9. SINIF GEOMETRİ KONU ÖZETİ

Save this PDF as:
 WORD  PNG  TXT  JPG

Ebat: px
Şu sayfadan göstermeyi başlat:

Download "9. SINIF GEOMETRİ KONU ÖZETİ"

Transkript

1 SINIF GEOMETRİ KONU ÖZETİ TOLGA YAVAN Matematik Öğretmeni

2 1. ÜNİTE: TEMEL GEOMETRİK KAVRAMLAR VE KOORDİNAT GEOMETRİYE GİRİŞ Nokta: Herhangi bir büyüklüğü olmayan ve yer belirten geometrik terimdir. Noktanın eni boyu ve yüksekliği yoktur. Büyük harflerle isimlendirilir. A noktası, biçiminde gösterilir. Doğru: Düz ve uzunluğu sürekli iki yöne sınırsız uzatılabilen, kalınlığı bulunmayan geometrik terimdir. Doğrular, üzerinde bulunan iki nokta ile ya da seçilen küçük harflerle ifade edilir. (AB doğrusu) (l doğrusu) Nokta olarak iz, doğru olarak düz çizgi modeli kullanılır. Yukarıdaki şekilde AB doğrusunun A noktasından başlayan ve B noktasından geçecek şekilde sürekli uzatılan parçasının belirttiği ışını [AB ile gösterir, bu simgeli yazılışı da AB ışını diyerek okuruz. Işının sözü edilen yanda sınırsız uzatılabildiğine ve yönlü olduğuna dikkat ediniz. Düzlem: Uzunluğu ve genişliği, düz ve sınırsız genişletilebilen fakat kalınlığı bulunmayan geometrik terim olarak ele alınır. Bir düzlemi yukarıda görüldüğü gibi paralelkenarsal bölge ile modeller ve büyük harfle adlandırırız. Bu şekilde E düzlemini görüyoruz. E harfi düzlem gösteriyorsa bunu (E) şeklinde yazar ve E düzlemi diyerek okuruz. Farklı iki noktadan bir doğru geçer Bir doğru üzerinde en az iki nokta ve dışında en az bir nokta vardır. Doğrusal noktalar: Aynı doğru üzerinde bulunan noktalara doğrusal (doğrudaş) noktalar denir. Yukarıdaki şekilde A, B, C, D noktaları d doğrusunun noktalarıdır. Tanıma göre bu noktalar doğrudaş noktalardır. Bir düzlemin kalınlığının olmadığını, uzunluğunun ve genişliğinin düz sınırsız artırılabileceğini düşünmelisiniz (yukarıdaki şekil). Öyleyse iki noktası bir düzlemde olan doğrunun her noktası bu düzlemdedir. Doğru parçası: Bir AB doğrusu verilmiş olsun. A ve B noktaları ile doğrunun bu iki nokta arasında kalan parçasına doğru parçası denir ve [AB] ile gösterilir. (AB) AB doğru parçasının iç noktaları [AB) AB doğru parçasından B çıkarılmış (AB] AB doğru parçasından A çıkarılmış Işın: Bir doğrunun belirli bir noktasından başlayan ve bu noktanın sürekli aynı yanına uzatılan parçasına ışın adı verilir. Yukarıdaki şekilde A ve B noktaları P düzleminin noktaları ise AB doğrusu P düzleminde olan bir doğrudur. Yani, bu şekildeki K ve L noktaları da P düzleminin noktalarıdır. Benzer şekilde CD doğrusu da P düzleminin bir doğrusu olur. Bu nedenle M, N (P) dir. Herhangi üçü doğrusal olmayan n tane nokta C(n,3) kadar düzlem gösterir. Herhangi üçü doğrusal olmayan n noktadan C(n,2) kadar doğru geçer. n tane doğru en fazla, C(n,2) noktada kesişir. Bir düzlem içindeki farklı n tane doğru, bu 1

3 düzlemi en az n+1 bölgeye, en çok bölgeye ayırır. Uzay: Tüm noktalar kümesine uzay denir. Tüm noktalar kümesi olarak düşünebileceğimiz uzayı; genişliği, uzunluğu ve yüksekliği sınırsız büyütülebilen geometrik terim olarak algılamalıyız. Eş doğru parçası: Uzunluğu eşit olan doğru parçalarına eş doğru parçaları denir. AB = CD ise bu tanıma göre [AB] ile [CD] doğru parçaları eştir. Bu iki doğru parçasının eşliğini simgesel olarak [AB] [CD] şeklinde yazar ve AB doğru parçası eş CD doğru parçası diyerek okuruz. Yönlü doğru parçaları A da başlayan B de biten doğrusal hareketi ile gösterir, bu simgeli yazılışı da AB yönlü doğru parçası diyerek okuruz. A ya başlangıç, B ye bitiş noktası denir (aşağıdaki şekil). Uzayı modellerken bu tür prizmalardan yararlanabiliriz. Bir prizma ile modellediğimiz uzayı E 3 ile gösterelim. Bu yazımda üsteki 3 sayısı; genişlik, uzunluk ve yükseklik (derinlik) boyutlarını çağrıştıran simge olarak kullanılır. Koordinat doğrusu: Gerçek sayıların, bir doğrunun noktaları ile bire bir eşlenmesi ile oluşturulan sayı doğrusuna koordinat doğrusu, 0 sayısına karşılık gelen noktaya da başlangıç noktası (orijin) denir. Başlangıç noktasının bir tarafı pozitif diğer tarafı negatif yön olarak alınır. Herhangi bir noktaya karşılık gelen gerçek sayıya bu noktanın koordinatı adı verilir. Sayı doğrusunun iki noktası A(a) ve B(b) olsun. a < b ise na pozitif yönlü doğru parçası, a > b ise na negatif yönlü doğru parçası deriz (aşağıdaki şekiller). Eş yönlü doğru parçaları: Uzunluğu ve yönü aynı olan yönlü doğru parçalarına eş yönlü doğru parçaları denir. ile eş yönlü doğru parçaları ise bunu şeklinde yazarız. Vektör: Buna göre, x doğrusu üzerindeki A, B, C noktaları koordinatlarıyla beraber A(-2), B(0) ve C(3) olarak ifade edilir. İki nokta arasındaki uzaklık Bir a gerçek sayısının, koordinat doğrusu üzerinde eşlendiği noktanın başlangıç noktasına olan uzaklığına a sayısının mutlak değeri denir ve a ile gösterilir. a, b R olmak üzere, i) a 0 ii) a 0 ise a =a iii) a<0 ise a =-a iv) a b = b a dır. Koordinatları A(a) ve B(b) olan iki nokta arasındaki uzaklık, d(a,b) olarak ifade edilir ve aşağıdaki gibi hesaplanır: d(a,b) = b a Yukarıdaki şekilde çizilmiş olan koordinat doğrusundaki nı düşünelim. Bu doğruda na eş olan çok sayıda yönlü doğru parçası çizilebilir. Bunların tümünü bu yönlü doğru parçalarından biri ile temsil edebiliriz. Sözü edilen yönlü doğru parçalarının kümesine vektör denir. Demek ki (AB vektörü), na (AB yönlü doğru parçasına) eş olan yönlü doğru parçalarının tümünü temsil etmektedir. Öyleyse bir vektörün uzunluğu (büyüklüğü) bu vektörün temsil ettiği yönlü doğru parçalarından birinin uzunluğudur ve ile gösterilir. 2

4 Birim vektör: Uzunluğu (büyüklüğü) 1 birim olan vektöre birim vektör denir. Düzlemde Dik Koordinat Sistemi Yer vektörü: Koordinat doğrusunun bir noktası P olsun. Başlangıç noktası orijin ve bitiş noktası P olan vektöre, P noktasının yer vektörü denir. ve O orijin noktası ise ne nün yer vektörü (ya da konum vektörü) denir. yer vektörünü çoğunlukla şeklinde yazacağız. İki Vektörün Toplamı Aşağıdaki iki şekilde de orijin O noktası, P(a), Q(b) ve R(a + b) dir. O noktasında dik kesişen iki koordinat doğrusunun oluşturduğu yapıya dik koordinat sistemi, bu sistemin belirttiği düzleme analitik düzlem ve O noktasına da orijin denir. Koordinat sistemini oluşturan doğrulardan yatay olanına x ekseni (apsisler ekseni) düşey olanına y ekseni (ordinatlar ekseni) adı verilir. Bu şekillerdeki ne ile nün toplamı denir ve ya da yazılır. İki Vektörün Bir Gerçek Sayı İle Çarpımı P(a), k R ve R(k.a) ise ne nün k sayısı ile çarpımı denir ve yazılır. Aşağıdaki sayı doğrusundaki örnekleri inceleyiniz. Bu şekildeki vektörler konum vektörlerdir. İki Vektörün Farkı ( ) toplamına P ile Q nün farkı denir. ( ) işlemi şeklinde yazılır. A(x,y) gösteriminde, x, A noktasının apsisini; y, A noktasının ordinatı belirtir. (x,y) ise A noktasının koordinatları olarak adlandırılır. Koordinat sisteminde x ekseninin üzerindeki noktaların ordinatları sıfırdır. (x,0) Koordinat sisteminde y ekseninin üzerindeki noktaların apsisleri sıfırdır. (0,y) Bir Doğru Parçasını Verilen Oranda Bölen Noktalar ( ) ( ) doğrusal noktalar olsun. ise C noktası [AB] nı k oranında bölen noktadır. Eğer C noktası A ile B arasında ise bu nokta [AB] nı içten, diğer durumlarda dıştan bölen noktadır. C noktası [AB] nı k oranında içten bölüyorsa koordinatları ( ), dıştan bölüyorsa ( ) şeklindedir. k=1 ise C orta noktadır ( ) Koordinat sistemi analitik düzlemi dört bölgeye ayırır. Koordinat sistemi {0, e 1, e 2 } ile de gösterilir. Bir Doğru Parçasını Verilen Oranda Bölen Noktalar A(x 1,y 1 ), B(x 2,y 2 ) ve C doğrusal noktalar olsun. C noktası [AB] nı k oranında içten bölüyorsa koordinatları ( ), dıştan bölüyorsa 3

5 ( ) şeklindedir. İçten bölen nokta için k=1 ise C orta noktadır ( ) Analitik Düzlemde Vektörler İki Vektörün Toplamı A(x 1,y 1 ) ve B(x 2,y 2 ) olmak üzere yönlü doğru parçası, bileşenleri olan (x 2 x 1,y 2 y 1 )ikilisi ile ifade edilir. Bileşenleri aynı olan yönlü doğru parçalarının kümesine vektör, bu kümenin herhangi bir elemanına da bu vektörün doğrultusu, başlangıç noktası koordinat sisteminin orijininde olan vektörüne P noktasının yer vektörü denir. Başlangıç ve bitim noktası aynı olan vektörüne sıfır vektörü denir. Sıfır vektörü ( ) biçiminde gösterilir. Bir vektörün uzunluğu, başlangıç ve bitim noktaları arası uzaklıktır. Doğrultuları aynı olan vektörler birbirinin gerçek sayı katı cinsinden yazılabilir. Bir Vektörün Uzunluğu (Normu) Herhangi iki yer vektörü ( ) ve ( ) olsun. Bu vektörlerin bileşenlerini karşılıklı toplayarak, ( ) vektörünü elde edelim., ve vektörleri yukarıdaki şekilde çizildiği gibidir. Buradaki ne, ile nün toplamı denir ve ile gösterilir. Demek ki, ( ) dir. İki Vektörün Farkı ( ) verilmiş olsun. Bileşenleri bu vektörün bileşenlerinin -1 ile çarpımı olan vektörü ile gösterelim. Yani, ( ) olsun. Bu iki vektörün bitiş noktalarının orijine göre simetrik olduğuna dikkat ediniz. Bir vektörün uzunluğu, başlangıç ve bitim noktaları arası uzaklıktır. ( ) vektörünün uzunluğu dir. Birim Vektör Uzunluğu 1 birim olan vektöre birim vektör denir. Aşağıdaki şekilde yer vektörü olan birim vektörlerden örnekler çizilmiştir. Bunların içinde ( ) ( ) birim vektörlerini sıkça kullanırız. ile nün toplamına ile nün farkı denir. Demek ki, ( ) ve ( ) olmak üzere ( ) dir. 4

6 Vektörün Bir Gerçek Sayı İle Çarpımı ( ) ve ise k ( ) vektörüne nün k ile çarpımı denir. Özellik: 1., 2. k>0 için. ile aynı yönlü ve, 3. k<0 için. ile zıt yönlü ve, 4. k=0 için dür. Vektörlerin Toplamı ve Bir Gerçek Sayı ile Çarpımının Özellikleri ve olmak üzere; 1. Kapalılık Özelliği: Analitik düzlemdeki vektörler kümesi toplama ve bir gerçek sayı ile çarpma işlemlerine göre kapalıdır. Yani iki vektörün toplamı bir vektör, vektörün bir gerçek sayı ile çarpımı yine bir vektördür. ve dir. 2. Değişme Özelliği: olduğundan toplama işleminin değişme özelliği vardır. 3. Birleşme Özelliği: ( ) ( ) olduğundan toplama işleminin birleşme özelliği vardır. 4. Birim Eleman Özelliği: vektörü toplama işleminin birim elemanıdır. 5. Ters Eleman Özelliği: vektörünün toplama işlemine göre tersi vektörüdür. ( ) ( ) 6. Vektörlerin Gerçek Sayı İle Çarpımında Dağılma ve Birleşme Özellikleri i. Birinci Dağılma Özelliği: ( ) ii. İkinci Dağılma Özelliği: ( ) iii. Birleşme Özelliği: ( ) ( ) Açılar Açı: Başlangıç noktaları ortak olan iki ışının birleşimine açı diyoruz. Başlangıç noktasına açının köşesi, ışınlara da açının kenarları denir. [OA ve [OB ışınları açının kenarları (kolları) Birim Çember: Düzlemde sabit bir noktadan 1 birim uzaklıkta bulunan noktaların kümesine birim çember denir. E düzleminin sabit bir noktası M olsun. Bu düzlemin M ye uzaklığı 1 birim olan noktaları, bir çember oluşturur. Bu çember E düzleminde M merkezli birim çemberdir. Bir açının ölçüsünü tanımlarken merkezi açının köşesinde olan ve bu açı ile aynı düzlemde bulunan birim çemberden yararlanacağız. AOB açısının bulunduğu düzlemde O merkezli birim çemberi çizelim. Bu çember açının kenarlarını C ve D noktalarında kesmiş olsun. Açının içinde kalan CD yayının (Bu yayı ile gösteririz.) ölçüsünü tanımlayacak ve bu ölçüye AOB açısının ölçüsü adını vereceğiz. Çember Yayının Ölçüsü AOB açısının kenarları O merkezli birim çemberi C ve D noktalarında kesmiş ise bu çemberin C ile D noktaları arasındaki yayının ölçüsüne AOB açısının ölçüsü denir. AOB açısının ölçüsünü ( ) ile gösterir, bu yazılışı AOB açısının ölçüsü diyerek okuruz. Radyan: Birim çemberin uzunluğu 1 birim olan yayının ölçüsüne 1 radyan denir. 5 Açının birim çemberi kestiği noktalar arasındaki yay uzunluğuna da açının radyan cinsinden ölçüsü adı verilir Bir çember yayının uzunluğu, radyan

