KATI CİSMİN DÜZLEMSEL KİNETİĞİ (Kinetik Enerji)

Save this PDF as:
 WORD  PNG  TXT  JPG

Ebat: px
Şu sayfadan göstermeyi başlat:

Download "KATI CİSMİN DÜZLEMSEL KİNETİĞİ (Kinetik Enerji)"

Transkript

1 KATI CİSMİN DÜZLEMSEL KİNETİĞİ (Kinetik Enerji) Partikülün kinetiği bahsinde, hız ve yer değiştirme içeren problemlerin iş ve enerji prensibini kullanarak kolayca çözülebildiği söylenmişti. Ayrıca, kuvvet sistemi konservatif ise enerjinin korunumu prensibinin kullanılabileceği ifade edilmişti. Bu bölümde, iş ve enerji metotlarını düzlemsel hareket yapan rijit cisimlere uygulayacağız. İş ve enerji prensibine geçmeden önce, rijit cismin öteleme, sabit bir eksen etrafında dönme ve genel düzlemsel hareket yaparken sahip olduğu kinetik enerjiyi ifade eden denklemleri elde edeceğiz. Kinetik Enerji: Şekilde verilen x y referans düzleminde hareket eden ince bir levhayı göz önüne alalım. Levha üzerindeki herhangi bir i partikülünün kütlesi m i, keyfi seçilen P noktasına göre konum vektörü r i ve hızı v i olsun. i partikülünün kinetik enerjisi T i = 1 2 m iv i 2 dir. Tüm cismin kinetik enerjisi, cismi oluşturan tüm partiküllerin kinetik enerjileri toplamına eşit olacaktır. Dolayısıyla, katı cismin kinetik enerjisi n T = 1 2 m iv i 2 i 1 = 1 2 dm m v i 2

2 KATI CİSMİN DÜZLEMSEL KİNETİĞİ (Kinetik Enerji) v i hızı, P noktasını hızı v P cinsinden v i = v p + v i P olarak yazılabilir. Burada, v i P = ω r i dir. r i = x i i + y i j, v P = v P x i + v P y j ve ω = ωk dır. v i = v P x i + v P y j + ωk (x i i + y i j) v i = v P x ωy i i + v P y + ω x i j Şeklinde yeniden yazılabilir. v i 2 nin v i vektörünün kendisi ile skaler çarpımından ( i i = 1 ve j j = 1 oldugu dikkate alınarak) elde edilir. v i 2 = v P x 2 2 vp x ωy i + ω 2 y i 2 + v P y vp y ωx i + ω 2 x i 2 v i 2 = v P 2 2 v P x ωy + 2 v P y ωx + ω 2 r 2 v i 2 Kinetik enerji ifadesinde yerine yazılırsa

3 KATI CİSMİN DÜZLEMSEL KİNETİĞİ (Kinetik Enerji) veya n T = 1 2 m iv P 2 i 1 n n n y i m i v P x ω + x i m i v P y ω m 2 ir i i 1 i 1 i 1 ω 2 T = 1 2 dm m v P 2 v P x ω ydm m + v P y ω xdm m ω2 r 2 dm m Denklemdeki ilk integral cismin kütlesi m dir. xm = xdm ve ym = m ydm olduğundan m ikinci üçüncü integraller, P referans noktasına göre, cismin kütle G merkezinin konumunu belirtirler. Sonuncu integral ise, P den geçen eksene göre cismin kütle atalet momentini I P gösterir. T = 1 2 mv P 2 v P x ωy m + v P y ωx m I Pω 2 P keyfi seçilen referans noktası, kütle merkezi olarak seçilirse T = 1 2 mv G I Gω 2 Burada I G, kütle merkezinden geçen ve hareket düzlemine dik olan eksene göre cismin kütle atalet momentidir.

4 KATI CİSMİN DÜZLEMSEL KİNETİĞİ (Ötelenme) Ötelenme: Kütlesi m olan rijit cisim, doğrusal veya eğrisel ötelenme yapması halinde, cisim dönme yapmayacağından ω = 0 olacaktır. Bu durumda, cismin dönme kinetik enerji sıfır olacaktır. Kinetik enerji ifadesi de T = 1 2 mv G 2 Burada v G, verilen anda cismi kütle merkezinin hızının büyüklüğüdür.

5 KATI CİSMİN DÜZLEMSEL KİNETİĞİ (Sabit Bir Eksen Etrafında Dönme) Sabit Bir Eksen Etrafında Dönme: Bir rijit cismin O noktasından geçen sabit bir eksen etrafında öteleme ve dönmeden doğan kinetik enerjisi T = 1 2 mv G I Gω 2 şeklinde verilmişti. v G = r G O ω olduğu göz önüne alınırsa bu kinetik enerji ifadesi T = 1 2 I G + mr 2 G O ω 2 Paralel eksen teoreminden, parantez içindeki ifadenin cismin O dan geçen eksene göre kütle atalet momenti olduğu görülür. I O = I G + mr 2 G O dir. Dolayısıyla kinetik enerji ifadesi T = 1 I 2 Oω 2 Burada I O, cismin O dan geçen eksene (dönme ekseni) göre kütle atalet momentidir.

6 KATI CİSMİN DÜZLEMSEL KİNETİĞİ (Genel Düzlemsel Hareket) Genel Düzlemsel Hareket: Genel düzlemsel hareket yapan katı cismin açısal hızı ω ve kütle merkezinin hızı v G ise kinetik enerjisi T = 1 2 mv G I Gω 2 Burada, denklemin sağ tarafındaki birinci terim ötelemeden doğan kinetik enerjiyi gösterirken ikinci terim dönmeden doğan kinetik enerjiyi gösterir. Enerji skaler bir büyüklük olduğundan birbirine bağlı rijit cisimlerin toplam kinetik enerjisi, hareket eden tüm parçaların kinetik enerjilerinin toplamına eşittir. Dolayısıyla, böyle bir sistemi kinetik enerjisi, her bir cismin hesaplanan kinetik enerjileri toplamı kadardır.

7 KATI CİSMİN DÜZLEMSEL KİNETİĞİ (Kuvvetin İşi) Rijit Cisme Etkiyen Kuvvetlerin İşi: Rijit cismin genel düzlemsel hareketi, öteleme ve dönme hareketinin bileşiminden oluşmaktadır. Bir kuvvetin yaptığı iş, sadece kuvvetin tatbik edildiği noktanın hareketine bağlıdır. Cismin öteleme veya dönme hareketine bağlı değildir. Bir rijit cisimle ilgili düzlemsel kinetik problemlerinde çeşitli tipten kuvvetlerle karşılaşılır. Bu kuvvetlerin her birinin işi, parçacığın davranışının incelenmesinde sunulmuştur. Bunlar özetle katı cisim için tekrarlanacaktır. Değişken Kuvvetin İşi: Bir rijit cisim üzerine bir F dış kuvveti etkirse, cisim s yörüngesi boyunca hareket ettiği zaman, şekilde verilen kuvvet tarafından yapılan iş U F = s F cosθ ds Burada θ, kuvvet vektörü ile diferansiyel yer değiştirmenin arasındaki açıdır. Genellikle, integral işleminde kuvvetin doğrultu ve büyüklüğünün değişimini hesaba katmak gerekir. Sabit Kuvvetin İşi: Bir rijit cisim üzerine sabit F c dış kuvveti etki ederse, cisim s kadar ötelenirken kuvvetin doğrultusu da sabit kalırsa, F c kuvvetinin yaptığı iş U Fc = F c cosθ s

8 KATI CİSMİN DÜZLEMSEL KİNETİĞİ (Ağırlığın İşi ) Ağırlığın İşi: Bir cismin ağırlığı, sadece, cismin G kütle merkezi bir y düşey yer değiştirmesi yaptığı takdirde iş yapar. Bu yer değiştirme yukarı doğru ise, iş negatiftir, çünkü ağırlık ve yer değiştirme ters yönlüdür. U w = W y Bunun gibi, yer değiştirme aşağı doğru ise, iş pozitif olur. Burada yükseklik aralığının değişiminin küçük olduğu düşünülmekte olup gravitasyonun neden olduğu ağırlık kuvvetinin sabit W kabul edilmiştir. Yay Kuvvetinin İşi: Bir cisme elastik bir yay bağlanmışsa, cisim üzerine etkiyen F s = ks yay kuvveti, yay s 1 konumundan farklı bir s 2 konumuna kadar uzama veya kısalma yaparsa iş yapar. Her iki halde iş negatif olur, çünkü cismin yer değiştirmesi daima kuvvetle ters yönlüdür, şekil gösterilen durumda s 2 > s 1 olmak üzere, yapılan iş Yayın uzamamış boyu s=0 U s = 1 2 ks ks 1 2

9 KATI CİSMİN DÜZLEMSEL KİNETİĞİ (İş Yapmayan Kuvvetler) İş Yapmayan Kuvvetler: Cisim yer değiştirdiğinde iş yapmayan kuvvetler de vardır. Bu kuvvetler, ya cisim üzerindeki sabit noktalara veya yer değiştirmeye dik doğrultuda etki ederler. Bir cismin etrafında döndüğü pimdeki tepki kuvvetleri, sabit bir yüzey boyunca hareket eden cisme etkiyen normal tepki ve ağırlık merkezi yatay bir düzlemde hareket eden cismin ağırlığı iş yapmayan kuvvetlerdir. Bir cisim pürüzlü bir yüzey üzerinde kaymadan yuvarlanırken, cisim üzerine etkiyen F r yuvarlanma direnç kuvveti de iş yapmaz. Çünkü F r herhangi bir dt zaman aralığında, cisim üzerindeki sıfır hızlı bir noktaya (Ani Dönme Merkezi, ADM) etki eder. Bu yüzden bu noktada kuvvet tarafından yapılan iş sıfırdır. A noktasının yörüngesi G noktasının yörüngesi Bu anda A noktası x, y, z koordinat sisteminin orijinindedir. Yer değiştirmesi yatay olmayıp düşeydir. F r ardışık her bir parçacıkla sadece bir an temas edeceği için F r nin işi sıfır olacaktır.

