UZAY KAVRAMI VE UZAYDA DOĞRULAR

Save this PDF as:
 WORD  PNG  TXT  JPG

Ebat: px
Şu sayfadan göstermeyi başlat:

Download "UZAY KAVRAMI VE UZAYDA DOĞRULAR"

Transkript

1 UZAY KAVRAMI VE UZAYDA DOĞRULAR Cisimlerin kapladığı yer ve içinde bulundukları mekan uzaydır. Doğruda sadece uzunluk, düzlemde uzunluk ve genişlik söz konusudur. Uzayda ise uzunluk ve genişliğin yanında bir de yükseklik kavramı vardır. (Derinlik te denilebilir.) Dolayısıyla uzay üç boyutludur. Uzayda x, y, z eksenleri olduğu için kartezyen koordinat olarak R x R x R veya R ile sembolize edilir. Aşağıda üç boyutlu cisimlerin bazıları belirtilmiştir. 1. Uzay Belirtme Aksiyomları Dördü aynı düzlemde bulunmayan farklı dört nokta uzay belirtir. E düzlemindeki A, B, C noktaları ile düzlem dışındaki P noktası, uzay belirtir.

2 Bir düzlem ile bu düzlemin dışındaki bir nokta, uzay belirtir. Bir düzlem ve düzlem üzerinde olmayan bir doğru uzay belirtir. Uzayda farklı iki düzlem ya paraleldir ya da kesişirler. Paralel olmayan farklı iki düzlem daima kesişir. Farklı iki düzlem daima uzay belirtir. Kesişen iki düzlemin ortak noktalarının oluşturduğu doğruya arakesit doğrusu denir. Farklı K ve L düzlemleri uzay belirtir. E ve F düzlemlerinin kesişim kümesi d doğrusudur. E F d dir.

3 DİK PRİZMALARIN ALAN ve HACİMLERİ Alt ve üst tabanları paralel eş şekillerden oluşan cisimlere prizma denir. Yan yüzeyleri taban düzlemine dik olan prizmalara dik prizma adı verilir. Prizmalarda yan yüzeyleri birleştiren ayrıtlara yanal ayrıt denir. [AA ], [BB ], [CC ], [DD ] yanal ayrıtlardır. Dik prizmalarda yanal ayrıt cismin yüksekliğine eşittir. Cismin yüksekliğine h dersek h = AA = BB = CC = DD olur. Prizmanın Hacmi Hacim=Taban Alanı x Yükseklik

4 Dik prizmanın taban biçimi nasıl olursa olsun, yanal yüzeyi daima bir dikdörtgen olur. Yanal yüzü oluşturan dikdörtgenin alt kenarı tabanın çevresi kadardır. Diğer kenarı ise h yüksekliği kadar olur. Bütün dik prizmaların yanal alanı taban çevresi ile yüksekliğin çarpımıdır. Yanal Alan = Taban çevresi x Yükseklik Bütün Alan ise yanal alan ile iki taban alanının toplamıdır. Tüm Alan = Yanal Alan +. Taban Alanı 1. Dikdörtgenler Prizması Dikdörtgenler prizması yan yüzeyleri karşılıklı ikişer ikişer eş olan altı adet dikdörtgenden oluşan prizmadır. Burada hacim, taban alanı olan (a.b) ile yükseklik olan (c) nin çarpımıdır. Alan ise (a.b), (b.c) ve (a.c) yüzey alanlarının ikişer katlarının toplamıdır. Dikdörtgenler prizmasında birbirine en uzak iki köşeyi birleştiren doğru parçasına cisim köşegeni denir. Cisim köşegeni daima prizmanın içinden geçer. Yüzeylerinden geçmez. Sadece bir yüzeyden geçen köşegene o yüze ait yüzey köşegeni denir. Burada köşegenlerin uzunlukları: AC = A C = BD = B D = e (cisim köşegeni

5 BD = f (Yüzey köşegeni) olsun. Bu durumda; Hacim = a.b.c Alan =(ab+bc+ac) Alan = (ab + bc + ac) Cisim Köşegeni: e = a b c Yüzey Köşegeni:. Kare Prizma f = a b Tabanı kare olan prizmalara kare prizma denir. Yan yüzü dört adet eş dikdörtgenden oluşur. Hacim V a.h Yanal Alan Y.A 4.a.h Alan 4.a.h.a Cisim köşegeni : e = a a h

6 . Küp Bütün ayrıtları birbirine eşit olan dik prizmaya küp denir. Tüm yüzeyleri kare dir. Küpün yüzey köşegenleri birbirine eşittir. Yüzey köşegeni: f = a Cisim köşegeni: e = a 4. Üçgen Prizmalar Hacim = a Alan = 6a Prizmalar tabanlarının şekline göre isim aldıklarından tabanı üçgen olan prizmalara üçgen prizma denir. Üçgen prizmalar tabanını oluşturan üçgene göre isimlenir. a. Eşkenar Üçgen Prizma Eşkenar üçgen prizmanın tabanları eşkenar üçgendir. Yan yüzeyleri ise üç tane eş dikdörtgenden oluşur.tabanı eşkenar üçgen olduğundan

7 Tabanı eşkenar üçgen olduğundan; Taban alanı a. T.A= 4 a. Hacim V=.h 4 Taban çevresi a olduğundan, yanal alan Y.A.ah dır. Buradan tüm alanı b. Dik Üçgen Prizma Dik üçgen prizmanın tabanı dik üçgendir. Yan yüzeyleri ise üç tane dikdörtgenden oluşur. Tabanı dik üçgen olduğundan Taban alanı T.A b.c Hacim V b.c.h a. T.A=.a.h 4 Taban çevresi a + b + c olduğundan, Yanal alan Y.A= (a + b + c). h Tüm Alan A= b. c + (a + b + c). h olur. olur.

8 5. Silindir Tabanı daire olan prizmalara silindir denir. Silindirin yan yüzü dikdörtgen biçimindedir. Dikdörtgenin bir kenarı yükseklik kadar, diğer kenarı ise taban dairesinin çevresi kadardır. Taban alanı T.A= r Hacim V= r.h Taban çevresi r olduğundan yanal alan Y.A r.h olur. Tüm alan A= rh+ r olur. Bir dikdörtgen levha bir kenarı etrafında döndürüldüğünde silindir elde edilir.

9 6. Düzgün Çokgen Prizmalar Tabanı düzgün çokgenlerden oluşan prizmalara düzgün çokgen prizmalar denir. Taban ayrıtları birbirine eşittir. Diğer dik prizmalarda olduğu gibi düzgün çokgen prizmalarda da yanal ayrıt aynı zamanda yüksekliktir. Dik prizmalarda taban şekli ne olursa olsun, hacmi; taban alanı ile yüksekliğin çarpımı ve yanal alanı ise taban çevresi ile yüksekliğin çarpımıdır. EĞİK PRİZMALAR 1. Eğik Kare Prizma Tabanı, bir kenarı a olan kareden oluşan prizma bir yöne doğru taban düzlemi ile açısı yapacak kadar eğilirse eğik kare prizma elde edilir. Prizmanın yanal ayrıtlarına l dersek, Prizmanın yüksekliği h =l.sin olur. Eğik prizmanın yanal ayrıtlarına dik olacak şekilde oluşan kesitine dik kesit denir. Eğik kare prizmanın iki yan yüzeyi dikdörtgen, diğer iki yan yüzeyi ise paralelkenardır. Eğik kare prizmanın dik kesitinin bir kenarı taban kenarı a kadar, diğeri ise, ' a =a.sin kadardır.

10 Buradan; Dik Kesit Alanı = Taban Alanı x Sinα Dik kesit çevresi = a +a.sinα Eğik prizmaların yanal alanlarının toplamı Yanal alan= Dik kesit çevresi x Yanal Ayrıt bağıntısı ile bulunur. Alt ve üst tabanlar ilave edildiğinde tüm alan bulunmuş olur. Bütün prizmalarda olduğu gibi eğik prizmalarda da hacim, taban alanı ile yüksekliğin çarpımı ile bulunur. Hacim = Taban Alanı x Yükseklik Ayrıca dik kesit alanı ile yanal ayrıtın çarpımı ile de hacim bulunabilir. Hacim = Dik Kesit Alanı x Yanal Ayrıt

11 . Eğik Silindir AA = BB = l Yanal ayrıtı l olan ve taban düzlemi ile α açısı yapan eğik silindirde yükseklik, h=l.sinα Dik Kesit Alanı=Taban Alanı x Sinα D.K.A= r.sin Eğik silindirin yan yüz alanı, dik kesit çevresi ile yanal ayrıtının çarpımıdır. Y.A= r.sin.l Bütün eğik prizmalarda olduğu gibi eğik silindir de de hacim, dik kesit alanı ile yanal ayrıtın çarpımına eşittir. Hacim = Taban Alanı x Yükseklik V= r.h r.l.sin SONUÇ: Hacim = Dik Kesit Alanı x Yanal Ayrıt Yanal Alan = Dik Kesit Çevresi x Yanal Ayrıt

12 PİRAMİTLER Bir düzlemde kapalı bir bölge ile bu düzlemin dışında bir T noktası alalım. Kapalı bölgenin tüm noktalarının T noktası ile birleştirilmesi sonucunda oluşan cisme piramit denir. T noktası piramidin tepe noktasıdır. Kapalı bölge ise piramidin tabanıdır. Piramit; tabanı oluşturan şeklin ismiyle adlandırılır. Taban kare ise, kare piramit; taban altıgense altıgen piramit gibi. Eğer, piramidin tabanı düzgün çokgense bu tip piramitlere düzgün piramit denir. T noktasının taban düzlemi üzerindeki dik izdüşümüne H dersek [TH] piramidin yüksekliği olur. TH = h biçiminde yazılır. [TA], [TB], [TC] piramidin yanal ayrıtlarıdır. Piramitlerin hacmi taban alanı ile yüksekliğin çarpımının üçte biri kadardır. V T.Axh

13 1.Kare Piramit Kare piramidin tabanı kare biçimindedir. Yan yüzeyleri ise dört adet ikizkenar üçgenden oluşur. İkizkenar üçgenlerin taban uzunlukları piramidin tabanının bir kenarına eşittir. PH = h piramidin yüksekliğidir. Yan yüz yüksekliği PK =k dır. Tabanının bir kenarı a ise, Yan yüz yüksekliği; PHK dik üçgeninden PK = PH + HK dır. a k h olur. Taban Alan Yükseklik Hacim a.h V Tüm alan yan yüz alanları ile taban alanının toplamına eşittir.

