Havada Asılı Konumdaki Çırpan Kanat Profilinin Sayısal ve Analitik Modellemesi

Ebat: px
Şu sayfadan göstermeyi başlat:

Download "Havada Asılı Konumdaki Çırpan Kanat Profilinin Sayısal ve Analitik Modellemesi"

Transkript

1 Havada Asılı Konumdaki Çırpan Kanat Profilinin Sayısal ve Analitik Modellemesi D. Funda KURTULU ODTÜ Havacılık ve Uzay Mühendislii Bölümü ENSMA Laboratoire d Etude d Aérodynamique, Poitiers Fransa (CNRS UMR669) dfunda@ae.metu.edu.tr ÖZET Bu çalımanın amacı nsansız Mikro Hava Araçları nın (MAV) gelitirilmesine yönelik olarak, havada asılı konumda çırpmakta olan bir kanat hareketinin aerodinamiinin incelenmesidir. Simetrik ekilde havada asılı durma bir çok böcek türünde ve özellikle arıböcei (hummingbird) kularında gözlenmektedir. Bu uçu esnasında kanatlar tüm kanat çırpma periyodu süresince kırılmadan dik konumda hareket etmektedirler ve aaıyukarı çırpma hareketi bir periyod boyunca simetrik olarak gerçeklemektedir. Bu çalısmadaki amaç ise tüm hareket boyunca maksimum kaldırma kuvvetini verecek optimum parametrelerin sayısal ve analitik yöntemler kullanılarak hesaplanmasıdır. 1. GR Çırpan kanat aerodinamii ve itkisi, günümüzde birçok aratırmacının alternatif bir Mikro Hava Aracı itki sistemi olarak ilgisini çekmektedir. Çırpan kanat sisteminin en bata gelen grubunu oluturan kular, zamana balı aerodinamik, deiken geometri, düzensiz daılımlı gözenekli esnek yüzey yapılarını ve hızlı, çevresel artlara adapte olabilen biolojik sistemlerini bir araya getirerek mükemmeliyetçi bir uçu performansı gerçekletirmektedirler. Bu karmaık yapıyı tam bir modellemeyle taklit etmek çok zordur. Havada asılı kalma uçu modu, çırpan kanat aerodinamik sisteminde incelenen, tatbiki en zor olan yollarından biridir. Bu uçutaki amaç, Mikro Hava araçlarının bulundukları konumu hiç deitirmeden uçu ve gözetleme yapabilmesini salamaktır. Havada asılı kalma durumundaki araç, sabit bir konumda kabul edilir ve serbest akı hızı sıfır alınır. Akıkan hareketleri sadece kanat hareketinden dolayı yaratılmaktadır. Havada asılı kalma harekentinin ana amacı, aracın aırlıını dengeleyecek dikey bir kuvvet yaratmaktır. Bir kuun, havada asılı konumda uçu yapabilme kapasitesinin olup olamayacaı, kuun boyutuna, kanatların eylemsizlik momentine, kanat hareketlerinin serbestlik derecesine ve kanat ekline balıdır. Bu limitlerden dolayı havada asılı konumda kalabilen tür sayısı çok azdır. Daha çok küçük böcek türleri (Drosophila gibi) ve arıkuu (hummingbird) gibi küçük kular tarafından tatbik edilebilir [1],[],[3]. Alain FARCY ENSMA Laboratoire d Etude d Aérodynamique, Poitiers, Fransa (CNRS UMR669) farcy@ensma.fr Nafiz ALEMDAROLU ODTÜ Havacılık ve Uzay Mühendislii Bölümü nafiz@metu.edu.tr. KANAT ÇIRPMA HAREKETNN TANIMI ncelenen kanat çırpma hareketi 4 bölüme ayrılmıtır; birinci bölüm aaı doru çırpma hareketinin yarısına denk gelmekte ve kanat ucu pozitif dorultuyu göstermektedir. kinci bölüm ise yukarı vuru hareketinin yarısını kapsamaktadır. Üçüncü ve dördüncü bölümler ise bu iki bölümün tamamen aynasal simetrisidir. Her bölüm kendi içinde ikiye ayrılmaktadır: dorusal ileri hareket fazı ve dönü fazı. Dorusal ileri hareket fazı süresince, kanat kesiti önceden belirlenmis bir süre boyunca sabit bir hızla hareket etmekte ve buna ek olarak belirlenen bir nokta etrafındaki dönü fazı bu harekete eklenmektedir. Her yarım döngü, hareksiz konumda balamakta ve hareketsiz konumda sona ermektedir (ekil 1). Kullanılan kanat kesiti 1cm uzunluunda olup NACA1 simetrik profilidir. Çok küçük Reynolds sayısındaki akım sıkıtırılamaz ve laminar kabul edilmitir (Re 1). Nümerik hesaplamalarda Dorudan Nümerik Benzetim (DNS) yöntemi kullanılmıtır [4]. 3. NÜMERK METOD Havada asılı durumdaki çırpan bir kanat hareketinde, aaı vuru hareketi sonunda bir girdap olumaktadır. Aynı ekilde yukarı vuru hareketi balangıcında da yeni bir balangıç girdabı (starting vortex) yaratılmaktadır. Kanat çırpma hareketi boyunca yaratılan bu girdaplar kaldırma (taıma) kuvvetini yaratmaktadırlar. leri hareket fazı boyunca yaratılan girdaplar dıında dönü fazı boyunca da girdaplar olumaktadır ki bu bölgede kuvvet grafiinde iki tepe (peak) noktası gözlenmektedir. 3 den büyük hücum açılarında tüm hareket boyunca pozitif taıma kuvveti elde edilmektedir. Farklı hücum açılarındaki örnek sonuçlar ekil ve 3 te verilmitir. 3.1 A yapısı ve Sınır artları Kanat kesiti etrafında O-tip a yapısı, kesit yakınında diktörtgen a yapısı kullanılmıtır. Tüm a yapısı, kullanıcı tarafından yazılan ara program yardımıyla hareket ettirilerek kanat çırpma hareketi gerçekletirilmitir. A yapısı 575 hücreden meydana gelmitir ve çapı 15c uzunluundadır.