10 KATI CİSMİN DÜZLEMSEL KİNETİĞİ (Kuvvet Çiftinin veya Momentin İşi) Kuvvet çiftinin aynı çizgi üzerinde olmayan eşit büyüklükte ve zıt yönlü bir çift kuvvetten oluştuğunu hatırlayalım. Kuvvet çiftine maruz cisim dönme hareketi yapıyorsa iş yapar. Bunu göstermek için, M = Fr momentine sahip bir kuvvet çiftine maruz cismi göz önüne alalım. Cismin herhangi bir genel diferansiyel yer değiştirmesinde öteleme ve dönme ayrı olarak düşünülebilir. Cisim, kuvvetlerin etki çizgisi boyunca yer değiştirme bileşeni ds t olacak şekilde ötelendiği zaman, bir kuvvetin pozitif işini diğerinin negatif işi yok eder. Şimdi, cismin, kuvvet çiftinin düzlemine dik olan ve düzlemi O noktasında kesen bir eksen etrafında bir dθ diferansiyel dönmesini göz önüne alalım. Şekilde gösterildiği gibi, her bir kuvvet, kuvvet doğrultusunda ds θ = r 2 dθ yer değiştirmesine maruz kalır. Dolayısıyla yapılan toplam iş du M = F r 2 dθ + F r 2 dθ = Fr dθ = Mdθ

11 KATI CİSMİN DÜZLEMSEL KİNETİĞİ (Kuvvet Çiftinin veya Momentin İşi) du M = F r 2 dθ + F r 2 dθ = Fr dθ = Mdθ Burada, dθ nın etki çizgisi momentin etki çizgisine paraleldir. Bu, genel düzlemsel hareket için her zaman geçerlidir. Çünkü M ve dθ hareket düzlemine diktir. M ve dθ aynı yöndeyken bileşke iş pozitif, zıt yönde ise negatiftir. Düzlemde hareket eden cisim, θ 1 değerinden θ 2 değerine kadar döndüğünde radyan cinsinden ölçülen açı θ ise, kuvvet çiftinin yaptığı iş M momentinin büyüklüğü sabitse, U M = θ 2 θ 1 Mdθ U M = M θ 2 θ 1 Buradaki iş, M ve θ 2 θ 1 aynı yönde olmak koşuluyla pozitiftir.

12 KATI CİSMİN DÜZLEMSEL KİNETİĞİ (İş Enerji Prensibi) İş Enerji Prensibi: Partikül için iş ve enerji ilkesi daha önce elde edilmişti. Bir rijit cismin her bir parçacığına bu ilke uygulanabilir. Enerji skaler olduğundan sonuçlar cebirsel olarak toplanarak rijit cisim için iş ve enerji ilkesi elde edilir. Cismin ilk ve son kinetik enerjisi daha önceki çalışmalarda formülle edilmiştir. Dış kuvvetler ve momentlerin yaptığı işi de biraz önce tarif edilmiştir. Cisim rijit olduğundan, cismin iç kuvvetlerinin yaptığı iş dikkate alınmayacaktır. Bu kuvvetler eşit, aynı doğru üzerindeki ters yönlü çiftler halinde bulunurlar. Bu yüzden cisim hareket ettiğinde bir kuvvetin yaptığı iş diğerinin yaptığı işi tarafından yok edilir. Ayrıca, cisim rijit olduğundan, bu kuvvetler arasında bir bağıl hareket oluşmaz, bu yüzden hiç iş yapılmaz. Buna göre, bir rijit cisim için iş ve enerji ilkesi T 1 + U 1 2 = T 2 Bu denklem, başlangıçtaki öteleme ve dönme kinetik enerjisi ile cismin üzerine etkiyen bütün dış kuvvet ve momentlerin, cisim ilk konumundan son konumuna hareket ederken yaptığı işlerin toplamının, cismın son öteleme ve dönme kinetik enerjisine eşit olduğunu ifade eder. Birkaç cisim mafsal bağlı, uzamaz kablolarla birbirine bağlı veya birbirleriyle temas halindeyse, bu denklem bağlı cisimler sistemine de uygulanabilir.

13 KATI CİSMİN DÜZLEMSEL KİNETİĞİ (İş Enerji Prensibi) Enerjinin Korunumu: Bir rijit cisim üzerine etkiyen bir kuvvet sistemi sadece konservatif kuvvetlerden oluşuyorsa, hareketin analizinde enerjinin korunumu prensibi kullanılabilir, aksi takdirde analiz iş ve enerji ilkesi kullanılarak yapılır. Bu prensibi uygulamak, genellikle daha kolaydır. Çünkü konservatif bir kuvvetin işi yoldan bağımsızdır ve sadece cismin ilk ve son konumuna bağlıdır. Ağırlığın Potansiyel Enerji: Bir cismin ağırlığının ağırlık merkezinde toplanmış olduğu düşünüldüğünden, cismin gravitasyonel potansiyel enerjisi, ağırlık merkezinin başlangıç çizgisinin altında veya üstünde olan uzaklığına göre belirlenir. Buna göre, yukarı doğru pozitif olarak ölçülen y G için, cismin gravitasyonel potansiyel enerjisi V g = Wy G Burada, potansiyel enerji y G pozitif olduğu zaman pozitiftir, çünkü cisim başlangıç çizgisine geri dönerken ağırlık pozitif iş yapma yeteneğine sahiptir. Bunun gibi, cisim başlangıç çizgisinin altında y G bulunuyorsa, gravitasyonel potansiyel enerji negatiftir. Çünkü, cisim başlangıç çizgisine geri dönerken ağırlık negatif iş yapar.

14 KATI CİSMİN DÜZLEMSEL KİNETİĞİ (İş Enerji Prensibi) Elastik Yayın Potansiyel Enerji: Elastik bir yayın oluşturduğu kuvvet konservatif bir kuvvettir. Elastik bir cisme bağlanan bir yay, şekil değiştirmemiş konumundan s = 0 uzayarak veya sıkışarak son s konumuna ulaştığı zaman, verdiği elastik potansiyel enerji V e = ks2 Şekil değiştirmiş konumda, cisim üzerine etkiyen yay kuvveti, yay başlangıçtaki şekil değiştirmemiş konumuna geri dönerken daima pozitif iş yapma kapasitesine sahiptir. Enerjinin Korunumu: Bir cisim hem gravitasyonel hem elastik kuvvetlerin etkisinde ise, genellikle toplam potansiyel enerji V = V g + V e cebirsel toplamı ile gösterilen bir V potansiyel fonksiyonu olarak ifade edilebilir. Burada, V nin ölçümü, cismin seçilen başlangıç çizgisine göre konumuna bağlıdır. Konservatif kuvvetlerin işinin, potansiyel enerjilerdeki fark, yani, olduğu gerçeğinden hareketle, bir rijit cisim için iş ve enerji ilkesini U 1 2 kons = V 1 V 2 T 1 + V 1 + U 1 2 kons olma = T 2 + V 2

15 KATI CİSMİN DÜZLEMSEL KİNETİĞİ (İş Enerji Prensibi) Burada, U 1 2 kons olma sürtünme gibi, cisim üzerine etkiyen konservatif olmayan kuvvetlerin işini gösterir. Bu terim sıfırsa, T 1 + V 1 = T 2 + V 2 Bu ifade, cismin mekanik enerjisinin korunumu denklemidir. Cismin, bir konumdan diğer konumuna hareket etmesi halinde potansiyel ve kinetik enerjileri toplamının, sabit kalacağını ifade eder. Denklem, aynı zamanda pürüzsüz, mafsallı rijit cisimler, uzamaz iplerle bağlı cisimler, birbiri içine girmiş cisimlerden oluşan sistemlere de uygulanabilir. Bu durumda, temas noktalarında ortaya çıkan kuvvetler, aynı doğru üzerinde, eşit ve zıt yönlü olduklarından analiz sonucunda birbirlerini yok edeceklerdir.

16 ÖRNEK 30 kg disk, merkezinden pimle bağlıdır. Diske, çevresine sarılı ipe uygulanan sabit F = 10 N kuvveti ve sabit M = 5 N m momenti etki etmektedir. Hesaplamalarda ipin kütlesini ihmal ederek, başlangıçta durmakta olan diskin 20 rad/s açısal hıza erişinceye kadar kaç devir yapması gerektiğini belirleyiniz. ÇÖZÜM Kinetik Enerji: Disk merkezinden pimle sabitlenmiş olduğundan dış kuvvetlerin etkisi ile sadece sabit ekseni etrafında dönme hareketi yapacaktır. Diskin kinetik enerjisi, T = 1 2 I Oω 2 dir. Burada, I O = 1 2 mr2 kütle atalet momentidir. Disk başlangıçta hareketsiz olduğundan kinetik enerjisi sıfırdır. T 1 = 0 T 2 = 1 2 I Oω 2 = kg 0. 2 m 2 20 rad s 2 = 120 J

17 ÖRNEK Serbest Cisim Diyagramı. Diske etki eden dış kuvvetler, ağırlık ve reaksiyon kuvvetleri diyagramda gösterilir. Sabitlenmiş noktaya etki eden ağırlık ve reaksiyon kuvvetleri O x, O y yer değiştirme yapamadıkları için iş yapmazlar. İşi yapan Moment M etkisi ve F düşey kuvvetidir. İş ve Enerji prensibi. T 1 + U 1 2 = T 2 T 1 + Mθ + Fs = T Nm θ + 10 N θ 0. 2 m = 120 J θ = rad 1 devir = 2π radyan olduğu hatırlanırsa, n = devir Serbest Cisim Diyagramı 2π radyan = devir

18 ÖRNEK Basit resmi ve boyut ölçüleri şekilde verilen sistemde, dişli çarkların her biri 4 kg kütle ve 30 mm atalet yarıçapına sahiptir. 6 kg düz dişli s = 0 da, aşağı doğru 2 m/s hızla hareket etmektedir. Düz dişlinim aşağı doğru düşey doğrultuda s = 600 mm hareket etmesi durumunda hızını hesaplayınız. Dişli çarklar kendi eksenleri etrafında, serbestçe dönmektedirler.

