Tanım Akışkanların Statiği (Hidrostatik) Örnekler Kaldırma Kuvveti Örnek Eylemsizlik Momenti Eylemsizlik Yarıçapı

Ebat: px
Şu sayfadan göstermeyi başlat:

Download "11.1 11.2. Tanım Akışkanların Statiği (Hidrostatik) Örnekler Kaldırma Kuvveti. 11.3 Örnek Eylemsizlik Momenti. 11.4 Eylemsizlik Yarıçapı"

Transkript

1 Tanım Akışkanların Statiği (Hidrostatik) Örnekler Kaldırma Kuvveti 11.3 Örnek Eylemsizlik Momenti 11.4 Eylemsizlik Yarıçapı 11.5 Eksen Takımının Değiştirilmesi 11.6 Asal Eylemsizlik Momentleri 11.7 Örnekler PROBLEMLER Fransız matematikçi katı cisimlerde ısı iletiminin bugün Fourier serileri olarak bilinen sonsuz serilerle çözülmesi yöntemini geliştirmiştir. Bunlar daha sonra akustik, optik, elektromagnetizma, elektrikli iletim, istatistiksel analiz, her çeşit titreşim problemi gibi fiziğin hemen her alanında yaygın olarak kullanılmıştır. Güneş lekeleri, gelgit ve hava koşulları gibi pek çok doğa olayını sınır değeri problemlerine indirgeyerek çözmüş ve bu yolla fiziksel matematiğe çok değerli katkılarda bulunmuştur. Fourier integrali olarak bilinen integrali de buldu. Mısır uzmanı olarak ta önemli çalışmaları olmuş ve eski mısır kültürü üstüne yoğun araştırmalarda bulunmuştur. Joseph FOURIER ( )

2 11.1 TANIM Gerçek anlamda tek bir noktaya etkiyen bir tekil kuvveti pratikte bulmak çok zor olduğundan genel yükleme durumu yayılı kuvvet biçimindedir. Bileşke kuvvetin hesabı da, yayılı yükün etkidiği alan üzerindeki dağılımına bağlıdır. Bunlara örnek olarak cismin ağırlığı ya da akışkanın temas içinde olduğu bir cisme uyguladığı etkileşim kuvveti gösterilebilir. Tabii şimdi akla ilk gelecek soru Akışkan ile cisim arasındaki bu yayılı kuvvet cisme nasıl ve ne şekilde etkir? olmalıdır. Akışkan, temas ettiği cismin yüzeyine dik olacak biçimde yayılı kuvvet uygular. Aşağıda bu ve benzeri sorulara gerekli yanıtlar verilecek. Yalnız önce yayılı kuvvetlerin hesabında çok önemli bir kavram olan gerilmeyi açıklığa kavuşturalım. Gerilme: Yayılı kuvvetin birim alandaki şiddetine verilen addır. Eğer gerilme, üzerine etkidiği yüzeye (alana) doğru yönelmişse buna basınç gerilmesi denir ve birimi de [kuvvet/alan] dır. O nedenle belli bir alandaki gerilmelerin toplamları da o alan üstünde bir basınç kuvveti üretir. 11. AKIŞKANLARIN STATİĞİ (HİDROSTATİK) Bir yüzey üzerindeki yayılı kuvvet etkisi, cismin kendi ağırlığı nedeniyle meydana gelebileceği gibi, çeşitli dış etkilerle de oluşabilir. Buna örnek olarak, şiddetli esen rüzgâr etkisindeki bir yüksek yapı ya da akışkan basıncı altındaki bir su tankı ya da bir baraj kapağı gösterilebilir. Kitapta incelenecek olan konu hidrostatik, yani sıkıştırılamayan sıvıların statiğidir. Sıvı ya da gaz halinde bir sürekli ortam oluşturan akışkan statik halde etkileşim içinde olduğu cismin yüzeyine, ona dik olacak biçimde bir basınç kuvveti uygular. Hareketsiz duran akışkanda, basınç, düşey doğrultuda ölçülen akışkan yüksekliğinin bir fonksiyonudur.

3 344 STATİK YATAY YÜZEYDE BASINÇ: Şekil (11.1) deki akışkan ortamında sonsuz küçük diferansiyel hacim elemanı dv = dzda yı inceleyelim. Sütun elemanının üst yüzeyi da ya etkiyen basınç kuvvetine d P ( z) dersek, tanım gereği basınç gerilmesi, d ( z) p ( z) = P (11.1) da biçiminde hesaplanır. Bu yüzeyden dz kadar aşağıdaki da yüzeyindeki basınç ise, p+ dp (11.) olur. (11.) deki dp= dpk, derinlikteki dz kadarlık artıştan doğan akışkan basıncındaki değişimdir. Yer çekimi ivmesi g ve akışkanda yoğunluk ise, özgül ağırlık = g olacağından, Şekil (11.) deki diferansiyel hacim elemanının ağırlığı, ( g ) V ( g z A) dw= d k= d d k (11.3) olur. Şekil (11.1) deki akışkan ortamından çıkartılan diferansiyel hacim elemanı Şekil (11.) de görüldüğü gibi çizilip, düşey denge denklemi yazılırsa, pda+ dw- ( p+ dp) da= 0 dpda = dw (11.4) bulunur ve (11.4) de (11.3) yerleştirildikten sonra, ifade integre edilirse, p z dp= ( g) dz ò ò 0 ( ) p0 0 p= p + g z (11.5) sonucuna ulaşılır. (11.5) de p 0 sıvı yüzeyindeki atmosferik basınç olup, p ye de mutlak basınç denir. Görüldüğü gibi basınçtaki değişim, yüksekliğin doğrusal bir fonksiyonudur. Eğer atmosferik basınç göz önüne alınmadan hesap yapılırsa, o zaman (11.5) den akışkan basıncı, p= ( g) z (11.6) olur. (11.6) daki p ye bağıl basınç denir ve bu bölümde tüm hesaplar hep bağıl basınca göre yapılacak. Basınç, birim alana etkiyen kuvvettir ve SI birim sisteminde birimi kuvvet/alan olur. Eğer kuvvet birimi Newton [N], uzunluk birimi metre [m] seçilirse, o zaman basınç birimi [N/m ] ya da kısaca Pascal [Pa] olur.

4 35 STATİK elde edilir. P kuvvetinin etki noktası, yp= ò ydp 5 3 ( ) 337 y= ò 5y+ 3y - y dy y =.14m bulunur. Düşey doğrultuda = 0.8y ilişkisinden = 1.71m olur KALDIRMA KUVVETİ Akışkan, içindeki cisme her zaman bir kaldırma kuvveti uygular. Aşağıda açıklanacak olan bu kuramın tarihçesi Arkhimedes (MÖ 8011) e kadar uzanır. Şimdi Şekil (11.7a) daki akışkan ortamında V hacminde bir kapalı bölge seçelim. Sonra bu bölgeyi Şekil (11.7b) de görüldüğü gibi akışkan içinden dışarıya çıkartalım, ama bölge çevresindeki akışkanda dengeyi korumak için parçadan akışkana gelecek etkileri akışkan yüzeyine yayılı f basıncıyla gözetelim. Böylece dışarıya çıkartılmış olan akışkan parçasında denge Şekil (11.7c) de görüldüğü gibi olur. Akışkanın yoğunluğu ise, dışarıya çıkartılmış akışkan parçasının ağırlığı ile üzerine etkiyen bileşke kuvvet, sırasıyla, Wa =-( gv ) k üï ï ýï F=- f dir. Böylece, denge koşulu gereği, (11.18) F+ Wa = 0 F= ( g) V k (11.19) bulunur. Şimdi Şekil (11.7d) de görüldüğü gibi dışarı çıkartılan akışkan parçasının yerine eş boyutlarda ve W ağırlığında bir başka cisim yerleştirelim. Bu durumda cisme etkiyen bileşke kuvvet F ile, akışkan parçasına etkiyen F= gv k özdeş olarak aynıdır. Şu halde (11.19) e göre; kaldırma kuvveti, cisme akışkan kaynaklı etkiyen bir bileşke kuvvet olup, şiddeti cisimle yer değiştirilecek akışkanın ağırlığına eşit ve zıt yöndedir. O halde artık incelenmesi gereken problem kaldırma kuvvetiyle W ağırlığı arasındaki denge ilişkisinin nasıl oluşacağıdır. Bu kuvvet, akışkan içindeki cisimle yer değiştirilen akışkanın ağırlık merkezinden geçer ve yoğunluğu sabit olan sıvılarda yer değiştiren sıvının ağırlık merkezi ile yer değiştiren hacmin ağırlık merkezi çakışır. Eğer sıvı içindeki cismin yoğunluğu, akışkanın yoğunluğundan daha azsa, düşeyde dengelenmemiş bir kuvvetle karşılaşılır,