14 . Eşkenar Üçgen Piramit Tabanı eşkenar üçgen olan piramitlere eşkenar üçgen piramit denir. Tabanı eşkenar üçgen olduğundan, a. Taban Alan= dür. Dolayısı ile Eşkenar üçgenin Hacmi a..h V= olur. Tüm alan, yan yüz alanları ile taban alanının toplamına eşittir.

15 .Düzgün Dörtyüzlü Dört yüzü de eşkenar üçgenlerden oluşan cisimdir. Yükseklik, tabanı oluşturan üçgenin ağırlık merkezine iner. Bir ayrıtı a olan düzgün dörtyüzlünün Yan yüz yüksekliği k a a a k olur. cisim yüksekliği ( mavi dik üçgenden) a h k 6 a a h 6 a 6 h olur. Buradan Dügün dörtyüzlünün hacmi; 1 a a 6 V 4 a V olur. 1 Bütün yüzeyler eşkenar üçgen olduğu için toplam alan A= 4.a dır.

16 4. Düzgün Sekizyüzlü Bütün ayrıtları birbirine eş ve yüzeyleri sekiz eşkenar üçgenden oluşan cisme düzgün sekizyüzlü denir. Bir ayrıtına a dersek yan yüz yüksekliği k a dir. Düzgün sekizyüzlünün ortak tabanlı iki piramit oldoğunu düşünürsek; 1 a V a dir. a V olur. Bütün yüzleri eşkanar üçgen olğuğu için düzgün sekizyüzlünün toplam alanı a A 8 dir. 4 A a olur. 5. Düzgün Altıgen Piramit Tabanı düzgün altıgen olan piramide düzgün altıgen piramit denir. Yan yüzeyleri altı adet eş ikizkenar üçgenden oluşur. a Taban Alan 6 dir. 4 1 a Hacim V= h dir. 4

17 KESİK PİRAMİT Bir piramit tabana paralel bir düzlem ile kesilirse,tabanla düzlem arasında kalan piramit parçasına kesik piramit ve tepe noktası ie düzlem arasında kalan parçasına da küçük piramit denir. Küçük piramit başlangıçtaki büyük piramitin benzeridir. ' TA ' A 'B' h k TA AB h A(A 'B ' C 'D ') A(ABCD) V ' k V k Kesik piramitin hacmi V-V olur.ayrıca Taban alanı A, kesit alanı A olan bir kesik piramitin hacmi: h h' V V' (A A.A' A') olur. UYARI: Bİr piramit, eş yükskliklerde paralel düzlemlerle kesilmiş olsun.hacimler oranı benzerlik oranının küpü olduğundan elde edilen hacimler, v 7v, 19v,7v,61v,.. ile orantılıdır.

18 KONİ Tabanı daire biçiminde olan piramide koni adı verilir. Taban alanı, bir daire olduğu için Burada; Taban yarıçapı OB = r Cisim yüksekliği PO = h olur. PA = PB = l uzunluğuna ana doğru denir. POB dik üçgeninde, h + r = l bağıntısı vardır. Koninin yanal alanı bir daire dilimidir. daire diliminin merkez açısına dersek; Ana doğru ve taban yarıçap arasında, r = bağıntısı vardır, 60 l dir Daire diliminin alanı, yay uzunluğu ile yarıçapın çarpımının yarısıdır. Yay uzunluğu taban çevresine eşit olduğundan, Yanal alan Y.A= rl dir. Tüm alan bulunurken, taban alanı da ilave edilir. Tüm alan A= r rl olur. Konini hacmi ise taban alanı ile cisim yüksekliğinin çarpımının çarpımının 1/ ü dür. r h V= olur. T.A= r

19 Yükseklikleri ve taban yarıçapları eşit olan iki cismin hacimleri de birbirine eşittir. Üçgensel şekiller bir kenarı etrafında döndürüldüğünde koni elde edilir.şekildeki ABC dik üçgeninin AB kenarı etrafında döndürülmesi le BC yarıçaplı ve yüksekliği AB olan koni elde edilir.

20 KESİK KONİ Bir koni tabana paralel bir düzlemle kesildiğinde,tabanla düzlem arasında kalan parçasına kesik koni,teepe noktası ile düzlem arasında kalan parçasına da küçük koni adı verilir. ' ' TA ' A 'B ' r h k TA AB r h Konilerin taban alanları sırası ile A ve A olsun. A ' A V ' V k k ve, olur. Kesik koninin hacmi, V-V ile bulunur. Ayrıca, kesik koninin hacmi hesaplanabilir. h h' V V' (r r.r ' r ' ) formülü ile de

21 KÜRE Uzayda bir noktadan eşit uzaklıktaki noktaların geometrik yerine küre yüzeyi denir. Küre yüzeyinin sınırladığı cisme küre adı verilir. Sabit noktaya kürenin merkezi, merkezin küre yüzeyine uzaklığına da kürenin yarıçapı denir. O merkezli R yarıçaplı kürede; Alan A= 4 r 4 r Hacim V= tür 1. Küre Kuşağı Bir küre yüzeyinin paralel iki düzlem arasınada kalan bölümüne, küre kuşağı denir. Küre kuşağının alanı: Alan A= Rh. küre tabakası dir. Bir kürede, paralel iki düzlem ile küre kuşağının sınırladığı cisme küre tabakası denir. Küre tabakasının hacmi: 1 r V= h(r r h ) 6 dir.

22 . Küre Kapağı Bir küre merkezinden OP uzaklıkta bir düzlemle kesildiğinde kesit alanının daire şeklinde olduğu görülür. Kesilip çıkarılan kısma küre kapağı denir. Kesitin merkezinden uzaklığına OP, kesitin yarıçapına r ve kürenin yarıçapına R dersek Küre kapağının alanı: Alan A= Rh 4. Küre Dilimi dir. Kürenin AB çapından geçen İki yarım düzlem arasında kalan bölümüne, küre dilimi denir. Dilimin Alanı: Alan A= 4 R R 60 A= R 1 dır. 90 Dilimin Hacmi: 4 R Hacim V= R olur

23 5. Küre Parçası Küreyi kesen düzlemle, küre kapağı arasında kalan cisme, küre parçası denir. Küre parçasının Hacmi: 1 Hacim V= h (R-h) 6. Küre Kesmesi dır. Bir daire kesmesinin,kendisini kesmeyen bir çap etrafında dönmesinden elde edilen cisme, küre kesmesi denir. Yandaki şekil,obc diliminin AB etrafında 60 dönmesi ile elde edilmiştir.bu cisim; bir küre kapağı ve koni yüseyi tarafından sınırlandırılmıştır. Bu küre kesmesinin Hacmi: Hacim V= R h dır.

Eğer piramidin tabanı düzgün çokgense bu tip piramitlere düzgün piramit denir.

Eğer piramidin tabanı düzgün çokgense bu tip piramitlere düzgün piramit denir. PİRAMİTLER Bir düzlemde kapalı bir bölge ile bu düzlemin dışında bir T noktası alalım. Kapalı bölgenin tüm noktalarının T noktası ile birleştirilmesi sonucunda oluşan cisme piramit denir. T noktası piramidin

Detaylı

PİRAMİTLER ENFORMATİK BİLGİSAYAR DERSİ

PİRAMİTLER ENFORMATİK BİLGİSAYAR DERSİ 2011 PİRAMİTLER ENFORMATİK BİLGİSAYAR DERSİ 15.12.2011 ĠÇĠNDEKĠLER ÜNİTE HAKKINDA GENEL BİLGİ... 3 KONULAR... 4 PİRAMİTLER... 4 KARE PİRAMİT... 5 EŞKENAR ÜÇGEN PİRAMİT... 6 DÜZGÜN DÖRTYÜZLÜ... 6 DÜZGÜN

Detaylı

9. SINIF Geometri TEMEL GEOMETRİK KAVRAMLAR

9. SINIF Geometri TEMEL GEOMETRİK KAVRAMLAR TEMEL GEOMETRİK KAVRAMLAR 9. SINIF Geometri Amaç-1: Nokta, Doğru, Düzlem, Işın ve Uzayı Kavrayabilme. 1. Nokta, doğru, düzlem ve uzay kavramlarım açıklama. 2. Farklı iki noktadan geçen doğru sayışım söyleme

Detaylı

V =, (V = hacim, m = kütle, d = özkütle) Bu bağıntı V = olarak da yazılabilir G: ağırlık (yerçekimi kuvveti) G = mg p = özgül ağırlık p = dg dir.