7 türünden ölçüsü ile yarıçapının çarpımıdır. Bir çemberde yarıçap uzunluğundaki yayın ölçüsü 1 radyandır. Derece: Birim çemberin çevre uzunluğunu 360 eş parçaya ayırarak her bir parçayı gören merkez açının ölçüsüne 1 derece denir ve 1 0 biçiminde gösterilir. tümler açılar denir. Tümler açıların her birine diğerinin tümleyeni denir. Bütünler Açılar: Ölçüleri toplamı olan iki açıya, bütünler açılar denir. Bütünler açıların her birine diğerinin bütünleyeni denir. Ters Açılar: Köşeleri ortak ve kenarları birbirine zıt ışınları olan iki açıya ters Açı denir. Ters açıların ölçüleri birbirine eşittir. (x=z, t=y) Aynı açının derece cinsinden ölçüsü D, radyan cinsinden ölçüsü R olmak üzere, dir. Açı Çeşitleri Dar Açı: Ölçüsü 0 0 ile 90 0 arasında olan açıya dar açı denir. (0 0 < α < 90 0 ) Paralel İki Doğrunun Bir Kesenle Yaptığı Açılar Geniş Açı: Ölçüsü 90 0 ile arasında olan açıya geniş açı denir. (90 0 < α < ) Dik Açı: Ölçüsü 90 0 olan açıya dik açı denir. (α=90 0 ) l//k ve d bu iki doğruyu kesiyorsa; Yöndeş açılar: Aynı yöne bakan açılara yöndeş açı denir. Yöndeş açıların ölçüleri eşittir. (a=e, b=f, c=m, d=n) İç-Ters açılar: İçte kalan ve ters yöne bakan açılara iç-ters açılar denir. İç-Ters açıların ölçüleri eşittir. (b=n, c=e) Doğru Açı: Ölçüsü denir. (α=180 0 ) olan açıya doğru açı Dış-Ters açılar: Dışta kalan ve ters yöne bakan açılara dış-ters açılar denir. Dış-Ters açıların ölçüleri eşittir. (a=m, d=f) Karşı Konumlu Açılar: Paralel iki doğru arasında kalan ve karşılıklı olan açılara denir. Karşı konumlu açıların toplamı 180º dir.(b+e=c+n=180º) Tam Açı: Ölçüsü olan açıya tam açı denir. (α=360 0 ) Kenarları Karşılıklı Paralel Olan Açılar Tümler Açılar: Ölçüleri toplamı 90 0 olan iki açıya, 6 Yukarıdaki şekilleri inceleyiniz. Bunlarda A ve B

8 açılarının kenarları; a da aynı yönde, b de zıt yönde, c de birer kenarlar aynı, diğer kenarlar zıt yönde paraleldir. a ve b de α = β, c de ise α + β = 180 olduğu açıktır. Demek ki; Kenarları karşılıklı olarak aynı yönde ya da zıt yönde paralel olan açılar eştir. Birer kenarları aynı, diğer kenarları zıt yönde paralel olan açılar bütünlerdir. Kenarları Karşılıklı Dik Olan Açılar Bu tip açılarda Üçgenin iç açıları toplamı 180 dir ve Dörtgenin iç açıları toplamı 360 dir özellikleri kullanılarak rahatlıkla çözülebilir. Yönlü Açı Herhangi bir açının bir kenarından diğer kenarına saat yönünün ters yönünde gidildiğinde, açı pozitif yönlü, saat yönü ile aynı yönde gidildiğinde açı negatif yönlüdür, denir. Bu durum aşağıdaki şekillerde olduğu gibi verilir: Pratik Kural 1: İki paralel doğru arasına çizilmiş aynı yöne bakan açılarla farklı yöne bakan açıları toplamı eşittir. Dar Açıların Trigonometrik Oranları [AB//[EF ise α+β=x+y dir. Pratik Kural 2: İki paralel doğru arasına çizilmiş aynı yöne bakan açıların ölçüleri toplamı (açı sayısı 1). 180 dir. Sin: Sinüs, cos: Kosinüs tan: Tanjant, cot: Kotanjant 7

9 Bir Açının Trigonometrik Değerleri Not: Formülün hatırlanması için Kosinüs ve kotanjantın Ko ile başladığını formüllerindeki Komşu dik kenar uzunluğunun pay kısmında yer aldığı hatırlanabilir. Tablo oluşturulurken aşağıdaki özelliklerin bilinmesinde fayda vardır. Tümler açıların trigonometrik oranlarında sinüsü kosinüne, tanjantı kotanjantına eşittir. a + b = 90 0 ise sina=cosb, sinb=cosa, tana=cotb, tanb=cota dır. Bir açının tanjantı o açının sinüsünün kosinüsüne oranına eşittir. Bir açının kotanjantı o açının kosinüsünün sinüsüne oranına eşittir. Bir açının tanjantı ile kotanjantının çarpımı 1 dir. (Tanjantı ile kotanjantı birbirlerinin çarpmaya göre tersleridir.) x ekseni ile pozitif yönde θ açısı yapacak biçimde birim çember üzerinde seçilen bir P(x,y) noktası için, cosθ=x ve sinθ=y olur. [OP nin x=1 doğrusu ile kesiştiği nokta T(1,t) ve y=1 doğrusu ile kesiştiği nokta K(k,1) ise tanθ = t ve cotθ = k olur. Bu yüzden x eksenine (y=0 doğrusuna) kosinüs ekseni, y eksenine (x=0 doğrusuna) sinüs ekseni, y=1 doğrusuna kotanjant ekseni, x=1 doğrusuna tanjant ekseni adı verilir. Geniş açıların trigonometrik oranları için bu açıların bütünler açılarının trigonometrik oranları bulunur. Geniş açının; Sinüs yerine bütünlerinin sinüsü, Kosinüsü yerine bütünlerinin kosinüsünün 1 katı, Tanjantı yerine bütünlerinin tanjantının 1 katı, Kotanjantı yerine bütünlerinin kotanjantının 1 katı alınır. Doğrunun Eğimi ediniz. olduğuna dikkat sin 0 cos 1 tan 0 cot Tanımsız Tanımsız Tabloda koyu gösterilen yerler ezberlenirse diğerleri özelliklerden çıkarılabilir. 0 8 Bir doğrunun x ekseni ile pozitif yönde yaptığı açının tanjantına doğrunun eğimi denir ve eğim m ile gösterilir. Vektörel olarak eğim, bir doğrunun doğrultu vektörünün eğimine bu doğrunun eğimi denir. Doğrunun, x ekseni ile pozitif yönde yaptığı açı θ ise eğim, m = tanθ olarak ifade edilir.

10 A(x 1,y 1 ) ve B(x 2,y 2 ) noktalarından geçen doğrunun eğimi, bu noktalarda geçen doğrultu vektörünün ordinatının apsisine oranıdır. Doğrultman vektörü: ( ) Eğimi: Doğrultman vektörü ( ) olarak verilirse eğimi olur. Doğru Denklemleri Düzlemde bir ( ) noktasından geçen ve doğrultman vektörü ( ) olan doğrunun, ( ) düzlemde herhangi bir nokta ve k parametre olmak üzere Vektörel denklemi: Parametrik denklemi: { Kapalı denklemi: Doğrultman vektörü ( ) olarak verilirse ax + by + c = 0 a, b, c R a 2 + b 2 0 şeklindedir. Özel olarak m eğimi göstermek üzere şeklinde de verilebilir. İki Noktası Bilinen Doğrunun Denklemi A(x1,y1) ve B(x2,y2) noktalarından geçen doğrunun doğrultman vektörü ( ) olmak üzere; Vektörel denklemi: ( ) ( ) Parametrik denklemi: { ( ) Kapalı denklemi: şeklindedir. Doğrultman vektörü ( ) olarak verilirse m eğimi göstermek üzere y y 1 = m.(x x 1 ) şeklinde de verilebilir. Koordinat Eksenlerine Paralel Doğrunun Denklemleri 1. X Eksenine Paralel Doğrunun Denklemi ( ) birim vektörüdür. O halde X = (x, y) düzlemde herhangi bir nokta olmak üzere doğrunun; Vektörel denklemi: Parametrik denklemi: { Kapalı denklemi: y = y 0 şeklindedir. Bu tür denklemlerde eğim açısı 0 0, eğimi de sıfırdır. 2. Y Eksenine Paralel Doğrunun Denklemi A(x 0,y 0 ) noktasından geçen ve y eksenine paralel olan doğrunun doğrultman vektörü ( ) birim vektörüdür. O halde X = (x, y) düzlemde herhangi bir nokta olmak üzere doğrunun; Vektörel denklemi: Parametrik denklemi: { Kapalı denklemi: x = x 0 şeklindedir. Bu tür denklemlerde eğim açısı 90 0, eğimi de tanımsızdır. Birbirine Paralel Ya da Dik Olan Doğrular 1. Birbirine Paralel Olan Doğrular Birbirine paralel olan doğruların eğimleri eşittir. d 1 // d 2 m 1 = m 2 2. Birbirine Dik Olan Doğrular Birbirine dik olan doğruların eğimleri çarpımı -1 dir. d 1 d 2 m 1.m 2 = 1 A(x 0,y 0 ) noktasından geçen ve x eksenine paralel olan doğrunun doğrultman vektörü 9

11 İki Doğrunun Birbirine Göre Konumları ( ) doğruları verilsin. ( ) 1. Doğrular Kesişir. O halde doğruların eğimleri farklıdır. İki doğrunun kesim noktasının koordinatlarını bulmak için bu doğrularının denklemleri ortak çözülür. Kesim noktası her iki doğru denklemini sağlar. 2. Doğrular Paraleldir. O halde doğruların eğimleri eşittir, sabit terimleri farklıdır. 3. Doğrular Çakışıktır. O halde doğruların eğimleri ve sabit terimleri eşittir. 2. ÜNİTE: ÇOKGENLER VE DÜZLEMDE KAPLAMALAR 2.1. ÇOKGENLER, İÇ VE DIŞ AÇILARININ ÖLÇÜLERİ Çokgen: A 1, A 2,,A n düzlemsel farklı n tane (n 3) nokta olsun. Bunların herhangi ardışık üçü doğrusal değilse yalnız uç noktalarında kesişen [A 1, A 2 ], [A 2, A 3 ],, [A n, A 1 ] doğru parçalarının birleşimine çokgen denir. A 1, A 2,,A n noktalarına, çokgenin köşeleri; [A 1, A 2 ], [A 2, A 3 ],, [A n, A 1 ] doğru parçalarına da çokgenin kenarları denir. Formüller: n kenarlı bir konveks çokgenin; Bir köşesinden çizilen köşegenlerle çokgen (n 2) tane üçgene ayrılır. Bir köşesinden çizilen köşegenlerin sayısı (n 3) tür. ( ) Bir çokgenin köşegenlerinin sayısı dir. İç açılarının ölçüleri toplamı (n 2) Dış açılarının ölçüleri toplamı n kenarlı bir dışbükey çokgen, en az n 2 tanesi uzunluk olmak üzere, 2n 3 tane temel elemanının verilmesiyle tam olarak belirli olur. Düzgün Çokgenler Kenarları ve açıları eş olan çokgene düzgün çokgen denir. n kenarlı düzgün çokgenin; Bir dış açısının ölçüsü dir. Bir iç açısının ölçüsü veya ( ) dir. Üçgen: Üç kenarlı çokgene üçgen denir. Aşağıda verilen üçgen örneği, ABC üçgeni olarak isimlendirilir ve diye gösterilir. [AB], [BC] ve [AC] na nin kenarları; A, B ve C noktalarına da üçgenin köşeleri adı verilir. Aşağıdaki şekillerde üçgenin iç ve dış açıları gösterilmiştir. Herhangi bir üçgende bir köşedeki iç açı ile dış açı bütünlerdir. Çokgenin iç bölgesinde seçilen herhangi iki noktayı birleştiren doğru parçası daima çokgenin iç bölgesinde kalıyorsa bu çokgene dışbükey (konveks) çokgen denir. Tersi oluştuğu zaman bu çokgene içbükey (konkav) çokgen denir. Dışbükey (konveks) çokgen denilince çokgen, çokgenin açıları deyimi ile bu çokgenin iç açıları kastedilir. Özellikler: 1. Herhangi bir üçgendeki iç açıların ölçüleri toplamı ve dış açıların ölçüleri toplamı dir. 2. Bir üçgenin herhangi bir dış açısının ölçüsü, kendisine komşu olmayan iki iç açının ölçüleri toplamına eşittir. 10

12 İkizkenar Üçgen İki kenar uzunluğu birbirine eşit olan üçgene ikizkenar üçgen denir. 3. Bir üçgende; iki iç açıortayın oluşturduğu açının ölçüsü, üçüncü köşedeki açının ölçüsünün yarısından fazladır. ( ) ( ) 4. Bir üçgende; iki dış açıortayın oluşturduğu açının ölçüsü, üçüncü köşedeki açının ölçüsünün yarısının tümleridir. Özellikler: 1. İkizkenar üçgende taban açılarının ölçüleri birbirine eşittir. 2. ( Üçgeni): Bu ikizkenar üçgende 120 'lik açının karşısındaki kenar uzunluğu 30 'lik açının karşısındaki kenar uzunluğunun katıdır. ( ) ( ) 5. Bir üçgende; komşu olmayan bir iç açı ve bir dış açının açıortaylarının oluşturduğu açının ölçüsü, üçüncü köşedeki açının ölçüsünün yarısına eşittir. 3. İkizkenar üçgende taban üzerinden alınan bir noktadan eşit kenarlara indirilen dikmelerin toplamı eşit kenarlara ait bir yüksekliğe eşittir. ( ) ( ) 6. Aşağıdaki şekle göre α=a+b+c dir. 4. İkizkenar üçgenin tabanının uzantısı üzerinde alınan bir noktadan, üçgenin eşit kenarlarına inilen dikmelerin uzunlukları farkının mutlak değeri eşit kenara ait bir yüksekliğe eşittir. 7. Yıldızılın iç açı ölçüleri toplamı dir. 5. İkizkenar üçgende taban üzerinden alınan bir noktadan eş kenarlara çizilen paralel doğru parçalarının uzunlukları toplamı eş kenarların birinin uzunluğuna eşittir. 11

13 3. Bir üçgende aynı doğru parçası hem açıortay hem de kenarortay oluyorsa bu üçgen ikizkenar üçgendir. 6. İkizkenar üçgende taban uzantısı üzerinden alınan bir noktadan kenarlara çizilen paralel doğru parçalarının mutlak farkı, eşit kenar uzunluklarından birine eşittir. Eşkenar Üçgen Tüm kenarları eş olan üçgene eşkenar üçgen denir. Eşkenar üçgende; 1. İç açılar birbirine eşit ve ölçüleri 60 dir. 7. İkizkenar üçgende eş kenarlara ait kenarortaylar, açıortaylar ve yükseklikler eştir. 8. İkizkenar üçgende tepe açısına ait kenarortay, açıortay ve yükseklik eştir. 2. Kenarortaylar, iç açıortaylar ve yükseklikler birbirine eştir. Sonuçlar: 1. Bir üçgende aynı doğru parçası hem yükseklik hem kenarortay olursa bu üçgen ikizkenar üçgendir. 3. ABC eşkenar üçgeninin içinde herhangi bir nokta P olsun [DP]//[BC], [EP]//[AC], [FP]//[AB] ise dır. 2. Bir üçgende aynı doğru parçası hem yükseklik hem de açıortay oluyorsa bu üçgen ikizkenar üçgendir. 4. ABC eşkenar üçgeninin içinde herhangi bir nokta P olsun. [AH] [BC], [PD] [AB], [PE] [BC], [PF] [AC] ise dır Şekilde ABC eşkenar üçgen; [PF] // [AC], [PD] // [BC], [PE] // [AB] ise dir.

14 6. ABC eşkenar üçgen [PD] [BC], [PE] [AB], [PF] [AC] ise dir. 5. ( Üçgeni): İkizkenar dik üçgende hipotenüs uzunluğu bir dik kenar uzunluğunun katıdır. Dik Üçgen Bir açısının ölçüsü 90 olan üçgene dik üçgen denir. Dik üçgende 90 nin karşısındaki kenara hipotenüs, diğer kenarlara dik kenar adı verilir. Hipotenüs üçgenin daima en uzun kenarıdır. 6. ( Üçgeni): Bu üçgende 75 'lik açının karşısındaki kenar uzunluğu 15 'lik açının karşısındaki kenar uzunluğunun katı, hipotenüs uzunluğu ise katıdır. Ayrıca hipotenüse ait yükseklik hipotenüsün dörtte biridir. Özellikler: 1. Pisagor teoremi: Bir dik üçgende; dik kenar uzunluklarının karelerinin toplamı, hipotenüs uzunluğunun karesine eşittir. 2. (Muhteşem Üçlü): Bir dik üçgende; hipotenüse ait kenarortay hipotenüsü kendisine eş uzunlukta iki parçaya böler. Dörtgen ve Açıları Bir dörtgende; Açıların ölçüleri toplamı 360 dir. Dış açıların ölçüleri toplamı 360 dir. Kare 3. Bazı dik üçgen çeşitleri şunlardır. (3-4-5), ( ), ( ), ( ) 4. ( Üçgeni): Bir dik üçgende; 30 lik açının karşısındaki kenar uzunluğu hipotenüs uzunluğunun yarısı, 60 lik açının karşısındaki kenar uzunluğu 30 lik açının karşısındaki kenar uzunluğunun katıdır. 13 Karenin her bir iç açısı ve her bir dış açısının ölçüsü dir.