5 358 STATİK yazılır. Yalnız kesitin ağırlık merkezindeki ( x, y) takımında eksenlere göre alan statik momentleri Sy = ò xda= 0 ve S d 0 A x = ò y A= olduğundan, yukarıdaki A bağıntılardan, = x + ï ïï y I I b A üï I = I + a A ý ïïï I I aba = xy + (11.30) bulunur. (11.30) aynı zamanda Steiner bağıntıları olarak da bilinirler. Yalnız bir kere daha hatırlatalım ki, (11.30) de kullanılan paralel eksen takımlarından bir tanesi geometrinin ağırlık merkezinden geçmektedir. Bazı durumlarda bu iki eksenden hiç biri ağırlık merkezine yerleştirilmemiş olabilir (Bakınız Şekil 11.19). Bu durumda (11.30) yardımıyla, = 1 x + 1 ï ýï x I I b A üï I = I + b A (11.31) yazılır. Bunların farkından, 1 ( 1 ) I = I + b - b A (11.3) bulunur. (11.3) un elde edilişinde kullanılan düşünceden yararlanılarak diğer eksen için, 1 ( 1 ) I = I + a - a A (11.33) yazılır. a1> a olduğuna göre, (11.31) den I 1 > I olacağı hemen görülür. Buna göre, birbirlerine paralel eksenlere göre hesaplanan eylemsizlik momentleri içinde en küçük olanı, ağırlık merkezinden geçen eksenlere göre hesaplanandır. EKSENLERİN DÖNDÜRÜLMESİ: Şekil (11.0) de görüldüğü gibi, birbirleriyle gibi bir açı yapan ki ( x, y) ve (, ) dik eksen takımlarının koordinatları arasında dönüşüm bağıntıları, = xcos+ ysin ü ï ýï =- xsin+ ycos (11.34) dır. (11.34) den yararlanılarak (, ) takımında eylemsizlik momentleri hesaplanırsa,

Yrd. Doç. Dr. Fatih TOSUNOĞLU Erzurum Teknik Üniversitesi Mühendislik Fakültesi İnşaat Mühendisliği Bölümü

Yrd. Doç. Dr. Fatih TOSUNOĞLU Erzurum Teknik Üniversitesi Mühendislik Fakültesi İnşaat Mühendisliği Bölümü Yrd. Doç. Dr. Fatih TOSUNOĞLU Erzurum Teknik Üniversitesi Mühendislik Fakültesi İnşaat Mühendisliği Bölümü 1 kışkan Statiğine Giriş kışkan statiği (hidrostatik, aerostatik), durgun haldeki akışkanlarla

Detaylı

Cismin Ağırlığı Düzlemsel Alanda Ağırlık Merkezi - İntegrasyon Yöntemi Örnekler Düzlemsel Eğride Ağırlık Merkezi - İntegrasyon Yöntemi

Cismin Ağırlığı Düzlemsel Alanda Ağırlık Merkezi - İntegrasyon Yöntemi Örnekler Düzlemsel Eğride Ağırlık Merkezi - İntegrasyon Yöntemi 4. 4. Cismin ğırlığı Düzlemsel landa ğırlık erkezi - İntegrasyon Yöntemi Düzlemsel Eğride ğırlık erkezi - İntegrasyon Yöntemi 4.3 Bileşik Plak ve Teller 4.4 Pappus Guldinus Teoremleri 4.5 Üç Boyutlu Cisimlerde

Detaylı

3.1. Basınç 3. BASINÇ VE AKIŞKAN STATİĞİ

3.1. Basınç 3. BASINÇ VE AKIŞKAN STATİĞİ 3. BASINÇ VE AKIŞKAN STATİĞİ Doç.Dr. Serdar GÖNCÜ (Ağustos 2011) 3.1. Basınç Bir akışkan tarafından birim alana uygulanan normal kuvvete basınç denir Basınç birimi N/m 2 olup buna pascal (Pa) denir. 1

Detaylı

STATİK AĞIRLIK MERKEZİ. 3.1 İki Boyutlu Cisimler 3.2 Düzlem Eğriler 3.3 Bileşik Cisimler. 3.4 Integrasyon ile ağırlık merkezi hesabı

STATİK AĞIRLIK MERKEZİ. 3.1 İki Boyutlu Cisimler 3.2 Düzlem Eğriler 3.3 Bileşik Cisimler. 3.4 Integrasyon ile ağırlık merkezi hesabı 1 STATİK AĞIRLIK MERKEZİ 3.1 İki Boyutlu Cisimler 3.2 Düzlem Eğriler 3.3 Bileşik Cisimler 3.4 Integrasyon ile ağırlık merkezi hesabı 3.5 Pappus-Guldinus Teoremi 3.6 Yayılı Yüke Eşdeğer Tekil Yük 3.7 Sıvı

Detaylı

2. Basınç ve Akışkanların Statiği

2. Basınç ve Akışkanların Statiği 2. Basınç ve Akışkanların Statiği 1 Basınç, bir akışkan tarafından birim alana uygulanan normal kuvvet olarak tanımlanır. Basıncın birimi pascal (Pa) adı verilen metrekare başına newton (N/m 2 ) birimine

Detaylı

Gerçekte yükler yayılı olup, tekil yük problemlerin çözümünü kolaylaştıran bir idealleştirmedir.

Gerçekte yükler yayılı olup, tekil yük problemlerin çözümünü kolaylaştıran bir idealleştirmedir. STATIK VE MUKAVEMET 4. Ağırlık Merkezi AĞIRLIK MERKEZİ Gerçekte yükler yayılı olup, tekil yük problemlerin çözümünü kolaylaştıran bir idealleştirmedir. Statikte çok küçük bir alana etki eden birbirlerine

Detaylı

Mühendislik Mekaniği Statik. Yrd.Doç.Dr. Akın Ataş

Mühendislik Mekaniği Statik. Yrd.Doç.Dr. Akın Ataş Mühendislik Mekaniği Statik Yrd.Doç.Dr. Akın Ataş Bölüm 9 Ağırlık Merkezi ve Geometrik Merkez Kaynak: Mühendislik Mekaniği: Statik, R. C. Hibbeler, S. C. Fan, Çevirenler: A. Soyuçok, Ö. Soyuçok. 9. Ağırlık

Detaylı

Karabük Üniversitesi, Mühendislik Fakültesi...www.IbrahimCayiroglu.com. STATİK (2. Hafta)

Karabük Üniversitesi, Mühendislik Fakültesi...www.IbrahimCayiroglu.com. STATİK (2. Hafta) AĞIRLIK MERKEZİ STATİK (2. Hafta) Ağırlık merkezi: Bir cismi oluşturan herbir parçaya etki eden yerçeki kuvvetlerinin bileşkesinin cismin üzerinden geçtiği noktaya Ağırlık Merkezi denir. Şekil. Ağırlık

Detaylı

STATIK VE MUKAVEMET 4. Ağırlık Merkezi. Yrd. Doç. Dr. NURHAYAT DEĞİRMENCİ

STATIK VE MUKAVEMET 4. Ağırlık Merkezi. Yrd. Doç. Dr. NURHAYAT DEĞİRMENCİ STATIK VE MUKAVEMET 4. Ağırlık Merkezi Yrd. Doç. Dr. NURHAYAT DEĞİRMENCİ AĞIRLIK MERKEZİ Gerçekte yükler yayılı olup, tekil yük problemlerin çözümünü kolaylaştıran bir idealleştirmedir. Statikte çok küçük

Detaylı

Bölüm 3: Basınç ve Akışkan Statiği

Bölüm 3: Basınç ve Akışkan Statiği Basınç Basınç, bir akışkan tarafından birim alana uygulanan normal kuvvettir. Basıncın birimi pascal (Pa) olarak adlandırılan N/m 2 dir. Basınç birimi Pa,uygulamada çok küçük olduğundan daha çok kilopascal

Detaylı

STATIK MUKAVEMET. Doç. Dr. NURHAYAT DEĞİRMENCİ

STATIK MUKAVEMET. Doç. Dr. NURHAYAT DEĞİRMENCİ STATIK MUKAVEMET Doç. Dr. NURHAYAT DEĞİRMENCİ STATİK DENGE KOŞULLARI Yapı elemanlarının tasarımında bu elemanlarda oluşan iç kuvvetlerin dağılımının bilinmesi gerekir. Dış ve iç kuvvetlerin belirlenmesinde

Detaylı

AĞIRLIK MERKEZİ VE ALAN ATALET MOMENTLERİ

AĞIRLIK MERKEZİ VE ALAN ATALET MOMENTLERİ AĞIRLIK MERKEZİ VE ALAN ATALET MOMENTLERİ AĞIRLIK MERKEZİ VE ALAN ATALET MOMENTLERİ Bu konular denge problemelerinden tamamen bağımsızdır. Alanların ağırlık merkezi ve atalet momenti ismi verilen geometrik