19 ÖRNEK ÇÖZÜM: A ve B dişli çarkların kütleri ve atalet yarıçapları belirli olduğu için kütle atalet momentleri I B = I A = m k 2 ifadesinden hesaplanır. Katı cisimlerin (düz dişli ve dişli çarklar) başlangıçtaki kinetik enerjileri belirlidir. Düz dişli ağırlığından dolayı ikinci duruma erişinceye kadar pozitif iş yapacaktır. Başlangıç durumu ve s = 600 mm hareket etmesi durumu arasında iş enerji bağıntısı yazılırsa T 1 + U 1 2 = T 2 1 m v D 1 + I A ω A 1 + I 2 2 B ω B 1 + mgh 1 = m v D 2 + I A ω A 2 + I 2 2 B ω B = v D v D = v D 2 v D 2 = m/s

20 ÖRNEK Şekil sistemin başlangıçtaki durumunu göstermekte olup direngenliği k = 200 N/m olan yay nominal boyundadır. 2 kg kütleli AC ve BD elemanları, 2 kg kütleli A ve B de mafsal bağlı dişlilerle birlikte hareket etmektedir. A dişli merkezinden saat ibreleri tersi dönme yönünde M = 20 N m moment uygulanırsa, AC elemanının 45 döndüğü pozisyondaki açısal hızını hesaplayınız. Dişli çark ve kolların A ve B dönme merkezlerinden geçen eksenlere göre kütle atalet yarıçapları sırasıyla 40 mm ve 50 mm dir.

21 ÖRNEK ÇÖZÜM: Başlangıçta durmakta olan sistemin kinetik enerjisi sıfırdır. Dişli çarka uygulanan moment sistemi harekete geçirecektir. Kolları birbirlerine bağlayan yay ise hareketi engellemeye yöneliktir. 45 olduğu pozisyonda dişliler ve kollar dönmekte olduklarından kinetik enerjileri olacaktır. Eşit büyüklükte olan kolların ağırlıklarının yaptıkları iş AC yukarı iken AB ise aşağı doğru olduğu için birbirlerini yok eder. A ve B dişlileri ile AC ve BD kollarının dönme eksenlerine göre atalet yarıçapları bilindiği için kütle atalet momentleri I = mk 2 ifadesinden belirlenebilir. Dişli ve kol ve aynı açısal hıza ω diş = ω kol sahiptir. Moment belirlidir. 45 derece radyan cinsinden π 4 olup momentin yaptığı iş Mθ dan hesaplanır. Yay başlangıçta uzamamış boyda olduğundan yaydaki uzama miktarı s = 0. 2 sin 45 m olarak sistemin pozisyonundan belirlenir. Dişli ve koldan ikişer tane olduğuna dikkat etmek gerekir.

22 ÖRNEK T 1 + U 1 2 = T M θ 1 2 k s2 = I diş ω diş I kol ω kol π sin 45 2 = ω ω = ω 2 ω = rad/s

23 ÇÖZÜMLÜ SORULAR

24 ÇÖZÜMLÜ SORULAR

25 ÇÖZÜMLÜ SORULAR

26 ÇÖZÜMLÜ SORULAR

KİNETİK ENERJİ, İŞ-İŞ ve ENERJİ PRENSİBİ

KİNETİK ENERJİ, İŞ-İŞ ve ENERJİ PRENSİBİ KİNETİK ENERJİ, İŞ-İŞ ve ENERJİ PRENSİBİ Amaçlar 1. Kuvvet ve kuvvet çiftlerinin yaptığı işlerin tanımlanması, 2. Rijit cisme iş ve enerji prensiplerinin uygulanması. UYGULAMALAR Beton mikserinin iki motoru

Detaylı

Mühendislik Mekaniği Dinamik. Yrd.Doç.Dr. Akın Ataş

Mühendislik Mekaniği Dinamik. Yrd.Doç.Dr. Akın Ataş Mühendislik Mekaniği Dinamik Yrd.Doç.Dr. Akın Ataş Bölüm 17 Rijit Cismin Düzlemsel Kinetiği; Kuvvet ve İvme Kaynak: Mühendislik Mekaniği: Dinamik, R.C.Hibbeler, S.C.Fan, Çevirenler: A. Soyuçok, Ö. Soyuçok.

Detaylı

RİJİT CİSİMLERİN DÜZLEMSEL KİNEMATİĞİ

RİJİT CİSİMLERİN DÜZLEMSEL KİNEMATİĞİ RİJİT CİSİMLERİN DÜZLEMSEL KİNEMATİĞİ MUTLAK GENEL DÜZLEMSEL HAREKET: Genel düzlemsel hareket yapan bir karı cisim öteleme ve dönme hareketini eşzamanlı yapar. Eğer cisim ince bir levha olarak gösterilirse,

Detaylı

KATI CİSİMLERİN DÜZLEMSEL KİNEMATİĞİ

KATI CİSİMLERİN DÜZLEMSEL KİNEMATİĞİ KATI CİSİMLERİN DÜZLEMSEL KİNEMATİĞİ Bu bölümde, düzlemsel kinematik, veya bir rijit cismin düzlemsel hareketinin geometrisi incelenecektir. Bu inceleme, dişli, kam ve makinelerin yaptığı birçok işlemde

Detaylı

RİJİT CİSMİN DÜZLEMSEL KİNETİĞİ: ENERJİNİN KORUNUMU

RİJİT CİSMİN DÜZLEMSEL KİNETİĞİ: ENERJİNİN KORUNUMU RİJİT CİSMİN DÜZLEMSEL KİNETİĞİ: ENERJİNİN KORUNUMU Amaçlar: a) Korunumlu kuvvetlerin potansiyel enerjisinin hesabı. b) Enerjinin korunumu prensibinin uygulanması. ENERJİNİN KORUNUMU Enerjinin korunumu

Detaylı

Mühendislik Mekaniği Dinamik. Yrd.Doç.Dr. Akın Ataş

Mühendislik Mekaniği Dinamik. Yrd.Doç.Dr. Akın Ataş Mühendislik Mekaniği Dinamik Yrd.Doç.Dr. Akın Ataş Bölüm 16 Rijit Cismin Düzlemsel Kinematiği Kaynak: Mühendislik Mekaniği: Dinamik, R.C.Hibbeler, S.C.Fan, Çevirenler: A. Soyuçok, Ö. Soyuçok. 16 Rijit

Detaylı

r r r F İŞ : Şekil yörüngesinde hareket eden bir parçacık üzerine kuvvetini göstermektedir. Parçacık A noktasından

r r r F İŞ : Şekil yörüngesinde hareket eden bir parçacık üzerine kuvvetini göstermektedir. Parçacık A noktasından İŞ : Şekil yörüngesinde hareket eden bir parçacık üzerine etkiyenf r kuvvetini göstermektedir. Parçacık A noktasından r r geçerken konum vektörü uygun bir O orijininden ölçülmektedir ve d r A dan A ne

Detaylı

İŞ : Şekilde yörüngesinde hareket eden bir parçacık üzerine kuvveti görülmektedir. Parçacık A noktasından

İŞ : Şekilde yörüngesinde hareket eden bir parçacık üzerine kuvveti görülmektedir. Parçacık A noktasından İŞ : Şekilde yörüngesinde hareket eden bir parçacık üzerine etkiyen F kuvveti görülmektedir. Parçacık A noktasından r geçerken konum vektörü uygun bir O orijininden ölçülmektedir ve A dan A ne diferansiyel

Detaylı

KATI CİSİMLERİN BAĞIL İVME ANALİZİ:

KATI CİSİMLERİN BAĞIL İVME ANALİZİ: KATI CİSİMLERİN BAĞIL İVME ANALİZİ: Genel düzlemsel hareket yapmakta olan katı cisim üzerinde bulunan iki noktanın ivmeleri aralarındaki ilişki, bağıl hız v A = v B + v B A ifadesinin zamana göre türevi

Detaylı

Mühendislik Mekaniği Dinamik. Yrd.Doç.Dr. Akın Ataş

Mühendislik Mekaniği Dinamik. Yrd.Doç.Dr. Akın Ataş Mühendislik Mekaniği Dinamik Yrd.Doç.Dr. Akın Ataş Bölüm 14 Parçacık Kinetiği: İş ve Enerji Kaynak: Mühendislik Mekaniği: Dinamik, R.C.Hibbeler, S.C.Fan, Çevirenler: A. Soyuçok, Ö. Soyuçok. 14 Parçacık

Detaylı

BÖLÜM 4: MADDESEL NOKTANIN KİNETİĞİ: İMPULS ve MOMENTUM

BÖLÜM 4: MADDESEL NOKTANIN KİNETİĞİ: İMPULS ve MOMENTUM BÖLÜM 4: MADDESEL NOKTANIN KİNETİĞİ: İMPULS ve MOMENTUM 4.1. Giriş Bir önceki bölümde, hareket denklemi F = ma nın, maddesel noktanın yer değiştirmesine göre integrasyonu ile elde edilen iş ve enerji denklemlerini

Detaylı

Mühendislik Mekaniği Dinamik. Yrd.Doç.Dr. Akın Ataş

Mühendislik Mekaniği Dinamik. Yrd.Doç.Dr. Akın Ataş Mühendislik Mekaniği Dinamik Yrd.Doç.Dr. Akın Ataş Bölüm 13 Parçacık Kinetiği: Kuvvet ve İvme Kaynak: Mühendislik Mekaniği: Dinamik, R.C.Hibbeler, S.C.Fan, Çevirenler: A. Soyuçok, Ö. Soyuçok. 13 Parçacık