V =, (V = hacim, m = kütle, d = özkütle) Bu bağıntı V = olarak da yazılabilir G: ağırlık (yerçekimi kuvveti) G = mg p = özgül ağırlık p = dg dir. Geometrik Cisimlerin Hacimleri Uzayda yer kaplayan (üç boyutlu) nesnelere cisim denir. Düzgün geometrik cisimlerin hacimleri bağıntılar yardımıyla bulunur. Eğer cisim düzgün değilse cismin hacmi cismin

Detaylı

PİRAMİT, KONİ VE KÜRENİN ALANLARI

PİRAMİT, KONİ VE KÜRENİN ALANLARI PİRAMİT, KNİ VE KÜRENİN ALANLARI KAZANIMLAR Piramit kavramı Piramitin yüzey alanı Kesik piramitin yüzey alanı Düzgün dörtyüzlü kavramı Piramitin dönme simetri açısı Koni kavramı Koninin yüzey alanı Kesik

Detaylı

UZAY GEOMETRİ. Nokta : «.» Biçiminde ifade edilir ve genellikle büyük harfle gösterilir. Nokta boyutsuzdur. «.» nokta, «.

UZAY GEOMETRİ. Nokta : «.» Biçiminde ifade edilir ve genellikle büyük harfle gösterilir. Nokta boyutsuzdur. «.» nokta, «. UZAY GEOMETRİ BAZI KAVRAM ve TANIMLAR Geometride nokta, doğru, düzlem ve uzay gibi bazı kavramlar tanımsız olarak kabul edilir. Kalemin veya sivri bir şeyin ucunun bıraktığı ize nokta diyebiliriz. Cetvelin

Detaylı

10. ÜNİTE HACİM VE SIVI ÖLÇÜLERİ, KATI CİSİMLERİN ALAN VE HACİMLERİ MESLEKİ UYGULAMALARI

10. ÜNİTE HACİM VE SIVI ÖLÇÜLERİ, KATI CİSİMLERİN ALAN VE HACİMLERİ MESLEKİ UYGULAMALARI 10. ÜNİTE HACİM VE SIVI ÖLÇÜLERİ, KATI CİSİMLERİN ALAN VE HACİMLERİ MESLEKİ UYGULAMALARI KONULAR HACİM VE HACİM ÖLÇÜLERİ KAVRAMI HACİM ÖLÇÜLERİ BİRİMLERİ 1. Metreküpün Katları As Katları 2. Birimlerin

Detaylı

KATI CİSİMLER DİK PRİZMALARIN ALAN VE HACİMLERİ 1. DİKDÖRTGENLER PRİZMASI. Uyarı PRİZMA. Üst taban. Ana doğru. Yanal. Yanal Alan. yüz. Yanal.

KATI CİSİMLER DİK PRİZMALARIN ALAN VE HACİMLERİ 1. DİKDÖRTGENLER PRİZMASI. Uyarı PRİZMA. Üst taban. Ana doğru. Yanal. Yanal Alan. yüz. Yanal. TI İSİM İZM İZM irbirine paralel iki düzlem içinde yer alan iki eş çokgensel bölgenin tüm noktalarının karşılıklı olarak birleştirilmesiyle elde edilen cisme İZM denir. İ İZMIN N V HİMİ Tüm dik rizmalarda

Detaylı

TEST: 6. Verilenlere göre EF =? A) 1 B) 2 C) 3 D) 4 E) 5 A) 7 B) 8 C) 10 D) 11 E) 12. x eksenini 5 te, y eksenini 7 de kesen doğrunun denklemi

TEST: 6. Verilenlere göre EF =? A) 1 B) 2 C) 3 D) 4 E) 5 A) 7 B) 8 C) 10 D) 11 E) 12. x eksenini 5 te, y eksenini 7 de kesen doğrunun denklemi TEST: 6 5. 1. Verilenlere göre EF =? A) 1 B) 2 C) 3 D) 4 E) 5 A) 7 B) 8 C) 10 D) 11 E) 12 2. 6. x eksenini 5 te, y eksenini 7 de kesen doğrunun denklemi aşağıdakilerden hangisidir? A) 7x+5y=35 B) 7x-5y=35

Detaylı

2014 LYS GEOMETRİ 3. A. parabolü ile. x 1 y a 9 çemberinin üç noktada kesişmesi için a kaç olmalıdır?

2014 LYS GEOMETRİ 3. A. parabolü ile. x 1 y a 9 çemberinin üç noktada kesişmesi için a kaç olmalıdır? 014 LYS GOMTRİ 1. y 1 1 y a 9 çemberinin üç noktada kesişmesi için a kaç olmalıdır? parabolü ile. O merkezli çeyrek çemberde O deltoid olduğuna göre, taralı alan kaç birim karedir? O. d:y a b doğrusu -ekseni

Detaylı

TEK ve ÇOK YÜZEYLİ KAPALI YÜZEYLER ve KATI CİSİMLER 1 TEST

TEK ve ÇOK YÜZEYLİ KAPALI YÜZEYLER ve KATI CİSİMLER 1 TEST ve Ç ÜLİ PLI ÜLR ve S I İSİMLR.. P(a,, ) ukarıdaki dik koordinat sisteminde (,, ) olduğuna göre, dikdörtgenler prizmasının hacmi kaç br tür? nalitik uzayda yukarıdaki dikdörtgenler prizmasının yüzey alanı

Detaylı

Katı Cisimlerin Yü zey Alanı Ve Hacmi

Katı Cisimlerin Yü zey Alanı Ve Hacmi Katı Cisimlerin Yü zey Alanı Ve Hacmi Dikdörtgenler Prizması Hacmi ve Yüzey Alanı Paralelkenar Prizmanın Hacmi Kürenin Hacmi ve Kürenin Yüzey Alanı Kürenin temel elemanları; bir merkez noktası, bu merkez

Detaylı

a. İçbükey (konkav) çokgenler: Bir çokgenin bazı kenar doğruları çokgeni kesiyorsa bu tür çokgenlere İçbükey çokgen denir.

a. İçbükey (konkav) çokgenler: Bir çokgenin bazı kenar doğruları çokgeni kesiyorsa bu tür çokgenlere İçbükey çokgen denir. ÇOKGENLER 1. Çokgen Bir düzlemde birbirinden farklı ve herhangi üçü doğrusal olmayan A 1, A 2, A 3, gibi n tane (n 3) noktayı ikişer ikişer birleştiren doğru parçalarının oluşturduğu kapalı şekillere çokgen

Detaylı

A A A A A A A A A A A

A A A A A A A A A A A LYS 1 GOMTRİ TSTİ 1. u testte sırasıyla Geometri (1 ) nalitik Geometri (3 30) ile ilgili 30 soru vardır.. evaplarınızı, cevap kâğıdının Geometri Testi için ayrılan kısmına işaretleyiniz. 1. [ [ [ [] []

Detaylı

17. BÖLÜM ÜÇ BOYUTLU CİSİMLER (SİLİNDİR, KONİ ve KÜRE)

17. BÖLÜM ÜÇ BOYUTLU CİSİMLER (SİLİNDİR, KONİ ve KÜRE) 7. BÖLÜM ÜÇ BOYUTLU CİSİMLER (SİLİNDİR, KONİ ve KÜRE) SİLİNDİR 7.. Tanım: Uzayda düzlemsel bir eğri ile bu eğrinin düzlemine paralel olmayan bir doğrusuna paralel olarak çizilen doğruların oluşturduğu

Detaylı

1

1 KATI CĐSĐMLERĐN ALAN VE HACĐMLERĐNĐN ANLATIMI (YÜZEY ÖLÇÜLERĐ VE HACĐMLER) 1-) PRĐZMALAR: Alt ve üst tabana paralel kesitleri eşit olan katı cisimlere prizma denir.(uzayda bir yer kaplayan, hacmi ve çeşitli

Detaylı

Üçgende Açı ABC bir ikizkenar. A üçgen 30

Üçgende Açı ABC bir ikizkenar. A üçgen 30 1. 4. bir ikizkenar üçgen 0 = m () = 0 m () = 70 70 Kıble : Müslümanların namaz kılarken yönelmeleri gereken, Mekke kentinde bulunan Kabe'yi gösteren yön. arklı iki ülkede bulunan ve noktalarındaki iki

Detaylı

YGS GEOMETRİ DENEME 1

YGS GEOMETRİ DENEME 1 YGS GTİ 1 G 1) G ) şağıdaki adımlar takip edilerek geometrik çizim yapıl- bir üçgen mak isteniyor = = m() = 7 o = 9 cm, = 1 cm, m() = 90 olacak şekilde dik üçgeni çiziliyor = eşitliğini sağlayan Î [] noktası

Detaylı

GEOMETR 7 ÜN TE V KÜRE

GEOMETR 7 ÜN TE V KÜRE ÜN TE V KÜRE 1. KÜRE a. Tan m b. Bir Kürenin Belirli Olmas c. Bir Küre ile Bir Düzlemin Ara Kesiti 2. KÜREN N ALANI 3. KÜREN N HACM 4. KÜREDE ÖZEL PARÇALAR a. Küre Kufla I. Tan m II. Küre Kufla n n Alan

Detaylı

Geometrik Cisimlerin Hacimleri

Geometrik Cisimlerin Hacimleri 1 Ülkemizin kongre ve fuar merkezlerinden biri, Antalya daki Cam Piramit Kongre ve Fuar Merkezi dir. Renkli ısıcamlı uzay çatı ile örülerek piramit şeklinde inşa edilmiştir. 2 Şekildeki piramidin tabanı

Detaylı

BASIN KİTAPÇIĞI ÖSYM

BASIN KİTAPÇIĞI ÖSYM BASIN KİTAPÇIĞI 00000000 AÇIKLAMA 1. Bu kitapç kta Lisans Yerle tirme S nav -1 Geometri Testi bulunmaktad r. 2. Bu test için verilen toplam cevaplama süresi 45 dakikadır. 3. Bu kitapç ktaki testlerde yer

Detaylı

1995 ÖSS. 6. Toplamları 621 olan iki pozitif tamsayıdan büyüğü küçüğüne bölündüğünde bölüm 16, kalan ise 9 dur. Buna göre, büyük sayı kaçtır?