Detaylı

Varsayımlar ve Tanımlar Tekil Yükleri Aktaran Kablolar Örnekler Yayılı Yük Aktaran Kablolar. 7.3 Yatayda Yayılı Yük Aktaran Kablolar

Varsayımlar ve Tanımlar Tekil Yükleri Aktaran Kablolar Örnekler Yayılı Yük Aktaran Kablolar. 7.3 Yatayda Yayılı Yük Aktaran Kablolar 7.1 7.2 Varsayımlar ve Tanımlar Tekil Yükleri Aktaran Kablolar Örnekler Yayılı Yük Aktaran Kablolar 7.3 Yatayda Yayılı Yük Aktaran Kablolar 7.4 Örnekler Kendi Ağırlığını Taşıyan Kablolar (Zincir Eğrisi)

Detaylı

Mekanik, Statik Denge

Mekanik, Statik Denge Mekanik, Statik Denge Mardin Artuklu Üniversitesi 2. Hafta-01.03.2012 İdris Bedirhanoğlu url : www.dicle.edu.tr/a/idrisb e-mail : idrisbed@gmail.com 0532 657 14 31 Statik **Statik; uzayda kuvvetler etkisi

Detaylı

HİDROSTATİK. PDF created with FinePrint pdffactory trial version http://www.fineprint.com

HİDROSTATİK. PDF created with FinePrint pdffactory trial version http://www.fineprint.com HİDRSTTİK Hidrostatik, hareketsiz yada durgun durumda bulunan sıvıların ve diğer ivmelerden doğan basınç ve kuvvetleri ile uğraşan bilim dalıdır. Hidrostatik, denge durumunda bulunan sıvıların denge koşullarını

Detaylı

KALDIRMA KUVVETİ. A) Sıvıların kaldırma kuvveti. B) Gazların kaldırma kuvveti

KALDIRMA KUVVETİ. A) Sıvıların kaldırma kuvveti. B) Gazların kaldırma kuvveti KALDIRMA KUVVETİ Her cisim, dünyanın merkezine doğru bir çekim kuvvetinin etkisindedir. Buna rağmen su yüzeyine bırakılan, tahta takozun ve gemilerin batmadığını, bazı balonların da havada, yukarı doğru

Detaylı

ELASTİSİTE TEORİSİ I. Yrd. Doç Dr. Eray Arslan

ELASTİSİTE TEORİSİ I. Yrd. Doç Dr. Eray Arslan ELASTİSİTE TEORİSİ I Yrd. Doç Dr. Eray Arslan Mühendislik Tasarımı Genel Senaryo Analitik çözüm Fiziksel Problem Matematiksel model Diferansiyel Denklem Problem ile ilgili sorular:... Deformasyon ne kadar

Detaylı

KİNETİK GAZ KURAMI. Doç. Dr. Faruk GÖKMEŞE Kimya Bölümü Hitit Üniversitesi Fen Edebiyat Fakültesi 1

KİNETİK GAZ KURAMI. Doç. Dr. Faruk GÖKMEŞE Kimya Bölümü Hitit Üniversitesi Fen Edebiyat Fakültesi 1 Kinetik Gaz Kuramından Gazların Isınma Isılarının Bulunması Sabit hacimdeki ısınma ısısı (C v ): Sabit hacimde bulunan bir mol gazın sıcaklığını 1K değiştirmek için gerekli ısı alışverişi. Sabit basınçtaki

Detaylı

Akışkanlar Mekaniği. Bölüm-II. Akışkanların Statiği

Akışkanlar Mekaniği. Bölüm-II. Akışkanların Statiği Akışkanlar Mekaniği Bölüm-II Akışkanların Statiği 1 2. AKIŞKANLARIN STATİĞİ 2.1. Akışkanlara Etki Eden Kuvvetler Birinci tip kuvvetler kütle (hacim) kuvvetleri ve ikinci tip kuvvetler yüzey kuvvetleri

Detaylı

BATMIŞ YÜZEYLERE GELEN HİDROSTATİK KUVVETLER. Yatay bir düzlem yüzeye gelen hidrostatik kuvvetin büyüklüğünü ve etkime noktasını bulmak istiyoruz.

BATMIŞ YÜZEYLERE GELEN HİDROSTATİK KUVVETLER. Yatay bir düzlem yüzeye gelen hidrostatik kuvvetin büyüklüğünü ve etkime noktasını bulmak istiyoruz. BTMIŞ YÜZEYLERE ELEN HİDROSTTİK KUVVETLER DÜZLEM YÜZEYLER Yata Yüeler Sıvı üei Yata bir dülem üee gelen idrostatik kuvvetin büüklüğünü ve etkime noktasını bulmak istioru. d d Kuvvetin Büüklüğü :Şekil deki

Detaylı

Fizik 101-Fizik I 2013-2014. Statik Denge ve Esneklik

Fizik 101-Fizik I 2013-2014. Statik Denge ve Esneklik 1 -Fizik I 2013-2014 Statik Denge ve Esneklik Nurdan Demirci Sankır Ofis: 364, Tel: 2924332 2 İçerik Denge Şartları Ağırlık Merkezi Statik Dengedeki Katı Cisimlere ler Katıların Esneklik Özellikleri 1

Detaylı

AKM 205 BÖLÜM 3 - UYGULAMA SORU VE ÇÖZÜMLERİ. Doç.Dr. Ali Can Takinacı Ar.Gör. Yük. Müh. Murat Özbulut

AKM 205 BÖLÜM 3 - UYGULAMA SORU VE ÇÖZÜMLERİ. Doç.Dr. Ali Can Takinacı Ar.Gör. Yük. Müh. Murat Özbulut AKM 205 BÖLÜM 3 - UYGULAMA SORU VE ÇÖZÜMLERİ Doç.Dr. Ali Can Takinacı Ar.Gör. Yük. Müh. Murat Özbulut 1. 70 kg gelen bir bayanın 400 cm 2 toplam ayak tabanına sahip olduğunu göz önüne alınız. Bu bayan

Detaylı

Akışkanlar Mekaniği Yoğunluk ve Basınç: Bir maddenin yoğunluğu, birim hacminin kütlesi olarak tanımlanır.

Akışkanlar Mekaniği Yoğunluk ve Basınç: Bir maddenin yoğunluğu, birim hacminin kütlesi olarak tanımlanır. Akışkanlar Mekaniği Yoğunluk ve Basınç: Bir maddenin yoğunluğu, birim hacminin kütlesi olarak tanımlanır. Basıncın derinlikle değişimi Aynı derinlikteki bütün noktalar aynı basınçta y yönünde toplam kuvvet

Detaylı

6.12 Örnekler PROBLEMLER

6.12 Örnekler PROBLEMLER 6.1 6. 6.3 6.4 6.5 6.6 6.7 Çok Parçalı Taşıyıcı Sistemler Kafes Sistemler Kafes Köprüler Kafes Çatılar Tam, Eksik ve Fazla Bağlı Kafes Sistemler Kafes Sistemler İçin Çözüm Yöntemleri Kafes Sistemlerde

Detaylı

Doç. Dr. Muhammet Cerit Öğretim Üyesi Makine Mühendisliği Bölümü (Mekanik Ana Bilim Dalı) Elektronik posta ( ):

Doç. Dr. Muhammet Cerit Öğretim Üyesi Makine Mühendisliği Bölümü (Mekanik Ana Bilim Dalı) Elektronik posta ( ): Tanışma ve İletişim... Doç. Dr. Muhammet Cerit Öğretim Üyesi Makine Mühendisliği Bölümü (Mekanik Ana Bilim Dalı) Elektronik posta (e-mail): mcerit@sakarya.edu.tr Öğrenci Başarısı Değerlendirme... Öğrencinin

Detaylı

CĠSMĠN Hacmi = Sıvının SON Hacmi - Sıvının ĠLK Hacmi. Sıvıların Kaldırma Kuvveti Nelere Bağlıdır? d = V

CĠSMĠN Hacmi = Sıvının SON Hacmi - Sıvının ĠLK Hacmi. Sıvıların Kaldırma Kuvveti Nelere Bağlıdır? d = V 8.SINIF KUVVET VE HAREKET ÜNİTE ÇALIŞMA YAPRAĞI /11/2013 KALDIRMA KUVVETİ Sıvıların cisimlere uyguladığı kaldırma kuvvetini bulmak için,n nı önce havada,sonra aynı n nı düzeneği bozmadan suda ölçeriz.daha

Detaylı

MADDESEL NOKTALARIN DİNAMİĞİ

MADDESEL NOKTALARIN DİNAMİĞİ MÜHENDİSLİK MEKANİĞİ DİNAMİK MADDESEL NOKTALARIN DİNAMİĞİ DİNAMİK MADDESEL NOKTALARIN DİNAMİĞİ İÇİNDEKİLER 1. GİRİŞ - Konum, Hız ve İvme - Newton Kanunları 2. MADDESEL NOKTALARIN KİNEMATİĞİ - Doğrusal