Detaylı

Rijit Cisimlerin Dengesi

Rijit Cisimlerin Dengesi Rijit Cisimlerin Dengesi Rijit Cisimlerin Dengesi Bu bölümde, rijit cisim dengesinin temel kavramları ele alınacaktır: Rijit cisimler için denge denklemlerinin oluşturulması Rijit cisimler için serbest

Detaylı

Mühendislik Mekaniği Statik. Yrd.Doç.Dr. Akın Ataş

Mühendislik Mekaniği Statik. Yrd.Doç.Dr. Akın Ataş Mühendislik Mekaniği Statik Yrd.Doç.Dr. Akın Ataş Bölüm 10 Eylemsizlik Momentleri Kaynak: Mühendislik Mekaniği: Statik, R. C.Hibbeler, S. C. Fan, Çevirenler: A. Soyuçok, Ö. Soyuçok. 10. Eylemsizlik Momentleri

Detaylı

Rijit Cisimlerin Dengesi

Rijit Cisimlerin Dengesi Rijit Cisimlerin Dengesi Rijit Cisimlerin Dengesi Bu bölümde, rijit cisim dengesinin temel kavramları ele alınacaktır: Rijit cisimler için denge denklemlerinin oluşturulması Rijit cisimler için serbest

Detaylı

Dinamik. Fatih ALİBEYOĞLU -10-

Dinamik. Fatih ALİBEYOĞLU -10- 1 Dinamik Fatih ALİBEYOĞLU -10- Giriş & Hareketler 2 Rijit cismi oluşturan çeşitli parçacıkların zaman, konum, hız ve ivmeleri arasında olan ilişkiler incelenecektir. Rijit Cisimlerin hareketleri Ötelenme(Doğrusal,

Detaylı

Fizik 101-Fizik I 2013-2014. Dönme Hareketinin Dinamiği

Fizik 101-Fizik I 2013-2014. Dönme Hareketinin Dinamiği -Fizik I 2013-2014 Dönme Hareketinin Dinamiği Nurdan Demirci Sankır Ofis: 364, Tel: 2924332 İçerik Vektörel Çarpım ve Tork Katı Cismin Yuvarlanma Hareketi Bir Parçacığın Açısal Momentumu Dönen Katı Cismin

Detaylı

Mühendislik Mekaniği Statik. Yrd.Doç.Dr. Akın Ataş

Mühendislik Mekaniği Statik. Yrd.Doç.Dr. Akın Ataş Mühendislik Mekaniği Statik Yrd.Doç.Dr. Akın Ataş Bölüm 4 Kuvvet Sistemi Bileşkeleri Kaynak: Mühendislik Mekaniği: Statik, R.C.Hibbeler, S.C.Fan, Çevirenler: A. Soyuçok, Ö. Soyuçok. 4. Kuvvet Sitemi Bileşkeleri

Detaylı

Rijit Cisimlerin Dengesi

Rijit Cisimlerin Dengesi Rijit Cisimlerin Dengesi 1 Rijit Cisimlerin Dengesi Bu bölümde, rijit cisim dengesinin temel kavramları ele alınacaktır: Rijit cisimler için denge denklemlerinin oluşturulması Rijit cisimler için serbest

Detaylı

Mühendislik Mekaniği Statik. Yrd.Doç.Dr. Akın Ataş

Mühendislik Mekaniği Statik. Yrd.Doç.Dr. Akın Ataş Mühendislik Mekaniği Statik Yrd.Doç.Dr. Akın Ataş Bölüm 5 Rijit Cisim Dengesi Kaynak: Mühendislik Mekaniği: Statik, R.C.Hibbeler, S.C.Fan, Çevirenler: A. Soyuçok, Ö. Soyuçok. 5. Rijit Cisim Dengesi Denge,

Detaylı

Mühendislik Mekaniği Dinamik. Yrd.Doç.Dr. Akın Ataş

Mühendislik Mekaniği Dinamik. Yrd.Doç.Dr. Akın Ataş Mühendislik Mekaniği Dinamik Yrd.Doç.Dr. Akın Ataş Bölüm 15 Parçacık Kinetiği: İmpuls ve Momentum Kaynak: Mühendislik Mekaniği: Dinamik, R.C.Hibbeler, S.C.Fan, Çevirenler: A. Soyuçok, Ö. Soyuçok. 15 Parçacık

Detaylı

Mühendislik Mekaniği Statik. Yrd.Doç.Dr. Akın Ataş

Mühendislik Mekaniği Statik. Yrd.Doç.Dr. Akın Ataş Mühendislik Mekaniği Statik Yrd.Doç.Dr. Akın Ataş Bölüm 3 Parçacık Dengesi Kaynak: Mühendislik Mekaniği: Statik, R.C.Hibbeler, S.C.Fan, Çevirenler: A. Soyuçok, Ö. Soyuçok. 3 Parçacık Dengesi Bu bölümde,

Detaylı

ĐŞ GÜÇ ENERJĐ. Zaman. 5. Uygulanan kuvvet cisme yol aldıramıyorsa iş yapılmaz. W = 0

ĐŞ GÜÇ ENERJĐ. Zaman. 5. Uygulanan kuvvet cisme yol aldıramıyorsa iş yapılmaz. W = 0 ĐŞ GÜÇ ENERJĐ Đş kelimesi, günlük hayatta çok kullanılan ve çok geniş kapsamlı bir kelimedir. Fiziksel anlamda işin tanımı tektir.. Yapılan iş, kuvvet ile kuvvetin etkisinde yapmış olduğu yerdeğiştirmenin

Detaylı

DİNAMİK. Ders_10. Doç.Dr. İbrahim Serkan MISIR DEÜ İnşaat Mühendisliği Bölümü. Ders notları için: GÜZ

DİNAMİK. Ders_10. Doç.Dr. İbrahim Serkan MISIR DEÜ İnşaat Mühendisliği Bölümü. Ders notları için: GÜZ DİNAMİK Ders_10 Doç.Dr. İbrahim Serkan MISIR DEÜ İnşaat Mühendisliği Bölümü Ders notları için: http://kisi.deu.edu.tr/serkan.misir/ 2016-2017 GÜZ KÜTLE ATALET MOMENTİ Bugünün Hedefleri: 1. Rijit bir cismin

Detaylı

HARRAN ÜNİVERSİTESİ 2016 YILI ZİRAAT FAKÜLTESİ FİNAL SINAVI SORU ÖRNEKLERİ

HARRAN ÜNİVERSİTESİ 2016 YILI ZİRAAT FAKÜLTESİ FİNAL SINAVI SORU ÖRNEKLERİ HARRAN ÜNİVERSİTESİ 016 YILI ZİRAAT FAKÜLTESİ FİNAL SINAVI SORU ÖRNEKLERİ Soru 1 - Bir tekerlek, 3.5 rad/ s ' lik sabit bir açısal ivmeyle dönüyor. t=0'da tekerleğin açısal hızı rad/s ise, (a) saniyede

Detaylı

Fizik-1 UYGULAMA-7. Katı bir cismin sabit bir eksen etrafında dönmesi

Fizik-1 UYGULAMA-7. Katı bir cismin sabit bir eksen etrafında dönmesi Fizik-1 UYGULAMA-7 Katı bir cismin sabit bir eksen etrafında dönmesi 1) Bir tekerlek üzerinde bir noktanın açısal konumu olarak verilmektedir. a) t=0 ve t=3s için bu noktanın açısal konumunu, açısal hızını

Detaylı

2. POTANSİYEL VE KİNETİK ENERJİ 2.1. CİSİMLERİN POTANSİYEL ENERJİSİ. Konumundan dolayı bir cismin sahip olduğu enerjiye Potansiyel Enerji denir.

2. POTANSİYEL VE KİNETİK ENERJİ 2.1. CİSİMLERİN POTANSİYEL ENERJİSİ. Konumundan dolayı bir cismin sahip olduğu enerjiye Potansiyel Enerji denir. BÖLÜM POTANSİYEL VE KİNETİK ENERJİ. POTANSİYEL VE KİNETİK ENERJİ.1. CİSİMLERİN POTANSİYEL ENERJİSİ Konumundan dolayı bir cismin sahip olduğu enerjiye Potansiyel Enerji denir. Mesela Şekil.1 de görülen

Detaylı

Sistem Dinamiği. Bölüm 3- Rijit Gövdeli Mekanik Sistemlerin Modellenmesi. Doç.Dr. Erhan AKDOĞAN

Sistem Dinamiği. Bölüm 3- Rijit Gövdeli Mekanik Sistemlerin Modellenmesi. Doç.Dr. Erhan AKDOĞAN Sistem Dinamiği Bölüm 3- Rijit Gövdeli Mekanik Sistemlerin Modellenmesi Doç. Sunumlarda kullanılan semboller: El notlarına bkz. Yorum Soru MATLAB Bolum No.Alt Başlık No.Denklem Sıra No Denklem numarası

Detaylı

STATIK VE MUKAVEMET 3. Rijit cisimlerin dengesi, Denge denklemleri, Serbest cisim diyagramı. Yrd. Doç. Dr. NURHAYAT DEĞİRMENCİ

STATIK VE MUKAVEMET 3. Rijit cisimlerin dengesi, Denge denklemleri, Serbest cisim diyagramı. Yrd. Doç. Dr. NURHAYAT DEĞİRMENCİ STATIK VE MUKAVEMET 3. Rijit cisimlerin dengesi, Denge denklemleri, Serbest cisim diyagramı Yrd. Doç. Dr. NURHAYAT DEĞİRMENCİ Rijit Cisimlerin Dengesi Bu bölümde, rijit cisim dengesinin temel kavramları