1995 ÖSS. 6. Toplamları 621 olan iki pozitif tamsayıdan büyüğü küçüğüne bölündüğünde bölüm 16, kalan ise 9 dur. Buna göre, büyük sayı kaçtır? 99 ÖSS.. 0, 0, 0,44. işleminin sonucu A) 0, B) 0,4 C) D) 4 E) 0 6. Toplamları 6 olan iki pozitif tamsayıdan büyüğü küçüğüne bölündüğünde bölüm 6, kalan ise 9 dur. Buna göre, büyük sayı A) 70 B) 7 C) 80

Detaylı

T.C. Ölçme, Seçme ve Yerleştirme Merkezi

T.C. Ölçme, Seçme ve Yerleştirme Merkezi T.C. Ölçme, Seçme ve Yerleştirme Merkezi LİSANS YERLEŞTİRME SINAVI-1 GEOMETRİ TESTİ 19 HAZİRAN 2016 PAZAR Bu testlerin her hakkı saklıdır. Hangi amaçla olursa olsun, testlerin tamamının veya bir kısmının

Detaylı

2003 ÖSS Soruları. işleminin sonucu kaçtır? ifadesinin sadeleştirilmiş biçimi aşağıdakilerden hangisidir? A) 1 B) 7 C) 9 D) 11 E) 21

2003 ÖSS Soruları. işleminin sonucu kaçtır? ifadesinin sadeleştirilmiş biçimi aşağıdakilerden hangisidir? A) 1 B) 7 C) 9 D) 11 E) 21 00 ÖSS Soruları,, 0,0. + + 0, 0, 0,00 işleminin sonucu kaçtır? ) ) 7 ) 9 ) ). ( y )( + y+ y ) ( y) c + m y ifadesinin sadeleştirilmiş biçimi aşağıdakilerden hangisidir? ) y ) + y ) y y + y ) ) + y y. (0,

Detaylı

GEOMETR 7 ÜN TE II P RAM T

GEOMETR 7 ÜN TE II P RAM T ÜN TE II P RAM T 1. P RAM TLER N TANIMI. DÜZGÜN P RAM T a. Tan m b. Düzgün Piramidin Özelikleri. P RAM D N ALANI a. Düzgün Olmayan Piramidin Alan b. Düzgün Piramidin Alan 4. P RAM D N HACM 5. DÜZGÜN DÖRTYÜZLÜ

Detaylı

UZAYDA VEKTÖRLER ve DOĞRU DÜZLEM

UZAYDA VEKTÖRLER ve DOĞRU DÜZLEM UD VEKTÖRLER ve DĞRU DÜLEM. ir küpün ayrıtlarını taşıyan doğrular kaç farklı doğrultu oluşturur? ) ) ) D) 7 E) 8. ir düzgün altıgenin en uzun köşegeni ile aynı doğrultuda kaç farklı kenar vardır?. şağıdaki

Detaylı

GEOMETR 7 ÜN TE IV KON

GEOMETR 7 ÜN TE IV KON ÜN TE IV KON 1. KON K YÜZEY VE TANIMLAR 2. KON a. Tan m b. Dik Dairesel Koni I. Tan mlar II. Dik Dairesel Koninin Özelikleri III. Dönel Koni c. E ik Dairesel Koni 3. D K DA RESEL KON N N ALANI 4. DA RESEL

Detaylı

DİKKAT! SORU KİTAPÇIĞINIZIN TÜRÜNÜ A OLARAK CEVAP KÂĞIDINIZA İŞARETLEMEYİ UNUTMAYINIZ. MATEMATİK SINAVI GEOMETRİ TESTİ

DİKKAT! SORU KİTAPÇIĞINIZIN TÜRÜNÜ A OLARAK CEVAP KÂĞIDINIZA İŞARETLEMEYİ UNUTMAYINIZ. MATEMATİK SINAVI GEOMETRİ TESTİ İKKT! SRU KİTPÇIĞINIZIN TÜRÜNÜ LRK VP KÂĞIINIZ İŞRTLMYİ UNUTMYINIZ. MTMTİK SINVI GMTRİ TSTİ 1. u testte 30 soru vardır. 2. evaplarınızı, cevap kâğıdının Geometri Testi için ayrılan kısmına işaretleyiniz.

Detaylı

9. ÜNİTE ÜÇGENLER, ÇOKGENLER VE MESLEKÎ UYGULAMALARI

9. ÜNİTE ÜÇGENLER, ÇOKGENLER VE MESLEKÎ UYGULAMALARI 9. ÜNİTE ÜÇGENLER, ÇOKGENLER VE MESLEKÎ UYGULAMALARI KONULAR DİK ÜÇGENLERDE METRİK BAĞINTILAR 1. Pythagoras (Pisagor) Bağıntısı. Euclides (öklit) Bağıntısı 3. Pisagor ve öklit Bağıntıları ile İlgili Problemler

Detaylı

TEST 1. ABCD bir dörtgen AF = FB DE = EC AD = BC D E C. ABC bir üçgen. m(abc) = 20. m(bcd) = 10. m(acd) = 50. m(afe) = 80.

TEST 1. ABCD bir dörtgen AF = FB DE = EC AD = BC D E C. ABC bir üçgen. m(abc) = 20. m(bcd) = 10. m(acd) = 50. m(afe) = 80. 11 ÖLÜM SİZİN İÇİN SÇTİLR LRİMİZ 1 80 0 bir dörtgen = = = m() = 80 m() = 0 Verilenlere göre, açısının ölçüsü kaç derecedir? 0 10 0 bir üçgen m() = 0 m() = 10 m() = 0 Yukarıda verilenlere göre, oranı kaçtır?

Detaylı

TEST. Düzgün Çokgenler. 4. Bir iç açısı 140 olan düzgün çokgenin iç açılar 5. A B. 2. Bir dış açısı Çevresi. toplamı kaç derecedir?

TEST. Düzgün Çokgenler. 4. Bir iç açısı 140 olan düzgün çokgenin iç açılar 5. A B. 2. Bir dış açısı Çevresi. toplamı kaç derecedir? üzgün Çokgenler 7. Sınıf Matematik Soru ankası S 49 1. 4. ir iç açısı 140 olan düzgün çokgenin iç açılar toplamı kaç derecedir? ) 70 ) 900 ) 1080 ) 160 Şekilde verilen düzgün çokgenine göre, I., köşesine

Detaylı

TASARI GEOMETRİ SINAV SORULARI

TASARI GEOMETRİ SINAV SORULARI TASARI GEOMETRİ SINAV SORULARI 1. Alın iz düşümüne parelel veya çakışık olan doğrular profilde hangi ı verir? 9. Doğrunun düzlemi deldiği noktayı düzlem geçirme metodu ile bulunuz. A) Profil ve alınla

Detaylı

Küpoktahedron. İkosahedron. Çember. Eşkenar üçgen. İkosidodekahedron. Kare. İkizkenar üçgen. Dik üçgen. Simit ve Peynir'le Geometri

Küpoktahedron. İkosahedron. Çember. Eşkenar üçgen. İkosidodekahedron. Kare. İkizkenar üçgen. Dik üçgen. Simit ve Peynir'le Geometri İkosahedron Küpoktahedron Hazırlayan: Banu Binbaşaran Tüysüzoğlu Çizim: Bilgin Ersözlü İkosidodekahedron Çember Eşkenar üçgen İkizkenar üçgen Dik üçgen Kare Küpoktahedron Üçgen şeklinde sekiz, kare şeklinde

Detaylı

6. ABCD dikdörtgeninde

6. ABCD dikdörtgeninde Çokgenler ve örtgenler Test uharrem Şahin. enar sayısı ile köşegen sayısı toplamı olan düzgün çokgenin bir dış açısı kaç derecedir? ) ) 0 ) ) 0 ). Şekilde dikdörtgeninin içindeki P noktasının üç köşeye

Detaylı

3. Ünsal Tülbentçi Matematik Yarışması Mayıs 2014 8.Sınıf Sayfa 1

3. Ünsal Tülbentçi Matematik Yarışması Mayıs 2014 8.Sınıf Sayfa 1 . Alanı 36 5 olan bir ABC ikizkenar üçgeninde ==2 ise bu üçgende B den AC ye inilen dikmenin ayağının C noktasına olan uzaklığı nedir? ) 2,8) 3) 3,2 ) 3,7 ) 4, 2. Ayrıt uzunlukları 4, 0 ve 4 5 olan dikdörtgenler

Detaylı

A A A A A A A A A A A

A A A A A A A A A A A LYS 1 GMTRİ TSTİ 1. u testte sırasıyla Geometri (1 ) nalitik Geometri (3 30) ile ilgili 30 soru vardır.. evaplarınızı, cevap kâğıdının Geometri Testi için ayrılan kısmına işaretleyiniz. 1. bir üçgen =

Detaylı

MAKSİMUM-MİNİMUM PROBLEMLERİ

MAKSİMUM-MİNİMUM PROBLEMLERİ 1 MAKSİMUM-MİNİMUM PROBLEMLERİ En büyük veya en küçük olması istenen değer (uzunluk, alan, hacim, vb.) tek değişkene bağlı bir fonksiyon olacak şekilde düzenlenir. Bu fonksiyonun türevinden ekstremum noktasının

Detaylı

ÜÇ BOYUTLU CİSİMLER-1

ÜÇ BOYUTLU CİSİMLER-1 ÜÇ BOYUTLU CİSİMLER-1 PRİZMA 1. Bir dikdörtgenler prizmasının boyutları 3,5,7 ile orantılıdır. Bu prizmanın tüm alanı 568 cm 2 olduğuna göre hacmi kaç cm 3 dür? A) 440 B) 540 C) 840 D) 740 E) 640 6. Bir

Detaylı

LYS 2016 GEOMETRİ ÇÖZÜMLERİ

LYS 2016 GEOMETRİ ÇÖZÜMLERİ LYS 016 GEOMETRİ ÇÖZÜMLERİ Dikdörtgenin içinde köşegeni çizerek alanı iki eşit parçaya ayırabiliriz. 7 / 36 BED üçgeni ile DEC üçgeninin alanlarının oranı, tabanları arasındaki orana eşittir. Buna göre;

Detaylı

12. SINIF GEOMETRİ KONU ÖZETİ

12. SINIF GEOMETRİ KONU ÖZETİ 2012 12. SINIF GEOMETRİ KONU ÖZETİ TOLGA YAVAN Matematik Öğretmeni ÜNİTE 1: UZAYDA VEKTÖRLER Hepsi birden aynı düzlemde olmayan tüm noktaların kümesine uzay denir. Uzayda farklı iki noktadan bir ve yalnız

Detaylı

TEST. Dik Prizmalar. 1. Ayrıtlarının uzunlukları 10 cm, 12 cm ve 15 cm. 2. Ayrıtlarının uzunlukları toplamı 120 cm olan küp 5. A B 6.