Detaylı

Akışkanlar Mekaniği: Temelleri ve Uygulamaları, 2nd Edition Yunus A. Cengel, John M. Cimbala McGraw-Hill, 2010. Bölüm 3 BASINÇ VE AKIŞKAN STATİĞİ

Akışkanlar Mekaniği: Temelleri ve Uygulamaları, 2nd Edition Yunus A. Cengel, John M. Cimbala McGraw-Hill, 2010. Bölüm 3 BASINÇ VE AKIŞKAN STATİĞİ Akışkanlar Mekaniği: Temelleri ve Uygulamaları, 2nd Edition Yunus A. Cengel, John M. Cimbala McGraw-Hill, 2010 Bölüm 3 BASINÇ VE AKIŞKAN STATİĞİ John Ninomiya 72 helyum balon kümesi ile Nisan 2003 de Temecula,

Detaylı

AKIŞKANLAR MEKANİĞİ 1. YILİÇİ SINAVI ( )

AKIŞKANLAR MEKANİĞİ 1. YILİÇİ SINAVI ( ) 1 3 4 5 6 T AKIŞKANLAR MEKANİĞİ 1. YILİÇİ SINAVI (13.11.008) Ad-Soad: No: Grup: 1) a) İdeal ve gerçek akışkan nedir? Hız dağılımlarını çiziniz. Pratikte ideal akışkan var mıdır? Açıklaınız. İdeal Akışkan;

Detaylı

BÖLÜM 6 GERÇEK AKIŞKANLARIN HAREKETİ

BÖLÜM 6 GERÇEK AKIŞKANLARIN HAREKETİ BÖLÜM 6 GERÇEK AKIŞKANLARIN HAREKETİ Gerçek akışkanın davranışı viskoziteden dolayı meydana gelen ilave etkiler nedeniyle ideal akışkan akımlarına göre daha karmaşık yapıdadır. Gerçek akışkanlar hareket

Detaylı

BASINÇLI KAPLAR Endüstride kullanılan silindirik veya küresel kaplar genellikle kazan veya tank olarak görev yaparlar. Kap basınç altındayken

BASINÇLI KAPLAR Endüstride kullanılan silindirik veya küresel kaplar genellikle kazan veya tank olarak görev yaparlar. Kap basınç altındayken BASINÇLI KAPLAR BASINÇLI KAPLAR Endüstride kullanılan silindirik veya küresel kaplar genellikle kazan veya tank olarak görev yaparlar. Kap basınç altındayken yapıldığı malzeme her doğrultuda yüke maruzdur.

Detaylı

S-1 Yatay bir düzlem üzerinde bulunan küp şeklindeki bir cismin yatay düzleme yaptığı basıncı arttırmak için aşağıdakilerden hangileri yapılmalıdır?

S-1 Yatay bir düzlem üzerinde bulunan küp şeklindeki bir cismin yatay düzleme yaptığı basıncı arttırmak için aşağıdakilerden hangileri yapılmalıdır? BSNÇ S-1 Yatay bir düzlem üzerinde bulunan küp şeklindeki bir cismin yatay düzleme yaptığı basıncı arttırmak için aşağıdakilerden hangileri yapılmalıdır? - Özdeş küplerden üzerine "bir" tane küp koymak

Detaylı

2: MALZEME ÖZELLİKLERİ

2: MALZEME ÖZELLİKLERİ İÇİNDEKİLER Önsöz III Bölüm 1: TEMEL KAVRAMLAR 11 1.1.Mekanik, Tanımlar 12 1.1.1.Madde ve Özellikleri 12 1.2.Sayılar, Çevirmeler 13 1.2.1.Üslü Sayılarla İşlemler 13 1.2.2.Köklü Sayılarla İşlemler 16 1.2.3.İkinci

Detaylı

BÖLÜM 1: MADDESEL NOKTANIN KİNEMATİĞİ

BÖLÜM 1: MADDESEL NOKTANIN KİNEMATİĞİ BÖLÜM 1: MADDESEL NOKTANIN KİNEMATİĞİ 1.1. Giriş Kinematik, daha öncede vurgulandığı üzere, harekete sebep olan veya hareketin bir sonucu olarak ortaya çıkan kuvvetleri dikkate almadan cisimlerin hareketini

Detaylı

F KALDIRMA KUVVETİ (ARCHİMEDES PRENSİBİ) (3 SAAT) 1 Sıvıların Kaldırma Kuvveti 2 Gazların Kaldır ma Kuvveti

F KALDIRMA KUVVETİ (ARCHİMEDES PRENSİBİ) (3 SAAT) 1 Sıvıların Kaldırma Kuvveti 2 Gazların Kaldır ma Kuvveti ÖĞRENME ALANI : FİZİKSEL OLAYLAR ÜNİTE 2 : KUET E HAREKET F KALDIRMA KUETİ (ARCHİMEDES PRENSİBİ) (3 SAAT) 1 Sıvıların Kaldırma Kuvveti 2 Gazların Kaldır ma Kuvveti 1 F KALDIRMA KUETİ (ARCHİMEDES PRENSİBİ)

Detaylı

2 SABİT HIZLI DOĞRUSAL HAREKET

2 SABİT HIZLI DOĞRUSAL HAREKET 2 SABİT HIZLI DOĞRUSAL HAREKET Bu deneyin amacı, hava masası deney düzeneği kullanarak, hiç bir net kuvvetin etkisi altında olmaksızın hareket eden bir cismin düz bir çizgi üzerinde ve sabit hızla hareket

Detaylı

Massachusetts Teknoloji Enstitüsü-Fizik Bölümü

Massachusetts Teknoloji Enstitüsü-Fizik Bölümü Massachusetts Teknoloji Enstitüsü-Fizik Bölümü Fizik 8.01 Ödev # 7 Güz, 1999 ÇÖZÜMLER Dru Renner dru@mit.edu 7 Kasım 1999 Saat: 21.50 Problem 7.1 (Ohanian, sayfa 271, problem 55) Bu problem boyunca roket

Detaylı

Fizik 101-Fizik I 2013-2014. Dönme Hareketinin Dinamiği

Fizik 101-Fizik I 2013-2014. Dönme Hareketinin Dinamiği -Fizik I 2013-2014 Dönme Hareketinin Dinamiği Nurdan Demirci Sankır Ofis: 364, Tel: 2924332 İçerik Vektörel Çarpım ve Tork Katı Cismin Yuvarlanma Hareketi Bir Parçacığın Açısal Momentumu Dönen Katı Cismin

Detaylı

İÇ KUVVETLER. Amaçlar: Bir elemanda kesit yöntemiyle iç kuvvetlerin bulunması Kesme kuvveti ve moment diyagramlarının çizilmesi

İÇ KUVVETLER. Amaçlar: Bir elemanda kesit yöntemiyle iç kuvvetlerin bulunması Kesme kuvveti ve moment diyagramlarının çizilmesi İÇ KUVVELER maçlar: ir elemanda kesit yöntemiyle iç kuvvetlerin bulunması Kesme kuvveti ve moment diyagramlarının çizilmesi Yapısal elemanlarda oluşan iç kuvvetler ir yapısal veya mekanik elemanın tasarımı,

Detaylı

ÖĞRENME ALANI : FİZİKSEL OLAYLAR ÜNİTE 2 : KUVVET VE HAREKET

ÖĞRENME ALANI : FİZİKSEL OLAYLAR ÜNİTE 2 : KUVVET VE HAREKET ÖĞRENME ALANI : FİZİKSEL OLAYLAR ÜNİTE 2 : KUVVET VE HAREKET A BASINÇ VE BASINÇ BİRİMLERİ (5 SAAT) Madde ve Özellikleri 2 Kütle 3 Eylemsizlik 4 Tanecikli Yapı 5 Hacim 6 Öz Kütle (Yoğunluk) 7 Ağırlık 8

Detaylı

Gerilme. Bölüm Hedefleri. Normal ve Kayma gerilmesi kavramının anlaşılması Kesme ve eksenel yük etkisindeki elemanların analiz ve tasarımı

Gerilme. Bölüm Hedefleri. Normal ve Kayma gerilmesi kavramının anlaşılması Kesme ve eksenel yük etkisindeki elemanların analiz ve tasarımı Gerilme Bölüm Hedefleri Normal ve Kayma gerilmesi kavramının anlaşılması Kesme ve eksenel yük etkisindeki elemanların analiz ve tasarımı Copyright 2011 Pearson Education South sia Pte Ltd GERİLME Kesim