Detaylı

ELEKTRİKSEL POTANSİYEL

ELEKTRİKSEL POTANSİYEL ELEKTRİKSEL POTANSİYEL Elektriksel Potansiyel Enerji Elektriksel potansiyel enerji kavramına geçmeden önce Fizik-1 dersinizde görmüş olduğunuz iş, potansiyel enerji ve enerjinin korunumu kavramları ile

Detaylı

BÖLÜM 1: MADDESEL NOKTANIN KİNEMATİĞİ

BÖLÜM 1: MADDESEL NOKTANIN KİNEMATİĞİ BÖLÜM 1: MADDESEL NOKTANIN KİNEMATİĞİ 1.1. Giriş Kinematik, daha öncede vurgulandığı üzere, harekete sebep olan veya hareketin bir sonucu olarak ortaya çıkan kuvvetleri dikkate almadan cisimlerin hareketini

Detaylı

YAPI STATİĞİ MESNETLER

YAPI STATİĞİ MESNETLER YAPI STATİĞİ MESNETLER Öğr.Gör. Gültekin BÜYÜKŞENGÜR STATİK Kirişler Yük Ve Mesnet Çeşitleri Mesnetler Ve Mesnet Reaksiyonları 1. Kayıcı Mesnetler 2. Sabit Mesnetler 3. Ankastre (Konsol) Mesnetler 4. Üç

Detaylı

MADDESEL NOKTANIN EĞRİSEL HAREKETİ

MADDESEL NOKTANIN EĞRİSEL HAREKETİ Silindirik Koordinatlar: Bazı mühendislik problemlerinde, parçacığın hareketinin yörüngesi silindirik koordinatlarda r, θ ve z tanımlanması uygun olacaktır. Eğer parçacığın hareketi iki eksende oluşmaktaysa

Detaylı

Düzgün olmayan dairesel hareket

Düzgün olmayan dairesel hareket Düzgün olmayan dairesel hareket Dairesel harekette cisim üzerine etki eden net kuvvet merkeze doğru yönelmişse cismin hızı sabit kalır. Eğer net kuvvet merkeze doğru yönelmemişse, kuvvet teğetsel ve radyal

Detaylı

Massachusetts Teknoloji Enstitüsü-Fizik Bölümü

Massachusetts Teknoloji Enstitüsü-Fizik Bölümü Massachusetts Teknoloji Enstitüsü-Fizik Bölümü Fizik 8.01 Ödev # 7 Güz, 1999 ÇÖZÜMLER Dru Renner dru@mit.edu 7 Kasım 1999 Saat: 21.50 Problem 7.1 (Ohanian, sayfa 271, problem 55) Bu problem boyunca roket

Detaylı

STATİK MÜHENDİSLİK MEKANİĞİ. Behcet DAĞHAN. Behcet DAĞHAN. Behcet DAĞHAN. Behcet DAĞHAN

STATİK MÜHENDİSLİK MEKANİĞİ. Behcet DAĞHAN. Behcet DAĞHAN. Behcet DAĞHAN.  Behcet DAĞHAN Statik Ders Notları Sınav Soru ve Çözümleri DAĞHAN MÜHENDİSLİK MEKANİĞİ STATİK MÜHENDİSLİK MEKANİĞİ STATİK İÇİNDEKİLE 1. GİİŞ - Skalerler ve ektörler - Newton Kanunları 2. KUET SİSTEMLEİ - İki Boyutlu

Detaylı

Mühendislik Mekaniği Statik. Yrd.Doç.Dr. Akın Ataş

Mühendislik Mekaniği Statik. Yrd.Doç.Dr. Akın Ataş Mühendislik Mekaniği Statik Yrd.Doç.Dr. Akın Ataş Bölüm 2 Kuvvet Vektörleri Kaynak: Mühendislik Mekaniği: Statik, R.C.Hibbeler, S.C.Fan, Çevirenler: A. Soyuçok, Ö.Soyuçok. 2 Kuvvet Vektörleri Bu bölümde,

Detaylı

Fizik 101: Ders 17 Ajanda

Fizik 101: Ders 17 Ajanda izik 101: Ders 17 Ajanda Dönme hareketi Yön ve sağ el kuralı Rotasyon dinamiği ve tork Örneklerle iş ve enerji Dönme ve Lineer Kinematik Karşılaştırma açısal α sabit 0 t 1 0 0t t lineer a sabit v v at

Detaylı

MKM 308 Makina Dinamiği. Eşdeğer Noktasal Kütleler Teorisi

MKM 308 Makina Dinamiği. Eşdeğer Noktasal Kütleler Teorisi MKM 308 Eşdeğer Noktasal Kütleler Teorisi Eşdeğer Noktasal Kütleler Teorisi Maddesel Nokta (Noktasal Kütleler) : Mekanikte her cisim zihnen maddesel noktalara ayrılabilir yani noktasal kütlelerden meydana

Detaylı

Newton un II. yasası. Bir cismin ivmesi, onun üzerine etki eden bileşke kuvvetle doğru orantılı ve kütlesi ile ters orantılıdır.

Newton un II. yasası. Bir cismin ivmesi, onun üzerine etki eden bileşke kuvvetle doğru orantılı ve kütlesi ile ters orantılıdır. Newton un II. yasası Bir cismin ivmesi, onun üzerine etki eden bileşke kuvvetle doğru orantılı ve kütlesi ile ters orantılıdır. Bir cisme F A, F B ve F C gibi çok sayıda kuvvet etkiyorsa, net kuvvet bunların

Detaylı

ATALET MOMENTİ. Amaçlar 1. Rijit bir cismin veya rijit cisim sistemlerinin kütle atalet momentinin bulunması.

ATALET MOMENTİ. Amaçlar 1. Rijit bir cismin veya rijit cisim sistemlerinin kütle atalet momentinin bulunması. ATALET MOMENTİ Amaçlar 1. Rijit bir cismin veya rijit cisim sistemlerinin kütle atalet momentinin bulunması. UYGULAMALAR Şekilde gösterilen çark büyük bir kesiciye bağlıdır. Çarkın kütlesi, kesici bıçağa

Detaylı

Fizik 101: Ders 18 Ajanda

Fizik 101: Ders 18 Ajanda Fizik 101: Ders 18 Ajanda Özet Çoklu parçacıkların dinamiği Makara örneği Yuvarlanma ve kayma örneği Verilen bir eksen etrafında dönme: hokey topu Eğik düzlemde aşağı yuvarlanma Bowling topu: kayan ve

Detaylı

DİNAMİK - 7. Yrd. Doç. Dr. Mehmet Ali Dayıoğlu Ankara Üniversitesi Ziraat Fakültesi. Tarım Makinaları ve Teknolojileri Mühendisliği Bölümü

DİNAMİK - 7. Yrd. Doç. Dr. Mehmet Ali Dayıoğlu Ankara Üniversitesi Ziraat Fakültesi. Tarım Makinaları ve Teknolojileri Mühendisliği Bölümü DİNAMİK - 7 Yrd. Doç. Dr. Mehmet Ali Dayıoğlu Ankara Üniversitesi Ziraat Fakültesi Tarım Makinaları ve Teknolojileri Mühendisliği Bölümü 7. HAFTA Kapsam: Parçacık Kinetiği, Kuvvet İvme Yöntemi Newton hareket

Detaylı

4.1 denklemine yakından bakalım. Tanımdan α = dω/dt olduğu bilinmektedir (ω açısal hız). O hâlde eğer cisme etki eden tork sıfır ise;

4.1 denklemine yakından bakalım. Tanımdan α = dω/dt olduğu bilinmektedir (ω açısal hız). O hâlde eğer cisme etki eden tork sıfır ise; Deney No : M3 Deneyin Adı : EYLEMSİZLİK MOMENTİ VE AÇISAL İVMELENME Deneyin Amacı : Dönme hareketinde eylemsizlik momentinin ne demek olduğunu ve nelere bağlı olduğunu deneysel olarak gözlemlemek. Teorik

Detaylı

TEKNOLOJİNİN BİLİMSEL İLKELERİ

TEKNOLOJİNİN BİLİMSEL İLKELERİ TEKNOLOJİNİN BİLİMSEL İLKELERİ Öğr. Gör. Fatih KURTULUŞ 4.BÖLÜM: STATİK MOMENT - MOMENT (TORK) Moment (Tork): Kuvvetin döndürücü etkisidir. F 3 M ile gösterilir. Vektörel büyüklüktür. F 4 F 3. O. O F 4

Detaylı

TORK VE DENGE 01 Torkun Tanımı ve Yönü

TORK VE DENGE 01 Torkun Tanımı ve Yönü TORK VE DENGE 01 Torkun Tanımı ve Yönü Kuvvetin döndürme etkisine tork ya da moment denir. Bir kuvvetin bir noktaya göre torku; kuvvet ile dönme noktasının kuvvete dik uzaklığının çarpımına eşittir. Moment

Detaylı

DİNAMİK DERS NOTLARI. Doç.Dr. Cesim ATAŞ

DİNAMİK DERS NOTLARI. Doç.Dr. Cesim ATAŞ DİNMİK DERS NOTLRI Kaynaklar: Engineering Mechanics: Dynamics,, SI Version, 6th Edition, J. L. Meriam,, L. G. Kraige Vector Mechanics for Engineers: : Dynamics, Sith Edition, Beer and Johnston Doç.Dr.

Detaylı

: MAXWELL TEKERLEĞİ. Deneyin Adı Deneyin Amacı

: MAXWELL TEKERLEĞİ. Deneyin Adı Deneyin Amacı Deney No Deneyin Adı Deneyin Amacı : M4 : MAXWELL TEKERLEĞİ : İzole sistemlerde enerjinin korunumu ilkesini ve potansiyel ile kinetik enerji arası dönüşümlerini gözlemlemek/türetmek Teorik Bilgi : Maxwell

Detaylı

Doç. Dr. Muhammet Cerit Öğretim Üyesi Makine Mühendisliği Bölümü (Mekanik Ana Bilim Dalı) Elektronik posta ( ):

Doç. Dr. Muhammet Cerit Öğretim Üyesi Makine Mühendisliği Bölümü (Mekanik Ana Bilim Dalı) Elektronik posta ( ): Tanışma ve İletişim... Doç. Dr. Muhammet Cerit Öğretim Üyesi Makine Mühendisliği Bölümü (Mekanik Ana Bilim Dalı) Elektronik posta (e-mail): mcerit@sakarya.edu.tr Öğrenci Başarısı Değerlendirme... Öğrencinin

Detaylı

Manyetik Alanlar. Benzer bir durum hareketli yükler içinde geçerli olup bu yüklerin etrafını elektrik alana ek olarak bir manyetik alan sarmaktadır.