TEST. Dik Prizmalar. 1. Ayrıtlarının uzunlukları 10 cm, 12 cm ve 15 cm. 2. Ayrıtlarının uzunlukları toplamı 120 cm olan küp 5. A B 6. ik Prizmalar 8. Sınıf Matematik Soru ankası TEST 75 1. yrıtlarının uzunlukları, 1 cm ve 1 olan dikdörtgenler prizması şeklindeki bir kolinin bütün yüzeyleri kağıt ile kaplanacaktır. 4. 8 cm 1 una göre,

Detaylı

Page 1. İz Düşüm Çeşitleri ve Metotları

Page 1. İz Düşüm Çeşitleri ve Metotları 4. İz Düşümler TEKNİK BİLİMLER MESLEK YÜKSEKOKULU Teknik Resim Genel Bilgi Kullandığımız bir çok eşya ve makineyi veya bunlara ait parçaların imal edilebilmesi için şekillerini ifade eden resimlerinin

Detaylı

GEOMETRİ TESTİ LYS 1 / GEOMETRİ. ABC bir eşkenar üçgen. G, ABC üçgeninin ağırlık AB = 3 CD

GEOMETRİ TESTİ LYS 1 / GEOMETRİ. ABC bir eşkenar üçgen. G, ABC üçgeninin ağırlık AB = 3 CD LYS 1 / OMTRİ OMTRİ TSTİ 1. u testte 0 soru vardır. 2. u testin cevaplanması için tavsiye olunan süre 60 dakikadır. 1.. bir eşkenar üçgen 1 4 2 5, üçgeninin ağırlık merkezi = x irim karelere bölünmüş düzlemde

Detaylı

CEVAP ANAHTARI 1-B 2-C 3-C 4-C 5-B 6-E 7-D 8-E 9-C 10-E 11-E 12-A 13-A 1-A 2-D 3-C 4-D 5-D 6-B 7-D 8-B 9-D 10-E 11-D 12-C

CEVAP ANAHTARI 1-B 2-C 3-C 4-C 5-B 6-E 7-D 8-E 9-C 10-E 11-E 12-A 13-A 1-A 2-D 3-C 4-D 5-D 6-B 7-D 8-B 9-D 10-E 11-D 12-C 1. BÖLÜM: AÇISAL KAVRAMLAR VE DOĞRUDA AÇILAR 1-B 2-C 3-C 4-C 5-B 6-E 7-D 8-E 9-C 10-E 11-E 12-A 13-A 1-E 2-A 3-E 4-C 5-C 6-C 7-D 8-D 9-D 10-E 11-B 12-C 2. BÖLÜM: ÜÇGENDE AÇILAR 1-A 2-D 3-C 4-D 5-D 6-B

Detaylı

9. SINIF GEOMETRİ KONU ÖZETİ

9. SINIF GEOMETRİ KONU ÖZETİ 2012 9. SINIF GEOMETRİ KONU ÖZETİ TOLGA YAVAN Matematik Öğretmeni 1. ÜNİTE: TEMEL GEOMETRİK KAVRAMLAR VE KOORDİNAT GEOMETRİYE GİRİŞ Nokta: Herhangi bir büyüklüğü olmayan ve yer belirten geometrik terimdir.

Detaylı

LYS Y ĞRU MTMTİK TSTİ. u testte Matematik ile ilgili 0 soru vardır.. evaplarınızı, cevap kâğıdının Matematik Testi için ayrılan kısmına işaretleyiniz.. u testteki süreniz 7 dakikadır.., y reel sayılar

Detaylı

ÖRNEK: Öteleme ile oluşturulmuş bir süsleme. ÖRNEK: 2)GEOMETRİK HAREKETLER

ÖRNEK: Öteleme ile oluşturulmuş bir süsleme. ÖRNEK: 2)GEOMETRİK HAREKETLER ÖTELEME: Bir şeklin duruşunun, biçiminin, boyutlarının bozulmadan yer değiştirmesine o şekli öteleme denir. Ötelemede biçim, boyut, yön değişmez. Yer değişir. Bir şekil ötelendiği zaman şekil üzerindeki

Detaylı

1. Analitik düzlemde P(-4,3) noktasının eksenlerden ve O başlangıç noktasından uzaklığı kaç birimdir?

1. Analitik düzlemde P(-4,3) noktasının eksenlerden ve O başlangıç noktasından uzaklığı kaç birimdir? HAZİNE- HAZİNE-2 O başlangıç noktasında dik kesişen iki sayı ekseninin oluşturduğu sisteme koordinat sistemi denir. Bir noktanın x-eksenindeki dik izdüşümüne karşılık gelen x sayısına noktanın apsis i

Detaylı

Geometrik Örüntüler. Geometrik Cisimlerin Yüzeyleri Geometrik Cisimler Prizmaların Benzer ve Farklı Yönleri Geometrik Şekiller. Geometrik Örüntüler

Geometrik Örüntüler. Geometrik Cisimlerin Yüzeyleri Geometrik Cisimler Prizmaların Benzer ve Farklı Yönleri Geometrik Şekiller. Geometrik Örüntüler Geometrik Cisimler ve Şekiller Geometrik Örüntüler Geometride Temel Kavramlar Uzamsal İlişkiler Geometrik Cisimlerin Yüzeyleri Geometrik Cisimler Prizmaların Benzer ve Farklı Yönleri Geometrik Şekiller

Detaylı

T.C. MİLLÎ EĞİTİM BAKANLIĞI ÖLÇME, DEĞERLENDİRME VE SINAV HİZMETLERİ GENEL MÜDÜRLÜĞÜ SINIF DEĞERLENDİRME SINAVI - 4

T.C. MİLLÎ EĞİTİM BAKANLIĞI ÖLÇME, DEĞERLENDİRME VE SINAV HİZMETLERİ GENEL MÜDÜRLÜĞÜ SINIF DEĞERLENDİRME SINAVI - 4 T.. MİLLÎ EĞİTİM AKANLIĞI 015-016 8.SINIF DEĞERLENDİRME SINAVI - 4 015-016 8.SINIF DEĞERLENDİRME SINAVI - 4 MATEMATİK Adı ve Soyadı :... Sınıfı :... Öğrenci Numarası :... SORU SAYISI : 0 SINAV SÜRESİ :

Detaylı

12. SINIF. Uzayda Vektörler-1 TEST. 1. Uzaydaki doğru parçaları için aşağıdaki önermelerden hangisi yanlıştır?

12. SINIF. Uzayda Vektörler-1 TEST. 1. Uzaydaki doğru parçaları için aşağıdaki önermelerden hangisi yanlıştır? 1. SINIF Uada Vektörler-1 1. Uadaki doğru parçaları için aşağıdaki önermelerden hangisi anlıştır? Akırı doğru parçaları farklı dülemlerdedir. Akırı doğru parçaları farklı doğrultudadır. İki doğru parçasının

Detaylı

1998 ÖSS A) 30 B) 27 C) 18 D) 9 E) 5 A) 8000 B) 7800 C) 7500 D) 7200 E) 7000

1998 ÖSS A) 30 B) 27 C) 18 D) 9 E) 5 A) 8000 B) 7800 C) 7500 D) 7200 E) 7000 998 ÖSS. Rakamları sıfırdan farklı, beş basamaklı bir sayının yüzler ve binler basamağındaki rakamlar yer değiştirildiğinde elde edilen yeni sayı ile eski sayı arasındaki fark en çok kaç olabilir? 6. ve

Detaylı

T.C. Ölçme, Seçme ve Yerleştirme Merkezi

T.C. Ölçme, Seçme ve Yerleştirme Merkezi T.C. Ölçme, Seçme ve Yerleştirme Merkezi LİSANS YERLEŞTİRME SINAVI-1 MATEMATİK TESTİ 11 HAZİRAN 2017 PAZAR Bu testlerin her hakkı saklıdır. Hangi amaçla olursa olsun, testlerin tamamının veya bir kısmının

Detaylı

ÜÇGEN VE KENARLARI ARASINDA BAĞINTILAR

ÜÇGEN VE KENARLARI ARASINDA BAĞINTILAR ÜÇGEN VE KENARLARI ARASINDA BAĞINTILAR 1. Bir üçgende ölçüsü büyük olan açının karşısındaki kenar uzunluğu, ölçüsü küçük olan açının karşısındaki kenar uzunluğundan daha büyüktür. ABC üçgeninde m(a) >

Detaylı

ÇEMBER KARMA / TEST-1

ÇEMBER KARMA / TEST-1 ÇMR RM / S-... Verilenlere göre, m( ) ) ) 0 ) ) 0 ) Verilenlere göre, m(g ) ) ) ) 6 ) 0 ) 60 0 0 G 0 ) ) ) ) ) 8 L 0 [] [] = {} m( ) = 0 m() = 0 ve üçgenlerinin çevrel çemberi m( ) = 0 m() = 0 m() = üçgen

Detaylı

T.C. Ölçme, Seçme ve Yerleştirme Merkezi

T.C. Ölçme, Seçme ve Yerleştirme Merkezi T.C. Ölçme, Seçme ve Yerleştirme Merkezi LİSANS YERLEŞTİRME SINAVI-1 MATEMATİK TESTİ 11 HAZİRAN 2017 PAZAR Bu testlerin her hakkı saklıdır. Hangi amaçla olursa olsun, testlerin tamamının veya bir kısmının

Detaylı

MATEMATİK TESTİ LYS YE DOĞRU. 1. Bu testte Matematik ile ilgili 50 soru vardır.

