİK YÜKÜ VE ÖZELLİKLERİ... 2 1.2. YALITKANLAR VE İLETKENLER... 4 1.2.1. İletkenler, Yalıtkanlar ve Yarıiletkenler... 4 1.2.2. Topraklanma...
ELEKTRİK VE MANYETİZMA
ELEKTRİK VE MANYETİZMA ELEKTROSTATİK 1)COULOM KANUNU: İki yük arasındaki itme ya da çekme kuvveti yüklerin çarpımı ile doğru yükler arasındaki uzaklığın karesi ile ters orantılıdır. q1q 1 u kanun F k şeklinde
AÇIK KANAL AKIMI. Hopa Yukarı Sundura Deresi-ARTVİN
AÇIK KANAL AKIMI Hopa Yukarı Sundura Deresi-ARTVİN AÇIK KANAL AKIMI (AKA) Açık kanal akımı serbest yüzeyli akımın olduğu bir akımdır. serbest yüzey hava ve su arasındaki ara yüzey @ serbest yüzeyli akımda
EMAT ÇALIŞMA SORULARI
EMAT ÇALIŞMA SORULARI 1) A = 4. ı x 2. ı y ı z ve B = ı x + 4. ı y 4. ı z vektörlerinin dik olduğunu gösteriniz. İki vektörün skaler çarpımlarının sıfır olması gerekir. A. B = 4.1 + ( 2). 4 + ( 1). ( 4)
2. Basınç ve Akışkanların Statiği
2. Basınç ve Akışkanların Statiği 1 Basınç, bir akışkan tarafından birim alana uygulanan normal kuvvet olarak tanımlanır. Basıncın birimi pascal (Pa) adı verilen metrekare başına newton (N/m 2 ) birimine
2 1 fonksiyonu veriliyor. olacak şekilde ortalama değer teoremini sağlayacak bir c sayısının var olup olmadığını araştırınız. Eğer var ise bulunuz.
ANALİZ 1.) a) sgn. sgn( 1) = 1 denkleminin çözüm kümesini b) f ( ) 3 1 fonksiyonu veriliyor. olacak şekilde ortalama değer teoremini sağlayacak bir c sayısının var olup olmadığını araştırınız. Eğer var
DA-DA DÖNÜŞTÜRÜCÜLER (DA Kıyıcı, DA Gerilim Ayarlayıcı) DA gerilimi bir başka DA gerilim seviyesine dönüştüren devrelerdir.
DADA DÖNÜŞÜRÜCÜLER (DA Kıyıcı, DA Gerilim Ayarlayıcı) DA gerilimi bir başka DA gerilim seviyesine dönüşüren devrelerdir. Uygulama Alanları 1. DA moor konrolü 2. UPS 3. Akü şarjı 4. DA gerilim kaynakları
DENEY 2: TEMEL ELEKTRİK YASALARI-GERİLİM VE AKIM ÖLÇÜMLERİ
DENEY 2: TEMEL ELEKTRİK YASALARI-GERİLİM VE AKIM ÖLÇÜMLERİ A. DENEYİN AMACI : Ohm ve Kirchoff Kanunları nın geçerliliğinin deneysel olarak gözlemlenmesi ve gerilim ve akım ölçümlerinin yapılması B. KULLANILACAK
Ankara Üniversitesi Fen Fakültesi Fizik Bölümü 10. Hafta. Aysuhan OZANSOY
FİZ102 FİZİK-II Ankara Üniversitesi Fen Fakültesi Fizik Bölümü 10. Hafta Aysuhan OZANSOY Bölüm 8: Manyetik Alan 1. Mıknatıslar ve manyetik alan 2. Elektrik Yüküne Etkiyen Manyetik Kuvvet 3. Manyetik Alanda
Bu bölümde Coulomb yasasının bir sonucu olarak ortaya çıkan Gauss yasasının kullanılmasıyla simetrili yük dağılımlarının elektrik alanlarının çok
Gauss Yasası Bu bölümde Coulomb yasasının bir sonucu olarak ortaya çıkan Gauss yasasının kullanılmasıyla simetrili yük dağılımlarının elektrik alanlarının çok daha kullanışlı bir şekilde nasıl hesaplanabileceği
DİELEKTRİKLER 5.1 ELEKTRİK ALANI İÇİNDEKİ YALITKAN ATOMUNUN DAVRANIŞI
83 V. BÖLÜM DİELEKTRİKLER 5.1 ELEKTRİK ALANI İÇİNDEKİ YALITKAN ATOMUNUN DAVRANIŞI Yalıtkanlarda en dış yörüngedeki elektronlar çekirdeğe güçlü bağlı olup serbest elektrik yükü içermez. Mükemmel bir Yalıtkan
1 ALTERNATİF AKIMIN TANIMI
1 ALTERNATİF AKIMIN TANIMI Alternatif Akımın Tanımı Doğru gerilim kaynağının gerilim yönü ve büyüklüğü sabit olmakta; buna bağlı olarak devredeki elektrik akımı da aynı yönlü ve sabit değerde olmaktadır.