Manyetik Alanlar. Benzer bir durum hareketli yükler içinde geçerli olup bu yüklerin etrafını elektrik alana ek olarak bir manyetik alan sarmaktadır. Manyetik Alanlar Manyetik Alanlar Duran ya da hareket eden yüklü parçacığın etrafını bir elektrik alanın sardığı biliyoruz. Hatta elektrik alan konusunda şu sonuç oraya konulmuştur. Durgun bir deneme yükü

Detaylı

Bölüm 6 AKIŞ SİSTEMLERİNİN MOMENTUM ANALİZİ

Bölüm 6 AKIŞ SİSTEMLERİNİN MOMENTUM ANALİZİ Akışkanlar Mekaniği Bölüm 6 AKIŞ SİSTEMLERİNİN MOMENTUM ANALİZİ Doç. Dr. İ. Gökhan AKSOY Denizanasının (Aurelia aurita) düzenli yüzme hareketi. Denizanası gövdesini kasıp akışkanı ittikten sonra süzülerek

Detaylı

DÜZLEMDE GERİLME DÖNÜŞÜMLERİ

DÜZLEMDE GERİLME DÖNÜŞÜMLERİ 3 DÜZLEMDE GERİLME DÖNÜŞÜMLERİ Gerilme Kavramı Dış kuvvetlerin etkisi altında dengedeki elastik bir cismi matematiksel bir yüzeyle rasgele bir noktadan hayali bir yüzeyle ikiye ayıracak olursak, F 3 F

Detaylı

DENEY 5 DÖNME HAREKETİ

DENEY 5 DÖNME HAREKETİ DENEY 5 DÖNME HAREKETİ AMAÇ Deneyin amacı merkezinden geçen eksen etrafında dönen bir diskin dinamiğini araştırmak, açısal ivme, açısal hız ve eylemsizlik momentini hesaplamak ve mekanik enerjinin korunumu

Detaylı

Kuvvet. Kuvvet. Newton un 1.hareket yasası Fizik 1, Raymond A. Serway; Robert J. Beichner Editör: Kemal Çolakoğlu, Palme Yayınevi

Kuvvet. Kuvvet. Newton un 1.hareket yasası Fizik 1, Raymond A. Serway; Robert J. Beichner Editör: Kemal Çolakoğlu, Palme Yayınevi Kuvvet izik 1, Raymond A. Serway; Robert J. Beichner Editör: Kemal Çolakoğlu, Palme Yayınevi 2 Kuvvet Kuvvet ivmelenme kazandırır. Kuvvet vektörel bir niceliktir. Kuvvetler çift halinde bulunur. Kuvvet

Detaylı

STATIK MUKAVEMET. Doç. Dr. NURHAYAT DEĞİRMENCİ

STATIK MUKAVEMET. Doç. Dr. NURHAYAT DEĞİRMENCİ STATIK MUKAVEMET Doç. Dr. NURHAYAT DEĞİRMENCİ STATİK DENGE KOŞULLARI Yapı elemanlarının tasarımında bu elemanlarda oluşan iç kuvvetlerin dağılımının bilinmesi gerekir. Dış ve iç kuvvetlerin belirlenmesinde

Detaylı

Video 01. Bir kuvvet, etkidiği cismin yerini değiştirebiliyorsa iş yapılıyor denir. İşin oluşabilmesi için kuvvet gerek şarttır.

Video 01. Bir kuvvet, etkidiği cismin yerini değiştirebiliyorsa iş yapılıyor denir. İşin oluşabilmesi için kuvvet gerek şarttır. Video 01 01.İŞ GÜÇ ENERJİ A) İŞİN TANIMI Bir kuvvet, etkidiği cismin yerini değiştirebiliyorsa iş yapılıyor denir. İşin oluşabilmesi için kuvvet gerek şarttır. Bir başka deyişle kuvvetin X yolu boyunca

Detaylı

TEKNOLOJİNİN BİLİMSEL İLKELERİ. Öğr. Gör. Adem ÇALIŞKAN

TEKNOLOJİNİN BİLİMSEL İLKELERİ. Öğr. Gör. Adem ÇALIŞKAN TEKNOLOJİNİN BİLİMSEL İLKELERİ 5 Ağırlık merkezi STATİK Bir cisim moleküllerden meydana gelir. Bu moleküllerin her birine yer çekimi kuvveti etki eder. Bu yer çekimi kuvvetlerinin cismi meydana getiren

Detaylı

RÖLATİF HAREKET ANALİZİ: İVME

RÖLATİF HAREKET ANALİZİ: İVME RÖLATİF HAREKET ANALİZİ: İVME AMAÇLAR: 1. Rijit bir cisim üzerindeki noktanın ivmesini ötelenme ve dönme birleşenlerine ayırmak, 2. Rijit cisim üzerindeki bir noktanın ivmesini rölatif ivme analizi ile

Detaylı

Fizik 203. Ders 5 İş-Enerji- Momentum Ali Övgün. Ofis: AS242 Fen ve Edebiyat Fakültesi Tel:

Fizik 203. Ders 5 İş-Enerji- Momentum Ali Övgün. Ofis: AS242 Fen ve Edebiyat Fakültesi Tel: Fizik 203 Ders 5 İş-Enerji- Momentum Ali Övgün Ofis: AS242 Fen ve Edebiyat Fakültesi Tel: 0392-630-1379 ali.ovgun@emu.edu.tr www.aovgun.com İşinTanımı Güç KinetikEnerji NetKuvvetiçinİş-EnerjiTeoremi EnerjininKorunumuYasası

Detaylı

3. KUVVET SİSTEMLERİ

3. KUVVET SİSTEMLERİ 3. KUVVET SİSTEMLERİ F F W P P 3.1 KUVVET KAVRAMI VE ETKİLERİ Kuvvet, bir cisme etki eden yapısal yüklerdir. Kuvvet Şiddeti, yönü ve uygulama noktası olan vektörel bir büyüklüktür. Bir cismin üzerine uygulanan

Detaylı

Bölüm 9: Doğrusal momentum ve çarpışmalar

Bölüm 9: Doğrusal momentum ve çarpışmalar Bölüm 9: Doğrusal momentum ve çarpışmalar v hızıyla hareket eden m kütleli bir parçacığın doğrusal momentumu kütle ve hızın çarpımına eşittir; p = mv Momentum vektörel bir niceliktir, yönü hız vektörü

Detaylı

Fizik Dr. Murat Aydemir

Fizik Dr. Murat Aydemir Fizik-1 2017-2018 Dr. Murat Aydemir Ankara University, Physics Engineering, Bsc Durham University, Physics, PhD University of Oxford, Researcher, Post-Doc Ofis No: 35 Merkezi Derslikler Binasi murat.aydemir@erzurum.edu.tr

Detaylı

TEKNOLOJİNİN BİLİMSEL İLKELERİ. Öğr. Gör. Adem ÇALIŞKAN

TEKNOLOJİNİN BİLİMSEL İLKELERİ. Öğr. Gör. Adem ÇALIŞKAN TEKNOLOJİNİN BİLİMSEL İLKELERİ 4 Skaler: Fiziki büyüklükler SKALER BÜYÜKLÜK SEMBOLÜ BİRİMİ Kütle m Kilogram Hacim V m 3 Zaman t Saniye Sıcaklık T Kelvin Sadece sayısal değer ve birim verilerek ifade edilen

Detaylı

STATİK MÜHENDİSLİK MEKANİĞİ. Behcet DAĞHAN. Behcet DAĞHAN. Behcet DAĞHAN. Behcet DAĞHAN

STATİK MÜHENDİSLİK MEKANİĞİ. Behcet DAĞHAN. Behcet DAĞHAN. Behcet DAĞHAN.  Behcet DAĞHAN Statik Ders Notları Sınav Soru ve Çözümleri DAĞHAN MÜHENDİSLİK MEKANİĞİ STATİK MÜHENDİSLİK MEKANİĞİ STATİK İÇİNDEKİLER 1. GİRİŞ - Skalerler ve Vektörler - Newton Kanunları. KUVVET SİSTEMLERİ - İki Boutlu

Detaylı

STATİK KUVVET ANALİZİ (2.HAFTA)

STATİK KUVVET ANALİZİ (2.HAFTA) STATİK KUVVET ANALİZİ (2.HAFTA) Mekanik sistemler üzerindeki kuvvetler denge halindeyse sistem hareket etmeyecektir. Sistemin denge hali için gerekli kuvvetlerin hesaplanması statik hesaplamalarla yapılır.