2 ekil 3. Sınır Koulları. ekil. Çırpan kanat probleminde kullanılan parametreler. Benzemeyen a yapıları arasında arbitrary mesh interface seçenei kullanılarak farklı a yapıları birbirlerine birletirilmitir. Böylelikle uzak bölgelerdeki hücre sayısının azaltılması salanmıtır. Profile yakın bölgelerde sık a yapısı, uzak bölgelerde ise daha az sıklıkta a yapısı kullanılmı, böylelikle çözüm süresi azaltılmaya çalıılmıtır. 3. Nümerik Sonuçlar Birçok farlı durum hücum açısı α, hücum açısı deime noktası x a, hız deime pozisyonu x v ve dönme aksisi a gibi parametreler deitirilerek incelenmitir. Anlık kuvvetler, basınç daılımları, girdap konturları ve hız daılımları bu farklı durumlar için karılatırılmıtır. Bu parametrelerin anlık aerodinamik kuvvet katsayıları üzerindeki etkileri bu çalımada incelenmitir. Ortalama aerodinamik kuvvet katsayıları (Denklem 1 ve ), bir devir boyuncaki zamana balı ortalamalardır. Hesaplamalarda kullanılan devir, ilk ani hareket etkisinin yok olduu 7. devirdir. Sürtünme kuvveti, profilin hareket yönüne ters dorultudaki kuvvet olarak tanımlanmıtır. 1 t = = 7T CL CL dt (1) T t= 1 t 7T C = C dt () D = t= T Kanatların çırpma harekti için gerekli olan toplam mekanik kuvvet, profil güç (profile power) ile domine edilmektedir. Profil güç, çırpan kanatların sürtünme kuvvetine karı ihtiyaçları olan güce verilen isimdir. Bu güç kanatların dönme hareketi için gerekli olan gücü kapsamamaktadır. Profil güç katsayısının bir devir boyuncaki ortalama deeri Denklem 3 le verilmektedir. D P' = 3 pro t 7T CP pro = = n CD t= ρcv V V dt (3) veya profil gücünün birim kanat açıklıındaki deeri ekil 1. Kullanılan a yapısı. Profil yüzeyinde, kaygan olmayan sınır koulları yanında kullanıcı tarafından eklenen program yardımıyla (user-defined subroutines), ileri hareket ve dönü yüzey hızları bölgesel (local) olarak belirtilmitir. En uç bölgede basınç sınır koulu uygulanmıtır. Havada asılı durma konumunda, uzak konumdaki basınç standart hava basıncı olarak kabul edilir ve sabit alınır. Hesaplarımız boyutlu olduklarından ön ve arka a hücrelerine simetri sınır koulu yerletirilmitir. P pro = n t = 7T t= D V dt (4) dir. n=1/t is the kanat çırpma frekansıdır. ekil 4 te Re=1, x v =c, farklı hücum açıları ve x a durumları için elde edilen sonuçlar karılatırılmıtır Balangıç Hücum Açısı vehücum Açısı Deime Pozisyonu x a nın Etkileri ekil 5 te Reynolds sayısı 1, balangıç hücum açısı 5 ve dönme ekseni 1/4c olan durum için kaldırma