MATEMATİK TESTİ LYS YE DOĞRU. 1. Bu testte Matematik ile ilgili 50 soru vardır. MTMTİK TSTİ LYS-. u testte Matematik ile ilgili 0 soru vardır.. evaplarınızı, cevap kâğıdının Matematik Testi için ayrılan kısmına işaretleyiniz.. u testteki süreniz 7 dakikadır.. a, b, c birer reel sayı

Detaylı

GEOMETR 7 ÜN TE III S L ND R

GEOMETR 7 ÜN TE III S L ND R ÜN TE III S L ND R 1. S L ND R K YÜZEY VE TANIMLAR 2. S L ND R a. Tan m b. Silindirin Özelikleri 3. DA RESEL S L ND R N ALANI a. Dik Dairesel Silindirin Alan I. Dik Dairesel Silindirin Yanal Alan II. Dik

Detaylı

EKSTREMUM PROBLEMLERİ. Örnek: Çözüm: Örnek: Çözüm:

EKSTREMUM PROBLEMLERİ. Örnek: Çözüm: Örnek: Çözüm: EKSTREMUM PROBLEMLERİ Ekstremum Problemleri Bu tür problemlerde bir büyüklüğün (çokluğun alabileceği en büyük (maksimum değer ya da en küçük (minimum değer bulunmak istenir. İstenen çokluk bir değişkenin

Detaylı

TEMEL SORU KİTAPÇIĞI ÖSYM

TEMEL SORU KİTAPÇIĞI ÖSYM 1-16062012-1-1161-1-00000000 TEMEL SORU KİTAPÇIĞI AÇIKLAMA 1. Bu kitapçıkta Lisans Yerleştirme Sınavı-1 Geometri Testi bulunmaktadır. 2. Bu test için verilen cevaplama süresi 45 dakikadır. 3. Bu testte

Detaylı

STATİK VE MUKAVEMET AĞIRLIK MERKEZİ. Öğr.Gör. Gültekin BÜYÜKŞENGÜR. Çevre Mühendisliği

STATİK VE MUKAVEMET AĞIRLIK MERKEZİ. Öğr.Gör. Gültekin BÜYÜKŞENGÜR. Çevre Mühendisliği STATİK VE MUKAVEMET AĞIRLIK MERKEZİ Öğr.Gör. Gültekin BÜYÜKŞENGÜR Çevre Mühendisliği STATİK Ağırlık Merkezi Örnek Sorular 2 Değişmeyen madde miktarına kütle denir. Diğer bir anlamda cismin hacmini dolduran

Detaylı

ünite5 KATI CİSİMLER Prizma Silindir Piramit Koni Küre

ünite5 KATI CİSİMLER Prizma Silindir Piramit Koni Küre ünite5 S = 1 Prizma Silindir Piramit oni üre 0 1 S 1 S PZ 1. x ve y birer pozitif tam sayı olmak üzere, bir dikdörtgenler prizmasının farklı üç yüzünün alanları, x y, x 5 ve x y dir. 5. una göre, bu prizmanın

Detaylı

EVVET ARKADAŞLAR HOŞGELDİNİZ BU DERSİMİZDE ÜÇGENLER VE ÖZELLİKLERİNE GÖZ ATACAĞIZ.

EVVET ARKADAŞLAR HOŞGELDİNİZ BU DERSİMİZDE ÜÇGENLER VE ÖZELLİKLERİNE GÖZ ATACAĞIZ. DERS : GEOMETRİ KONU : ÜÇGEN EVVET ARKADAŞLAR HOŞGELDİNİZ BU DERSİMİZDE ÜÇGENLER VE ÖZELLİKLERİNE GÖZ ATACAĞIZ. AMAN SIKILMAYIN NOT BİRAZ UZUN DA :-) Doğrusal olmayan üç noktayı birleştiren üç doğru parçasının

Detaylı

π a) = cosa Öğrenci Seçme Sınavı (Öss) / 17 Haziran 2007 Matematik II Soruları ve Çözümleri

π a) = cosa Öğrenci Seçme Sınavı (Öss) / 17 Haziran 2007 Matematik II Soruları ve Çözümleri Öğrenci Seçme Sınavı (Öss) 7 Haziran 7 Matematik II Soruları ve Çözümleri. Karmaşık sayılar kümesi üzerinde * işlemi, Z * Z Z + Z + Z Z biçiminde tanımlanıyor. Buna göre, ( i) * ( + i) işleminin sonucu

Detaylı

25. f: R { 4} R 28. ( ) 3 2 ( ) 26. a ve b reel sayılar olmak üzere, 27. ( ) eğrisinin dönüm noktasının ordinatı 10 olduğuna göre, m kaçtır?

25. f: R { 4} R 28. ( ) 3 2 ( ) 26. a ve b reel sayılar olmak üzere, 27. ( ) eğrisinin dönüm noktasının ordinatı 10 olduğuna göre, m kaçtır? . f: R { 4} R, > ise ( ) 4 f =, ise 6 8. ( ) f = 6 + m + 4 eğrisinin dönüm noktasının ordinatı olduğuna göre, m kaçtır? ) 7 ) 8 ) 9 ) E) fonksiyonu aşağıdaki değerlerinin hangisinde süreksizdir? ) ) )

Detaylı

ÜNİTELENDİRME ŞEMASI

ÜNİTELENDİRME ŞEMASI LENDİRME ŞEMASI ÜNİTE DOĞRULAR VE AÇILAR. Aynı düzlemde olan üç doğrunun birbirine göre durumlarını belirler ve inşa eder.. Paralel iki doğrunun bir kesenle yaptığı açıların eş olanlarını ve bütünler olanlarını

Detaylı

Öğrenci Seçme Sınavı (Öss) / 9 Nisan Matematik Soruları ve Çözümleri = 10

Öğrenci Seçme Sınavı (Öss) / 9 Nisan Matematik Soruları ve Çözümleri = 10 Öğrenci Seçme Sınavı (Öss) / 9 Nisan 99 Matematik Soruları ve Çözümleri.. 0, 0, 0,44. işleminin sonucu kaçtır? A) 0, B) 0,4 C) D) 4 E) 0 Çözüm. 0, 0, 0,44. 00 0, 0 0,44 00.( )..( )..( ) 0, 00 0 00 00 44..

Detaylı

7. ÜNİTE DOĞRUDA VE ÜÇGENDE AÇILAR

7. ÜNİTE DOĞRUDA VE ÜÇGENDE AÇILAR 7. ÜNİTE DOĞRUDA VE ÜÇGENDE AÇILAR KONULAR 1. DOĞRUDA AÇILAR 2. Açı 3. Açının Düzlemde Ayırdığı Bölgeler 4. Açı Ölçü Birimleri 5. Ölçülerine Göre Açılar 6. Açıortay 7. Tümler Açı 8. Bütünler Açı 9. Ters

Detaylı

2. Afla daki çokgenlerden hangisi düzgün. 1. Afla dakilerden hangisi çokgen de ildir? çokgen de ildir? A) B) A) B) C) D) C) D)

2. Afla daki çokgenlerden hangisi düzgün. 1. Afla dakilerden hangisi çokgen de ildir? çokgen de ildir? A) B) A) B) C) D) C) D) Ad : Soyad : S n f : Nu. : Okulu : Çokgenler Dörtgenler MATEMAT K TEST 15 1. Afla dakilerden hangisi çokgen de ildir? 4. Afla daki çokgenlerden hangisi düzgün çokgen de ildir? 2. Afla daki çokgenlerden

Detaylı

İÇİNDEKİLER UZAY AKSİYOMLARI... 001-006... 01-03 UZAYDA DOGRU VE DÜZLEMLER... 007-010... 04-05 DİK İZDÜŞÜM... 011-014... 06-07

İÇİNDEKİLER UZAY AKSİYOMLARI... 001-006... 01-03 UZAYDA DOGRU VE DÜZLEMLER... 007-010... 04-05 DİK İZDÜŞÜM... 011-014... 06-07 UZY GEMETRİ İÇİNDEKİLER Safa No Test No UZY KSİYMLRI... 001-00... 01-0 UZYD DGRU VE DÜZLEMLER... 007-010... 0-05 DİK İZDÜŞÜM... 011-01... 0-07 PRİZMLR... 015-0... 08-1 KÜP... 05-00... 1-15 SİLİNDİR...