Detaylı

STATİĞİN TEMEL PRENSİPLERİ

STATİĞİN TEMEL PRENSİPLERİ 1.1. Temel Kavramlar ve Tanımlar Mühendislik mekaniği: Kuvvet etkisi altındaki cisimlerin denge veya hareket koşullarını inceleyen bilim dalı Genel olarak mühendislik mekaniği Sert (rijit) katı cisimlerin

Detaylı

Mühendislik Mekaniği Statik. Yrd.Doç.Dr. Akın Ataş

Mühendislik Mekaniği Statik. Yrd.Doç.Dr. Akın Ataş Mühendislik Mekaniği Statik Yrd.Doç.Dr. Akın Ataş Bölüm 9 Ağırlık Merkezi ve Geometrik Merkez Kaynak: Mühendislik Mekaniği: Statik, R. C. Hibbeler, S. C. Fan, Çevirenler: A. Soyuçok, Ö. Soyuçok. 9. Ağırlık

Detaylı

KOÜ. Mühendislik Fakültesi Makine Mühendisliği ( 1. ve 2. Öğretim ) Bölümü Dinamik Dersi (Türkçe Dilinde) 1. Çalişma Soruları / 24 Eylül 2017

KOÜ. Mühendislik Fakültesi Makine Mühendisliği ( 1. ve 2. Öğretim ) Bölümü Dinamik Dersi (Türkçe Dilinde) 1. Çalişma Soruları / 24 Eylül 2017 SORU-1) Dirençli bir ortamda doğrusal hareket yapan bir parçacığın ivmesi a=k V 3 olarak tanımlanmıştır. Burada k bir sabiti, V hızı, x konumu ve t zamanı sembolize etmektedir. Başlangıç koşulları x o

Detaylı

elde ederiz. Bu son ifade yeniden düzenlenirse,

elde ederiz. Bu son ifade yeniden düzenlenirse, Deney No : M2 Deneyin Adı : İKİ BOYUTTA ESNEK ÇARPIŞMA Deneyin Amacı : İki boyutta esnek çarpışmada, enerji ve momentum korunum bağıntılarını incelemek, momentumun vektörel, enerjini skaler bir büyüklük

Detaylı

2. KUVVET SİSTEMLERİ 2.1 Giriş

2. KUVVET SİSTEMLERİ 2.1 Giriş 2. KUVVET SİSTEMLERİ 2.1 Giriş Kuvvet: Şiddet (P), doğrultu (θ) ve uygulama noktası (A) ile karakterize edilen ve bir cismin diğerine uyguladığı itme veya çekme olarak tanımlanabilir. Bu parametrelerden

Detaylı

Yrd. Doç. Dr. Fatih TOSUNOĞLU Erzurum Teknik Üniversitesi Mühendislik Fakültesi İnşaat Mühendisliği Bölümü

Yrd. Doç. Dr. Fatih TOSUNOĞLU Erzurum Teknik Üniversitesi Mühendislik Fakültesi İnşaat Mühendisliği Bölümü Yrd. Doç. Dr. Fatih TOSUNOĞLU Erzurum Teknik Üniversitesi Mühendislik Fakültesi İnşaat Mühendisliği Bölümü 1 kışkan Statiğine Giriş kışkan statiği (hidrostatik, aerostatik), durgun haldeki akışkanlarla

Detaylı

3.1. Basınç 3. BASINÇ VE AKIŞKAN STATİĞİ

3.1. Basınç 3. BASINÇ VE AKIŞKAN STATİĞİ 3. BASINÇ VE AKIŞKAN STATİĞİ Doç.Dr. Serdar GÖNCÜ (Ağustos 2011) 3.1. Basınç Bir akışkan tarafından birim alana uygulanan normal kuvvete basınç denir Basınç birimi N/m 2 olup buna pascal (Pa) denir. 1

Detaylı

TEMEL MEKANİK 6. Yrd. Doç. Dr. Mehmet Ali Dayıoğlu Ankara Üniversitesi Ziraat Fakültesi Tarım Makinaları ve Teknolojileri Mühendisliği Bölümü

TEMEL MEKANİK 6. Yrd. Doç. Dr. Mehmet Ali Dayıoğlu Ankara Üniversitesi Ziraat Fakültesi Tarım Makinaları ve Teknolojileri Mühendisliği Bölümü TEMEL MEKANİK 6 Yrd. Doç. Dr. Mehmet Ali Dayıoğlu Ankara Üniversitesi Ziraat Fakültesi Tarım Makinaları ve Teknolojileri Mühendisliği Bölümü Ders Kitapları: Mühendisler İçin Vektör Mekaniği, Statik, Yazarlar:

Detaylı

Mukavemet-II PROF. DR. MURAT DEMİR AYDIN

Mukavemet-II PROF. DR. MURAT DEMİR AYDIN Mukavemet-II PROF. DR. MURAT DEMİR AYDIN KAYNAK KİTAPLAR Cisimlerin Mukavemeti F.P. BEER, E.R. JOHNSTON Mukavemet-2 Prof.Dr. Onur SAYMAN, Prof.Dr. Ramazan Karakuzu Mukavemet Mehmet H. OMURTAG 1 SİMETRİK

Detaylı

HAREKET HAREKET KUVVET İLİŞKİSİ

HAREKET HAREKET KUVVET İLİŞKİSİ HAREKET HAREKET KUVVET İLİŞKİSİ Sabit kabul edilen bir noktaya göre bir cismin konumundaki değişikliğe hareket denir. Bu sabit noktaya referans noktası denir. Fizikte hareket üçe ayrılır Ötelenme Hareketi:

Detaylı

MADDESEL NOKTALARIN DİNAMİĞİ

MADDESEL NOKTALARIN DİNAMİĞİ MÜHENDİSLİK MEKANİĞİ DİNAMİK MADDESEL NOKTALARIN DİNAMİĞİ DİNAMİK MADDESEL NOKTALARIN DİNAMİĞİ İÇİNDEKİLER 1. GİRİŞ - Konum, Hız ve İvme - Newton Kanunları 2. MADDESEL NOKTALARIN KİNEMATİĞİ - Doğrusal

Detaylı

1. STATİĞE GİRİŞ 1.1 TANIMLAR MEKANİK RİJİT CİSİMLER MEKANİĞİ ŞEKİL DEĞİŞTİREN CİSİMLER AKIŞKANLAR MEKANİĞİ DİNAMİK STATİK

1. STATİĞE GİRİŞ 1.1 TANIMLAR MEKANİK RİJİT CİSİMLER MEKANİĞİ ŞEKİL DEĞİŞTİREN CİSİMLER AKIŞKANLAR MEKANİĞİ DİNAMİK STATİK STATİK Ders Notları Kaynaklar: 1.Engineering Mechanics: Statics, 9e, Hibbeler, Prentice Hall 2.Engineering Mechanics: Statics, SI Version, 6th Edition, J. L. Meriam, L. G. Kraige 1. STATİĞE GİRİŞ 1.1 TANIMLAR

Detaylı

EKSENEL YÜKLERDEN OLUŞAN GERILME VE ŞEKİL DEĞİŞİMİ Eksenel yüklü elemanlarda meydana gelen normal gerilmelerin nasıl hesaplanacağı daha önce ele

EKSENEL YÜKLERDEN OLUŞAN GERILME VE ŞEKİL DEĞİŞİMİ Eksenel yüklü elemanlarda meydana gelen normal gerilmelerin nasıl hesaplanacağı daha önce ele EKSENEL YÜKLERDEN OLUŞAN GERILME VE ŞEKİL DEĞİŞİMİ Eksenel yüklü elemanlarda meydana gelen normal gerilmelerin nasıl hesaplanacağı daha önce ele alınmıştı. Bu bölümde ise, eksenel yüklü elemanların şekil

Detaylı

MEKANİZMA TEKNİĞİ (3. Hafta)

MEKANİZMA TEKNİĞİ (3. Hafta) MEKANİZMALARIN KİNEMATİK ANALİZİ Temel Kavramlar MEKANİZMA TEKNİĞİ (3. Hafta) Bir mekanizmanın Kinematik Analizinden bahsettiğimizde, onun üzerindeki tüm uzuvların yada istenilen herhangi bir noktanın

Detaylı

Kinetik Problemleri için Çözüm yöntemleri i.) Newton un 2. yasası F = m a. ii.) İş-Enerji Yöntemi. iii.) İmpuls-momentum yöntemi

Kinetik Problemleri için Çözüm yöntemleri i.) Newton un 2. yasası F = m a. ii.) İş-Enerji Yöntemi. iii.) İmpuls-momentum yöntemi Giriş Kinetik: Parçacığın hareketi ve parçacığın hareketini yaratan kuvvetler arasındaki ilişkiyi inceleyen bilim dalıdır. Kabaca bir formül ile ifade edilir. F = m a 1 Kinetik Problemleri için Çözüm yöntemleri

Detaylı

Yrd. Doç. Dr. Fatih TOSUNOĞLU Erzurum Teknik Üniversitesi Mühendislik Fakültesi İnşaat Mühendisliği Bölümü

Yrd. Doç. Dr. Fatih TOSUNOĞLU Erzurum Teknik Üniversitesi Mühendislik Fakültesi İnşaat Mühendisliği Bölümü Yrd. Doç. Dr. Fatih TOSUNOĞLU Erzurum Teknik Üniversitesi Mühendislik Fakültesi İnşaat Mühendisliği Bölümü 1 Akışkan Statiğine Giriş Akışkan statiği (hidrostatik, aerostatik), durgun haldeki akışkanlarla

Detaylı

Newton un ikinci yasası: Bir cisim ivmesi cisim üzerine etki eden toplam kuvvet ile doğru orantılı cismin kütlesi ile ters orantılıdır.

Newton un ikinci yasası: Bir cisim ivmesi cisim üzerine etki eden toplam kuvvet ile doğru orantılı cismin kütlesi ile ters orantılıdır. Bölüm 5: Hareket Yasaları(Özet) Önceki bölümde hareketin temel kavramları olan yerdeğiştirme, hız ve ivme tanımlanmıştır. Bu bölümde ise hareketli cisimlerin farklı hareketlerine sebep olan etkilerin hareketi

Detaylı

Fizik 101-Fizik I Hareket Kanunları. Nurdan Demirci Sankır Ofis: 325, Tel:4331 Enerji Araştırmalrı Laboratuarı (YDB- Bodrum Kat) İçerik

Fizik 101-Fizik I Hareket Kanunları. Nurdan Demirci Sankır Ofis: 325, Tel:4331 Enerji Araştırmalrı Laboratuarı (YDB- Bodrum Kat) İçerik Fizik 101-Fizik I 2013-2014 Hareket Kanunları Nurdan Demirci Sankır Ofis: 325, Tel:4331 Enerji Araştırmalrı Laboratuarı (YDB- Bodrum Kat) İçerik Kuvvet Kavramı Newton nun Birinci Yasası ve Eylemsizlik

Detaylı

TİTREŞİM VE DALGALAR BÖLÜM PERİYODİK HAREKET

TİTREŞİM VE DALGALAR BÖLÜM PERİYODİK HAREKET TİTREŞİM VE DALGALAR Periyodik Hareketler: Belirli aralıklarla tekrarlanan harekete periyodik hareket denir. Sabit bir nokta etrafında periyodik hareket yapan cismin hareketine titreşim hareketi denir.