ELASTİK DALGA YAYINIMI
ELASTİK DALGA YAYINIMI 8. ders - 016 Prof.Dr. Eşref YALÇINKAYA Geçiğimiz ders; Elasisie eorisi Gerilme ve bileşenleri Deformasyon ve bileşenleri Bu derse; Gerilme-deformasyon bağınıları Elasik sabiler
6. Sunum: Manye-k Bağlaşımlı Devreler. Kaynak: Temel Mühendislik Devre Analizi, J. David IRWIN-R. Mark NELMS, Nobel Akademik Yayıncılık
6. Sunum: Manye-k Bağlaşımlı Devreler Kaynak: Temel Mühendislik Devre Analizi, J. David IRWIN-R. Mark NELMS, Nobel Akademik Yayıncılık 1 Bu ders kapsamında ilgilendiğimiz bütün devre elamanlarının ideal
Fizik II Elektrik ve Manyetizma Manyetik Alan Kaynakları-1
Ders Hakkında Fizik-II Elektrik ve Manyetizma Dersinin Amacı Bu dersin amacı, fen ve mühendislik öğrencilerine elektrik ve manyetizmanın temel kanunlarını lisans düzeyinde öğretmektir. Dersin İçeriği Hafta
Diferansiyel denklemler uygulama soruları
. Aşağıdaki diferansiyel denklemleri sınıflandırınız. a) d y d d + y = 0 b) 5 d dt + 4d + 9 = cos 3t dt Diferansiyel denklemler uygulama soruları 0.0.3 c) u + u [ ) ] d) y + = c d. y + 3 = 0 denkleminin,
KANUNLAR : Bir iletkenin iki ucu arasındaki potansiyel farkının,iletkenden geçen akım şiddetine oranı sabittir.
KANUNLAR : Elektrik ve elektronikle ilgili konuları daha iyi anlayabilmek için, biraz hesap biraz da kanun bilgisine ihtiyaç vardır. Tabii bunlar o kadar zor hasaplar değil, yalnızca Aritmetik düzeyinde
Bernoulli Denklemi, Basınç ve Hız Yükleri Borularda Piezometre ve Enerji Yükleri Venturi Deney Sistemi
Bernoulli Denklemi, Basınç ve Hız Yükleri Borularda Piezometre ve Enerji Yükleri Venturi Deney Sistemi Akışkanlar dinamiğinde, sürtünmesiz akışkanlar için Bernoulli prensibi akımın hız arttıkça aynı anda
ELASTİSİTE TEORİSİ I. Yrd. Doç Dr. Eray Arslan
ELASTİSİTE TEORİSİ I Yrd. Doç Dr. Eray Arslan Mühendislik Tasarımı Genel Senaryo Analitik çözüm Fiziksel Problem Matematiksel model Diferansiyel Denklem Problem ile ilgili sorular:... Deformasyon ne kadar
11. SINIF SORU BANKASI. 2. ÜNİTE: KUVVET VE HAREKET 5. Konu ELEKTROMANYETİK İNDÜKSİYON TEST ÇÖZÜMLERİ
11. SINIF SORU ANKASI. ÜNİTE: KUVVET VE HAREKET 5. Konu ELEKTROMANYETİK İNDÜKSİYON TEST ÇÖZÜMLERİ 5 Elektromanyetik Indüksiyon Test 1 in Çözümleri 3. 1. Faraday Yasasına göre; indüksiyon emk sı manyetik
MIT 8.02, Bahar 2002 Ödev # 6 Çözümler
Adam S. Bolton [email protected] MIT 8.02, Bahar 2002 Ödev # 6 Çözümler 5 Nisan 2002 Problem 6.1 Dönen Bobin.(Giancoli 29-62) Bobin, yüzü manyetik alana dik olarak başlar (daha bilimsel konuşmak gerekirse,
DENEY 2: TEMEL ELEKTRİK YASALARI (OHM, KİRCHOFF AKIM VE GERİLİM)
DENEY 2: TEMEL ELEKTRİK YASALARI (OHM, KİRCHOFF AKIM VE GERİLİM) A. DENEYİN AMACI : Ohm ve Kirchoff Kanunları nın geçerliliğinin deneysel olarak gözlemlenmesi. B. KULLANILACAK ARAÇ VE MALZEMELER : 1. Multimetre
MUKAVEMET I ÇÖZÜMLÜ ÖRNEKLER
MUKAEMET I ÇÖZÜMÜ ÖRNEKER ders notu Yard. Doç. Dr. Erdem DAMCI Şubat 15 Mukavemet I - Çözümlü Örnekler / 7 Örnek 1. Üzerinde yalnızca yayılı yük bulunan ve açıklığı olan bir basit kirişe ait eğilme momenti
BÖLÜM 1: TEMEL KAVRAMLAR