15 Karede köşegenlerin uzunlukları eşit ve köşegenler birbirine diktir. Bir açısı 90 olan yamuğa dik yamuk denir. Eşkenar Dörtgen Karşılıklı kenarları paralel ve tüm kenarları eşit olan dörtgene eşkenar dörtgen denir. İkizkenar Yamuk Dik Yamuk Karşılıklı açılar eştir. Açıların ölçüleri toplamı 360 dir. Bir köşedeki dış açı komşu köşelerden birindeki (iç) açıya eştir. Dikdörtgen Açıları dik açı olan dörtgene dikdörtgen denir. İkizkenar yamukta; 1. Açıların ölçüleri toplamı 360 dir. 2. Dış açıların ölçüleri toplamı 360 dir. 3. Paralel olan iki kenardan her birinin uçlarındaki açılar (taban açıları) eştir. 4. Eş olan iki kenardan her birinin uçlarındaki açılar bütünlerdir. Bir dik yamukta; 1. İki komşu açı dik açı, diğer iki açı dik açı değildir. 2. Açıların ölçüleri toplamı 360 dir. 3. Dış açıların ölçüleri toplamı 360 dir. Düzgün Beşgen Beş kenarlı düzgün çokgene düzgün beşgen denir. Bir dikdörtgenin; İç ve dış açılarından her biri dik açıdır. Açılarının ölçüleri toplamı 360 dir. Dış açılarının ölçüleri toplamı 360 dir. Paralelkenar Karşılıklı kenarları paralel olan dörtgene paralelkenar denir. Düzgün beşgende; Dış açılar eştir ve her birinin ölçüsü 72 dir. İç açılar eştir ve her birinin ölçüsü 108 dir. Düzgün Altıgen Altı kenarlı düzgün çokgene düzgün altıgen denir. Bir paralelkenarda; Karşılıklı açılar eştir. Açıların ölçüleri toplamı 360 dir. Dış açıların ölçüleri toplamı 360 dir. İkizkenar Yamuk Dik Yamuk İki kenarı paralel olan dörtgene yamuk denir. Paralel olan kenarlara yamuğun tabanları adı verilir. Karşılıklı iki kenarı eş olan yamuğa ikizkenar yamuk denir. Düzgün altıgende; Dış açılar eştir ve her birinin ölçüsü 60 dir. İç açılar eştir ve her birinin ölçüsü 120 dir. 14

16 Beşgen Altıgen İç Açılarının Ölçüleri Toplamı İç Açı Ölçüsü Dış Açı Ölçüsü Çokgenlerin Çevre Uzunlukları ve Çokgensel Bölgelerin Alanları Bir çokgenin sınırladığı bölgeye çokgensel bölge adı verilir. Söz gelimi üçgenle sınırlı bölgeye üçgensel bölge, kare ile sınırlı bölgeye karesel bölge vb. deriz. Buradaki çokgensel bölge deyimi ile çokgen ve içinin birleşimini anlamalıyız. Konularımızı işlerken çokgensel bölgenin alanı terimi yerine çokgenin alanı terimini kullandığımız da olur. Örneğin paralelkenarsal bölgenin alanı yerine paralelkenarın alanı da deriz. Benzer şekilde çevre uzunluğu yerine kısaca çevresi terimini de kullanırız. Söz gelimi karenin çevre uzunluğu yerine sadece karenin çevresi deriz. Karenin Çevresi ve Alanı Karenin çevresinin uzunluğu bir kenar uzunluğunun 4 katıdır. Karenin alanı bir kenar uzunluğunun karesidir. Şekildeki ABCD karesinin bir kenarı a ise; Çevre (ABCD) = 4a ve Alan (ABCD) = dir. Dikdörtgenin Çevresi ve Alanı Bir dikdörtgenin çevre uzunluğu, iki komşu kenarının uzunlukları toplamının 2 katıdır. Bir dikdörtgenin alanı iki komşu kenarının uzunlukları çarpımıdır. Şekildeki dikdörtgenin iki komşu kenarının uzunlukları a ve b dir. Bu dikdörtgenin; Çevresinin uzunluğu 2(a+b), Alanı a.b dir. Üçgenin Çevresi ve Alanı Bir üçgenin çevresi, üç kenar uzunluğunun toplamıdır. Şekildeki üçgenin çevresinin uzunluğu Çevre (ABC)=a+b+c dir. Bir üçgenin alanı, kenarlarından birinin uzunluğu ile bu kenara ait yüksekliğin çarpımının yarısına eşittir. Bir dik üçgenin alanı; dik kenar uzunluklarının çarpımının yarısıdır. A(ABC)= Bir eşkenar üçgenin alanı; bir kenar uzunluğunun karesinin katıdır. A(ABC)= Paralelkenar ve Eşkenar Dörtgenin Çevresi ve Alanı Paralelkenarın ve eşkenar dörtgenin; Çevresi, iki komşu kenarın uzunlukları toplamının 2 katıdır. Alanı, bir kenarı ile bu kenara ait yüksekliğinin çarpımıdır. Dik Yamuğun ve İkizkenar Yamuğun Çevresi ve Alanı Dik veya ikizkenar yamuğun; Çevresi, kenar uzunluklarının toplamıdır. Alanı, tabanlar toplamı ile yükseklik çarpımının yarısıdır. 15

17 ABC ve DEF üçgenleri eş üçgenlerdir. Üçgenlerde Kenar Kenar Kenar (KKK) Eşliği İki üçgenden birinin kenarları diğerinin kenarlarına eş ise bu iki üçgen eştir. Düzgün Beşgenin Çevresi ve Alanı Apotem: Düzgün bir çokgenin merkezinin, herhangi bir kenarından olan uzaklığına apotem denir. Bir düzgün beşgenin; Çevresi bir kenar uzunluğunun 5 katıdır. Alanı ise çevresi ile apotemin çarpımının yarısıdır. Şekildeki düzgün beşgenin çevresinin uzunluğu Çevre (ABC)=5a Alanı; ( ) Düzgün Altıgenin Çevresi ve Alanı Bir düzgün altıgenin; Çevresi bir kenarının uzunluğunun 6 katı Alanı ise çevresi ile apotemin çarpımının yarısıdır. Şekildeki düzgün beşgenin çevresinin uzunluğu Çevre (ABC)=5a Alanı; ( ) Üçgenlerin Eşliği İki üçgen ya da bir üçgenle kendisi arasında karşılıklı açılar ve karşılıklı kenarlar eş olacak şekilde bir eşleme kurulabilirse bu eşlemeye, eşlik; üçgenlere de eş üçgenler denir. } 16 Üçgenlerde Açı Kenar Açı (AKA) Eşliği İki üçgenin ikişer açısı ile bu açılarla ortak olan kenarları eş olan üçgenler eştir. Üçgenlerde Kenar Açı Kenar (KAK) Eşliği İki üçgenden birinin iki kenarı ile bu kenarların belirttiği açı, diğer üçgende bunlara karşılık olan elemanlara eş ise bu iki üçgen eştir. Düzlemde Dönüşümler Düzgün Çokgenlerin Simetri Eksenleri Düzlemsel şekli bu düzlemdeki bir doğru iki parçaya ayırmış olsun. Şekil bu doğru etrafında katlandığında parçaların ikisi de üst üste çakışırsa doğruya şeklin yansıma simetri ekseni veya kısaca simetri ekseni denir. Düzgün çokgenlerin kenar sayısı kadar yansıma simetri ekseni vardır. Noktaya Göre Dönme (Merkezi Dönme) Bir şeklin verilen bir nokta etrafında saatin dönme yönü veya tersine döndürülmesine dönme denir. Dönme, uzayda sabit bir nokta etrafında bir cismin hareketini tanımlayan bir dönüşümdür ve bir nesneyi çevirmek anlamına gelir. Her dönmenin bir merkezi ve bir açısı vardır. Bir şekil, bir nokta etrafında döndürüldüğünde o nokta dönme hareketinin merkezi olur. Dönme hareketinde, dönme merkezine bağlı olarak şeklin yeri ve yönü değişmektedir. Şeklin

18 büyüklüğünde bir değişiklik olmamaktadır. Bir köşesinin koordinatları A(a,b) olan bir şekil orijin etrafında 180 derece döndürülürse A noktasına karşılık gelen noktasının koordinatları ; ( ) dır. Bir köşesinin koordinatları A(a,b) olan bir şekil orijin etrafında saat yönünde 90 derece döndürülürse A noktasına karşılık gelen A noktasının koordinatları ; ( ) dır. Bir köşesinin koordinatları A(a,b) olan bir şekil orijin etrafında saat yönün tersine 90 derece döndürülürse A noktasına karşılık gelen noktasının koordinatları ; ( ) dır. Dönme Simetrisi Bir şekil kendi merkezi etrafında döndürüldüğünde bir tam tur atmadan en az bir kez kendisi ile çakışıyorsa, bu şekil dönme simetrisine sahiptir. Şekil merkezi etrafında döndürülürken kendisi ile çakışan en küçük dönme açısına en küçük dönme simetri açısı denir. Düzgün çokgenlerde; dönme simetri sayısı çokgenin kenar sayısına eşittir. Bir düzgün çokgenin sahip olduğu en küçük dönme simetri açısı 360 derecenin dönme simetri sayısına bölünmesi ile bulunur. Öteleme Bir nesnenin bir yerden başka bir yere belirli bir doğrultu ve yönde (sağ, sol, yukarı, aşağı, çapraz) yaptığı kayma hareketine öteleme denir. Öteleme hareketi sonunda nesnenin geldiği yer, görüntüsüdür. Ötelemede şeklin duruşu, biçimi ve boyutları değişmez. Bir şeklin kendisi ile öteleme altındaki görüntüsü eş ve simetriktir. Yansıma Şeklin yansımasını bulmak için doğruya (simetri eksenine) göre simetrisini buluruz. Şeklin yansımasının biçimi ve boyutu şekil ile aynıdır. Yansımasında sadece şeklin yönü ters çevrilmiş ve yeri değişmiştir. Ayna simetrisi, doğru simetrisi ve yansıma aynı şeylerdir. Yani biz bir şeklin aynadaki görüntüsünü aldığımızda aynı zamanda doğruya göre simetrisini almış veya yansıma altındaki görüntüsünü çizmiş oluruz. Doğruya göre simetride, şekil simetri doğrusuna göre katlanmış ve yön değiştirmiştir. Öteleme simetrisinde ise şekil belirli birim yol alarak yer değiştirmiş fakat yön değiştirmemiştir. Ötelemeli Yansıma Bir şeklin, bir doğru boyunca önce yansıtılıp ötelenmesi veya önce ötelenip yansıtılmasına ötelemeli yansıma denir. Bu ikisi arasında herhangi bir fark yoktur, iki durum uygulandığında da şekiller aynı yerde ve aynı konumda olur. Ötelemeli yansımada hiçbir nokta ve yansıma doğrusundan başka hiçbir doğru sabit kalmaz. Çokgenlerle Kaplama (Süsleme) Süslemelerde uygun çokgensel bölgelerin modelleri kullanılır. Model oluşturmada ve bu modelle yapılacak süslemedeki şekiller ötelenir. Süsleme yapılırken çokgenler arasında boşluk kalmamalıdır. Süsleme yapabilmek için her bir köşede oluşan toplam açı 360 olmalıdır. Değişik düzgün çokgenler kullanılarak süsleme yapılabildiği gibi sadece tek tip düzgün çokgen kullanarak da süsleme yapılabilir. Düzgün Kaplama Bir düzlemsel bölgenin, bir figür kullanılarak boşluk kalmayacak ve figürler çakışmayacak şekilde dönüşümler (yansıma, dönme, öteleme ve ötelemeli yansıma) yardımıyla örtülmesine düzgün kaplama denir. Yarı Düzgün Kaplama Bir düzlemsel bölgenin, birden fazla figür kullanılarak boşluk kalmayacak ve figürler çakışmayacak şekilde dönüşümler (yansıma, dönme, öteleme ve ötelemeli yansıma) yardımıyla örtülmesine yarı düzgün kaplama denir. Üçgenlerin Benzerliği İki üçgen arasında kurulan bir eşlemede; 1. Karşılıklı açılar eş, 2. Karşılıklı kenarların uzunlukları orantılı ise bu üçgenlere benzer üçgenler denir. Benzer iki üçgende karşılıklı iki kenarın uzunlukları oranına benzerlik oranı adı verilir. 17

19 Temel Orantı Teoremi Üçgende bir kenara paralel olan doğru diğer iki kenarı köşeden farklı noktalarda keserse kenarlardan biri üzerindeki iki parçanın oranı, diğeri üzerinde bunların karşılığı olan iki parçanın oranına eşittir. [DE] [BC] ise Temel orantı teoreminin karşıtı da doğrudur. ise [DE] [BC] dir. Benzer Üçgenlerde Alanların Oranı Benzer üçgenlerde benzerlik oranının karesi alanların oranına eşittir. ( ) ( ) I. Tales Teoremi Bir paralel doğru demetinin, bunları kesen iki doğru üzerinde ayırdığı karşılıklı doğru parçalarının uzunlukları orantılıdır. Üçgenlerde Kenar Kenar Kenar (KKK) Benzerliği İki üçgende karşılıklı kenarlar orantılı ise bu üçgenler benzerdir. } II. Tales Teoremi Kesişen iki doğru; paralel iki doğru ile kesildiğinde oluşan üçgenlerin karşılıklı kenarlarının uzunlukları orantılıdır. Üçgenlerde Kenar Açı Kenar (KAK) Benzerliği İki üçgende karşılıklı ikişer kenar orantılı ve bu kenarların belirttiği açılar eş ise üçgenler benzerdir. } Üçgenlerde Açı Açı (AA) Benzerliği İki üçgen arasında yapılan eşlemede karşılıklı açılar eş ise bu iki üçgen benzerdir. Sonuçlar: 1. Bir takım paralel doğrular bir kesen üzerinde eş parçalar ayırırsa her kesen üzerinde de eş parçalar ayırır. 2. Bir üçgende, iki kenarın orta noktasını birleştiren doğru parçası, üçüncü kenara paralel ve onun yarısı uzunluğundadır. } 18

20 Dik Üçgende Öklid (Eucleides) Bağıntıları yapılır. Genel olarak a, b, c, h, p ve k gerçek sayılar, ( ) olmak üzere kenar uzunlukları yukarıdaki şekilde verilen dik üçgende, dir. Bu bağıntıları bulan kişi Euclides (Öklid) olduğu için Öklid Bağıntıları olarak isimlendirilir. Fraktal Fraktal parçalanmış ya da kırılmış anlamına gelen Latince fractuuss kelimesinden gelmiştir. İlk olarak 1975'de Polonya asıllı matematikçi Benoit Mandelbrot tarafından ortaya atıldığı varsayılır. Kendi kendini tekrar eden ama sonsuza kadar küçülen şekilleri, kendine benzer bir cisimde cismi oluşturan parçalar ya da bileşenler cismin bütününü inceler. Düzensiz ayrıntılar ya da desenler giderek küçülen ölçeklerde yinelenir ve tümüyle soyut nesnelerde sonsuza kadar sürebilir; tam tersi de her parçanın her bir parçası büyütüldüğünde, gene cismin bütününe benzemesi olayıdır. Eğrelti otu, kar taneleri, brokoli ve galaksilerin yapısı örnek olarak verilebilir. B. Çok Küplü Yapıların Dik Görüntü (Otografik) Çizimleri Üç boyutlu yapılara tek bir yönden bakarak görünümlerin iki boyutlu çizilmesine dik görüntü (ortografik) çizimi denir. Bu çizimde yapının iki boyutlu görüntüsüne ortografik izdüşüm adı verilir. İzdüşüm çiziminde farklı düzlemler düz bir çizgi ile gösterilir. Görünmeyen farklı düzlemler ise kesik bir çizgi ile gösterilir. Önden Görünümün Çizilmesi Yukarıdaki şekilde verilen çok küplü cisme dikkat ediniz. Bu cismin önden görünümü aşağıdaki gibidir. 3. ÜNİTE: DİK PRİZMALAR VE PİRAMİTLER Birim Küplerle Oluşturulan Yapıların İzometrik ve Dik Görüntü (Otografik) Çizimleri A. Çok Küplü Yapıların izometrik Çizimi Yapıların veya 3 boyutlu cisimlerin kâğıt üzerindeki çizimlerinde, kenarlarını taşıyan ışınlar daima paralel görünüyorsa bu çizime izometrik çizim, kesişir gibi görünüyorsa bu çizime perspektif çizim adı verilir. İzometrik çizimde perspektif dikkate alınmaz. Çizim bir bütün olarak yatay doğrultu ile 30 lik açı yapan izometrik kâğıtlar kullanılarak Önden görünümün; cismin ön yüzüne paralel düzlemdeki dik iz düşümü olduğuna dikkat ediniz. Bu çizimde cismin genişliği ve yüksekliği değişmez. Sağdan (veya Soldan) Görünümün Çizilmesi Yukarıda önden görünümünü çizdiğimiz cismin bu kez sağdan görünümünü çizelim. Bu çizim aşağıda yapıldığı gibidir. 19

