SU DALGALARINDA GİRİŞİM



Benzer belgeler
BÖLÜM I GİRİŞ (1.1) y(t) veya y(x) T veya λ. a t veya x. Şekil 1.1 Dalga. a genlik, T peryod (veya λ dalga boyu)

SİSMİK PROSPEKSİYON DERS-3

EŞ POTANSİYEL VE ELEKTRİK ALAN ÇİZGİLERİ. 1. Zıt yükle yüklenmiş iki iletkenin oluşturduğu eş potansiyel çizgileri araştırıp bulmak.

fonksiyonu için in aralığındaki bütün değerleri için sürekli olsun. in bu aralıktaki olsun. Fonksiyonda meydana gelen artma miktarı

sayıların kümesi N 1 = { 2i-1: i N } ve tüm çift doğal sayıların kümesi N 2 = { 2i: i N } şeklinde gösterilebilecektir. Hiç elemanı olmayan kümeye

DİNAMİK (2.hafta) Yatay Hareket Formülleri: a x =0 olduğundan ilk hız ile yatay bileşende hareketine devam eder.

Cebirsel Fonksiyonlar

Girişim; iki veya daha fazla dalganın üst üste binerek, yeni bir dalga şeklinde sonuç

Uzayda iki doğrunun ortak dikme doğrusunun denklemi

HİDROLİK. Yrd. Doç. Dr. Fatih TOSUNOĞLU

Şimdi de [ ] vektörünün ile gösterilen boyu veya büyüklüğü Pisagor. teoreminini iki kere kullanarak

ÜNİTE. MATEMATİK-1 Yrd.Doç.Dr.Ömer TARAKÇI İÇİNDEKİLER HEDEFLER DOĞRULAR VE PARABOLLER

DİK KOORDİNAT SİSTEMİ VE

Dizi Antenler. Özdeş anten elemanlarından oluşan bir dizi antenin ışıma diyagramını belirleyen faktörler şunlardır.

Dalgalar Sorularının Çözümleri

DALGALAR. Dalgalar titreşim doğrultusuna ve Taşıdığı enerjiye göre aşağıdaki şekilde sınıflandırılır.

Şekil-1. Doğru ve Alternatif Akım dalga şekilleri

Nokta uzayda bir konumu belirtir. Noktanın 0 boyutlu olduğu kabul edilir. Herhangi bir büyüklüğü yoktur.

YILDIZLARIN HAREKETLERİ

PROJE ADI: TEKRARLI PERMÜTASYONA BİNOM LA FARKLI BİR BAKIŞ

Tanımlayıcı İstatistikler. Yrd. Doç. Dr. Emre ATILGAN

Bir özvektörün sıfırdan farklı herhangi bri sabitle çarpımı yine bir özvektördür.

Türev Uygulamaları ÜNİTE. Amaçlar. İçindekiler. Yazar Prof.Dr. Vakıf CAFEROV

Bir işaretli büyüklük sayısında en soldaki basamak bir işaret içerir. Diğer basamaklarda ise sayısal değerin büyüklüğü (mutlak değeri) gösterilir.

1. Yatırımın Faiz Esnekliği

MATEMATiKSEL iktisat

11. SINIF KONU ANLATIMLI. 1. ÜNİTE: KUVVET VE HAREKET 8. Konu TORK VE DENGE ETKİNLİK VE TEST ÇÖZÜMLERİ

7.DENEY RAPORU AKIM GEÇEN TELE ETKİYEN MANYETİK KUVVETLERİN ÖLÇÜMÜ

Alternatif Akım; Zaman içerisinde yönü ve şiddeti belli bir düzen içerisinde değişen akıma alternatif akım denir.

5. Elektriksel Büyüklüklerin Ölçülebilen Değerleri

ÜNİTE: TAM SAYILAR KONU: Tam Sayılar Kümesinde Çıkarma İşlemi

SU DALGALARI. a) Çukur engel Doğrusal dalgalar bir noktada toplanıp, tekrar çembersel dalgalara dönüşürler.

PARABOL. çözüm. kavrama sorusu. çözüm. kavrama sorusu

12-B. Polinomlar - 1 TEST. olduğuna göre P(x - 2, y + 4) polinomunun katsayılar toplamı kaçtır? olduğuna göre A B kaçtır? A) 78 B) 73 C) 62 D 58 E) 33

Temel Kavramlar. Alıştırma Şekil ile, ifade edilişini eşleştiriniz.