Detaylı

Ö.S.S MATEMATĐK SORULARI ve ÇÖZÜMLERĐ = 10

Ö.S.S MATEMATĐK SORULARI ve ÇÖZÜMLERĐ = 10 Ö.S.S. 99 MATEMATĐK SORULARI ve ÇÖZÜMLERĐ.. 0, 0, 0,44. işleminin sonucu kaçtır? A) 0, B) 0,4 C) D) 4 E) 0 Çözüm. 0, 0, 0,44. 00 0, 0 0,44 00.( )..( )..( ) 0, 00 0 00 00 44.. 0 00 0 0,4 0. + 4 + + 6 işleminin

Detaylı

ÜÇGENDE AÇILAR. Doğrusal olmayan üç noktayı birleştiren üç doğru parçasının birleşimine üçgen denir. AB] [AC] [BC] = ABC dir.

ÜÇGENDE AÇILAR. Doğrusal olmayan üç noktayı birleştiren üç doğru parçasının birleşimine üçgen denir. AB] [AC] [BC] = ABC dir. ÜÇGENDE AÇILAR Doğrusal olmayan üç noktayı birleştiren üç doğru parçasının birleşimine üçgen denir. AB] [AC] [BC] = ABC dir. Burada; A, B, C noktaları üçgenin köşeleri, [AB], [AC], [BC] doğru parçaları

Detaylı

MATEMATÝK TEMEL SEVÝYE DEVLET OLGUNLUK SINAVI. Testin Çözme Süresi: 180 dakika ADAY ÝÇÝN AÇIKLAMALAR - YÖNERGE DEVLET SINAV MERKEZÝ ADAYIN ÞÝFRESÝ

MATEMATÝK TEMEL SEVÝYE DEVLET OLGUNLUK SINAVI. Testin Çözme Süresi: 180 dakika ADAY ÝÇÝN AÇIKLAMALAR - YÖNERGE DEVLET SINAV MERKEZÝ ADAYIN ÞÝFRESÝ ADAYIN ÞÝFRESÝ BURAYA YAPIÞTIR DEVLET OLGUNLUK SINAVI DEVLET SINAV MERKEZÝ MATEMATÝK - TEMEL SEVÝYE MATEMATÝK TEMEL SEVÝYE Testin Çözme Süresi: 180 dakika Haziran, 2009 yýlý BÝRÝNCÝ deðerlendiricinin þifresi

Detaylı

Dik koordinat sisteminde yatay eksen x ekseni (apsis ekseni), düşey eksen ise y ekseni (ordinat ekseni) dir.

Dik koordinat sisteminde yatay eksen x ekseni (apsis ekseni), düşey eksen ise y ekseni (ordinat ekseni) dir. ANALĐTĐK GEOMETRĐ 1. Analitik Düzlem Bir düzlemde dik kesişen iki sayı doğrusunun oluşturduğu sisteme analitik düzlem denir. Analitik düzlem, dik koordinat sistemi veya dik koordinat düzlemi olarak da

Detaylı

TEST: 1. Şekilde verilenlere göre x kaç derecedir? Şekilde verilenlere göre x kaç derecedir? A) 100 B) 110 C) 120 D) 130 E) 140

TEST: 1. Şekilde verilenlere göre x kaç derecedir? Şekilde verilenlere göre x kaç derecedir? A) 100 B) 110 C) 120 D) 130 E) 140 TEST: 1 1. 4. A) 20 B) 30 C) 40 D) 50 E) 60 A) 100 B) 110 C) 120 D) 130 E) 140 2. 5. A) 100 B) 110 C) 120 D) 130 E) 140 A) 96 B) 112 C) 121 D) 128 E) 134 3. 6. A) 40 B) 50 C) 60 D) 70 E) 80 A) 40 B) 50

Detaylı

Üç Boyutlu Uzayda Koordinat Sistemi

Üç Boyutlu Uzayda Koordinat Sistemi Üç Boyutlu Uzayda Koordinat Sistemi Yrd. Doç. Dr. Didem COŞKAN MAT 1010 Matematik II 1/ 104 Üç Boyutlu Uzayda Koordinat Sistemi Uzayda bir noktayı ifade edebilmek için ilk önce O noktasını (başlangıç noktası)

Detaylı

DİK ÜÇGEN. şekilde, m(a) = 90. [BC] kenarı hipotenüs. [AB] ve [AC] kenarları. dik kenarlardır. P İSAGOR BAĞINTISI

DİK ÜÇGEN. şekilde, m(a) = 90. [BC] kenarı hipotenüs. [AB] ve [AC] kenarları. dik kenarlardır. P İSAGOR BAĞINTISI DİK ÜÇGEN Bir açısının ölçüsü 90 olan üçgene dik üçgen denir. Dik üçgende 90 nin karşısındaki kenara hipotenüs, diğer kenarlara dik kenar adı verilir. Hipotenüs üçgenin daima en uzun kenarıdır. şekilde,

Detaylı

Geometrik Örüntüler. Geometride Temel Kavramlar Uzamsal İlişkiler

Geometrik Örüntüler. Geometride Temel Kavramlar Uzamsal İlişkiler Geometrik Cisimler ve Şekiller Geometrik Örüntüler Geometride Temel Kavramlar Uzamsal İlişkiler Geometrik Cisimlerin Yüzeyleri Geometrik Cisimler Prizmaların Benzer ve Farklı Yönleri Geometrik Şekiller

Detaylı

TEKNİK RESİM. Ders Notları: Mehmet Çevik Dokuz Eylül Üniversitesi. Perspektifler-2

TEKNİK RESİM. Ders Notları: Mehmet Çevik Dokuz Eylül Üniversitesi. Perspektifler-2 TEKNİK RESİM 2010 Ders Notları: Mehmet Çevik Dokuz Eylül Üniversitesi Perspektifler-2 2/25 Perspektifler-2 Perspektifler-2 Perspektif Çeşitleri Dimetrik Perspektif Trimetrik Perspektif Eğik Perspektif

Detaylı

FİZİK DÖNEM ÖDEVİ KONU: HACİM SINIFI NUMARASI: 9/A 821

FİZİK DÖNEM ÖDEVİ KONU: HACİM SINIFI NUMARASI: 9/A 821 FİZİK DÖNEM ÖDEVİ KONU: HACİM ÖĞRETMENİN ADI SOYADI: FAHRETTİN KALE ÖĞRENCİNİN: ADI SOYADI: ESMA GÖKSAL SINIFI NUMARASI: 9/A 821 1. Çiftliğinde 4000 tane koyun barındıran bir çiftçi, koyunların 8 günlük

Detaylı

5. ÜNİTE İZDÜŞÜMÜ VE GÖRÜNÜŞ ÇIKARMA

5. ÜNİTE İZDÜŞÜMÜ VE GÖRÜNÜŞ ÇIKARMA 5. ÜNİTE İZDÜŞÜMÜ VE GÖRÜNÜŞ ÇIKARMA KONULAR 1. İzdüşüm Metodları 2. Temel İzdüşüm Düzlemleri 3. Cisimlerin İzdüşümleri 4. Görünüş Çıkarma BU ÜNİTEYE NEDEN ÇALIŞMALIYIZ? İz düşümü yöntemlerini, Görünüş

Detaylı

MATEMATİK FORMÜLLERİ

MATEMATİK FORMÜLLERİ MATEMATİK FORMÜLLERİ ÜSLÜ SAYILAR x. a n + y. a n z. a n = (x + y z). a n a m. a n = a m + n a m. b m = (a. b) m a m : a n = a m - n KARE'NİN ALANI: A=a.a (a karenin bir kenarı) DİKDÖRTGEN'İN ALANI: A

Detaylı

İNS1101 MÜHENDİSLİK ÇİZİMİ. Bingöl Üniversitesi İnşaat Mühendisliği Bölümü 2018

İNS1101 MÜHENDİSLİK ÇİZİMİ. Bingöl Üniversitesi İnşaat Mühendisliği Bölümü 2018 İNS1101 MÜHENDİSLİK ÇİZİMİ Bingöl Üniversitesi İnşaat Mühendisliği Bölümü 2018 TEKNİK RESİM Teknik resim, teknik elemanların üretim yapabilmeleri için anlatmak istedikleri teknik özelliklerin biçim ve

Detaylı

LİSE ÖĞRENCİLERİNE OKULLARDA YARDIMCI VE ÜNİVERSİTE SINAVLARINA. (YGS ve LYS na) HAZIRLIK İÇİN. Örnek çözümlü. Deneme sınavlı GEOMETRİ-2.

LİSE ÖĞRENCİLERİNE OKULLARDA YARDIMCI VE ÜNİVERSİTE SINAVLARINA. (YGS ve LYS na) HAZIRLIK İÇİN. Örnek çözümlü. Deneme sınavlı GEOMETRİ-2. LİSE ÖĞRENCİLERİNE OKULLARDA YARDIMCI VE ÜNİVERSİTE SINAVLARINA (YGS ve LYS na) HAZIRLIK İÇİN Konu anlatımlı Örnek çözümlü Test çözümlü Test sorulu Deneme sınavlı GEOMETRİ-2 Hazırlayan Erol GEDİKLİ Matematik

Detaylı

LYS GENEL KATILIMLI TÜRKİYE GENELİ ONLİNE DENEME SINAVI

LYS GENEL KATILIMLI TÜRKİYE GENELİ ONLİNE DENEME SINAVI LYS GNL KTILIMLI TÜRKİY GNLİ NLİN NM SINVI GMTRİ (M-TM) 1. u testte Geometri ile ilgili 30 soru vardır.. evaplarınızı, cevap kâğıdının Geometri Testi için arılan kısmına işaretleiniz. 3. u test için süreniz

Detaylı

GEOMETR 7 ÜN TE I PR ZMALAR

GEOMETR 7 ÜN TE I PR ZMALAR ÜN TE I PR ZMALAR 1. PR ZMAT K YÜZEY VE TANIMLAR 2. PR ZMA a. Tan m b. Prizman n Özelikleri 3. D K PR ZMA a. Tan m b. Dik Prizman n Özelikleri 4. E K PR ZMA a. Tan m b. E ik Prizman n Özelikleri 5. DÜZGÜN

Detaylı

İÇİNDEKİLER. Üçgenler. Katı Cisimler. Doğruda Açı Prizma Üçgende Açı Silindir Açı Kenar Bağıntıları Piramit...