21 Cismin sağdan görünümü şeklindedir. Bundaki kesik çizgi arka planda kalan görünmeyen yüzün (düzlemin) ayrıtıdır. Bu çizimde de genişliğin ve yüksekliğin değişmediğine dikkat ediniz. Bu cismin soldan görünümü de şeklinde olur. Üstten Görünümün Çizilmesi Aynı cismin bu kez üstten görünümünü çizelim. Bu çizim aşağıda verilen şekildeki gibidir. 1. Önce önden görünümü izometrik kâğıda çizelim. 2. Sağdan görünümü de izometrik kâğıda yerleştirerek cisme derinliğini verecek olan paralel çizgileri çizelim (aşağıda bulunan ortadaki şekil). 3. Üstten görünüşü de izometrik kâğıda aktararak fazla çizgileri silelim (alttaki şekil). Böylece çizimi tamamlamış oluruz. Verilen cismin üstten görünümü aşağıdaki şekilde görüldüğü gibidir. Üstten görünümün, çok küplü yapının yatay düzlem üzerindeki dik iz düşümü olduğuna dikkat ediniz. Bu çizimde yapının uzunluğu ve genişliği değişmez. Prizma ve Piramit C. Dik Görüntü (Otografik) Çizimleri Verilen Yapıların İzometrik Çizimleri İzometrik çizimi verilen yapıların dik görüntü (ortografik) çizimlerini yaptık. Şimdi de dik görüntü çizimleri verilen bir yapının izometrik çizimini yapalım. Çok küplü bir yapının aşağıdaki dik görünümleri verilmiş olsun. Buna göre sözü edilen çok küplü yapıyı izometrik kâğıda çizelim. Prizma Düzlemsel bir çokgen ile bu çokgenin bulunduğu düzlemde olmayan bir l doğrusu verilmiş olsun. Çokgenin noktalarından geçen ve l ye paralel olan doğrular bir yüzey oluşturur. Bu yüzeye prizmatik yüzey, l doğrusuna da bu yüzeyin ana doğrusu denir (yandaki şekil). Prizmatik yüzeyin belirlediği uzay parçasına prizmatik bölge, paralel iki düzlemin prizmatik bölgeden ayırdığı kapalı parçaya prizma, prizmatik yüzeyin bu iki düzlem arasında kalan parçasına prizmanın yanal yüzeyi ya da yan yüzeyi denir. Prizmanın altını ve üstünü oluşturan (eş) çokgensel bölgelere prizmanın tabanları, bu çokgenlerin kenarlarına prizmanın taban ayrıtları, tabanların karşılıklı köşe noktalarını birleştiren doğru parçalarına yanal ayrıtlar denir. İki kenarı taban ayrıtı iki kenarı da yanal ayrıt olan paralelkenarsal 20

22 bölgelere yanal yüzler, iki taban arasındaki uzaklığa prizmanın yüksekliği olarak tanımlanır. Prizmada, bir yan yüzün tabanlarla ortak olan karşılıklı kenarlarının paralel ve eş olduğunu biliyoruz. Öyleyse bu yan yüz, karşılıklı iki kenarı paralel ve eş olduğundan paralelkenardır (Paralelkenarsal bölge yerine sadece paralelkenar diyelim.). Demek ki prizmalarda yan yüzler paralelkenardır. Prizmanın yanal ayrıtları taban düzlemine dik ise bu paralelkenarlar dikdörtgen olur. Böyle prizmalara dik prizmalar denir. Dik olmayan prizmalar da eğik prizmalardır. Prizmalar, tabanlarındaki çokgenlerle adlandırılır: üçgen prizma, dörtgen prizma gibi. Cisim köşegeni: Uçları prizmanın iki köşesi olan doğru parçası; bu prizmanın yüzeylerinden herhangi birinde değilse buna, prizmanın cisim köşegeni denir. Şekilde d cisim köşegenidir. Dikdörtgenler prizmasında cisim köşegenlerinden birinin uzunluğu, bu prizma ayrıtlarının kareleri toplamının kareköküdür. Küpte; cisim köşegeninin uzunluğu, bir kenar uzunluğunun (ayrıtın) katıdır. Piramit Tabanı düzgün çokgen olan dik prizmaya düzgün prizma, bu düzgün çokgen kare ise kare dik prizma; tabanı paralelkenar olan prizmaya da paralel yüz adı verilir. Eğer paralel yüz dik prizma ise buna dik paralel yüz denir. Dikdörtgenler Prizması ve Küp Bütün yüzleri dikdörtgen olan prizmaya dikdörtgenler prizması; bütün ayrıtları birbirine eşit olan dikdörtgenler prizmasına da küp denir. 21 Bir çokgen ile bu çokgenin düzleminde olmayan sabit bir T noktası verilmiş olsun. T den ve çokgenin bir noktasından geçen doğruların birleşimi olan yüzeye piramidal yüzey denir. Pramidal yüzeyin uzaydan ayırdığı bölgeye de piramidal bölge adı verilir. Bir çokgen ile T noktası piramidal bölge belirlemiş olsun. Pramidal bölgenin çokgen düzlemine paralel olan bir düzlemle T noktası arasında kalan kapalı parçasına piramit, piramidal yüzeyin bu düzlemle T arasındaki parçasına da piramit yüzeyi ya da piramidin yanal yüzeyi diyoruz. T noktasına piramidin tepe noktası, çokgensel bölgeye de piramidin tabanı adı verilir. Bu tanıma göre bir ucu piramidin tepe noktası diğer ucu tabanın bir noktası olan doğru parçası piramidin alt kümesidir. Diğer bir deyişle, bu doğru parçalarının birleşimi piramidi oluşturur. Piramidin tepe noktasını tabanın köşeleri ile birleştiren doğru parçalarına yanal ayrıtlar, tepe noktanın taban düzlemine uzaklığına piramidin yüksekliği denir (üstte bulunan sağdaki şekilde [TH] ).

23 Piramitler de prizmalar gibi tabanındaki çokgenle adlandırılır: üçgen piramit, dörtgen piramit gibi. Tepe noktadan taban ayrıtlarına inilen dikmeler yan yüzlerin yükseklikleridir. Üstte bulunan sağdaki şekilde [TK] yan yüzlerden birinin yüksekliğidir. çizerken taban ve yan yüzlerin hangi çokgen olduğuna, hangi ayrıtların eş olduğuna dikkat etmeliyiz. Yapılan çizime verilen cismin açınımı deriz. Bir cismin açınımı kenar çizgileri boyunca kesilerek çıkarılır ve kesilmemiş ayrıtları boyunca katlanırsa bu cisim elde edilir. Yukarıdaki şekilde (T, ABC) üçgen piramidi verilmiştir. ABC üçgeninin ağırlık merkezi G ve bu piramidin yüksekliği [TG] dır. Bir piramitte tepe noktası ile tabanın ağırlık merkezinden geçen doğru taban düzlemine dik ise bu piramide dik piramit denir. Demek ki yandaki şekilde verilen (T, ABC) üçgen dik piramittir. Bir düzgün çokgenin köşeleri çembersel noktalardır. Bu çemberin merkezi, düzgün çokgenin ağırlık merkezidir. Demek ki düzgün dik piramitte yükseklik ayağı, tabanın çevrel çemberinin merkezidir. Dik Prizmaların Alanı Bir dik prizmanın; 1. Yanal alanı taban çevresi ile yüksekliğinin çarpımına, 2. Bütün alanı taban alanının 2 katı ile yanal alanının toplamına eşittir. Düzgün piramit: Tabanı düzgün çokgensel bölge olan dik piramide düzgün piramit denir. Düzgün dörtyüzlü: Bütün yüzleri eşkenar üçgen olan piramide düzgün dörtyüzlü denir. Düzgün sekizyüzlü: Taban ayrıtları eşit olan iki kare piramidin tabanlarının çakıştırılmasıyla oluşan cisimdir. Bütün ayrıtları birbirine eş ve yüzeyleri sekiz eşkenar üçgenden oluşan cisme düzgün sekizyüzlü denir. Küpün alanı; bir yüzünün alanının altı katıdır. Prizma ve Piramitlerin Açınımları Bir prizmanın ya da piramidin taban ve yan yüzlerini bir düzlemde birbirlerine bitişik konumda 22

24 Dik Düzgün Piramitlerin Alanı Bir düzgün piramidin; 1. Yanal alanı, taban çevresi ile tepe noktanın taban ayrıtlarından birine uzaklığının (yan yüz yüksekliği) çarpımının yarısına eşittir. 2. Bütün alanı, taban alanı ile yanal alanının toplamıdır. Dik Düzgün Piramitlerin Hacmi Bir piramidin hacmi taban alanı ile yüksekliğinin çarpımının üçte biridir. Düzgün dörtyüzlünün hacmi; Düzgün dörtyüzlünün alanı; Düzgün sekizyüzlünün hacmi; Düzgün sekizyüzlünün alanı; Dik Prizmaların Hacmi Bir dik prizmanın hacmi taban alanı ile yüksekliğinin çarpımına eşittir. 3. ÜNİTE: ÇEMBER VE DAİRE A. ÇEMBERDE TEMEL TANIMLAR Sabit bir noktadan eşit uzaklıkta olan ve bu nokta ile aynı düzlemde bulunan noktaların kümesine çember denir. Bu sabit noktaya, çemberin merkezi; sabit uzaklığa da çemberin yarıçap uzunluğu adı verilir. Yukarıdaki şekilde sabit bir M noktasından eşit uzaklıkta olan ve M ile aynı düzlemde bulunan noktaların oluşturduğu şekil (çember) çizilmiştir. M noktası, bu çemberin merkezidir. Çemberin herhangi bir noktası P ise bu tanımda sözü edilen sabit uzaklık MP dur. [MP], çemberin bir yarıçapı; 23

25 bunun uzunluğu olan MP, yarıçap uzunluğudur. Konularımızı işlerken zaman zaman yarıçap uzunluğu yerine kısaca yarıçap terimini de kullanacağız. Uçları aynı bir çemberin noktaları olan doğru parçasına kiriş, merkezden geçen kirişe de çap denir. Çemberi farklı iki noktada kesen bir doğruya kesen diyoruz. Yandaki şekilde M merkezli çemberin [AB] kirişi, [CD] çapı ve EF keseni çizilmiştir. Yarıçapları eşit olan iki çember eştir. MERKEZ AÇI Köşesi çemberin merkezi olan ve çember düzleminde bulunan açıya merkez açı; çemberin, merkez açının içinde kalan yayına da bu merkez açının gördüğü yay denir. Sonuçlar: Bir çemberde: 1. Aynı yayı gören teğet-kiriş açı ve çevre açı eştir. Çevre açının veya teğet-kiriş açının ölçüsü, bu açının gördüğü yayı gören merkez açının ölçüsünün yarısıdır. 2. Aynı yayı gören çevre açılar eştir. Bir çemberde ya da eş iki çemberde ölçüleri eşit olan yaylara eş yaylar denir. ÇEVRE AÇI Bir çemberin farklı üç noktası A, B ve C ise ABC açısına çevre açı; B noktasından geçmeyen AC yayına da bu çevre açının gördüğü yay denir. Çevre açının ölçüsü, gördüğü yayın ölçüsünün yarısına eşittir. 3. Çapı gören çevre açı dik açıdır. 4. Bir çemberde eş kirişleri eş yaylar sınırlar. TEĞET-KİRİŞ AÇI: Köşesi çemberin üzerinde bir kenarı çemberin teğeti diğer kenarı çemberin kirişi olan açıya teğet - kiriş açı denir. Teğet - kiriş açı gördüğü yayın ölçüsünün yarısına eşittir. 5. Paralel kirişler arasında kalan yayların ölçüleri ve uzunlukları eşittir. 24

26 KİRİŞLER DÖRTGENİ Köşeleri aynı çember üzerinde olan dörtgene kirişler dörtgeni denir. Özellikleri: 1. Kirişler dörtgeninde karşılıklı açıların toplamı 180 dir. 2. ABCD kirişler dörtgeninde a, b, c, d kenar uzunlukları, köşegen uzunlukları e ve f olmak üzere; Yarıçapı r br olan dairenin alanı dir. Şekilde verildiği gibi O merkezli r yarıçaplı daireden kesilen ve ( ) olan daire diliminin alanı, ( ) dir. Yarıçap uzunlukları farklı olan aynı merkezli ve düzlemsel iki çember verilmiş olsun. Bunlardan içtekinin dışında ve dıştakinin içinde kalan bölge ile bu iki çemberin birleşimine daire halkası denir. a.c+b.d=e.f dir. 3. Dikdörtgen, ikizkenar yamuk ve kare kirişler dörtgenidir. ÇEMBERİN UZUNLUĞU Yukarıdaki şekilde verilen O merkezli düzlemsel iki çemberden dıştakinin yarıçapı R, içtekinin yarıçapı da r ise halkanın (şekildeki taralı bölgenin) alanı ; ( ) olur. 5. ÜNİTE: DİK DAİRESEL SİLİNDİR, DİK DAİRESEL KONİ VE KÜRE Yukarıdaki gibi O merkezli r br yarıçaplı bir çemberin çevre uzunluğu 2πr br dir. Ayrıca bu çember üzerindeki AXB yayını gören merkez açının ölçüsü α ise AXB yayının uzunluğu, br olur. Yukarıdaki bağıntıda 360 =2π radyan olarak alınırsa AXB yayının uzunluğu, br olur. DAİRE, DAİRE DİLİMİ VE ALANLARI DAİRE VE ALANI Çember ile aynı düzlemde bulunan ve merkeze uzaklığı yarıçaptan küçük olan noktaların bulunduğu bölgeye çemberin iç bölgesi, çember ile iç bölgesinin birleşimine de daire adı verilir. Bir dairedeki merkez açının bu daireden ayırdığı iki parçadan her birine daire dilimi denir. SİLİNDİRİK YÜZEY VE DİK DAİRESEL SİLİNDİR Düzlemsel olan kapalı bir C eğrisi ile bu düzlemi kesen bir d doğrusu düşünelim. C eğrisinin bir noktasından geçen ve d ye paralel olan doğruların oluşturduğu şekle (yüzeye) silindirik yüzey, C eğrisine bu yüzeyin dayanak eğrisi, yüzeyi oluşturan her doğruya yüzeyin ana doğrusu denir. Bir silindirik yüzeyin, uzaydan ayırdığı bölgeye silindirik bölge adı verilir. Bu bölgenin ana doğruya paralel olmayan her düzlemle ara kesiti (C eğrisi gibi) kapalı bir eğridir. Birbirlerine paralel olan ama d doğrusuna paralel olmayan iki düzlemin, bir silindirik bölgeyle ara kesitleri tabanları; bu silindirik yüzeyin söz konusu iki düzlem arasında kalan parçası da yanal yüzeyi olan cisme silindir diyoruz. Bir ana doğrunun silindirin yanal yüzeyinde kalan parçasına silindirin elemanı, tabanlar arasındaki uzaklığa silindirin yüksekliği; ana doğruları dayanak eğrisinin bulunduğu düzleme dik olan silindire dik silindir denir. Tabanları daire 25