Detaylı

Fizik 101-Fizik I 2013-2014. Katı Bir Cismin Sabit Bir Eksen Etrafında Dönmesi

Fizik 101-Fizik I 2013-2014. Katı Bir Cismin Sabit Bir Eksen Etrafında Dönmesi -Fizik I 2013-2014 Katı Bir Cismin Sabit Bir Eksen Etrafında Dönmesi Nurdan Demirci Sankır Ofis: 325, Tel: 2924332 İçerik Açısal Yerdeğiştirme, Hız ve İvme Dönme Kinematiği Açısal ve Doğrusal Nicelikler

Detaylı

VECTOR MECHANICS FOR ENGINEERS: STATICS

VECTOR MECHANICS FOR ENGINEERS: STATICS Seventh Edition VECTOR ECHANICS FOR ENGINEERS: STATICS Ferdinand P. Beer E. Russell Johnston, Jr. Ders Notu: Hayri ACAR İstanbul Teknik Üniveristesi Tel: 85 31 46 / 116 E-mail: acarh@itu.edu.tr Web: http://atlas.cc.itu.edu.tr/~acarh

Detaylı

Bernoulli Denklemi, Basınç ve Hız Yükleri Borularda Piezometre ve Enerji Yükleri Venturi Deney Sistemi

Bernoulli Denklemi, Basınç ve Hız Yükleri Borularda Piezometre ve Enerji Yükleri Venturi Deney Sistemi Bernoulli Denklemi, Basınç ve Hız Yükleri Borularda Piezometre ve Enerji Yükleri Venturi Deney Sistemi Akışkanlar dinamiğinde, sürtünmesiz akışkanlar için Bernoulli prensibi akımın hız arttıkça aynı anda

Detaylı

EKSENEL YÜKLERDEN OLUŞAN GERILME VE ŞEKİL DEĞİŞİMİ Eksenel yüklü elemanlarda meydana gelen normal gerilmelerin nasıl hesaplanacağı daha önce ele

EKSENEL YÜKLERDEN OLUŞAN GERILME VE ŞEKİL DEĞİŞİMİ Eksenel yüklü elemanlarda meydana gelen normal gerilmelerin nasıl hesaplanacağı daha önce ele EKSENEL YÜKLERDEN OLUŞAN GERILME VE ŞEKİL DEĞİŞİMİ Eksenel yüklü elemanlarda meydana gelen normal gerilmelerin nasıl hesaplanacağı daha önce ele alınmıştı. Bu bölümde ise, eksenel yüklü elemanların şekil

Detaylı

İÇ KUVVETLER. Amaçlar: Bir elemanda kesit yöntemiyle iç kuvvetlerin bulunması Kesme kuvveti ve moment diyagramlarının çizilmesi

İÇ KUVVETLER. Amaçlar: Bir elemanda kesit yöntemiyle iç kuvvetlerin bulunması Kesme kuvveti ve moment diyagramlarının çizilmesi İÇ KUVVETLER maçlar: ir elemanda kesit yöntemiyle iç kuvvetlerin bulunması Kesme kuvveti ve moment diyagramlarının çizilmesi Yapısal elemanlarda oluşan iç kuvvetler ir yapısal veya mekanik elemanın tasarımı,

Detaylı

STATIK VE MUKAVEMET 3. Rijit cisimlerin dengesi, Denge denklemleri, Serbest cisim diyagramı. Yrd. Doç. Dr. NURHAYAT DEĞİRMENCİ

STATIK VE MUKAVEMET 3. Rijit cisimlerin dengesi, Denge denklemleri, Serbest cisim diyagramı. Yrd. Doç. Dr. NURHAYAT DEĞİRMENCİ STATIK VE MUKAVEMET 3. Rijit cisimlerin dengesi, Denge denklemleri, Serbest cisim diyagramı Yrd. Doç. Dr. NURHAYAT DEĞİRMENCİ Rijit Cisimlerin Dengesi Bu bölümde, rijit cisim dengesinin temel kavramları

Detaylı

Tablo 1 Deney esnasında kullanacağımız numunelere ait elastisite modülleri tablosu

Tablo 1 Deney esnasında kullanacağımız numunelere ait elastisite modülleri tablosu BASİT MESNETLİ KİRİŞTE SEHİM DENEYİ Deneyin Amacı Farklı malzeme ve kalınlığa sahip kirişlerin uygulanan yükün kirişin eğilme miktarına oranı olan rijitlik değerin değişik olduğunun gösterilmesi. Kiriş

Detaylı

ÖĞRENME ALANI: Kuvvet ve Hareket 2.ÜNİTE: Kaldırma Kuvveti ve Basınç. Kaldırma Kuvveti

ÖĞRENME ALANI: Kuvvet ve Hareket 2.ÜNİTE: Kaldırma Kuvveti ve Basınç. Kaldırma Kuvveti ÖĞRENME ALANI: Kuvvet ve Hareket 2.ÜNİTE: Kaldırma Kuvveti ve Basınç Kaldırma Kuvveti - Dünya, üzerinde bulunan bütün cisimlere kendi merkezine doğru çekim kuvveti uygular. Bu kuvvete yer çekimi kuvveti

Detaylı

İ çindekiler. xvii GİRİŞ 1 TEMEL AKIŞKANLAR DİNAMİĞİ BERNOULLİ DENKLEMİ 68 AKIŞKANLAR STATİĞİ 32. xvii

İ çindekiler. xvii GİRİŞ 1 TEMEL AKIŞKANLAR DİNAMİĞİ BERNOULLİ DENKLEMİ 68 AKIŞKANLAR STATİĞİ 32. xvii Last A Head xvii İ çindekiler 1 GİRİŞ 1 1.1 Akışkanların Bazı Karakteristikleri 3 1.2 Boyutlar, Boyutsal Homojenlik ve Birimler 3 1.2.1 Birim Sistemleri 6 1.3 Akışkan Davranışı Analizi 9 1.4 Akışkan Kütle

Detaylı

BÖLÜM 4: MADDESEL NOKTANIN KİNETİĞİ: İMPULS ve MOMENTUM

BÖLÜM 4: MADDESEL NOKTANIN KİNETİĞİ: İMPULS ve MOMENTUM BÖLÜM 4: MADDESEL NOKTANIN KİNETİĞİ: İMPULS ve MOMENTUM 4.1. Giriş Bir önceki bölümde, hareket denklemi F = ma nın, maddesel noktanın yer değiştirmesine göre integrasyonu ile elde edilen iş ve enerji denklemlerini

Detaylı

Biyomekanik Newton Hareket Kanunları

Biyomekanik Newton Hareket Kanunları Biyomekanik Newton Hareket Kanunları Dr. Murat Çilli Sakarya Üniversitesi Beden Eğitimi ve Spor Yüksekokulu Antrenörlük Eğitimi Bölümü Aristo. MÖ 300 yıllarında Aristo ( MÖ 384-322 ) hareket için gözlemlerine

Detaylı

Akışkan Kinematiği 1

Akışkan Kinematiği 1 Akışkan Kinematiği 1 Akışkan Kinematiği Kinematik, akışkan hareketini matematiksel olarak tanımlarken harekete sebep olan kuvvetleri ve momentleri gözönüne almadan; Yerdeğiştirmeler Hızlar ve İvmeler cinsinden

Detaylı

DİNAMİK. Ders_10. Doç.Dr. İbrahim Serkan MISIR DEÜ İnşaat Mühendisliği Bölümü. Ders notları için: GÜZ

DİNAMİK. Ders_10. Doç.Dr. İbrahim Serkan MISIR DEÜ İnşaat Mühendisliği Bölümü. Ders notları için: GÜZ DİNAMİK Ders_10 Doç.Dr. İbrahim Serkan MISIR DEÜ İnşaat Mühendisliği Bölümü Ders notları için: http://kisi.deu.edu.tr/serkan.misir/ 2016-2017 GÜZ KÜTLE ATALET MOMENTİ Bugünün Hedefleri: 1. Rijit bir cismin

Detaylı

AKM 205 BÖLÜM 2 - UYGULAMA SORU VE ÇÖZÜMLERİ. Doç.Dr. Ali Can Takinacı Ar.Gör. Yük. Müh. Murat Özbulut

AKM 205 BÖLÜM 2 - UYGULAMA SORU VE ÇÖZÜMLERİ. Doç.Dr. Ali Can Takinacı Ar.Gör. Yük. Müh. Murat Özbulut AKM 205 BÖLÜM 2 - UYGULAMA SORU VE ÇÖZÜMLERİ Doç.Dr. Ali Can Takinacı Ar.Gör. Yük. Müh. Murat Özbulut 1. Bir otomobile lastiğinin basıncı, lastik içerisindeki havanın sıcaklığına bağlıdır. Hava sıcaklığı