3 ve sürtünme katsayıları gösterilmektedir. Bu durum öncelikli olarak analitik modelin karılatırılması için kullanılmıtır. Analitik modelin dorusal superpozisyon prensibi kullanıldıından, model küçük hücum açılarında doru sonuç vermektedir. oluan girdap, ileri hareket fazı boyunca kaldırma kuvveti üretimini arttırmaktadır. leri hareket fazı boyunca hücum açısı 5 gibi küçük bir deer olduunda, negatif kaldırma kuvveti tepe noktaları. ve 4. bölgelerin dönü fazı sırasında olumaktadır. Balangıç hücum açısı 3 ye arttırıldıında bu negatif kuvvet tepeleri yok olmakta ve yerini tüm devir boyunca pozitif deerlere bırakmaktadır. Hücum açısı daha çok arttırıldıında ikinci bir pozitif tepe noktası olumaktadır ve tepe noktasının deeri hücum açısıyla artmaktadır. ekil 4. α=5, x v =c, Re=1, 1/4c dönme ekseni için 7. Aynı grafikler 3, 45 ve 6 balangıç hücum açıları için de verilmitir (ekiller 6-8). Kaldırma ve sürtünme kuvvetleri farklı x a (hücum açısı deime pozisyonu) konumlarında aynı x v =c ve Re=1 durumu için karılatırılmıtır. Balangıç hücum açısı arttıkça sürtünme katsayısının arttıı gözlenmitir. 3 nin üzeindeki açılarda tüm period boyunca pozitif kaldırma kuvveti gözlenmitir. Vuruların simetrik olduu havada asılı olma durumunda (normal hovering), kanat çırpmaları sonuçunda iki periodik basınç tepesi gözlenmektedir. Profilin hücum kenarına balı durumda zaman [s] ekil 6. α=3, x v =c, Re=1, 1/4c dönme ekseni için 7. a) Kaldırma Kuvveti Katsayısı C L b) Sürtünme Kuvveti Katsayısı C D c) Toplam Kuvvet Katsayısı C Ftotal d) Profil güç Katsayısı C Ppro ekil 5. x v =c, Re=1, a=1/4 (dönme ekseni) durumu için 7. perioddaki ortalama aerodinamik kuvvet ve güç katsayıları.

4 zaman [s] ekil 7. α=45, x v =c, Re=1, 1/4c dönme ekseni için 7. Hız vektörleriyle beraber girdap konturları 7. çırpma hareketi süresince yaklaık olarak. bölgenin sonunda (x= noktasında) farklı balangıç hücum açıları ve x a =c konumu için ekil 9 da gösterilmitir. Bu durum için hız deiim balangıç konumu x v =c alınmıtır. Küçük hücum açılarında, bir önceki çırpma hareketi sonucu yaratılan girdabın çok küçük olduu gözlenmi ve profil neredeyse sıfıra yakın zayıf bir hız vectör bölgesine giri yaptıı görülmütür. Fakat, balangıç hücum açısı arttırıldıkça, bu girdabın neden olduu hız (induced velocity) bölgesinin git gide önem kazandıı ve güçlendii gözlemlenmitir. Böylece profil, daha kuvvetli bir hız daılım bölgesine girmektedir. Bunun sonucunda, 3 ve 45 balangıç hücum açılarında, hem kaldırma kuvveti katsayısı hem de sürtünme kuvveti katsayısı büyük ölçüde artmaktadır. Girdap konturlarında, sıcak tonlar (kırmızılar) saat yönünün tersindeki, souk tonlar (maviler) ise saat yönündeki girdapları göstermektedir. 3.. Dönme Ekseninin Etkisi ¼, ½ and ¾ chord pozisyonlarında 3 farklı dönme ekseninde çırpma hareketi incelenmitir. ½c dönme ekseni kullanıldıında, kaldırma kuvveti katsayısı grafiklerinde, çırpma hareketlerinin balangıcında ve sonunda olmak üzere iki pozitif tepe deeri görülmektedir (ekil 1). ¼c dönme ekseni için çırpma hareketinin sonunda, ¾c dönme ekseni için çırpma hareketinin baında tepe deerleri olumaktadır. Aynı grafiklerde dönme aksisinin etkisi dıında farklı x a deerlerinin etkisi de gösterilmitir. ¾ c dönme ekseninde negatif tepe deerleri de gözlemlenmitir. ekil 1 daki tüm grafikler α=3, x v =c, Re=1 durumu için verilmitir. zaman [s] ekil 9. α=6, x v =c, Re=1, 1/4c dönme ekseni için 7. Girdap iddeti a) α=5 b) α=3 c) α=45 d) α=6 ekil 8. Farklı hücum açıları (α) için hız vektörleri ve edeer girdap iddeti erileri, x v =c, x a =c, Re=1, 1/4c dönme ekseninde (7. devir); t= s (x )