27 olan silindire dairesel silindir, ana doğrusu tabana dik olan dairesel silindire de dik dairesel silindir adı verilir. Dik olmayan dairesel silindire eğik dairesel silindir denir. Dik dairesel silindirin alt ve üst tabanlarının merkezlerinden geçen doğruya silindirin ekseni adı verilir. DİK DAİRESEL SİLİNDİRİN ALANI ve diğer doğrulardan her birine konisel yüzeyin elemanı denir. T noktasına konisel yüzeyin tepe noktası ve bu noktanın ayırdığı iki konisel yüzey parçasından her birine konisel yüzeyin kanatları adı verilir (aşağıdaki 1. şekil). Dayanak eğrisi kapalı bir eğri ise konisel yüzeyin uzaydan ayırdığı bölgeye konisel bölge, bu bölgenin T noktası ile bu noktadan geçmeyen ve dayanak eğrisinin bulunduğu düzleme paralel olan bir E düzlemiyle ayrılan parçasına koni denir. Koni yüzeyi deyimini bu koninin tüm yüzeyi anlamında kullanırız. Demek ki koni, koni yüzeyi ile sınırlanan bölgedir. Koni yüzeyinin E düzleminde olan parçası koni yüzeyinin tabanı, konisel yüzeydeki parçası koni yüzeyinin yanal yüzeyidir. Koni yüzeyinin yanal yüzeyi yerine koninin yanal yüzeyi ve koni yüzeyinin tabanı yerine koni tabanı deyimlerini de kullanırız (aşağıdaki 2, 3 ve 4. şekiller). Dayanak eğrisi simetri merkezi olan kapalı eğri ise T den ve bu eğrinin simetri merkezinden geçen doğruya konisel yüzeyin ekseni; bu eksenin koninin tepe noktası (T) ile tabanı arasında kalan parçasına da koninin ekseni denir. Ekseni taban düzlemine dik olan koniye dik koni adı verilir. Tabanı daire olan dik koni de dik dairesel koni olarak tanımlanır. Tepe noktanın taban düzlemine uzaklığı koninin yüksekliğidir. Buna göre dik koninin yüksekliği ile ekseni aynı doğru parçasıdır. (aşağıdaki 5 ve 6. şekiller). Dik dairesel silindirin; 1. Yanal alanı taban çevresi ile yüksekliğinin çarpımına eşittir. 2. Bütün alanı yanal alanı ile alt ve üst taban alanlarının toplamına eşittir. DİK DAİRESEL SİLİNDİRİN HACMİ Dik dairesel silindirin hacmi taban alanı ile yüksekliğinin çarpımıdır. DİK DAİRESEL KONİ, ALANI VE HACMİ KONİSEL YÜZEY VE DİK DAİRESEL KONİ Düzlemsel eğri ile bu eğrinin bulunduğu düzlemde olmayan sabit bir T noktası verilmiş olsun. Eğrinin değişken A noktaları için TA doğrularının birleşimine konisel yüzey, eğriye yüzeyin dayanak eğrisi, çizilen ilk doğruya konisel yüzeyin üreteci 26

28 DİK DAİRESEL KONİNİN ALANI Dik dairesel koninin; 1. Yanal alanı, taban çevresi ile yanal yüksekliği çarpımının yarısıdır. 2. Tüm alanı, yanal alanı ile taban alanının toplamıdır. KONİNİN HACMİ Bir dik dairesel koninin hacmi, taban alanı ile yüksekliğinin çarpımının üçte biridir. KÜRE HACMİ VE ALANI KÜRE Uzayın sabit bir O noktası verilmiş olsun. r pozitif ve sabit bir sayıyı göstermek üzere uzayın O dan r uzaklığındaki noktalarının kümesine küresel yüzey ya da küre yüzeyi, O noktasına bu küre yüzeyinin merkezi, r ye yarıçapı, küre yüzeyinin sınırladığı bölgeye de küre denir. Küre yüzeyinin kürenin merkezinden geçen bir düzlemle ara kesitine, bu kürenin bir büyük çemberi denir. Kürenin alanı, en büyük dairenin alanının 4 katıdır. Kürenin hacmi, dir. 27

9. SINIF Geometri TEMEL GEOMETRİK KAVRAMLAR

9. SINIF Geometri TEMEL GEOMETRİK KAVRAMLAR TEMEL GEOMETRİK KAVRAMLAR 9. SINIF Geometri Amaç-1: Nokta, Doğru, Düzlem, Işın ve Uzayı Kavrayabilme. 1. Nokta, doğru, düzlem ve uzay kavramlarım açıklama. 2. Farklı iki noktadan geçen doğru sayışım söyleme

Detaylı

UZAY KAVRAMI VE UZAYDA DOĞRULAR

UZAY KAVRAMI VE UZAYDA DOĞRULAR UZAY KAVRAMI VE UZAYDA DOĞRULAR Cisimlerin kapladığı yer ve içinde bulundukları mekan uzaydır. Doğruda sadece uzunluk, düzlemde uzunluk ve genişlik söz konusudur. Uzayda ise uzunluk ve genişliğin yanında

Detaylı

Dik koordinat sisteminde yatay eksen x ekseni (apsis ekseni), düşey eksen ise y ekseni (ordinat ekseni) dir.

Dik koordinat sisteminde yatay eksen x ekseni (apsis ekseni), düşey eksen ise y ekseni (ordinat ekseni) dir. ANALĐTĐK GEOMETRĐ 1. Analitik Düzlem Bir düzlemde dik kesişen iki sayı doğrusunun oluşturduğu sisteme analitik düzlem denir. Analitik düzlem, dik koordinat sistemi veya dik koordinat düzlemi olarak da

Detaylı

Eğer piramidin tabanı düzgün çokgense bu tip piramitlere düzgün piramit denir.

Eğer piramidin tabanı düzgün çokgense bu tip piramitlere düzgün piramit denir. PİRAMİTLER Bir düzlemde kapalı bir bölge ile bu düzlemin dışında bir T noktası alalım. Kapalı bölgenin tüm noktalarının T noktası ile birleştirilmesi sonucunda oluşan cisme piramit denir. T noktası piramidin

Detaylı

TEST: 6. Verilenlere göre EF =? A) 1 B) 2 C) 3 D) 4 E) 5 A) 7 B) 8 C) 10 D) 11 E) 12. x eksenini 5 te, y eksenini 7 de kesen doğrunun denklemi

TEST: 6. Verilenlere göre EF =? A) 1 B) 2 C) 3 D) 4 E) 5 A) 7 B) 8 C) 10 D) 11 E) 12. x eksenini 5 te, y eksenini 7 de kesen doğrunun denklemi TEST: 6 5. 1. Verilenlere göre EF =? A) 1 B) 2 C) 3 D) 4 E) 5 A) 7 B) 8 C) 10 D) 11 E) 12 2. 6. x eksenini 5 te, y eksenini 7 de kesen doğrunun denklemi aşağıdakilerden hangisidir? A) 7x+5y=35 B) 7x-5y=35

Detaylı

ÖRNEK: Öteleme ile oluşturulmuş bir süsleme. ÖRNEK: 2)GEOMETRİK HAREKETLER

ÖRNEK: Öteleme ile oluşturulmuş bir süsleme. ÖRNEK: 2)GEOMETRİK HAREKETLER ÖTELEME: Bir şeklin duruşunun, biçiminin, boyutlarının bozulmadan yer değiştirmesine o şekli öteleme denir. Ötelemede biçim, boyut, yön değişmez. Yer değişir. Bir şekil ötelendiği zaman şekil üzerindeki

Detaylı

9. ÜNİTE ÜÇGENLER, ÇOKGENLER VE MESLEKÎ UYGULAMALARI

9. ÜNİTE ÜÇGENLER, ÇOKGENLER VE MESLEKÎ UYGULAMALARI 9. ÜNİTE ÜÇGENLER, ÇOKGENLER VE MESLEKÎ UYGULAMALARI KONULAR DİK ÜÇGENLERDE METRİK BAĞINTILAR 1. Pythagoras (Pisagor) Bağıntısı. Euclides (öklit) Bağıntısı 3. Pisagor ve öklit Bağıntıları ile İlgili Problemler

Detaylı

10. SINIF GEOMETRİ KONU ÖZETİ

10. SINIF GEOMETRİ KONU ÖZETİ 2012 10. SINIF GEOMETRİ KONU ÖZETİ TOLGA YAVAN Matematik Öğretmeni 1. ÜNİTE: DÜZLEM GEOMETRİDE TEMEL ELEMANLAR VE İSPAT BİÇİMLERI Temel Postulatlar İspatlanamayan ve ispatına gerek duyulmayan ancak doğru

Detaylı

4. Çok büyük ve çok küçük pozitif sayıları bilimsel gösterimle ifade eder.

4. Çok büyük ve çok küçük pozitif sayıları bilimsel gösterimle ifade eder. LENDİRME ŞEMASI ÜNİTE Üslü 1. Bir tam sayının negatif kuvvetini belirler ve rasyonel sayı olarak ifade eder.. Ondalık kesirlerin veya rasyonel sayıların kendileriyle tekrarlı çarpımını üslü sayı olarak

Detaylı

2013 2014 EĞİTİM ÖĞRETİM YILI 8. SINIF MATEMATİK DERSİ KONULARININ ÇALIŞMA TAKVİMİNE GÖRE DAĞILIM ÇİZELGESİ ALT ÖĞRENME. Örüntü ve Süslemeler

2013 2014 EĞİTİM ÖĞRETİM YILI 8. SINIF MATEMATİK DERSİ KONULARININ ÇALIŞMA TAKVİMİNE GÖRE DAĞILIM ÇİZELGESİ ALT ÖĞRENME. Örüntü ve Süslemeler 2013 2014 EĞİTİM ÖĞRETİM YILI 8. SINIF MATEMATİK DERSİ KONULARININ ÇALIŞMA TAKVİMİNE GÖRE DAĞILIM ÇİZELGESİ SÜRE ÖĞRENME Ay Hafta D.Saati ALANI EYLÜL 2 Geometri 2 3 Geometri 2 Geometri 2 Olasılıkve ALT

Detaylı

2014 LYS GEOMETRİ 3. A. parabolü ile. x 1 y a 9 çemberinin üç noktada kesişmesi için a kaç olmalıdır?

2014 LYS GEOMETRİ 3. A. parabolü ile. x 1 y a 9 çemberinin üç noktada kesişmesi için a kaç olmalıdır? 014 LYS GOMTRİ 1. y 1 1 y a 9 çemberinin üç noktada kesişmesi için a kaç olmalıdır? parabolü ile. O merkezli çeyrek çemberde O deltoid olduğuna göre, taralı alan kaç birim karedir? O. d:y a b doğrusu -ekseni

Detaylı

ÜNİTELENDİRME ŞEMASI

ÜNİTELENDİRME ŞEMASI LENDİRME ŞEMASI ÜNİTE DOĞRULAR VE AÇILAR. Aynı düzlemde olan üç doğrunun birbirine göre durumlarını belirler ve inşa eder.. Paralel iki doğrunun bir kesenle yaptığı açıların eş olanlarını ve bütünler olanlarını

Detaylı

2013 2014 EĞİTİM ÖĞRETİM YILI 8. SINIF MATEMATİK DERSİ KAZANIMLARININ ÇALIŞMA TAKVİMİNE GÖRE DAĞILIM ÇİZELGESİ KAZANIMLAR

2013 2014 EĞİTİM ÖĞRETİM YILI 8. SINIF MATEMATİK DERSİ KAZANIMLARININ ÇALIŞMA TAKVİMİNE GÖRE DAĞILIM ÇİZELGESİ KAZANIMLAR KASIM EKİM EYLÜL Ay Hafta D.Saat i 0 04 EĞİTİM ÖĞRETİM YILI 8. SINIF MATEMATİK DERSİ KAZANIMLARININ ÇALIŞMA TAKVİMİNE GÖRE SÜRE ÖĞRENME ALANI ALT ÖĞRENME ALANI Örüntü Süslemeler si KAZANIMLAR.Doğru, çokgen

Detaylı

7. ÜNİTE DOĞRUDA VE ÜÇGENDE AÇILAR

7. ÜNİTE DOĞRUDA VE ÜÇGENDE AÇILAR 7. ÜNİTE DOĞRUDA VE ÜÇGENDE AÇILAR KONULAR 1. DOĞRUDA AÇILAR 2. Açı 3. Açının Düzlemde Ayırdığı Bölgeler 4. Açı Ölçü Birimleri 5. Ölçülerine Göre Açılar 6. Açıortay 7. Tümler Açı 8. Bütünler Açı 9. Ters

Detaylı

LYS 2016 GEOMETRİ ÇÖZÜMLERİ

LYS 2016 GEOMETRİ ÇÖZÜMLERİ LYS 016 GEOMETRİ ÇÖZÜMLERİ Dikdörtgenin içinde köşegeni çizerek alanı iki eşit parçaya ayırabiliriz. 7 / 36 BED üçgeni ile DEC üçgeninin alanlarının oranı, tabanları arasındaki orana eşittir. Buna göre;

Detaylı

ÜÇGENLER ÜNİTE 4. ÜNİTE 4. ÜNİTE 4. ÜNİTE 4. ÜNİT

ÜÇGENLER ÜNİTE 4. ÜNİTE 4. ÜNİTE 4. ÜNİTE 4. ÜNİT ÜÇGNLR ÜNİT. ÜNİT. ÜNİT. ÜNİT. ÜNİT ÜÇGNLRİN ŞLİĞİ Üçgende çılar. azanım : ir üçgenin iç açılarının ölçüleri toplamının 80, dış açılarının ölçüleri toplamının 0 olduğunu gösterir. İki Üçgenin şliği. azanım

Detaylı

DOĞRUNUN ANALİTİK İNCELEMESİ

DOĞRUNUN ANALİTİK İNCELEMESİ Koordinatlar DOĞRUNUN ANALİTİK İNCELEMESİ Bilindiği gibi, düzlemdeki her bir noktaya bir (a,b) sıralı ikilisi, her bir (a,b) sıralı ikilisine bir nokta karşılık gelir. Eğer bir A noktasına karşılık gelen

Detaylı

TEST 1. ABCD bir dörtgen AF = FB DE = EC AD = BC D E C. ABC bir üçgen. m(abc) = 20. m(bcd) = 10. m(acd) = 50. m(afe) = 80.

TEST 1. ABCD bir dörtgen AF = FB DE = EC AD = BC D E C. ABC bir üçgen. m(abc) = 20. m(bcd) = 10. m(acd) = 50. m(afe) = 80. 11 ÖLÜM SİZİN İÇİN SÇTİLR LRİMİZ 1 80 0 bir dörtgen = = = m() = 80 m() = 0 Verilenlere göre, açısının ölçüsü kaç derecedir? 0 10 0 bir üçgen m() = 0 m() = 10 m() = 0 Yukarıda verilenlere göre, oranı kaçtır?

Detaylı

I 5. SINIF ÖĞRENME ALANI ALT ÖĞRENME ALANI KAZANIM I- 01 I- 02 II- 01 II- 02 II- 03

I 5. SINIF ÖĞRENME ALANI ALT ÖĞRENME ALANI KAZANIM I- 01 I- 02 II- 01 II- 02 II- 03 I 5. SINIF MATEMATİK VE İŞLEMLER 1.1. En çok dokuz basamaklı doğal sayıları okur ve yazar. 1.2. En çok dokuz basamaklı doğal sayıların bölüklerini, basamaklarını ve rakamların basamak değerlerini belirtir.