Detaylı

Mühendislik Mekaniği Statik. Yrd.Doç.Dr. Akın Ataş

Mühendislik Mekaniği Statik. Yrd.Doç.Dr. Akın Ataş Mühendislik Mekaniği Statik Yrd.Doç.Dr. Akın Ataş Bölüm 3 Parçacık Dengesi Kaynak: Mühendislik Mekaniği: Statik, R.C.Hibbeler, S.C.Fan, Çevirenler: A. Soyuçok, Ö. Soyuçok. 3 Parçacık Dengesi Bu bölümde,

Detaylı

BASINÇ VE KALDIRMA KUVVETI. Sıvıların Kaldırma Kuvveti

BASINÇ VE KALDIRMA KUVVETI. Sıvıların Kaldırma Kuvveti BASINÇ VE KALDIRMA KUVVETI Sıvıların Kaldırma Kuvveti SIVILARIN KALDIRMA KUVVETİ (ARŞİMET PRENSİBİ) F K Sıvı içerisine batırılan bir cisim sıvı tarafından yukarı doğru itilir. Bu itme kuvvetine sıvıların

Detaylı

3. KUVVET SİSTEMLERİ

3. KUVVET SİSTEMLERİ 3. KUVVET SİSTEMLERİ F F W P P 3.1 KUVVET KAVRAMI VE ETKİLERİ Kuvvet, bir cisme etki eden yapısal yüklerdir. Kuvvet Şiddeti, yönü ve uygulama noktası olan vektörel bir büyüklüktür. Bir cismin üzerine uygulanan

Detaylı

İŞ : Şekilde yörüngesinde hareket eden bir parçacık üzerine kuvveti görülmektedir. Parçacık A noktasından

İŞ : Şekilde yörüngesinde hareket eden bir parçacık üzerine kuvveti görülmektedir. Parçacık A noktasından İŞ : Şekilde yörüngesinde hareket eden bir parçacık üzerine etkiyen F kuvveti görülmektedir. Parçacık A noktasından r geçerken konum vektörü uygun bir O orijininden ölçülmektedir ve A dan A ne diferansiyel

Detaylı

2. ÜNİTE : KUVVET VE HAREKET

2. ÜNİTE : KUVVET VE HAREKET 2. ÜNİTE : KUVVET VE HAREKET 1 2 3 4 YÜZEN CİSİM Bir cisim eğer sıvının içinde şekilde görüldüğü gibi bir kısmı sıvının içinde bir kısmı sıvının üstünde olacak şekilde dengede duruyorsa buna yüzen cisim

Detaylı

DÜZENLİ AKIMLARDA ENERJİ DENKLEMİ VE UYGULAMALARI

DÜZENLİ AKIMLARDA ENERJİ DENKLEMİ VE UYGULAMALARI DÜZENLİ AKIMLARDA ENERJİ DENKLEMİ VE UYGULAMALARI, iş yapabilme yeteneği olarak tanımlanır(kg.m yada Kwh). Bir sıvının enerjisi, sıvı birim ağırlığının sahip olduğu iş yapabilme yeteneğidir. 1. Potansiyel

Detaylı

Dokuz Eylül Üniversitesi Đnşaat Mühendisliği Bölümü YAPI MALZEMESĐ I DERSĐ MEKANĐK. Doç. Dr. Halit YAZICI. http://kisi.deu.edu.tr/halit.

Dokuz Eylül Üniversitesi Đnşaat Mühendisliği Bölümü YAPI MALZEMESĐ I DERSĐ MEKANĐK. Doç. Dr. Halit YAZICI. http://kisi.deu.edu.tr/halit. Dokuz Eylül Üniversitesi Đnşaat Mühendisliği Bölümü YAPI MALZEMESĐ I DERSĐ MEKANĐK ÖZELLĐKLER Doç. Dr. Halit YAZICI http://kisi.deu.edu.tr/halit.yazici/ Dış kuvvetlerin etkisi altında değişik ik zorlamalar

Detaylı

Manyetik Alanlar. Benzer bir durum hareketli yükler içinde geçerli olup bu yüklerin etrafını elektrik alana ek olarak bir manyetik alan sarmaktadır.

Manyetik Alanlar. Benzer bir durum hareketli yükler içinde geçerli olup bu yüklerin etrafını elektrik alana ek olarak bir manyetik alan sarmaktadır. Manyetik Alanlar Manyetik Alanlar Duran ya da hareket eden yüklü parçacığın etrafını bir elektrik alanın sardığı biliyoruz. Hatta elektrik alan konusunda şu sonuç oraya konulmuştur. Durgun bir deneme yükü

Detaylı

Mukavemet-I. Yrd.Doç.Dr. Akın Ataş

Mukavemet-I. Yrd.Doç.Dr. Akın Ataş Mukavemet-I Yrd.Doç.Dr. Akın Ataş Bölüm 4 Basit Eğilme Kaynak: Cisimlerin Mukavemeti, F.P. Beer, E.R. Johnston, J.T. DeWolf, D.F. Mazurek, Çevirenler: A. Soyuçok, Ö. Soyuçok. 4.1 Giriş Bu bölümde, eğilmeye

Detaylı

KATI CİSMİN DÜZLEMSEL KİNETİĞİ (Kinetik Enerji)

KATI CİSMİN DÜZLEMSEL KİNETİĞİ (Kinetik Enerji) KATI CİSMİN DÜZLEMSEL KİNETİĞİ (Kinetik Enerji) Partikülün kinetiği bahsinde, hız ve yer değiştirme içeren problemlerin iş ve enerji prensibini kullanarak kolayca çözülebildiği söylenmişti. Ayrıca, kuvvet

Detaylı

1. STATİĞE GİRİŞ 1.1 TANIMLAR MEKANİK RİJİT CİSİMLER MEKANİĞİ ŞEKİL DEĞİŞTİREN CİSİMLER AKIŞKANLAR MEKANİĞİ DİNAMİK STATİK

1. STATİĞE GİRİŞ 1.1 TANIMLAR MEKANİK RİJİT CİSİMLER MEKANİĞİ ŞEKİL DEĞİŞTİREN CİSİMLER AKIŞKANLAR MEKANİĞİ DİNAMİK STATİK STATİK Ders Notları Kaynaklar: 1.Engineering Mechanics: Statics, 9e, Hibbeler, Prentice Hall 2.Engineering Mechanics: Statics, SI Version, 6th Edition, J. L. Meriam, L. G. Kraige 1. STATİĞE GİRİŞ 1.1 TANIMLAR

Detaylı

ELEKTRİKSEL POTANSİYEL

ELEKTRİKSEL POTANSİYEL ELEKTRİKSEL POTANSİYEL Elektriksel Potansiyel Enerji Elektriksel potansiyel enerji kavramına geçmeden önce Fizik-1 dersinizde görmüş olduğunuz iş, potansiyel enerji ve enerjinin korunumu kavramları ile

Detaylı

Fizik 101: Ders 6 Ajanda. Tekrar Problem problem problem!! ivme ölçer Eğik düzlem Dairesel hareket

Fizik 101: Ders 6 Ajanda. Tekrar Problem problem problem!! ivme ölçer Eğik düzlem Dairesel hareket Fizik 101: Ders 6 Ajanda Tekrar Problem problem problem!! ivme ölçer Eğik düzlem Dairesel hareket Özet Dinamik. Newton un 3. yasası Serbest cisim diyagramları Problem çözmek için sahip olduğumuz gereçler:

Detaylı

Elastisite Teorisi Polinomlar ile Çözüm Örnek 2

Elastisite Teorisi Polinomlar ile Çözüm Örnek 2 Elastisite Teorisi Polinomlar ile Çözüm Örnek 2 Böylece aşağıdaki gerilme ifadelerine ulaşılır: Bu problem için yer değiştirme denklemleri aşağıdaki şekilde türetilir: Elastisite Teorisi Polinomlar ile

Detaylı

5 kilolitre=..lt. 100 desilitre=.dekalitre. 150 gram=..dag. 1. 250 g= mg. 0,2 ton =..gram. 20 dam =.m. 2 km =.cm. 3,5 h = dakika. 20 m 3 =.