Kesit Görünüşler. Kesit Görünüşler

ELEKTRİKSEL POTANSİYEL

Suya atılan küçük bir taşın su yüzeyinde oluşturduğu hareketler dalga hareketine örnek olarak verilebilir. Su yüzeyinde oluşan dalgalar suyun alt

TEKNOLOJİNİN BİLİMSEL İLKELERİ

STATİĞİN TEMEL PRENSİPLERİ

T I M U R K A R A Ç AY, H AY D A R E Ş, O R H A N Ö Z E R K A L K U L Ü S N O B E L

2012 YGS MATEMATİK Soruları

Temel Elektronik Basic Electronic Düğüm Gerilimleri Yöntemi (Node-Voltage Method)

IŞIĞIN KIRINIMI ve GİRİŞİMİ. YGS-LYS Fizik Ders Notu

ULAŞIM YOLLARINA İLİŞKİN TANIMLAR 1. GEÇKİ( GÜZERGAH) Karayolu, demiryolu gibi ulaşım yollarının yuvarlanma yüzeylerinin ortasından geçtiği

Su Dalgaları Testlerinin Çözümleri. Test 1 in Çözümleri

1) Toplam gelir fonksiyonu olarak verildiğine göre marjinal gelir fonksiyonu MG aşağıdakilerden hangisidir? A) ** B) C) D) E)

FİZİK-II DERSİ LABORATUVARI ( FL 2 5 )

1. BÖLÜM Polinomlar BÖLÜM II. Dereceden Denklemler BÖLÜM II. Dereceden Eşitsizlikler BÖLÜM Parabol

10.Konu Tam sayıların inşası

İTÜ Bilgisayar Mühendisliği Bölümü, BLG433-Bilgisayar Haberleşmesi ders notları, Dr. Sema Oktuğ

***Yapılan bir çizimin harita özelliğini gösterebilmesi için çizimin belirli bir ölçek dahilinde yapılması gerekir.

Algoritmalara Giriş Ekim 17, 2005 Massachusetts Institute of Technology Profesörler Erik D. Demaine ve Charles E. Leiserson Dağıtım 15.

ECEM ERDURU GAMZE SERİN ZEHRA SABUR EMİNE ÖLMEZ. o TAMSAYILAR KONUSU ANLATILMAKTADIR

2 şeklindeki bütün sayılar. 2 irrasyonel sayısı. 2 irrasyonel sayısından elde etmekteyiz. Benzer şekilde 3 irrasyonel sayısı

Düzlemde Dönüşümler: Öteleme, Dönme ve Simetri. Not 1: Buradaki A noktasına dönme merkezi denir.

Makina Mühendisliği Bölümü Makine Laboratuarı

Cebir 1. MIT Açık Ders Malzemeleri

a a 0 a 4a

Makine Elemanları II Prof. Dr. Akgün ALSARAN. Üretim. Dişli çarklar

ÜNİTE. MATEMATİK-1 Doç.Dr.Erdal KARADUMAN İÇİNDEKİLER HEDEFLER ÖZDEŞLİKLER, DENKLEMLER VE EŞİTSİZLİKLER

Parametrik doğru denklemleri 1

FİZ209A OPTİK LABORATUVARI DENEY KILAVUZU

EEM 307 Güç Elektroniği

Toplam İkinci harmonik. Temel Üçüncü harmonik. Şekil 1. Temel, ikinci ve üçüncü harmoniğin toplamı

Selçuk Üniversitesi 26 Aralık, 2013 Beyşehir Turizm Fakültesi-Konaklama İşletmeciliği Genel Ekonomi Dr. Alper Sönmez. Soru Seti 3

Denklemler İkinci Dereceden Denklemler. İkinci dereceden Bir Bilinmeyenli Denklemler. a,b,c IR ve a 0 olmak üzere,

ARAZİ ÖLÇMELERİ. Koordinat sistemleri. Kartezyen koordinat sistemi

İleri Diferansiyel Denklemler

Paslanmaz Çelik Gövde. Yalıtım Sargısı. Katalizör Yüzey Tabakası. Egzoz Emisyonları: Su Karbondioksit Azot

Küresel Aynalar Testlerinin Çözümleri. Test 1 in Çözümleri

KESRİN TERİMLERİ ÖRNEK:

MIT Açık Ders Malzemeleri Fizikokimya II 2008 Bahar

4. FAYLAR ve KIVRIMLAR

Dik koordinat sisteminde yatay eksen x ekseni (apsis ekseni), düşey eksen ise y ekseni (ordinat ekseni) dir.