Detaylı

T.C. Ölçme, Seçme ve Yerleştirme Merkezi

T.C. Ölçme, Seçme ve Yerleştirme Merkezi T.C. Ölçme, Seçme ve Yerleştirme Merkezi LİSANS YERLEŞTİRME SINAVI-1 GEOMETRİ TESTİ 19 HAZİRAN 2016 PAZAR Bu testlerin her hakkı saklıdır. Hangi amaçla olursa olsun, testlerin tamamının veya bir kısmının

Detaylı

İÇİNDEKİLER. Ön Söz...2. Noktanın Analitik İncelenmesi...3. Doğrunun Analitiği Analitik Düzlemde Simetri...25

İÇİNDEKİLER. Ön Söz...2. Noktanın Analitik İncelenmesi...3. Doğrunun Analitiği Analitik Düzlemde Simetri...25 İÇİNDEKİLER Ön Söz...2 Noktanın Analitik İncelenmesi...3 Doğrunun Analitiği...11 Analitik Düzlemde Simetri...25 Analitik Sistemde Eşitsizlikler...34 Çemberin Analitik İncelenmesi...40 Elips...58 Hiperbol...70

Detaylı

UZAYDA VEKTÖRLER ve DOĞRU DÜZLEM

UZAYDA VEKTÖRLER ve DOĞRU DÜZLEM UD VEKTÖRLER ve DĞRU DÜLEM. ir küpün ayrıtlarını taşıyan doğrular kaç farklı doğrultu oluşturur? ) ) ) D) 7 E) 8. ir düzgün altıgenin en uzun köşegeni ile aynı doğrultuda kaç farklı kenar vardır?. şağıdaki

Detaylı

YGS GEOMETRİ DENEME 1

YGS GEOMETRİ DENEME 1 YGS GTİ 1 G 1) G ) şağıdaki adımlar takip edilerek geometrik çizim yapıl- bir üçgen mak isteniyor = = m() = 7 o = 9 cm, = 1 cm, m() = 90 olacak şekilde dik üçgeni çiziliyor = eşitliğini sağlayan Î [] noktası

Detaylı

PİRAMİTLER ENFORMATİK BİLGİSAYAR DERSİ

PİRAMİTLER ENFORMATİK BİLGİSAYAR DERSİ 2011 PİRAMİTLER ENFORMATİK BİLGİSAYAR DERSİ 15.12.2011 ĠÇĠNDEKĠLER ÜNİTE HAKKINDA GENEL BİLGİ... 3 KONULAR... 4 PİRAMİTLER... 4 KARE PİRAMİT... 5 EŞKENAR ÜÇGEN PİRAMİT... 6 DÜZGÜN DÖRTYÜZLÜ... 6 DÜZGÜN

Detaylı

ÜÇGEN VE KENARLARI ARASINDA BAĞINTILAR

ÜÇGEN VE KENARLARI ARASINDA BAĞINTILAR ÜÇGEN VE KENARLARI ARASINDA BAĞINTILAR 1. Bir üçgende ölçüsü büyük olan açının karşısındaki kenar uzunluğu, ölçüsü küçük olan açının karşısındaki kenar uzunluğundan daha büyüktür. ABC üçgeninde m(a) >

Detaylı

PİRAMİT, KONİ VE KÜRENİN ALANLARI

PİRAMİT, KONİ VE KÜRENİN ALANLARI PİRAMİT, KNİ VE KÜRENİN ALANLARI KAZANIMLAR Piramit kavramı Piramitin yüzey alanı Kesik piramitin yüzey alanı Düzgün dörtyüzlü kavramı Piramitin dönme simetri açısı Koni kavramı Koninin yüzey alanı Kesik

Detaylı

TRIGONOMETRI AÇI, YÖNLÜ AÇI, YÖNLÜ YAY

TRIGONOMETRI AÇI, YÖNLÜ AÇI, YÖNLÜ YAY TRIGONOMETRI AÇI, YÖNLÜ AÇI, YÖNLÜ YAY A. AÇI Başlangıç noktaları aynı olan iki ışının birleşim kümesine açı denir. Bu ışınlara açının kenarları, başlangıç noktasına ise açının köşesi denir. B. YÖNLÜ AÇI

Detaylı

10. ÜNİTE HACİM VE SIVI ÖLÇÜLERİ, KATI CİSİMLERİN ALAN VE HACİMLERİ MESLEKİ UYGULAMALARI

10. ÜNİTE HACİM VE SIVI ÖLÇÜLERİ, KATI CİSİMLERİN ALAN VE HACİMLERİ MESLEKİ UYGULAMALARI 10. ÜNİTE HACİM VE SIVI ÖLÇÜLERİ, KATI CİSİMLERİN ALAN VE HACİMLERİ MESLEKİ UYGULAMALARI KONULAR HACİM VE HACİM ÖLÇÜLERİ KAVRAMI HACİM ÖLÇÜLERİ BİRİMLERİ 1. Metreküpün Katları As Katları 2. Birimlerin

Detaylı

EVVET ARKADAŞLAR HOŞGELDİNİZ BU DERSİMİZDE ÜÇGENLER VE ÖZELLİKLERİNE GÖZ ATACAĞIZ.

EVVET ARKADAŞLAR HOŞGELDİNİZ BU DERSİMİZDE ÜÇGENLER VE ÖZELLİKLERİNE GÖZ ATACAĞIZ. DERS : GEOMETRİ KONU : ÜÇGEN EVVET ARKADAŞLAR HOŞGELDİNİZ BU DERSİMİZDE ÜÇGENLER VE ÖZELLİKLERİNE GÖZ ATACAĞIZ. AMAN SIKILMAYIN NOT BİRAZ UZUN DA :-) Doğrusal olmayan üç noktayı birleştiren üç doğru parçasının

Detaylı

EĞİTİM-ÖĞRETİM YILI 8. SINIF MATEMATİK DERSİ KAZANIMLARININ ÇALIŞMA TAKVİMİNE GÖRE DAĞILIM ÇİZELGESİ SÜRE

EĞİTİM-ÖĞRETİM YILI 8. SINIF MATEMATİK DERSİ KAZANIMLARININ ÇALIŞMA TAKVİMİNE GÖRE DAĞILIM ÇİZELGESİ SÜRE Ay 2016 2017 EĞİTİM-ÖĞRETİM YILI 8. SINIF MATEMATİK DERSİ KAZANIMLARININ ÇALIŞMA TAKVİMİNE GÖRE DAĞILIM ÇİZELGESİ SÜRE Hafta ÖĞRENME ALANI ALT ÖĞRENME ALANI KAZANIMLAR EYLÜL 3 4 Sayılar ve İşlemler Çarpanlar

Detaylı

6. ABCD dikdörtgeninde

6. ABCD dikdörtgeninde Çokgenler ve örtgenler Test uharrem Şahin. enar sayısı ile köşegen sayısı toplamı olan düzgün çokgenin bir dış açısı kaç derecedir? ) ) 0 ) ) 0 ). Şekilde dikdörtgeninin içindeki P noktasının üç köşeye

Detaylı

SİDRE 2000 ORTAOKULU EĞİTİM-ÖĞRETİM YILI 7. SINIFLAR MATEMATİK DERSİ ÜNİTELENDİRİLMİŞ YILLIK PLAN

SİDRE 2000 ORTAOKULU EĞİTİM-ÖĞRETİM YILI 7. SINIFLAR MATEMATİK DERSİ ÜNİTELENDİRİLMİŞ YILLIK PLAN SİDRE 000 ORTAOKULU 06-07 EĞİTİM-ÖĞRETİM YILI 7. SINIFLAR MATEMATİK DERSİ ÜNİTELENDİRİLMİŞ YILLIK PLAN ÜNİTE ÖĞRENME ALANI ALT ÖĞRENME ALANI Ders Saati 9.09.06/.09.06 Tam Sayılarla Çarpma ve Bölme i 7...

Detaylı

OLİMPİK GEOMETRİ ALTIN NOKTA YAYINEVİ MATEMATİK OLİMPİYATLARINA HAZIRLIK ÖMER GÜRLÜ KONU ANLATIMLI - ÖRNEK ÇÖZÜMLÜ

OLİMPİK GEOMETRİ ALTIN NOKTA YAYINEVİ MATEMATİK OLİMPİYATLARINA HAZIRLIK ÖMER GÜRLÜ KONU ANLATIMLI - ÖRNEK ÇÖZÜMLÜ OLİMPİK GEOMETRİ MATEMATİK OLİMPİYATLARINA HAZIRLIK KONU ANLATIMLI - ÖRNEK ÇÖZÜMLÜ ÖMER GÜRLÜ ALTIN NOKTA YAYINEVİ İZMİR - 2014 İÇİNDEKİLER 1. TEMEL ÇİZİMLER... 7 2. ÜÇGENLER... 21 (Üçgende Açılar, Üçgende

Detaylı

12. SINIF GEOMETRİ KONU ÖZETİ

12. SINIF GEOMETRİ KONU ÖZETİ 2012 12. SINIF GEOMETRİ KONU ÖZETİ TOLGA YAVAN Matematik Öğretmeni ÜNİTE 1: UZAYDA VEKTÖRLER Hepsi birden aynı düzlemde olmayan tüm noktaların kümesine uzay denir. Uzayda farklı iki noktadan bir ve yalnız

Detaylı

İç bükey Dış bükey çokgen

İç bükey Dış bükey çokgen Çokgen Çokgensel bölge İç bükey Dış bükey çokgen Köşeleri: Kenarları: İç açıları: Dış açıları: Köşegenleri: Çokgenin temel elemanları Kenar Köşegen ilişkisi Bir köşe belirleyiniz ve belirlediğiniz köşeden

Detaylı

TEK ve ÇOK YÜZEYLİ KAPALI YÜZEYLER ve KATI CİSİMLER 1 TEST

TEK ve ÇOK YÜZEYLİ KAPALI YÜZEYLER ve KATI CİSİMLER 1 TEST ve Ç ÜLİ PLI ÜLR ve S I İSİMLR.. P(a,, ) ukarıdaki dik koordinat sisteminde (,, ) olduğuna göre, dikdörtgenler prizmasının hacmi kaç br tür? nalitik uzayda yukarıdaki dikdörtgenler prizmasının yüzey alanı

Detaylı

Çarpanlar ve Katlar

Çarpanlar ve Katlar 8.1.1. Çarpanlar ve Katlar 8.1.2. Üslü İfadeler 8.1.3. Kareköklü İfadeler 8.2.1. Cebirsel İfadeler ve Özdeşlikler 8.1.1.1 Verilen pozitif tam sayıların çarpanlarını bulur; pozitif tam sayıları üslü ifade

Detaylı

TEST. Düzgün Çokgenler. 4. Bir iç açısı 140 olan düzgün çokgenin iç açılar 5. A B. 2. Bir dış açısı Çevresi. toplamı kaç derecedir?

TEST. Düzgün Çokgenler. 4. Bir iç açısı 140 olan düzgün çokgenin iç açılar 5. A B. 2. Bir dış açısı Çevresi. toplamı kaç derecedir? üzgün Çokgenler 7. Sınıf Matematik Soru ankası S 49 1. 4. ir iç açısı 140 olan düzgün çokgenin iç açılar toplamı kaç derecedir? ) 70 ) 900 ) 1080 ) 160 Şekilde verilen düzgün çokgenine göre, I., köşesine

Detaylı

İÇİNDEKİLER UZAY AKSİYOMLARI... 001-006... 01-03 UZAYDA DOGRU VE DÜZLEMLER... 007-010... 04-05 DİK İZDÜŞÜM... 011-014... 06-07

İÇİNDEKİLER UZAY AKSİYOMLARI... 001-006... 01-03 UZAYDA DOGRU VE DÜZLEMLER... 007-010... 04-05 DİK İZDÜŞÜM... 011-014... 06-07 UZY GEMETRİ İÇİNDEKİLER Safa No Test No UZY KSİYMLRI... 001-00... 01-0 UZYD DGRU VE DÜZLEMLER... 007-010... 0-05 DİK İZDÜŞÜM... 011-01... 0-07 PRİZMLR... 015-0... 08-1 KÜP... 05-00... 1-15 SİLİNDİR...

Detaylı

BASIN KİTAPÇIĞI ÖSYM

BASIN KİTAPÇIĞI ÖSYM BASIN KİTAPÇIĞI 00000000 AÇIKLAMA 1. Bu kitapç kta Lisans Yerle tirme S nav -1 Geometri Testi bulunmaktad r. 2. Bu test için verilen toplam cevaplama süresi 45 dakikadır. 3. Bu kitapç ktaki testlerde yer

Detaylı

ÜÇGENDE AÇILAR. Doğrusal olmayan üç noktayı birleştiren üç doğru parçasının birleşimine üçgen denir. AB] [AC] [BC] = ABC dir.

ÜÇGENDE AÇILAR. Doğrusal olmayan üç noktayı birleştiren üç doğru parçasının birleşimine üçgen denir. AB] [AC] [BC] = ABC dir. ÜÇGENDE AÇILAR Doğrusal olmayan üç noktayı birleştiren üç doğru parçasının birleşimine üçgen denir. AB] [AC] [BC] = ABC dir. Burada; A, B, C noktaları üçgenin köşeleri, [AB], [AC], [BC] doğru parçaları

Detaylı

EKSTREMUM PROBLEMLERİ. Örnek: Çözüm: Örnek: Çözüm:

EKSTREMUM PROBLEMLERİ. Örnek: Çözüm: Örnek: Çözüm: EKSTREMUM PROBLEMLERİ Ekstremum Problemleri Bu tür problemlerde bir büyüklüğün (çokluğun alabileceği en büyük (maksimum değer ya da en küçük (minimum değer bulunmak istenir. İstenen çokluk bir değişkenin

Detaylı

KATI CİSİMLER DİK PRİZMALARIN ALAN VE HACİMLERİ 1. DİKDÖRTGENLER PRİZMASI. Uyarı PRİZMA. Üst taban. Ana doğru. Yanal. Yanal Alan. yüz. Yanal.

KATI CİSİMLER DİK PRİZMALARIN ALAN VE HACİMLERİ 1. DİKDÖRTGENLER PRİZMASI. Uyarı PRİZMA. Üst taban. Ana doğru. Yanal. Yanal Alan. yüz. Yanal. TI İSİM İZM İZM irbirine paralel iki düzlem içinde yer alan iki eş çokgensel bölgenin tüm noktalarının karşılıklı olarak birleştirilmesiyle elde edilen cisme İZM denir. İ İZMIN N V HİMİ Tüm dik rizmalarda

Detaylı

A A A A A A A A A A A

A A A A A A A A A A A LYS 1 GMTRİ TSTİ 1. u testte sırasıyla Geometri (1 ) nalitik Geometri (3 30) ile ilgili 30 soru vardır.. evaplarınızı, cevap kâğıdının Geometri Testi için ayrılan kısmına işaretleyiniz. 1. bir üçgen =

Detaylı

Viyana İmam Hatip Lisesi Öğrenci Seçme Sınavı - Matematik

Viyana İmam Hatip Lisesi Öğrenci Seçme Sınavı - Matematik Viyana İmam Hatip Lisesi Öğrenci Seçme Sınavı - Matematik 1. Ünite: Geometriden Olasılığa 1. Bölüm: Yansıyan ve Dönen Şekiller, Fraktallar Yansıma, Öteleme, Dönme Fraktallar 2. Bölüm: Üslü Sayılar Tam

Detaylı

a) Çıkarma işleminin; eksilen ile çıkanın ters işaretlisinin toplamı anlamına geldiğini kavrar.

a) Çıkarma işleminin; eksilen ile çıkanın ters işaretlisinin toplamı anlamına geldiğini kavrar. 7. SINIF KAZANIM VE AÇIKLAMALARI M.7.1. SAYILAR VE İŞLEMLER M.7.1.1. Tam Sayılarla Toplama, Çıkarma, Çarpma ve Bölme İşlemleri M.7.1.1.1. Tam sayılarla toplama ve çıkarma işlemlerini yapar; ilgili problemleri

Detaylı

SİDRE 2000 ORTAOKULU EĞİTİM-ÖĞRETİM YILI 8. SINIFLAR MATEMATİK DERSİ ÜNİTELENDİRİLMİŞ YILLIK PLAN

SİDRE 2000 ORTAOKULU EĞİTİM-ÖĞRETİM YILI 8. SINIFLAR MATEMATİK DERSİ ÜNİTELENDİRİLMİŞ YILLIK PLAN E Y L Ü L ÜNİTE SİDRE 000 ORTAOKULU 06-07 EĞİTİM-ÖĞRETİM YILI 8. SINIFLAR MATEMATİK DERSİ ÜNİTELENDİRİLMİŞ YILLIK PLAN 9.09.06/.09.06 6.09.06/0.09.06 Çarpanlar ve Katlar Çarpanlar ve Katlar 8... Verilen

Detaylı

ÖRNEK ÖRNEK ÖRNEK ÖRNEK

ÖRNEK ÖRNEK ÖRNEK ÖRNEK Öteleme ve yansımanın birlikte kullanıldığı dönüşümlere ötelemeli yansıma denir. Düzlemde yansıma ve ötelemeli yansıma dönüşümlerinde uzaklıklar korunurken açıların yönleri değişir. Ötelemeli yansıma dönüşümünde

Detaylı

ÇEMBER KARMA / TEST-1

ÇEMBER KARMA / TEST-1 ÇMR RM / S-... Verilenlere göre, m( ) ) ) 0 ) ) 0 ) Verilenlere göre, m(g ) ) ) ) 6 ) 0 ) 60 0 0 G 0 ) ) ) ) ) 8 L 0 [] [] = {} m( ) = 0 m() = 0 ve üçgenlerinin çevrel çemberi m( ) = 0 m() = 0 m() = üçgen

Detaylı

GEOMETRİK KAVRAMLAR. 1. Nokta: Geometrinin en temel terimidir.. biçiminde gösterilir. Boyutu yoktur.