5 kilolitre=..lt. 100 desilitre=.dekalitre. 150 gram=..dag. 1. 250 g= mg. 0,2 ton =..gram. 20 dam =.m. 2 km =.cm. 3,5 h = dakika. 20 m 3 =. 2014 2015 Ödevin Veriliş Tarihi: 12.06.2015 Ödevin Teslim Tarihi: 21.09.2015 MEV KOLEJİ ÖZEL ANKARA OKULLARI 1. Aşağıda verilen boşluklarara ifadeler doğru ise (D), yanlış ise (Y) yazınız. A. Fiziğin ışıkla

Detaylı

RÜZGAR YÜKÜNÜN BİR TİCARİ ARAÇ SERVİS KAPISINA OLAN ETKİLERİNİN İNCELENMESİ

RÜZGAR YÜKÜNÜN BİR TİCARİ ARAÇ SERVİS KAPISINA OLAN ETKİLERİNİN İNCELENMESİ RÜZGAR YÜKÜNÜN BİR TİCARİ ARAÇ SERVİS KAPISINA OLAN ETKİLERİNİN İNCELENMESİ Melih Tuğrul, Serkan Er Hexagon Studio Araç Mühendisliği Bölümü OTEKON 2010 5. Otomotiv Teknolojileri Kongresi 07 08 Haziran

Detaylı

Newton Kanunlarının Uygulaması

Newton Kanunlarının Uygulaması BÖLÜM 5 Newton Kanunlarının Uygulaması Hedef Öğretiler Newton Birinci Kanunu uygulaması Newtonİkinci Kanunu uygulaması Sürtünme ve akışkan direnci Dairesel harekette kuvvetler Giriş Newton Kanunlarını

Detaylı

Sıvıların Kaldırma Kuvveti / Gazların Kaldırma Kuvveti

Sıvıların Kaldırma Kuvveti / Gazların Kaldırma Kuvveti KALIRMA KUVVTİ Sıvıların Kaldırma Kuvveti / Gazların Kaldırma Kuvveti KALIRMA KUVVTİ V= cismin sıvıya batan hacmi d= sıvının özkütlesi g= yerçekimi ivmesi Kaldırma kuvveti, sıvının içindeki cismin yüzeylerine

Detaylı

elektrikle yüklenmiş

elektrikle yüklenmiş ELEKTRİK ALANLARI Birkaç basit deneyle elektrik yüklerinin ve kuvvetlerinin varlığı kanıtlanabilmektedir. Örneğin; Saçınızı kuru bir günde taradıktan sonra, tarağı küçük kağıt parçalarına dokundurursanız

Detaylı

Kaldırma kuvveti F k ile gösterilir birimi Newton dur.

Kaldırma kuvveti F k ile gösterilir birimi Newton dur. Cisimlere içerisinde bulundukları sıvı ya da gaz gibi akışkan maddeler tarafından uygulanan,ağırlığın tersi yöndeki etkiye kaldırma kuvveti denir. Kaldırma kuvveti F k ile gösterilir birimi Newton dur.

Detaylı

Yapılara Etkiyen Karakteristik Yükler

Yapılara Etkiyen Karakteristik Yükler Yapılara Etkiyen Karakteristik Yükler Kalıcı (sabit, zati, öz, ölü) yükler (G): Yapı elemanlarının öz yükleridir. Döşeme ağırlığı ( döşeme betonu+tesviye betonu+kaplama+sıva). Kiriş ağırlığı. Duvar ağırlığı

Detaylı

BÖLÜM 2 AKIŞKANLARIN STATİĞİ (HİDROSTATİK)

BÖLÜM 2 AKIŞKANLARIN STATİĞİ (HİDROSTATİK) BÖLÜM AKIŞKANLARIN STATİĞİ (HİDROSTATİK) Hidrostatik duran akışkanlar ile üniform olarak hareket eden ( akışkanın hızının her erde anı olduğu ) akışkanların durumunu inceler. 1 BİR NOKTADAKİ BASINÇ Hidrostatik

Detaylı

Zemin Gerilmeleri. Zemindeki gerilmelerin: 1- Zeminin kendi ağırlığından (geostatik gerilme),

Zemin Gerilmeleri. Zemindeki gerilmelerin: 1- Zeminin kendi ağırlığından (geostatik gerilme), Zemin Gerilmeleri Zemindeki gerilmelerin: 1- Zeminin kendi ağırlığından (geostatik gerilme), 2- Zemin üzerine eklenmiş yüklerden (Binalar, Barağlar vb.) kaynaklanmaktadır. 1 YERYÜZÜ Y.S.S Bina yükünden

Detaylı

Karabük Üniversitesi, Mühendislik Fakültesi...www.IbrahimCayiroglu.com. STATİK (3. Hafta)

Karabük Üniversitesi, Mühendislik Fakültesi...www.IbrahimCayiroglu.com. STATİK (3. Hafta) TAŞIYICI SİSTEMLER VE MESNET TEPKİLERİ STATİK (3. Hafta) Taşıyıcı Sistemler Bir yapıya etki eden çeşitli kuvvetleri güvenlik sınırları içinde taşıyan ve bu kuvvetleri zemine aktaran sistemlere taşıyıcı

Detaylı

Eğer piramidin tabanı düzgün çokgense bu tip piramitlere düzgün piramit denir.

Eğer piramidin tabanı düzgün çokgense bu tip piramitlere düzgün piramit denir. PİRAMİTLER Bir düzlemde kapalı bir bölge ile bu düzlemin dışında bir T noktası alalım. Kapalı bölgenin tüm noktalarının T noktası ile birleştirilmesi sonucunda oluşan cisme piramit denir. T noktası piramidin

Detaylı

Elastisite Teorisi Düzlem Problemleri için Sonuç 1

Elastisite Teorisi Düzlem Problemleri için Sonuç 1 Elastisite Teorisi Düzlem Problemleri için Sonuç 1 Düzlem Gerilme durumu için: Bilinmeyenler: Düzlem Şekil değiştirme durumu için: Bilinmeyenler: 3 gerilme bileşeni : 3 gerilme bileşeni : 3 şekil değiştirme

Detaylı

BAŞKENT ÜNİVERSİTESİ MAKİNA MÜHENDİSLİĞİ BÖLÜMÜ MAK 402 MAKİNA MÜHENDİSLİĞİ LABORATUVARI DENEY 9A GERİNİM ÖLÇER KULLANARAK GERİLİM ANALİZİ YAPILMASI

BAŞKENT ÜNİVERSİTESİ MAKİNA MÜHENDİSLİĞİ BÖLÜMÜ MAK 402 MAKİNA MÜHENDİSLİĞİ LABORATUVARI DENEY 9A GERİNİM ÖLÇER KULLANARAK GERİLİM ANALİZİ YAPILMASI BAŞKENT ÜNİVERSİTESİ MAKİNA MÜHENDİSLİĞİ BÖLÜMÜ MAK 40 MAKİNA MÜHENDİSLİĞİ LABORATUVARI DENEY 9A GERİNİM ÖLÇER KULLANARAK GERİLİM ANALİZİ YAPILMASI TEORİ Bir noktada oluşan gerinim ve gerilme değerlerini

Detaylı

T.C. ONDOKUZ MAYIS ÜNĠVERSĠTESĠ MÜHENDĠSLĠK FAKÜLTESĠ MAKĠNA MÜHENDĠSLĠĞĠ BÖLÜMÜ SANTRĠFÜJ POMPA DENEY FÖYÜ HAZIRLAYANLAR. Prof. Dr.

T.C. ONDOKUZ MAYIS ÜNĠVERSĠTESĠ MÜHENDĠSLĠK FAKÜLTESĠ MAKĠNA MÜHENDĠSLĠĞĠ BÖLÜMÜ SANTRĠFÜJ POMPA DENEY FÖYÜ HAZIRLAYANLAR. Prof. Dr. T.C. ONDOKUZ MAYIS ÜNĠVERSĠTESĠ MÜHENDĠSLĠK FAKÜLTESĠ MAKĠNA MÜHENDĠSLĠĞĠ BÖLÜMÜ SANTRĠFÜJ POMPA DENEY FÖYÜ HAZIRLAYANLAR Prof. Dr. Aydın DURMUŞ EYLÜL 2011 SAMSUN SANTRĠFÜJ POMPA DENEYĠ 1. GĠRĠġ Pompa,

Detaylı

Çözüm: K ve M çünkü, Cisim sabit alabilmesi için kuvvetin sıfır olması gerekir

Çözüm: K ve M çünkü, Cisim sabit alabilmesi için kuvvetin sıfır olması gerekir KUVVET SORULARI (I)- L nin kütlesi K nın kütlesinden büyüktür. Çünkü hareket yönü aşağıya doğrudur. (II)- Sürtünme olup olmadığı kesin değildir. (III)- L nin ağırlığı, ipte oluşan T gerilme kuvvetinden

Detaylı

1. BÖLÜM FİZİĞİN DOĞASI - VEKTÖRLER DENGE - MOMENT - AĞIRLIK MERKEZİ

1. BÖLÜM FİZİĞİN DOĞASI - VEKTÖRLER DENGE - MOMENT - AĞIRLIK MERKEZİ 1. BÖLÜM FİZİĞİN DĞASI - VEKÖRLER DENGE - MMEN - AĞIRLIK MERKEZİ FİZİĞİN DĞASI - VEKÖRLER - DENGE - MMEN - AĞIRLIK MERKEZİ SRULAR 1. I. ork (x) II. Güç (P) III. Açısal momentum (L) Yukarıdakilerden hangisi