ÜNİTE 1: TEMEL KAVRAMLAR

Bohr Atom Modeli. ( I eylemsizlik momen ) Her iki tarafı mv ye bölelim.

Taşkın, Çetin, Abdullayeva 2. ÖZDEŞLİKLER,DENKLEMLER VE EŞİTSİZLİKLER

1981 ÖSS olduğuna göre, aşağıdakilerden c hangisi kesinlikle doğrudur? A) a>0 B) c<0 C) a+c=0 D) a 0 E) c>0 A) 12 B) 2 9 C) 10 D) 5 E) 11

Kesirlerde Bölme. Kesirlerde bölmeyi kavrayabilmek için öncelikle bölme ne demek bakalım ; 24:6 nın anlamına bakalım :

MAT223 AYRIK MATEMATİK

TEK FAZLI KONTROLLÜ (TRĠSTÖRLÜ) DOĞRULTUCULAR

Geometrik Örüntüler. Geometride Temel Kavramlar Uzamsal İlişkiler

KÜRESEL AYNALAR ÇUKUR AYNA. Yansıtıcı yüzeyi, küre parçasının iç yüzeyi ise çukur ayna yada içbükey ayna ( konveks ayna ) denir.

GİRİŞ. Faylar ve Kıvrımlar. Volkanlar

ASAL SAYILAR - TAM BÖLENLER - FAKTÖRİYEL Test -1

7. BÖLÜM İÇ ÇARPIM UZAYLARI İÇ ÇARPIM UZAYLARI İÇ ÇARPIM UZAYLARI İÇ ÇARPIM UZAYLARI .= Genel: Vektörler bölümünde vektörel iç çarpım;

Elektrik akımının yönü ELEKTRİK İLE İLGİLİ BAZI SİMGELER VE İSİMLERİ. Yukarıda da aktardığım

İç direnç ve emk. Seri bağlı dirençler. BÖLÜM 28 Doğru Akım Devreleri. İç direnç ve emk. ve emk. Elektromotor kuvvet (emk) kaynakları.

TANIMLAYICI İSTATİSTİKLER

KOMPASS PUSULA Kullanma talimatları

OPTIMIZASYON Bir Değişkenli Fonksiyonların Maksimizasyonu...2

ALTERNATİF AKIMIN DENKLEMİ

2012 YGS MATEMATİK SORU VE ÇÖZÜMLERİ. b a 12 8 A) 4 2 B) 3 3 C) 4 D) 5 E) 6. Çözüm : Cevap : E. 4. x ve y birer gerçel sayı olmak üzere,

için doğrudur. olmak üzere tüm r mertebeli gruplar için lemma nın doğru olduğunu kabul edelim. G grubunun mertebesi n olsun. ve olsun.

FOREX EL KİTABI 2. BÖLÜM

Gök Mekaniği: Eğrisel Hareket in Kinematiği

OPTİK Işık Nedir? Işık Kaynakları Işık Nasıl Yayılır? Tam Gölge - Yarı Gölge güneş tutulması

Fiz102L TOBB ETÜ. Deney 1. Eş potansiyel ve elektrik alan çizgileri. P r o f. D r. S a l e h S U L T A N S O Y. D r. A h m e t N u r i A K A Y

KARABÜK ÜNİVERSİTESİ Öğretim Üyesi: Doç.Dr. Tamila ANUTGAN 1

Transkript:

SU DALGALARINDA GİRİŞİM Yukarıda iki kaynağın oluşturduğu dairesel su dalgalarının meydana getirdiği girişim deseni gösterilmiştir Burada kesikli çizgiler dalga çukurlarını, düz çizgiler dalga tepelerini göstermektedir İki tepe üst üste gelirse daha yüksek bir tepe oluşur, buna çift tepe diyeceğiz İki çukur üst üste gelirse daha derin bir çukur oluşur buna da çift çukur diyeceğiz Bir tepe ve bir çukur üst üste gelirse birbirlerini söndürürler böyle noktalara düğüm noktası diyeceğiz Düğüm noktalarını birleştiren çizgileri, düğüm çizgisi; çift tepe ve çift çukur noktalarını birleştiren çizgileri ise dalga katarı olarak adlandıracağız Fakat gördüğünüz gibi şekilde birçok düğüm noktası, çift tepe ve çift çukur var Bunları tek bir çizgi ile birleştirmeyeceğiz Kaynakların tam orta noktasındaki çift çukur noktası ve onun yukarısındaki çift tepe ve çift çukur noktalarını birleştiren doğruya merkez doğrusu yada merkez dalga katarı denir Bu tam ortadaki çift çukur ve hemen sağındaki çift tepe arsında biraz yukarıda bir düğüm noktası ve onunda hemen yukarısında ardarda düğüm noktaları var bu noktaları birleştiren çizgiye 1düğüm çizgisi denir Ortadaki çift çukurun sağındaki çift tepe ve onun yukarısındaki çift çukur ve çift tepe noktalarını birleştiren doğruya ise 1 dalga katarı denir Böylece birkaç düğüm çizgisi ve dalga katarı vardır ve bunlar merkez doğrusuna göre simetriktir