Detaylı

2. Konum. Bir cismin başlangıç kabul edilen sabit bir noktaya olan uzaklığına konum denir.

2. Konum. Bir cismin başlangıç kabul edilen sabit bir noktaya olan uzaklığına konum denir. HAREKET Bir cismin zamanla çevresindeki diğer cisimlere göre yer değiştirmesine hareket denir. Hareket konumuzu daha iyi anlamamız için öğrenmemiz gereken diğer kavramlar: 1. Yörünge 2. Konum 3. Yer değiştirme

Detaylı

Rijit cisim mekaniği, diyagramdan da görüldüğü üzere statik ve dinamik olarak ikiye ayrılır. Statik dengede bulunan cisimlerle, dinamik hareketteki

Rijit cisim mekaniği, diyagramdan da görüldüğü üzere statik ve dinamik olarak ikiye ayrılır. Statik dengede bulunan cisimlerle, dinamik hareketteki Rijit cisim mekaniği, diyagramdan da görüldüğü üzere statik ve dinamik olarak ikiye ayrılır. Statik dengede bulunan cisimlerle, dinamik hareketteki cisimlerle uğraşır. Statik, kuvvet etkisi altında cisimlerin

Detaylı

Mekanik. Mühendislik Matematik

Mekanik. Mühendislik Matematik Mekanik Kuvvetlerin etkisi altında cisimlerin denge ve hareket şartlarını anlatan ve inceleyen bir bilim dalıdır. Amacı fiziksel olayları açıklamak, önceden tahmin etmek ve böylece mühendislik uygulamalarına

Detaylı

KAYMA GERİLMESİ (ENİNE KESME)

KAYMA GERİLMESİ (ENİNE KESME) KAYMA GERİLMESİ (ENİNE KESME) Demir yolu traversleri çok büyük kesme yüklerini taşıyan kiriş olarak davranır. Bu durumda, eğer traversler ahşap malzemedense kesme kuvvetinin en büyük olduğu uçlarından

Detaylı

Fizik 101-Fizik I 2013-2014. Katı Bir Cismin Sabit Bir Eksen Etrafında Dönmesi

Fizik 101-Fizik I 2013-2014. Katı Bir Cismin Sabit Bir Eksen Etrafında Dönmesi -Fizik I 2013-2014 Katı Bir Cismin Sabit Bir Eksen Etrafında Dönmesi Nurdan Demirci Sankır Ofis: 325, Tel: 2924332 İçerik Açısal Yerdeğiştirme, Hız ve İvme Dönme Kinematiği Açısal ve Doğrusal Nicelikler

Detaylı

BATMIŞ YÜZEYLERE GELEN HİDROSTATİK KUVVETLER

BATMIŞ YÜZEYLERE GELEN HİDROSTATİK KUVVETLER BATMIŞ YÜZEYLERE GELEN HİDROSTATİK KUVVETLER Yrd. Doç. Dr. Beytullah EREN Çevre Mühendisliği Bölümü BATMIŞ YÜZEYLERE GELEN HİDROSTATİK KUVVETLER Atatürk Barajı (Şanlıurfa) BATMIŞ YÜZEYLERE ETKİYEN KUVVETLER

Detaylı

EĞİTİM ÖĞRETİM YILI BAHAR DÖNEMİ DİNAMİK DERSİ FİNAL SINAVI ÖNCESİ ÖDEV SORULARI

EĞİTİM ÖĞRETİM YILI BAHAR DÖNEMİ DİNAMİK DERSİ FİNAL SINAVI ÖNCESİ ÖDEV SORULARI PROBLEM 13.59 2016-2017 EĞİTİM ÖĞRETİM YILI BAHAR DÖNEMİ DİNAMİK DERSİ FİNAL SINAVI ÖNCESİ ÖDEV SORULARI Kütlesi 1,2 kg lık bir C bileziği bir yatay çubuk boyunca sürtünmesiz kayıyor. Bilezik her birinin

Detaylı

Mimar Sinan Güzel Sanatlar Üniversitesi, Fizik Bölümü Fizik I Dersi Final Sınavı

Mimar Sinan Güzel Sanatlar Üniversitesi, Fizik Bölümü Fizik I Dersi Final Sınavı Mimar Sinan Güzel Sanatlar Üniversitesi, Fizik Bölümü Fizik I Dersi Final Sınavı 13 Ocak 2011 Hazırlayan: Yamaç Pehlivan Başlama saati: 13:00 Bitiş Saati: 14:20 Toplam Süre: 80 Dakika Lütfen adınızı ve

Detaylı

EĞİLME. Köprünün tabyası onun eğilme gerilmesine karşı koyma dayanımı esas alınarak boyutlandırılır.

EĞİLME. Köprünün tabyası onun eğilme gerilmesine karşı koyma dayanımı esas alınarak boyutlandırılır. EĞİLME Köprünün tabyası onun eğilme gerilmesine karşı koyma dayanımı esas alınarak boyutlandırılır. EĞİLME Mühendislikte en önemli yapı ve makine elemanları mil ve kirişlerdir. Bu bölümde, mil ve kirişlerde

Detaylı

Manyetizma. Manyetik alan çizgileri, çizim. Manyetik malzeme türleri. Manyetik alanlar. BÖLÜM 29 Manyetik alanlar

Manyetizma. Manyetik alan çizgileri, çizim. Manyetik malzeme türleri. Manyetik alanlar. BÖLÜM 29 Manyetik alanlar ÖLÜM 29 Manyetik alanlar Manyetik alan Akım taşıyan bir iletkene etkiyen manyetik kuvvet Düzgün bir manyetik alan içerisindeki akım ilmeğine etkiyen tork Yüklü bir parçacığın düzgün bir manyetik alan içerisindeki

Detaylı

FİZİK PROJE ÖDEVİ İŞ GÜÇ ENERJİ NUR PINAR ŞAHİN 11 C 741

FİZİK PROJE ÖDEVİ İŞ GÜÇ ENERJİ NUR PINAR ŞAHİN 11 C 741 FİZİK PROJE ÖDEVİ İŞ GÜÇ ENERJİ NUR PINAR ŞAHİN 11 C 741 İŞ İş kelimesi, günlük hayatta çok kullanılan ve çok geniş kapsamlı bir kelimedir. Fiziksel anlamda işin tanımı tektir. Yola paralel bir F kuvveti

Detaylı

DİNAMİK Ders_3. Doç.Dr. İbrahim Serkan MISIR DEÜ İnşaat Mühendisliği Bölümü. Ders notları için: GÜZ

DİNAMİK Ders_3. Doç.Dr. İbrahim Serkan MISIR DEÜ İnşaat Mühendisliği Bölümü. Ders notları için: GÜZ DİNAMİK Ders_3 Doç.Dr. İbrahim Serkan MISIR DEÜ İnşaat Mühendisliği Bölümü Ders notları için: http://kisi.deu.edu.tr/serkan.misir/ 2016-2017 GÜZ EĞRİSEL HAREKET: SİLİNDİRİK BİLEŞENLER Bugünün Hedefleri:

Detaylı

Doç.Dr. Cesim ATAŞ MEKANİK ŞEKİL DEĞİŞTİREN CİSİMLER MEKANİĞİ DİNAMİK

Doç.Dr. Cesim ATAŞ MEKANİK ŞEKİL DEĞİŞTİREN CİSİMLER MEKANİĞİ DİNAMİK STATİK (Ders Notları) Kaynak: Engineering Mechanics: Statics, SI Version, 6th Edition, J. L. Meriam, L. G. Kraige, Wiley Yardımcı Kaynak: Mühendislik Mekaniği: Statik, R.C Hibbeler & S.C. Fan, Literatür

Detaylı

Karabük Üniversitesi, Mühendislik Fakültesi...www.IbrahimCayiroglu.com. STATİK (2. Hafta)

Karabük Üniversitesi, Mühendislik Fakültesi...www.IbrahimCayiroglu.com. STATİK (2. Hafta) AĞIRLIK MERKEZİ STATİK (2. Hafta) Ağırlık merkezi: Bir cismi oluşturan herbir parçaya etki eden yerçeki kuvvetlerinin bileşkesinin cismin üzerinden geçtiği noktaya Ağırlık Merkezi denir. Şekil. Ağırlık

Detaylı

Kompozit Malzemeler ve Mekaniği. Yrd.Doç.Dr. Akın Ataş

Kompozit Malzemeler ve Mekaniği. Yrd.Doç.Dr. Akın Ataş Kompozit Malzemeler ve Mekaniği Yrd.Doç.Dr. Akın Ataş Bölüm 4 Laminatların Makromekanik Analizi Kaynak: Kompozit Malzeme Mekaniği, Autar K. Kaw, Çevirenler: B. Okutan Baba, R. Karakuzu. 4 Laminatların

Detaylı

Fizik 101-Fizik I

Fizik 101-Fizik I Fizik 101-Fizik I 2013-2014 Dairesel Hareket ve Newton Kanunlarının Diğer Uygulamaları Nurdan Demirci Sankır Ofis: 325, Tel:4331 Newton nun İkinci Yasasının Düzgün Dairesel Harekete Uygulanması Sabit hızla

Detaylı