GEOMETRİK KAVRAMLAR. 1. Nokta: Geometrinin en temel terimidir.. biçiminde gösterilir. Boyutu yoktur. GEOMETRİK KAVRAMLAR Geometrinin temelini oluşturan bazı kavramları bir sıraya koymalıyız ki daha anlaşılabilir olsun. Geometride özel anlamı olan ifadelere geometrik terim denir. Nokta, doğru, açı, kare,

Detaylı

MATEMATİK TESTİ LYS YE DOĞRU. 1. Bu testte Matematik ile ilgili 50 soru vardır.

MATEMATİK TESTİ LYS YE DOĞRU. 1. Bu testte Matematik ile ilgili 50 soru vardır. MTMTİK TSTİ LYS-. u testte Matematik ile ilgili 0 soru vardır.. evaplarınızı, cevap kâğıdının Matematik Testi için ayrılan kısmına işaretleyiniz.. u testteki süreniz 7 dakikadır.. a, b, c birer reel sayı

Detaylı

SİDRE 2000 ORTAOKULU 2014 2015 EĞİTİM VE ÖĞRETİM YILI MATEMATİK DERSİ 8. SINIF ÜNİTELENDİRİLMİŞ YILLIK PLANI

SİDRE 2000 ORTAOKULU 2014 2015 EĞİTİM VE ÖĞRETİM YILI MATEMATİK DERSİ 8. SINIF ÜNİTELENDİRİLMİŞ YILLIK PLANI -6.09.0 DÖNÜŞÜM Sİ 5-9.09.0 ÖRÜNTÜ VE SÜSLEMELER SİDRE 000 ORTAOKULU 0 05 EĞİTİM VE ÖĞRETİM YILI MATEMATİK DERSİ 8. SINIF ÜNİTELENDİRİLMİŞ YILLIK PLANI,. Doğru, çokgen ve çember modellerinden örüntüler

Detaylı

Matematikte karşılaştığınız güçlükler için endişe etmeyin. Emin olun benim karşılaştıklarım sizinkilerden daha büyüktür.

Matematikte karşılaştığınız güçlükler için endişe etmeyin. Emin olun benim karşılaştıklarım sizinkilerden daha büyüktür. - 1 - ÖĞRENME ALANI CEBİR BÖLÜM KARMAŞIK SAYILAR ALT ÖĞRENME ALANLARI 1) Karmaşık Sayılar Karmaşık Sayıların Kutupsal Biçimi KARMAŞIK SAYILAR Kazanım 1 : Gerçek sayılar kümesini genişletme gereğini örneklerle

Detaylı

11. SINIF GEOMETRİ KONU ÖZETİ

11. SINIF GEOMETRİ KONU ÖZETİ 2012 11. SINIF GEOMETRİ KONU ÖZETİ TOLGA YAVAN Matematik Öğretmeni 1. ÜNİTE: DÖRTGENLER DÖRTGEN VE TEMEL ELEMANLARI Herhangi üçü doğrusal olmayan A, B, C ve D noktaları verilsin. [AB], [BC], [CD] ve [DA]

Detaylı

Page 1. İz Düşüm Çeşitleri ve Metotları

Page 1. İz Düşüm Çeşitleri ve Metotları 4. İz Düşümler TEKNİK BİLİMLER MESLEK YÜKSEKOKULU Teknik Resim Genel Bilgi Kullandığımız bir çok eşya ve makineyi veya bunlara ait parçaların imal edilebilmesi için şekillerini ifade eden resimlerinin

Detaylı

[ AN ] doğrusu açıortay olduğundan;

[ AN ] doğrusu açıortay olduğundan; . Bir havuzu bir musluk 6 saatte, başka bir musluk 8 saatte dolduruyor. Bu iki musluk kapalı iken, havuzun altında bulunan üçüncü bir musluk, dolu havuzu saatte boşaltabiliyor. Üç musluk birden açılırsa,boş

Detaylı

EĞİTİM - ÖĞRETİM YILI 10. SINIF MATEMATİK DERSİ DESTEKLEME VE YETİŞTİRME KURSU KAZANIMLARI VE TESTLERİ

EĞİTİM - ÖĞRETİM YILI 10. SINIF MATEMATİK DERSİ DESTEKLEME VE YETİŞTİRME KURSU KAZANIMLARI VE TESTLERİ EKİM 07-08 EĞİTİM - ÖĞRETİM YILI 0. SINIF MATEMATİK DERSİ 0... Olayların gerçekleşme sayısını toplama ve çarpma prensiplerini kullanarak hesaplar. 0... Sınırsız sayıda tekrarlayan nesnelerin dizilişlerini

Detaylı

NİSAN 2010 DENEMESİ A)75 B)80 C)85 D)90 E)95 A)0 B)1 C)2 D)3 E)4

NİSAN 2010 DENEMESİ A)75 B)80 C)85 D)90 E)95 A)0 B)1 C)2 D)3 E)4 NİSAN 21 DENEMESİ 1) ABCD dikdörtgeninin AB kenarı üzerindeki M noktasından geçen ve CM doğrusuna dik olan doğru AD kenarını E noktasında kesiyor. M noktasından CE doğrusuna indirilen dikmenin ayağı P

Detaylı

3. Ünsal Tülbentçi Matematik Yarışması Mayıs 2014 8.Sınıf Sayfa 1

3. Ünsal Tülbentçi Matematik Yarışması Mayıs 2014 8.Sınıf Sayfa 1 . Alanı 36 5 olan bir ABC ikizkenar üçgeninde ==2 ise bu üçgende B den AC ye inilen dikmenin ayağının C noktasına olan uzaklığı nedir? ) 2,8) 3) 3,2 ) 3,7 ) 4, 2. Ayrıt uzunlukları 4, 0 ve 4 5 olan dikdörtgenler

Detaylı

ÜÇGENLER ÜNİTE 4. ÜNİTE 4. ÜNİTE 4. ÜNİTE 4. ÜNİT

ÜÇGENLER ÜNİTE 4. ÜNİTE 4. ÜNİTE 4. ÜNİTE 4. ÜNİT ÜÇGNLR ÜNİT. ÜNİT. ÜNİT. ÜNİT. ÜNİT ÜÇGNLRİN ŞLİĞİ Üçgende çılar 1. Kazanım : ir üçgenin iç açılarının ölçüleri toplamının 180, dış açılarının ölçüleri toplamının 0 olduğunu gösterir. İki Üçgenin şliği.

Detaylı

TEST: 1. Şekilde verilenlere göre x kaç derecedir? Şekilde verilenlere göre x kaç derecedir? A) 100 B) 110 C) 120 D) 130 E) 140

TEST: 1. Şekilde verilenlere göre x kaç derecedir? Şekilde verilenlere göre x kaç derecedir? A) 100 B) 110 C) 120 D) 130 E) 140 TEST: 1 1. 4. A) 20 B) 30 C) 40 D) 50 E) 60 A) 100 B) 110 C) 120 D) 130 E) 140 2. 5. A) 100 B) 110 C) 120 D) 130 E) 140 A) 96 B) 112 C) 121 D) 128 E) 134 3. 6. A) 40 B) 50 C) 60 D) 70 E) 80 A) 40 B) 50

Detaylı

MAT 103 ANALİTİK GEOMETRİ I FİNAL ÇALIŞMA SORULARI

MAT 103 ANALİTİK GEOMETRİ I FİNAL ÇALIŞMA SORULARI MAT 103 ANALİTİK GEOMETRİ I FİNAL ÇALIŞMA SORULARI SORU 1. Köşeleri (1,4) (3,0) (7,2) noktaları olan ABC üçgeninin bir ikizkenar dik üçgen (İpucu:, ve vektörlerinden yararlanın) SORU 2. Bir ABC üçgeninin

Detaylı

PERGEL YAYINLARI LYS 1 DENEME-6 KONU ANALİZİ SORU NO LYS 1 MATEMATİK TESTİ KAZANIM NO KAZANIMLAR

PERGEL YAYINLARI LYS 1 DENEME-6 KONU ANALİZİ SORU NO LYS 1 MATEMATİK TESTİ KAZANIM NO KAZANIMLAR 2013-2014 PERGEL YAYINLARI LYS 1 DENEME-6 KONU ANALİZİ SORU NO LYS 1 MATEMATİK TESTİ A B KAZANIM NO KAZANIMLAR 1 1 / 31 12 32173 Üslü İfadeler 2 13 42016 Rasyonel ifade kavramını örneklerle açıklar ve

Detaylı

1981 ÖSS olduğuna göre, aşağıdakilerden c hangisi kesinlikle doğrudur? A) a>0 B) c<0 C) a+c=0 D) a 0 E) c>0 A) 12 B) 2 9 C) 10 D) 5 E) 11

1981 ÖSS olduğuna göre, aşağıdakilerden c hangisi kesinlikle doğrudur? A) a>0 B) c<0 C) a+c=0 D) a 0 E) c>0 A) 12 B) 2 9 C) 10 D) 5 E) 11 98 ÖSS. >0 olmak koşulu ile 2+, 3+, 4+ sayıları bir dik üçgenin kenar uzunluklarını göstermektedir. Bu üçgenin hipotenüs uzunluğu kaç birimdir? A) 2 B) 2 9 C) 0 D) 5 E) 2a c 6. 0 olduğuna göre, aşağıdakilerden

Detaylı

Düzlemde Dönüşümler: Öteleme, Dönme ve Simetri. Not 1: Buradaki A noktasına dönme merkezi denir.

Düzlemde Dönüşümler: Öteleme, Dönme ve Simetri. Not 1: Buradaki A noktasına dönme merkezi denir. Düzlemde Dönüşümler: Öteleme, Dönme ve Simetri Düzlemin noktalarını, düzlemin noktalarına eşleyen bire bir ve örten bir fonksiyona düzlemin bir dönüşümü denir. Öteleme: a =(a 1,a ) ve u =(u 1,u ) olmak

Detaylı

Öğrenci Seçme Sınavı (Öss) / 18 Nisan Matematik Soruları ve Çözümleri

Öğrenci Seçme Sınavı (Öss) / 18 Nisan Matematik Soruları ve Çözümleri Öğrenci Seçme Sınavı (Öss) / 8 Nisan 99 Matematik Soruları ve Çözümleri. Bir sayının inin fazlası, aynı sayıya eşittir. Bu sayı kaçtır? A) B) 0 C) D) 0 E) Çözüm Sayı olsun.. + +. Bir sınıftaki toplam öğrenci

Detaylı

Mühendislik Mekaniği Statik. Yrd.Doç.Dr. Akın Ataş

Mühendislik Mekaniği Statik. Yrd.Doç.Dr. Akın Ataş Mühendislik Mekaniği Statik Yrd.Doç.Dr. Akın Ataş Bölüm 10 Eylemsizlik Momentleri Kaynak: Mühendislik Mekaniği: Statik, R. C.Hibbeler, S. C. Fan, Çevirenler: A. Soyuçok, Ö. Soyuçok. 10. Eylemsizlik Momentleri

Detaylı

SINIF MATEMATİK DERSİ ÜNİTELENDİRİLMİŞ YILLIK PLAN... YAYINLARI HAZIRLAYANLAR

SINIF MATEMATİK DERSİ ÜNİTELENDİRİLMİŞ YILLIK PLAN... YAYINLARI HAZIRLAYANLAR 06-07 8.SINIF MATEMATİK DERSİ ÜNİTELENDİRİLMİŞ YILLIK PLAN... YAYINLARI HAZIRLAYANLAR Sıra No Adı ve Soyadı İmza Sıra No 8 9 0 6 Adı ve Soyadı İmza 7 Ömer Askerden 06 07 EĞİTİM VE ÖĞRETİM YILI FATİH SULTAN

Detaylı

XII. Ulusal Matematik Olimpiyatı Birinci Aşama Sınavı

XII. Ulusal Matematik Olimpiyatı Birinci Aşama Sınavı XII. Ulusal Matematik Olimpiyatı Birinci Aşama Sınavı A 1. Köşeleri, yarıçapı 1 olan çemberin üstünde yer alan düzgün bir n-genin çevre uzunluğunun alanına oranı 4 3 ise, n kaçtır? 3 a) 3 b) 4 c) 5 d)

Detaylı

Lisans Yerleştirme Sınavı 1 (Lys 1) / 18 Haziran Geometri Soruları ve Çözümleri

Lisans Yerleştirme Sınavı 1 (Lys 1) / 18 Haziran Geometri Soruları ve Çözümleri Lisans Yerleştirme Sınavı (Lys ) / 8 Haziran 0 Geometri Soruları ve Çözümleri. Bir ikizkenar üçgenin eş kenarlarının her birinin uzunluğu 0 cm ve üçüncü kenarının uzunluğu 4 cm olduğuna göre, alanı kaç

Detaylı

Lisans Yerleştirme Sınavı 1 (Lys 1) / 19 Haziran 2010. Geometri Soruları ve Çözümleri. ABC bir üçgen CA = CD. m(acd) = m(dcb) m(bac) = 80.

Lisans Yerleştirme Sınavı 1 (Lys 1) / 19 Haziran 2010. Geometri Soruları ve Çözümleri. ABC bir üçgen CA = CD. m(acd) = m(dcb) m(bac) = 80. Lisans Yerleştirme Sınavı (Lys ) / 9 Haziran 00 Geometri Soruları ve Çözümleri. ABC bir üçgen CA = CD m(acd) = m(dcb) m(bac) = 80 m(abc) = x Yukarıdaki verilere göre x kaç derecedir? A) 40 B) 45 C) 50

Detaylı

TEMEL BAZI KAVRAMLAR. Uzay: İçinde yaşadığımız sonsuz boşluktur. Uzay, bir noktalar kümesidir. Uzay, bütün varlıkları içine alır.

TEMEL BAZI KAVRAMLAR. Uzay: İçinde yaşadığımız sonsuz boşluktur. Uzay, bir noktalar kümesidir. Uzay, bütün varlıkları içine alır. 1 TEMEL ZI KVRMLR Nokta: Kalemin kâğıda, tebeşirin tahtaya bıraktığı ize nokta denir. Nokta boyutsuzdur. Yani; noktanın eni, boyu ve yüksekliği yoktur. ütün geometrik şekiller noktalardan oluşur. Noktalar

Detaylı

TASARI GEOMETRİ SINAV SORULARI

TASARI GEOMETRİ SINAV SORULARI TASARI GEOMETRİ SINAV SORULARI 1. Alın iz düşümüne parelel veya çakışık olan doğrular profilde hangi ı verir? 9. Doğrunun düzlemi deldiği noktayı düzlem geçirme metodu ile bulunuz. A) Profil ve alınla

Detaylı

Teknik Resim TEKNİK BİLİMLER MESLEK YÜKSEKOKULU. 3. Geometrik Çizimler. Yrd. Doç. Dr. Garip GENÇ

Teknik Resim TEKNİK BİLİMLER MESLEK YÜKSEKOKULU. 3. Geometrik Çizimler. Yrd. Doç. Dr. Garip GENÇ TEKNİK BİLİMLER MESLEK YÜKSEKOKULU Teknik Resim Genel Bilgi Teknik resimde bir şekli çizmek için çizim takımlarından faydalanılır. Çizilecek şekil üzerinde eşit bölüntüler, paralel doğrular, teğet birleşmeler,

Detaylı

GEOMETRİ. Tüm geometrik şekiller, elemanları noktalar olan kümeler olduğundan, biz de noktadan başlayarak gezimize çıkalım.