Şekilde olabilecek tüm düğüm çizgileri ve dalga kayarları çizilmiştir Eğer kaynaklar birbirinden daha uzak veya ortamdaki dalga boyu daha küçük olsaydı daha fazla çizgi oluşabilirdi Fakat bu şekil için 3 sağda 3 solda olmak üzere 6 tane düğüm çizgisi ve 2 sağda 2 solda 1 ortada olmak üzere 5 tane dalga katarı oluşmuştur Şimdi bu şeklin detaylarına geçmeden önce desen üzerinde alınan her hangi bir nokta için biraz inceleme yapalım Herhangi bir noktanın kaynaklara olan uzaklıklarının farkına yol farkı denir ve S ile gösterilir Yandaki şekilde P noktası için yol farkını yazalım; S = PK1 - PK2 Şekilde AP = PK2 olarak alabiliriz (kaynaklar birbirine oldukça yakın ve P noktası yeteri kadar uzakta olduğu için) Bu durumda yol farkı; S = PK1 - PK2 =AK1 + AP PK2 S = AK1 Ayrıca şekilde ile gösterilen açıları da eşit olarak alabiliriz Buna göre açılar için yazacağımız sinüsler de eşit olmalıdır X: P noktasının merkez doğrusuna uzaklığı L: P noktasının kaynakların orta noktasına uzaklığı d: kaynaklar arası uzaklık

Kaynakları birleştiren doğru üzerinde düğüm çizgisi veya dalga katarı gözlenmez Bu sebeple eğer herhangi bir özel çizgi üzerindeki bir noktayı düşünüyorsak açısı 90 dereceden küçük olmalıdır Sin < 1 d Sin = S öyle ise; d > S olmalıdır Birinci düğüm çizgisi üzerindeki A noktası gösterilmiştir Bu noktanın kaynaklara uzaklıkları farkını hesaplayalım; S = 3,5 3 = 05 Bu düğüm çizgisi üzerindeki diğer noktalar için de aynı sonucu elde ederiz İkinci düğüm çizgisi üzerindeki B noktası için yol farkını hesaplarsak; S = 3,5 2 =15 = 3 /2 Bu düğüm çizgisi üzerindeki diğer noktalar için yine aynı sonuç elde edilir Burada düğüm çizgileri için yol farkının /2 nin tek katları şeklinde gittiğini görüyoruz 1 düğüm çizgisi için 1 /2 2 düğüm çizgisi için 3 /2 3 düğüm çizgisi için 5 /2 n düğüm çizgisi için (2n 1) /2 Öyle ise düğüm çizgileri için yol farkını : S = (n ½) Olarak yazabiliriz Burada n bize kaçıncı düğüm çizgisi olduğunu söyler

Birinci dalga katarı üzerindeki A noktası için yol farkı; S = 3,5 2,5 S = Bu dalga katarı üzerindeki diğer noktalar içinde aynı değeri bulacaksınız İkinci dalga katarı üzerindeki B noktası için yol farkı; S = 3,5 1,5 S = 2 Diğer noktalar için kontrol ediniz Burada dalga katarları için yol farkının dalga boyunun tam katları olarak gittiğini görüyoruz 1 dalga katarı için 1 2 dalga katarı için 2 3 dalga katarı için 3 n dalga katarı için n Öyle ise dalga katarları için yol farkını : S = n Olarak yazabiliriz Burada n bize kaçıncı dalga katarı olduğunu söyler Bu bilgiler bizim için çok önemlidir çünkü bu bilgiler yardımıyla oluşacak düğüm çizgilerinin ve dalga katarlarının sayısını hesaplayabiliriz d > S Düğüm çizgileri için S = (n ½) Dalga katarları için S = n d > S ifadesinden düğüm çizgisi sayısını bulmak için düğüm çizgileri için yol farkı ifadesi; dalga katarı sayısını bulmak için dalga katarları için yol farkı ifadesi kullanılır