BÖLÜM 1: TEMEL KAVRAMLAR Hal Değişkenleri Arasındaki Denklemler Aralarında sıfıra eşitlenebilen en az bir veya daha fazla denklem kurulabilen değişkenler birbirine bağımlıdır. Bu denklemlerden bilinen
T.C. DÜZCE ÜNİVERSİTESİ TEKNOLOJİ FAKÜLTESİ BİLGİSAYAR MÜHENDİSLİĞİ BÖLÜMÜ BMT103 ELEKTRİK DEVRE TEMELLERİ DERSİ LABORATUVARI DENEY NO: 7
T.C. DÜZCE ÜNİVERSİTESİ TEKNOLOJİ FAKÜLTESİ BİLGİSAYAR MÜHENDİSLİĞİ BÖLÜMÜ BMT103 ELEKTRİK DEVRE TEMELLERİ DERSİ LABORATUVARI DENEY NO: 7 KONDANSATÖRLER VE BOBİNLER Doç. Dr. İbrahim YÜCEDAĞ Arş. Gör. Sümeyye
TEMEL ELEKTROT SİSTEMLERİ Eş Merkezli Küresel Elektrot Sistemi
TEMEL ELEKTROT SİSTEMLERİ Eş Merkezli Küresel Elektrot Sistemi Merkezleri aynı, aralarında dielektrik madde bulunan iki küreden oluşur. Elektrik Alanı ve Potansiyel Yarıçapları ve ve elektrotlarına uygulanan
Asenkron Makineler (2/3)
Asenkron Makineler (2/3) 1) Asenkron motorun çalışma prensibi Yanıt 1: (8. Hafta web sayfası ilk animasyonu dikkatle inceleyiniz) Statora 120 derecelik aralıklarla konuşlandırılmış 3 faz sargılarına, 3
Bölüm-4. İki Boyutta Hareket
Bölüm-4 İki Boyutta Hareket Bölüm 4: İki Boyutta Hareket Konu İçeriği 4-1 Yer değiştirme, Hız ve İvme Vektörleri 4-2 Sabit İvmeli İki Boyutlu Hareket 4-3 Eğik Atış Hareketi 4-4 Bağıl Hız ve Bağıl İvme
r r r F İŞ : Şekil yörüngesinde hareket eden bir parçacık üzerine kuvvetini göstermektedir. Parçacık A noktasından
İŞ : Şekil yörüngesinde hareket eden bir parçacık üzerine etkiyenf r kuvvetini göstermektedir. Parçacık A noktasından r r geçerken konum vektörü uygun bir O orijininden ölçülmektedir ve d r A dan A ne
v.t dir. x =t olup 2x =2t dir.
) m/s hızla düşe olarak ükselen balondan, balona göre m/s hızla aa aılan cisim aıldığı nokanın düşeinden 5 m uzaka ere çarpıor. Buna göre cisim ere çarpığı anda balon erden kaç m üksekedir? A)5 B)5 C)6
Alternatif Akım; Zaman içerisinde yönü ve şiddeti belli bir düzen içerisinde değişen akıma alternatif akım denir.
ALTERNATiF AKIM Alternatif Akım; Zaman içerisinde yönü ve şiddeti belli bir düzen içerisinde değişen akıma alternatif akım denir. Doğru akım ve alternatif akım devrelerinde akım yönleri şekilde görüldüğü
Mühendislik Mekaniği Statik. Yrd.Doç.Dr. Akın Ataş
Mühendislik Mekaniği Statik Yrd.Doç.Dr. Akın Ataş Bölüm 9 Ağırlık Merkezi ve Geometrik Merkez Kaynak: Mühendislik Mekaniği: Statik, R. C. Hibbeler, S. C. Fan, Çevirenler: A. Soyuçok, Ö. Soyuçok. 9. Ağırlık
Ünite. Kuvvet ve Hareket. 1. Bir Boyutta Hareket 2. Kuvvet ve Newton Hareket Yasaları 3. İş, Enerji ve Güç 4. Basit Makineler 5.
2 Ünie ue e Hareke 1. Bir Boyua Hareke 2. ue e Newon Hareke Yasaları 3. İş, Enerji e Güç 4. Basi Makineler. Dünya e Uzay 1 Bir Boyua Hareke Tes Çözümleri 3 Tes 1'in Çözümleri 3. 1. Süra skaler, hız ekörel
Termodinamik Termodinamik Süreçlerde İŞ ve ISI
Termodinamik Süreçlerde İŞ ve ISI Termodinamik Hareketli bir pistonla bağlantılı bir silindirik kap içindeki gazı inceleyelim (Şekil e bakınız). Denge halinde iken, hacmi V olan gaz, silindir çeperlerine
İleri Diferansiyel Denklemler
MIT AçıkDersSistemi http://ocw.mit.edu 18.034 İleri Diferansiyel Denklemler 2009 Bahar Bu bilgilere atıfta bulunmak veya kullanım koşulları hakkında bilgi için http://ocw.mit.edu/terms web sitesini ziyaret