5 1/4c dönme ekseni 1/c dönme ekseni C Lα Lcirculatory = ρ ( V ) S s dw 3 / 4c w3 / 4c () φ( s) + ( σ ) φ( s σ ) dσ + L dσ C Lα + ρ ( V ) S { wg _ 3 / 4c () ψ ( s) s dw3 / 4c + ( σ ) φ( s σ ) dσ dσ + s + L dw 3k g _ 3 / 4c dσ ( σ ) ψ ( s σ ) dσ} 3 (5) w Mg L = = g ρa ρ 6 c (6) 3/4c dönme ekseni zaman [s] ekil 1. Figure 4: α=3, x v =c, Re=1 durumu için farklı dönme ekseni konumlarındaki kadırma kuvveti katsayıları (7. devir) 4. ANALTK METOD Sayısal sonuçlar, Duhamel intergali ve Wagner fonksiyonu ([5],[6]) kullanan analitik bir yöntem sonuçları ile karılatırılmıtır. Analitik çözüm sonuçları Küssner fonksiyonu kullanılarak iyiletirilmitir. Aynı ekilde, toplam kuvvet, döngüsel ve döngüsel olmayan kuvvetlerden olumaktadır. Döngüsel kuvvet Duhamel integrali ile hesaplanmıtır (Denklem 5). Döngüsel olmayan kuvvet ise akımın hızlanması ve yavalaması sonucunda basınç kuvvetlerinin kanat kesiti etrafındaki etkisi ile olumaktadır (Denklem 7). Analitik metod, kullanılan dorusal ekleme prensibinden dolayı küçük hücum açılarında oldukça iyi sonuçlar vermitir. Yüksek hücum açılarında ise, problemin dorusal olmayan nitelikleri arttıından, sonuçlar bozulmutur. Bu nedenle sonuçların düzeltilmesi için DNS hesaplamalarından elde edilen ani hareket sonuçları analitik modele girdi olarak eklenmitir (Denklem 6). Bu ekilde analitik yöntem sonuçları daha da iyiletirilmitir. A profil tarafından tüm çırpma hareket boyunca süpürülen dikdörgen alanı temsil etmektedir. Ani hızlanan profil analizlerinden ve Rankine-Froude momentum jet teorisi kullanılarak [] hesaplanan w g dikey rüzgar hızı tüm hareket boyunca sabit bir deer olarak kabul edilmi ve tüm çırpma hareketi boyunca profilin bu sabit dikey rüzgarın içinden geçtii varsılmıtır. Bu hızın ¾c konumunda profile dik yöndeki etkisi w g_3/4c =w g cosα(t) dır ve bu dikey hız, döngüsel kaldırma kuvveti hesaplarına Küssner fonksiyonu kullanılarak eklenmitir. LNC = πρb t b + πρb θ + πρb t ( V sinα ) t ( w cosα ) ekil 11 de Duhamel Integrali kullanılarak hesaplanan analitik modelin Dorusal Nümerik Benzetim (DNS) yönteminden elde edilen kaldırma kuvveti eimi (C Lα ) ve bir önceki çırpma hareketinin neden açtıı dikey hız rüzgarı w g eklenerek yapılan çözümleri gösterilmektedir. Analitik modelle elde edilen sonuçların Dorusal Nümerik Benzetim i ile karılatırılabilir olduu görülmektedir. Karılatırmalar dikey kuvvet katsayısı (normal force coefficient) için yapılmıtır. Analitik model sonuçlarının, Dorusal Nümerik Benzetim den elde edilen kaldırma kuvveti katsayısına özellikle dönü fazı esnasında yakın deerler verdii gözlenmitir. Analitik modelin detaylı açıklaması [7] ve [8] nolu kaynaklarda verilmitir. g (7)