Detaylı

BURSA TECHNICAL UNIVERSITY (BTU) Department of Mechanical Engineering

BURSA TECHNICAL UNIVERSITY (BTU) Department of Mechanical Engineering Uygulama Sorusu-1 Şekildeki 40 mm çaplı şaft 0 kn eksenel çekme kuvveti ve 450 Nm burulma momentine maruzdur. Ayrıca milin her iki ucunda 360 Nm lik eğilme momenti etki etmektedir. Mil malzemesi için σ

Detaylı

2. KUVVET SİSTEMLERİ 2.1 Giriş

2. KUVVET SİSTEMLERİ 2.1 Giriş 2. KUVVET SİSTEMLERİ 2.1 Giriş Kuvvet: Şiddet (P), doğrultu (θ) ve uygulama noktası (A) ile karakterize edilen ve bir cismin diğerine uyguladığı itme veya çekme olarak tanımlanabilir. Bu parametrelerden

Detaylı

6. Sınıf Fen ve Teknoloji

6. Sınıf Fen ve Teknoloji KONU: Kuvvet Kuvveti göremeyiz, ancak onu etkileri ile tanırız. Kuvvet; Duran bir cismi hareket ettirebilir. Hareket eden bir cismi durdurabilir. Hareket eden bir cismin hızını değiştirebilir. Hareket

Detaylı

PARALEL KUVVETLERİN DENGESİ

PARALEL KUVVETLERİN DENGESİ ARALEL KUVVETLERİN DENGESİ aralel kuvvetler eğer aynı yönlü ise bileşke kuvvet iki kuvvetin arasında ve büyük kuvvete daha yakın olur. Bileşke kuvvetin bulunduğu noktadan cisim asılacak olursak cisim dengede

Detaylı

STATİĞİN TEMEL PRENSİPLERİ

STATİĞİN TEMEL PRENSİPLERİ 1.1. Temel Kavramlar ve Tanımlar Mühendislik mekaniği: Kuvvet etkisi altındaki cisimlerin denge veya hareket koşullarını inceleyen bilim dalı Genel olarak mühendislik mekaniği Sert (rijit) katı cisimlerin

Detaylı

KİNETİK GAZ KURAMI. Doç. Dr. Faruk GÖKMEŞE Kimya Bölümü Hitit Üniversitesi Fen Edebiyat Fakültesi 1

KİNETİK GAZ KURAMI. Doç. Dr. Faruk GÖKMEŞE Kimya Bölümü Hitit Üniversitesi Fen Edebiyat Fakültesi 1 Kinetik Gaz Kuramının Varsayımları Boyle, Gay-Lussac ve Avagadro deneyleri tüm ideal gazların aynı davrandığını göstermektedir ve bunları açıklamak üzere kinetik gaz kuramı ortaya atılmıştır. 1. Gazlar

Detaylı

ĐŞ GÜÇ ENERJĐ. Zaman. 5. Uygulanan kuvvet cisme yol aldıramıyorsa iş yapılmaz. W = 0

ĐŞ GÜÇ ENERJĐ. Zaman. 5. Uygulanan kuvvet cisme yol aldıramıyorsa iş yapılmaz. W = 0 ĐŞ GÜÇ ENERJĐ Đş kelimesi, günlük hayatta çok kullanılan ve çok geniş kapsamlı bir kelimedir. Fiziksel anlamda işin tanımı tektir.. Yapılan iş, kuvvet ile kuvvetin etkisinde yapmış olduğu yerdeğiştirmenin

Detaylı

HİDROLİK. Yrd. Doç. Dr. Fatih TOSUNOĞLU

HİDROLİK. Yrd. Doç. Dr. Fatih TOSUNOĞLU HİDROLİK Yrd. Doç. Dr. Fatih TOSUNOĞLU Ders Hakkında Genel Bilgiler Görüşme Saatleri:---------- Tavsiye edilen kitaplar: 1-Hidrolik (Prof. Dr. B. Mutlu SÜMER, Prof. Dr. İstemi ÜNSAL. ) 2-Akışkanlar Mekaniği

Detaylı

önce biz sorduk 50 Soruda 32 KPSS 2017 soru ÖABT FİZİK TAMAMI ÇÖZÜMLÜ ÇIKMIŞ SORULAR Eğitimde

önce biz sorduk 50 Soruda 32 KPSS 2017 soru ÖABT FİZİK TAMAMI ÇÖZÜMLÜ ÇIKMIŞ SORULAR Eğitimde KPSS 207 önce biz sorduk 50 Soruda 32 soru ÖABT FİZİK TAMAMI ÇÖZÜMÜ ÇIKMIŞ SORUAR 203-204-205-206 Eğitimde 30. yıl Komisyon ÖABT FİZİK ÇIKMIŞ SORUAR ISBN 978-605-38-780-6 Kitapta yer alan bölümlerin tüm

Detaylı

BÖLÜM 1: Matematiğe Genel Bakış 1. BÖLÜM:2 Fizik ve Ölçme 13. BÖLÜM 3: Bir Boyutta Hareket 20. BÖLÜM 4: Düzlemde Hareket 35

BÖLÜM 1: Matematiğe Genel Bakış 1. BÖLÜM:2 Fizik ve Ölçme 13. BÖLÜM 3: Bir Boyutta Hareket 20. BÖLÜM 4: Düzlemde Hareket 35 BÖLÜM 1: Matematiğe Genel Bakış 1 1.1. Semboller, Bilimsel Gösterimler ve Anlamlı Rakamlar 1.2. Cebir 1.3. Geometri ve Trigometri 1.4. Vektörler 1.5. Seriler ve Yaklaşıklıklar 1.6. Matematik BÖLÜM:2 Fizik

Detaylı

Soru 1. Cisim dengede ise F¹ ve F² nedir? F¹ = 50.cos 53 = 30N F² = 50.sin 53 = 40N. Soru 2. P² = 8+16 = 24N P³ = 12-6 = 6N

Soru 1. Cisim dengede ise F¹ ve F² nedir? F¹ = 50.cos 53 = 30N F² = 50.sin 53 = 40N. Soru 2. P² = 8+16 = 24N P³ = 12-6 = 6N DENGE VE DENGE ŞARTLARI Bir cisim duruyorsa veya düzgün hızla bir doğru boyunca hareket ediyorsa ya da sabir hızla bir eksen etrafında dönüyorsa ``cisim dengededir`` denir. Cisim olduğu yerde duruyorsa,

Detaylı

Yapı Sistemlerinde Elverişsiz Yüklemeler:

Yapı Sistemlerinde Elverişsiz Yüklemeler: Yapı Sistemlerinde Elverişsiz Yüklemeler: Yapılara etkiyen yükler ile ilgili çeşitli sınıflama tipleri vardır. Bu sınıflamalarda biri de yapı yükleri ve ilave yükler olarak yapılan sınıflamadır. Bu sınıflama;

Detaylı

BİLECİK ŞEYH EDEBALİ ÜNİVERSİTESİ MÜHENDİSLİK FAKÜLTESİ MAKİNE VE İMALAT MÜHENDİSLİĞİ BÖLÜMÜ

BİLECİK ŞEYH EDEBALİ ÜNİVERSİTESİ MÜHENDİSLİK FAKÜLTESİ MAKİNE VE İMALAT MÜHENDİSLİĞİ BÖLÜMÜ BİLECİK ŞEYH EDEBALİ ÜNİVERSİTESİ MÜHENDİSLİK FAKÜLTESİ MAKİNE VE İMALAT MÜHENDİSLİĞİ BÖLÜMÜ MÜHENDİSLİKTE DENEYSEL METOTLAR II ZAMANA BAĞLI ISI İLETİMİ 1.Deneyin Adı: Zamana bağlı ısı iletimi. 2. Deneyin

Detaylı

Soru 1: Şekil-1 de görülen düzlem gerilme hali için: b) elemanın saat yönünde 30 0 döndürülmesi ile elde edilen yeni durum için elemana tesir

Soru 1: Şekil-1 de görülen düzlem gerilme hali için: b) elemanın saat yönünde 30 0 döndürülmesi ile elde edilen yeni durum için elemana tesir Soru 1: Şekil-1 de görülen düzlem gerilme hali için: a) elemanın saat yönünde 30 0 döndürülmesi ile elde edilen yeni durum için elemana tesir eden gerilme bileşenlerini, gerilme dönüşüm denklemlerini kullanarak

Detaylı

3. İzmir Rüzgar Sempozyumu Ekim 2015, İzmir

3. İzmir Rüzgar Sempozyumu Ekim 2015, İzmir 3. İzmir Rüzgar Sempozyumu 8-9-10 Ekim 2015, İzmir Yatay Eksenli Rüzgar Türbin Kanatlarının Mekanik Tasarım Esasları- Teorik Model Prof. Dr. Erdem KOÇ Arş. Gör. Kadir KAYA Ondokuz Mayıs Üniversitesi Makina

Detaylı