Düğüm çizgisi sayısının bulunması; Düğüm çizgisi sayısını bulabilmek için d > S ifadesinde S yerine düğüm çizgileri için yol farkı ifadesini yani S = (n ½) ifadesini koyarak d >(n ½) eşitsizliği çözülür Buradan bulunacak n değeri merkez doğrusunun bir tarafındaki düğüm çizgisi sayısını verir, diğer tarafta da bir o kadar düğüm çizgisi vardır Öyle ise toplam düğüm çizgisi sayısı 2n olur Dalga katarı sayısının bulunması; Dalga katarı sayısını bulabilmek için d > S ifadesinde S yerine dalga katarları için yol farkı ifadesini yani S = n ifadesini koyarak d > n eşitsizliği çözülür Buradan bulunacak n değeri merkez doğrusunun bir tarafındaki dalga katarı sayısını verir diğer tarafta da bir o kadar dalga katarı vardır ayrıca merkez doğrusuda bir dalga katarıdır Öyle ise toplam dalga katarı sayısı 2n + 1 olur FAZ FARKI: Girişimde kaynaklar arasında faz farkının olmadığı yani kaynakların aynı fazlı olduğu durumu inceledik Faz farkı sıfırla bir arasındadır Sıfır yada bir olması faz farkı olmaması demektir Faz farkının ½ olması kaynakların zıt fazlı olması demektir Faz farkı durumunda düğüm çizgisi sayısının bulunması; Faz farkı p iken düğüm çizgileri için yol farkını, S = (n + p ½) S = (n p ½) olarak yazabiliriz Öyle ise; d > (n1 + p ½) d > (n2 p ½) Toplam düğüm çizgisi sayısı n = n1 + n2 olarak bulunur Faz farkı durumunda dalga katarı sayısının bulunması; Faz farkı p iken dalga katarları için yol farkını, S = (n + p) S = (n p) olarak yazabiliriz Öyle ise; d > (n1 + p) d > (n2 p) Toplam dalga katarı sayısı n = n1 + n2 +1 olarak bulunur

Temelde girişim olayının sebebi her hangi bir noktaya kaynaklardan gelen dalgalar arasında faz farkı olmasıdır Kaynaklarda aynı anda aynı fazlı oluşan dalgalar merkez doğrusu üzerindeki bir noktaya aynı anda gelirler böylece aralarında faz farkı oluşmaz Fakat merkez doğrusu üzerinde olmayan bir noktaya gelinceye kadar dalgalardan biri diğerine göre daha fazla yol alarak gelir ve dolayısı ile aralarında faz farkı oluşur Eğer bu faz farkı ½ ise dalgalar birbirini söndürür ve düğüm noktası oluşur Biz bu faz farkını yol farkı olarak tanımlamıştık Bizim faz farkı durumu dediğimiz ise kaynaklarda üretilen dalgaların üretildikleri anda aralarında faz farkı olmasıdır Şimdi zıt fazlı kaynakların oluşturduğu girişim desenini görelim: Şu anda kaynaklardan biri tepe oluşturuyorken diğeri çukur oluşturmaktadır Bu kaynakların zıt fazda çalıştığı anlamına gelir Gördüğünüz gibi önceden merkezde dalga katarı oluşurken şimdi düğüm çizgisi oluşmaktadır Hemen sonrasında 1 düğüm çizgisinin yerinde 1 dalga kararı, 1 dalga katarının yerinde 1 düğüm çizgisi oluşmuştur Yani önceden düğüm çizgisi olan yerler şimdi dalga katarı, önceden dalga katarı olan yerler şimdi düğüm çizgisidir Ve simetri yine vardır Öyle ise sayı bulma yöntemlerini de değiştirmeliyiz Düğüm çizgisi sayısını bulmak için d > n, dalga katarı sayısını bulmak için d > (n ½) Çünkü artık düğüm çizgileri için S = n, dalga katarları için S = (n ½) oldu Çizgilerdeki kayma miktarı X = p /2 Şekilde herhangi bir faz farkı durumu gösterilmiştir İkinci kaynak birinci kaynağa göre biraz geç kalmış ve bütün çizgiler geç kalan kaynak tarafına kaymıştır Merkezde artık herhangi bir çizgi oluşmaz ve merkeze göre simetri bozulur