İÇİNDEKİLER. Üçgenler. Katı Cisimler. Doğruda Açı Prizma Üçgende Açı Silindir Açı Kenar Bağıntıları Piramit... İÇİİR Üçgenler oğruda çı... 1 Üçgende çı... 5 çı enar ağıntıları...11 ik Üçgen...17 İkizkenar Üçgen...5 şkenar Üçgen...1 Özel çılı Üçgenler...7 çıorta...1 enarorta...51 Üçgende erkezler...1 enzerlik...5

Detaylı

T Y T MATEMATİK DENEMESİ ANTRENMAN SERİSİ

T Y T MATEMATİK DENEMESİ ANTRENMAN SERİSİ T Y T MATEMATİK DENEMESİ ANTRENMAN SERİSİ A N T R E N M A N S E R İ S İ 1 Bu denemeler öğretmen ve öğrencilerin ücretsiz indirerek kullanmaları için ANTRENMAN YAYINCILIK web sitesinde yayınlanmıştır. İçeriğinin

Detaylı

1998 ÖYS. orantılı olacaktır. Bu iki kardeşten büyük olanın bugünkü yaşı kaçtır? 1. Üç basamaklı bir x doğal sayısının 7

1998 ÖYS. orantılı olacaktır. Bu iki kardeşten büyük olanın bugünkü yaşı kaçtır? 1. Üç basamaklı bir x doğal sayısının 7 998 ÖYS. Üç basamaklı bir doğal sayısının 7 katı, iki basamaklı bir y doğal sayısına eşittir. Buna göre, y doğal sayısı en az kaç olabilir? orantılı olacaktır. Bu iki kardeşten büyük olanın bugünkü yaşı

Detaylı

Örnek...1 : Şekildek i kare piramitte paralel, a yk ır ı k esişen doğru parçalar ına örnek ler verini z. UZAYIN ANALİTİĞİ UZAY

Örnek...1 : Şekildek i kare piramitte paralel, a yk ır ı k esişen doğru parçalar ına örnek ler verini z. UZAYIN ANALİTİĞİ UZAY UZYIN NİİĞİ 1 M KVRMR UZY ümü düzlemsel olmayan bütün noktaların kümesine uza y denir. UZY NOK, OĞRU, ÜZM V UNR RSINKİ İİŞKİR 1)Uzayda farklı iki noktadan bir tek doğru geçer. UZY OĞRURIN URUMU 1.Uzayda

Detaylı

ÜÇGENLER ÜNİTE 4. ÜNİTE 4. ÜNİTE 4. ÜNİTE 4. ÜNİT

ÜÇGENLER ÜNİTE 4. ÜNİTE 4. ÜNİTE 4. ÜNİTE 4. ÜNİT ÜÇGNLR ÜNİT. ÜNİT. ÜNİT. ÜNİT. ÜNİT ÜÇGNLRİN ŞLİĞİ Üçgende çılar. azanım : ir üçgenin iç açılarının ölçüleri toplamının 80, dış açılarının ölçüleri toplamının 0 olduğunu gösterir. İki Üçgenin şliği. azanım

Detaylı

1982 ÖYS. c d. ifadesinin sadeleştirilmiş biçimi aşağıdakilerden hangisidir? çarpımının değeri nedir? B) 2 C) 2 A) 2 D) 2 E) 2. A) a B) 1 C) E) a+12

1982 ÖYS. c d. ifadesinin sadeleştirilmiş biçimi aşağıdakilerden hangisidir? çarpımının değeri nedir? B) 2 C) 2 A) 2 D) 2 E) 2. A) a B) 1 C) E) a+12 8 ÖYS a c. olduğuna göre b d çarpımının değeri nedir? A). B) C) 7 a b b D) 5 c d c E) a a 5. a a ifadesinin sadeleştirilmiş biçimi aşağıdakilerden hangisidir? A) a B) C) E) a+ a a D) a 6. 5 kız, 5 erkek

Detaylı

4. Çok büyük ve çok küçük pozitif sayıları bilimsel gösterimle ifade eder.

4. Çok büyük ve çok küçük pozitif sayıları bilimsel gösterimle ifade eder. LENDİRME ŞEMASI ÜNİTE Üslü 1. Bir tam sayının negatif kuvvetini belirler ve rasyonel sayı olarak ifade eder.. Ondalık kesirlerin veya rasyonel sayıların kendileriyle tekrarlı çarpımını üslü sayı olarak

Detaylı

LİSANS YERLEŞTİRME SINAVI-1 GEOMETRİ TESTİ 15 HAZİRAN 2014 PAZAR

LİSANS YERLEŞTİRME SINAVI-1 GEOMETRİ TESTİ 15 HAZİRAN 2014 PAZAR T.C. Ölçme, Seçme ve Yerleştirme Merkezi LİSANS YERLEŞTİRME SINAVI-1 GEOMETRİ TESTİ 15 HAZİRAN 2014 PAZAR Bu testlerin her hakkı saklıdır. Hangi amaçla olursa olsun, testlerin tamamının veya bir kısmının

Detaylı

2002 ÖSS Soruları. 5. a, b, c, d pozitif tam sayılar ve 123,4 0, ,234 12,34. işleminin sonucu kaçtır?

2002 ÖSS Soruları. 5. a, b, c, d pozitif tam sayılar ve 123,4 0, ,234 12,34. işleminin sonucu kaçtır? 00 ÖSS Soruları 3,4.,34 0, 34,34 işleminin sonucu kaçtır? ) 0 ) 0, ) 9,9 ) 0, E),. a, b, c, d pozitif tam sayılar ve a 7 a 4 : = c, : = d b 0 b 4 olduğuna göre, c + d nin alabileceği en küçük değer kaçtır?

Detaylı

ÜÇGENLERİN KENARLARI ARASINDAKİ BAĞINTILAR ÜÇGENLERDE EŞLİK VE BENZERLİK. Şekilde verilen ABC üçgeninde [BC] kenarına

ÜÇGENLERİN KENARLARI ARASINDAKİ BAĞINTILAR ÜÇGENLERDE EŞLİK VE BENZERLİK. Şekilde verilen ABC üçgeninde [BC] kenarına . Verilen şekilde en uzun kenar aşağıdakilerden ÜÇGENLERİN KENARLARI ARASINDAKİ BAĞINTILAR. Şekilde verilen ABC üçgeninde [BC] kenarına ait kenar orta dikme, aşağıdaki noktaların hangilerinden geçer? AB

Detaylı

I 5. SINIF ÖĞRENME ALANI ALT ÖĞRENME ALANI KAZANIM I- 01 I- 02 II- 01 II- 02 II- 03

I 5. SINIF ÖĞRENME ALANI ALT ÖĞRENME ALANI KAZANIM I- 01 I- 02 II- 01 II- 02 II- 03 I 5. SINIF MATEMATİK VE İŞLEMLER 1.1. En çok dokuz basamaklı doğal sayıları okur ve yazar. 1.2. En çok dokuz basamaklı doğal sayıların bölüklerini, basamaklarını ve rakamların basamak değerlerini belirtir.

Detaylı

Karabük Üniversitesi, Mühendislik Fakültesi...www.IbrahimCayiroglu.com. STATİK (2. Hafta)

Karabük Üniversitesi, Mühendislik Fakültesi...www.IbrahimCayiroglu.com. STATİK (2. Hafta) AĞIRLIK MERKEZİ STATİK (2. Hafta) Ağırlık merkezi: Bir cismi oluşturan herbir parçaya etki eden yerçeki kuvvetlerinin bileşkesinin cismin üzerinden geçtiği noktaya Ağırlık Merkezi denir. Şekil. Ağırlık

Detaylı

1981 ÖSS olduğuna göre, aşağıdakilerden c hangisi kesinlikle doğrudur? A) a>0 B) c<0 C) a+c=0 D) a 0 E) c>0 A) 12 B) 2 9 C) 10 D) 5 E) 11

1981 ÖSS olduğuna göre, aşağıdakilerden c hangisi kesinlikle doğrudur? A) a>0 B) c<0 C) a+c=0 D) a 0 E) c>0 A) 12 B) 2 9 C) 10 D) 5 E) 11 98 ÖSS. >0 olmak koşulu ile 2+, 3+, 4+ sayıları bir dik üçgenin kenar uzunluklarını göstermektedir. Bu üçgenin hipotenüs uzunluğu kaç birimdir? A) 2 B) 2 9 C) 0 D) 5 E) 2a c 6. 0 olduğuna göre, aşağıdakilerden

Detaylı

9. SINIF KONU ANLATIMLI. 2. ÜNİTE: MADDE ve ÖZELLİKLERİ 1. Konu MADDELERİN SINIFLANDIRILMASI ve ÖZELLİKLERİ ÇÖZÜMLER

9. SINIF KONU ANLATIMLI. 2. ÜNİTE: MADDE ve ÖZELLİKLERİ 1. Konu MADDELERİN SINIFLANDIRILMASI ve ÖZELLİKLERİ ÇÖZÜMLER 9. SINIF KONU ANLATIMLI. ÜNİTE: MADDE ve ÖZELLİKLERİ 1. Konu MADDELERİN SINIFLANDIRILMASI ve ÖZELLİKLERİ ÇÖZÜMLER Siz Yap n Sorular n n Çözümleri 81-84. sayfalar aras Örnek nin çözümü Yar çap 6 m olan

Detaylı