GEOMETRİ. Tüm geometrik şekiller, elemanları noktalar olan kümeler olduğundan, biz de noktadan başlayarak gezimize çıkalım. GEOMETRİ Geometriyi seven veya sevmeyenler için farklı bir bakış açısı. Gerçeğin kilidini açacak anahtarın Aritmetik ve Geometri olduğunu söyleyen ve Tanrının da bir Matematikçi olduğuna inanan ünlü düşünür

Detaylı

1995 ÖSS. 6. Toplamları 621 olan iki pozitif tamsayıdan büyüğü küçüğüne bölündüğünde bölüm 16, kalan ise 9 dur. Buna göre, büyük sayı kaçtır?

1995 ÖSS. 6. Toplamları 621 olan iki pozitif tamsayıdan büyüğü küçüğüne bölündüğünde bölüm 16, kalan ise 9 dur. Buna göre, büyük sayı kaçtır? 99 ÖSS.. 0, 0, 0,44. işleminin sonucu A) 0, B) 0,4 C) D) 4 E) 0 6. Toplamları 6 olan iki pozitif tamsayıdan büyüğü küçüğüne bölündüğünde bölüm 6, kalan ise 9 dur. Buna göre, büyük sayı A) 70 B) 7 C) 80

Detaylı

Trigonometrik Fonksiyonlar

Trigonometrik Fonksiyonlar Trigonometrik Fonksiyonlar Yazar Prof.Dr. Vakıf CAFEROV ÜNİTE 6 Amaçlar Bu üniteyi çalıştıktan sonra; açı kavramını hatırlayacak, açıların derece ölçümünü radyan ölçümüne ve tersine çevirebilecek, trigonometrik

Detaylı

5. ÜNİTE AÇILAR, ÜÇGENLER VE MESLEKİ UYGULAMALARI

5. ÜNİTE AÇILAR, ÜÇGENLER VE MESLEKİ UYGULAMALARI 5. ÜNİTE ÇILR, ÜÇGENLER VE MESLEKİ UYGULMLRI açılar KONULR 1. çı, çı Türleri ve Mesleki Uygulamaları 2. Tümler ve ütünler çılar ÜÇGENLER 1. Üçgene it Temel ilgiler 2. Üçgen Türleri 3. Üçgenin Yardımcı

Detaylı

GEOMETR 7 ÜN TE II P RAM T

GEOMETR 7 ÜN TE II P RAM T ÜN TE II P RAM T 1. P RAM TLER N TANIMI. DÜZGÜN P RAM T a. Tan m b. Düzgün Piramidin Özelikleri. P RAM D N ALANI a. Düzgün Olmayan Piramidin Alan b. Düzgün Piramidin Alan 4. P RAM D N HACM 5. DÜZGÜN DÖRTYÜZLÜ

Detaylı

MATEMATİK MATEMATİK-GEOMETRİ SINAVI LİSANS YERLEŞTİRME SINAVI-1 TESTİ SORU KİTAPÇIĞI 08

MATEMATİK MATEMATİK-GEOMETRİ SINAVI LİSANS YERLEŞTİRME SINAVI-1 TESTİ SORU KİTAPÇIĞI 08 LİSNS YRLŞTİRM SINVI- MTMTİK-GMTRİ SINVI MTMTİK TSTİ SRU KİTPÇIĞI 08 U SRU KİTPÇIĞI LYS- MTMTİK TSTİ SRULRINI İÇRMKTİR. . u testte 0 soru vardýr. MTMTİK TSTİ. evaplarýnýzý, cevap kâðýdýnın Matematik Testi

Detaylı

T.C. Ölçme, Seçme ve Yerleştirme Merkezi

T.C. Ölçme, Seçme ve Yerleştirme Merkezi T.C. Ölçme, Seçme ve Yerleştirme Merkezi LİSANS YERLEŞTİRME SINAVI-1 MATEMATİK TESTİ 11 HAZİRAN 2017 PAZAR Bu testlerin her hakkı saklıdır. Hangi amaçla olursa olsun, testlerin tamamının veya bir kısmının

Detaylı

1. BÖLÜM uzayda Bir doğrunun vektörel ve parametrik denklemi... 71. 2. BÖLÜM uzayda düzlem denklemleri... 77

1. BÖLÜM uzayda Bir doğrunun vektörel ve parametrik denklemi... 71. 2. BÖLÜM uzayda düzlem denklemleri... 77 UZAYDA DOĞRU VE DÜZLEM Sayfa No. BÖLÜM uzayda Bir doğrunun vektörel ve parametrik denklemi.............. 7. BÖLÜM uzayda düzlem denklemleri.......................................... 77. BÖLÜM uzayda Bir

Detaylı

ÖZEL EGE LİSESİ EGE BÖLGESİ OKULLAR ARASI MATEMATİK YARIŞMASI 1.AŞAMA KONU KAPSAMI

ÖZEL EGE LİSESİ EGE BÖLGESİ OKULLAR ARASI MATEMATİK YARIŞMASI 1.AŞAMA KONU KAPSAMI ÖZEL EGE LİSESİ EGE BÖLGESİ OKULLAR ARASI MATEMATİK YARIŞMASI 1.AŞAMA KONU KAPSAMI 6. SINIF 5. SINIF TÜM KONULARI 1.ÜNİTE: Geometrik Şekiller 1) Verileri Düzenleme, Çokgenler ve Süsleme 2) Dörtgenler 3)

Detaylı

25. f: R { 4} R 28. ( ) 3 2 ( ) 26. a ve b reel sayılar olmak üzere, 27. ( ) eğrisinin dönüm noktasının ordinatı 10 olduğuna göre, m kaçtır?

25. f: R { 4} R 28. ( ) 3 2 ( ) 26. a ve b reel sayılar olmak üzere, 27. ( ) eğrisinin dönüm noktasının ordinatı 10 olduğuna göre, m kaçtır? . f: R { 4} R, > ise ( ) 4 f =, ise 6 8. ( ) f = 6 + m + 4 eğrisinin dönüm noktasının ordinatı olduğuna göre, m kaçtır? ) 7 ) 8 ) 9 ) E) fonksiyonu aşağıdaki değerlerinin hangisinde süreksizdir? ) ) )

Detaylı

T.C. Ölçme, Seçme ve Yerleştirme Merkezi

T.C. Ölçme, Seçme ve Yerleştirme Merkezi T.C. Ölçme, Seçme ve Yerleştirme Merkezi LİSANS YERLEŞTİRME SINAVI-1 MATEMATİK TESTİ 11 HAZİRAN 2017 PAZAR Bu testlerin her hakkı saklıdır. Hangi amaçla olursa olsun, testlerin tamamının veya bir kısmının

Detaylı

KUTUPSAL KOORDİNATLAR

KUTUPSAL KOORDİNATLAR KUTUPSAL KOORDİNATLAR Geometride, bir noktanın konumunu belirtmek için değişik yöntemler uygulanır. Örnek olarak çok kullanılan Kartezyen (Dik ) Koordinat sistemini anımsatarak çalışmamıza başlayalım.

Detaylı

2012 YGS MATEMATİK Soruları

2012 YGS MATEMATİK Soruları 01 YGS MATEMATİK Soruları 1. 10, 1, 0, 0, işleminin sonucu kaçtır? A) B), C) 6 D) 6, E) 7. + ABC 4 x 864 Yukarıda verilenlere göre, çarpma işleminin sonucu kaçtır? A) 8974 B) 907 C) 9164 D) 94 E) 98. 6

Detaylı

DİKKAT! SORU KİTAPÇIĞINIZIN TÜRÜNÜ A OLARAK CEVAP KÂĞIDINIZA İŞARETLEMEYİ UNUTMAYINIZ. MATEMATİK SINAVI GEOMETRİ TESTİ

DİKKAT! SORU KİTAPÇIĞINIZIN TÜRÜNÜ A OLARAK CEVAP KÂĞIDINIZA İŞARETLEMEYİ UNUTMAYINIZ. MATEMATİK SINAVI GEOMETRİ TESTİ İKKT! SRU KİTPÇIĞINIZIN TÜRÜNÜ LRK VP KÂĞIINIZ İŞRTLMYİ UNUTMYINIZ. MTMTİK SINVI GMTRİ TSTİ 1. u testte 30 soru vardır. 2. evaplarınızı, cevap kâğıdının Geometri Testi için ayrılan kısmına işaretleyiniz.

Detaylı

Genel Bilgi. İz Düşüm Düzlemleri ve Bölgeler. Yrd. Doç. Dr. Garip GENÇ Şekil: İz düşüm düzlemlerine bakış doğrultuları. Page 1.

Genel Bilgi. İz Düşüm Düzlemleri ve Bölgeler. Yrd. Doç. Dr. Garip GENÇ Şekil: İz düşüm düzlemlerine bakış doğrultuları. Page 1. TEKNİK BİLİMLER MESLEK YÜKSEKOKULU Teknik Resim Genel Bilgi Uzaydaki cisimlerin eksiksiz bir anlatımı için, ana boyutlarıyla birlikte parçanın bitmiş hallerinden ve üzerindeki işlemlerle birlikte diğer

Detaylı

Geometride Nokta, Doğru, Düzlem gibi kavramlar tanımsız olarak kabul edilir. E düzlemi yandaki gibi gösterilir.

Geometride Nokta, Doğru, Düzlem gibi kavramlar tanımsız olarak kabul edilir. E düzlemi yandaki gibi gösterilir. GEOMETRĐK KAVRAMLAR Geometride Nokta, Doğru, Düzlem gibi kavramlar tanımsız olarak kabul edilir. 1. Nokta:. biçiminde gösterilir. Boyutu yoktur. 2. Doğru: Đki uçtan sınırsız noktalar kümesidir. 3. Düzlem:

Detaylı

NLİTİK EMETRİ lan ve ğırlık Merkezi 5. ölüm Örnek 0 nalitik düzlemde üçgen [] açıorta [] // [] (6 0 (6 (6 (6 0 [H] [] [K] [] H = K = br K ile H üçgenl

NLİTİK EMETRİ lan ve ğırlık Merkezi 5. ölüm Örnek 0 nalitik düzlemde üçgen [] açıorta [] // [] (6 0 (6 (6 (6 0 [H] [] [K] [] H = K = br K ile H üçgenl NLİTİK EMETRİ lan ve ğırlık Merkezi 5. ölüm lan Örnek 0 nalitik düzlemde ( 0 c h b h a h c b ( 0 ( 0 a a h b h a b c h lan( = = = c Yukarıdaki verilenlere göre lan( kaç birimkaredir? 6 8 9 E c b Taban:

Detaylı

DİK ÜÇGEN. şekilde, m(a) = 90. [BC] kenarı hipotenüs. [AB] ve [AC] kenarları. dik kenarlardır. P İSAGOR BAĞINTISI

DİK ÜÇGEN. şekilde, m(a) = 90. [BC] kenarı hipotenüs. [AB] ve [AC] kenarları. dik kenarlardır. P İSAGOR BAĞINTISI DİK ÜÇGEN Bir açısının ölçüsü 90 olan üçgene dik üçgen denir. Dik üçgende 90 nin karşısındaki kenara hipotenüs, diğer kenarlara dik kenar adı verilir. Hipotenüs üçgenin daima en uzun kenarıdır. şekilde,

Detaylı

çemberi ile O Çemberlerin birbirine göre durumlarını inceleyelim. İlk durumda alalım. olduğu takdirde O2K1

çemberi ile O Çemberlerin birbirine göre durumlarını inceleyelim. İlk durumda alalım. olduğu takdirde O2K1 . merkezli R yarıçaplı Ç çemberi ile merkezli R yarıçaplı ve noktasından geçen Ç çemberi veriliyor. Ç üzerinde, T Ç K T Ç, ve K K T K olacak şekilde bir T noktası alınıyor. Buna göre, uzunluklarından birinin

Detaylı

1.5. Doğrularla İlgili Geometrik Çizimler

1.5. Doğrularla İlgili Geometrik Çizimler 1.5. Doğrularla İlgili Geometrik Çizimler Teknik resimde bir şekli çizmek için çizim takımlarından faydalanılır. Çizilecek şeklin üzerinde eşit bölüntüler, paralel doğrular, teğet birleşmeler, çemberlerin

Detaylı

Jeodezi

Jeodezi 1 Jeodezi 5 2 Jeodezik Eğri Elipsoid Üstünde Düşey Kesitler Elipsoid yüzünde P 1 noktasındaki normalle P 2 noktasından geçen düşey düzlem, P 2 deki yüzey normalini içermez ve aynı şekilde P 2 de yüzey

Detaylı

Öğrenci Seçme Sınavı (Öss) / 9 Nisan Matematik Soruları ve Çözümleri = 10

Öğrenci Seçme Sınavı (Öss) / 9 Nisan Matematik Soruları ve Çözümleri = 10 Öğrenci Seçme Sınavı (Öss) / 9 Nisan 99 Matematik Soruları ve Çözümleri.. 0, 0, 0,44. işleminin sonucu kaçtır? A) 0, B) 0,4 C) D) 4 E) 0 Çözüm. 0, 0, 0,44. 00 0, 0 0,44 00.( )..( )..( ) 0, 00 0 00 00 44..

Detaylı

POLİNOMLAR I MATEMATİK LYS / 2012 A1. 1. Aşağıdakilerden kaç tanesi polinomdur? 6. ( ) ( ) 3 ( ) 2. 2. ( ) n 7 8. ( ) 3 2 3. ( ) 2 4.

POLİNOMLAR I MATEMATİK LYS / 2012 A1. 1. Aşağıdakilerden kaç tanesi polinomdur? 6. ( ) ( ) 3 ( ) 2. 2. ( ) n 7 8. ( ) 3 2 3. ( ) 2 4. POLİNOMLAR I MATEMATİK. Aşağıdakilerden kaç tanesi polinomdur? I. ( ) P = + II. ( ) P = + III. ( ) + + P = + 6. ( ) ( ) ( ) P = a b a + b sabit polinom olduğuna göre ( ) ( ) ( ) P a +P b +P 0 toplamı kaçtır?

Detaylı

Sunum ve Sistematik 1. ÜNİTE: TEMEL GEOMETRİK KAVRAMLAR VE KOORDİNAT GEOMETRİYE GİRİŞ

Sunum ve Sistematik 1. ÜNİTE: TEMEL GEOMETRİK KAVRAMLAR VE KOORDİNAT GEOMETRİYE GİRİŞ Sunum ve Sistematik 1. ÜNİT: TML GOMTRİK KVRMLR V KOORİNT GOMTRİY GİRİŞ KONU ÖZTİ u başlık altında, ünitenin en can alıcı bilgileri, kazanım sırasına göre en alt başlıklara ayrılarak hap bilgi niteliğinde

Detaylı

MATEMATİK MATEMATİK-GEOMETRİ SINAVI LİSANS YERLEŞTİRME SINAVI-1 TESTİ SORU KİTAPÇIĞI 10

MATEMATİK MATEMATİK-GEOMETRİ SINAVI LİSANS YERLEŞTİRME SINAVI-1 TESTİ SORU KİTAPÇIĞI 10 LİSNS YRLŞTİRM SINVI- MTMTİK-GOMTRİ SINVI MTMTİK TSTİ SORU KİTPÇIĞI 0 U SORU KİTPÇIĞI LYS- MTMTİK TSTİ SORULRINI İÇRMKTİR. . u testte 0 soru vardýr. MTMTİK TSTİ. evaplarýnýzý, cevap kâðýdýnın Matematik

Detaylı

GEOMETR 7 ÜN TE V KÜRE

GEOMETR 7 ÜN TE V KÜRE ÜN TE V KÜRE 1. KÜRE a. Tan m b. Bir Kürenin Belirli Olmas c. Bir Küre ile Bir Düzlemin Ara Kesiti 2. KÜREN N ALANI 3. KÜREN N HACM 4. KÜREDE ÖZEL PARÇALAR a. Küre Kufla I. Tan m II. Küre Kufla n n Alan

Detaylı