6 a) x a =1c b) x a =1.5c c) x a =c d) x a =.5c ekil 11. Figure 4: α=3, x v =c, Re=1, ¼c dönme ekseni durumu için farklı dönme ekseni konumlarındaki kadırma kuvveti katsayıları, dik kuvvet katsayıları ve Wagner ve Küssner fonksiyonlu Duhamel integrali sonuçlarının karılatırılması (7. devir) 5. SONUÇ Bu çalımada, gelecek Mikro Hava Araçları uygulamaları için, simetrik havada asılı kalma durumunda çırpan kanat hareketinin aerodinimii incelenmitir. Birçok farklı parametreler, kaldırma kuvveti, sürtünme kuvveti ve dikey kuvvet katsayısı deerlerini karılatırmak amaçlı incelenmitir. 3 balangıç açısından itibaren tüm çırpma hareketi boyunca pozitif kaldırma kuvvetlerinin elde edildii görülmütür. Duhemal integrali, Wagner, Küssner foksiyonları ve düzeltme faktörleri kullanılarak gelitirilen analitik model, Dorusal Nümerik Benzetim Metoduna çok yakın deerler vermitir. 6. TEEKKÜR Orta Dou Teknik Üniversitesi Havacılık ve Uzay Mühendislii Bölümü ile Ecole Nationale Superieure de Mecanique et d Aerotechnique LEA (Poitiers Fransa) arasındaki ikili doktora programının gerçeklemesinde Fransız Hükümeti nin katkısı takdir edilmektedir. Yazarlardan D. Funda Kurtulu, ODTÜ ve TÜBTAK a verdikleri finansal yardımdan dolayı teekkürü bir borç bilmektedir. 7. KAYNAKLAR [1] Shy W., Berg M., Ljungqvist D., "Flapping and Flexible Wings for Biological and Micro Air Vehicles," Progress in Aerospace Sciences, Vol.35, 1999, pp [] Rayner J. M. V., A Vortex Theory of Animal Flight. Part 1. The vortex wake of a hovering animal, J. Fluid Mech., Vol.91, part 4, 1979, pp [3] Weis-Fogh, T., Energetics of hovering flight in hummingbirds and Drosophila, J. Exp. Biol., No. 56, 197, pp [4] Star-CD Version 3.1A, Methodology Manual, Computational Dynamics Limited, 1999 [5] Lomax H., Indicial Aerodynamics, Manual on Aeroelasticity, edited by W. P. Jones, Nov. 196, Part II, Chap.6, pp.1-58 [6] Katz, J., Plotkin, A., Low Speed Aerodynamics, Cambridge University Press, Cambridge,, Chap. 13 [7] Kurtulus D. F., Farcy A., Alemdaroglu N., Numerical Calculation and Analytical Modelization of Flapping Motion in Hover, First European Micro Air Vehicle Conference and Flight Competition, Braunschweig Germany, July 4 [8] Kurtulus D. F., Farcy A., Alemdaroglu N, Unsteady Aerodynamics of Flapping Airfoil in Hovering Flight at Low Reynolds Numbers, 43rd AIAA Aerospace Sciences Meeting and Exhibit, Reno, Nevada, 1-13 Jan. 5 (accepted for presentation)

ÇIRPAN KANAT AERODİNAMİĞİNDE GİRDAPLARIN DENEYSEL VE SAYISAL OLARAK BELİRLENMESİ

ÇIRPAN KANAT AERODİNAMİĞİNDE GİRDAPLARIN DENEYSEL VE SAYISAL OLARAK BELİRLENMESİ ÇIRPAN KANAT AERODİNAMİĞİNDE GİRDAPLARIN DENEYSEL VE SAYISAL OLARAK BELİRLENMESİ Dilek Funda Kurtuluş 1,2 Laurent David 2 e-posta: dfunda@ae.metu.edu.tr Laurent.David@univ-poitiers.fr Alain Farcy 2 Nafiz

Detaylı

Çırpan Kanat Aerodinamik Kuvvetlerinin Yapay Sinir Ağları ile Modellenmesi

Çırpan Kanat Aerodinamik Kuvvetlerinin Yapay Sinir Ağları ile Modellenmesi Çırpan Kanat Aerodinamik Kuvvetlerinin Yapay Sinir Ağları ile Modellenmesi Dr. Dilek Funda Kurtuluş 1 e-posta: dfunda@ae.metu.edu.tr 1 Orta Doğu Teknik Üniversitesi Havacılık ve Uzay Mühendisliği Bölümü

Detaylı

FÜZE KANADININ SES-ÜSTÜ UÇUŞ KOŞULUNDAKİ AEROELASTİK ANALİZİ

FÜZE KANADININ SES-ÜSTÜ UÇUŞ KOŞULUNDAKİ AEROELASTİK ANALİZİ VI. ULUSAL HAVACILIK VE UZAY KONFERANSI 28-30 Eylül 2016, Kocaeli Üniversitesi, Kocaeli FÜZE KANADININ SES-ÜSTÜ UÇUŞ KOŞULUNDAKİ AEROELASTİK ANALİZİ Göktuğ Murat ASLAN 1 2 Orta Doğu Teknik Üniversitesi,

Detaylı

3 BOYUTLU ÇIRPAN KANAT İÇİN ZAMANA BAĞLI AERODİNAMİK MODEL GELİŞTİRİLMESİ

3 BOYUTLU ÇIRPAN KANAT İÇİN ZAMANA BAĞLI AERODİNAMİK MODEL GELİŞTİRİLMESİ VI. ULUSAL HAVACILIK VE UZAY KONFERANSI 28-3 Eylül 216, Kocaeli Üniversitesi, Kocaeli 3 BOYUTLU ÇIRPAN KANAT İÇİN ZAMANA BAĞLI AERODİNAMİK MODEL GELİŞTİRİLMESİ Filiz Ormancı 1 Kutluk Bilge Arıkan 2 HAVELSAN

Detaylı

DÖRT ÇUBUK MEKANİZMALI ÇIRPAN KANATLI HAVA ARACI YAPIMI, ANALİZİ VE TESTLERİ M.Gülay Şenol *

DÖRT ÇUBUK MEKANİZMALI ÇIRPAN KANATLI HAVA ARACI YAPIMI, ANALİZİ VE TESTLERİ M.Gülay Şenol * VI. ULUSAL HAVACILIK VE UZAY KONFERANSI 8-3 Eylül 16, Kocaeli Üniversitesi, Kocaeli DÖRT ÇUBUK MEKANİZMALI ÇIRPAN KANATLI HAVA ARACI YAPIMI, ANALİZİ VE TESTLERİ M.Gülay Şenol * K.Bilge Arıkan ve D. Funda

Detaylı

ÇIRPAN KANAT KESİTLERİ İLE İTKİ ÜRETİMİNİN HESAPLANMASI VE DENEYSEL SONUÇLARLA KARŞILAŞTIRILMASI

ÇIRPAN KANAT KESİTLERİ İLE İTKİ ÜRETİMİNİN HESAPLANMASI VE DENEYSEL SONUÇLARLA KARŞILAŞTIRILMASI ÇIRPAN KANAT KESİTLERİ İLE İTKİ ÜRETİMİNİN HESAPLANMASI VE DENEYSEL SONUÇLARLA KARŞILAŞTIRILMASI Mustafa KAYA Dr. İsmail H. TUNCER 2 e-posta: mkaya@ae.metu.edu.tr e-posta: tuncer@ae.metu.edu.tr, 2 Orta

Detaylı

AERODİNAMİK KUVVETLER

AERODİNAMİK KUVVETLER AERODİNAMİK KUVVETLER Prof.Dr. Mustafa Cavcar Anadolu Üniversitesi, Sivil Havacılık Yüksekokulu, 26470 Eskişehir Bir uçak üzerinde meydana gelen aerodinamik kuvvetlerin bileşkesi ( ); uçağın etrafından

Detaylı

PİEZOELEKTRİK EYLEYİCİ İLE TETİKLENEN GÜVE BÖCEĞİ KANADIN AERODİNAMİK KUVVET DENEYSEL OLARAK KARŞILAŞTIRILMASI

PİEZOELEKTRİK EYLEYİCİ İLE TETİKLENEN GÜVE BÖCEĞİ KANADIN AERODİNAMİK KUVVET DENEYSEL OLARAK KARŞILAŞTIRILMASI VI. ULUSAL HAVACILIK VE UZAY KONFERANSI 28-30 Eylül 2016, Kocaeli Üniversitesi, Kocaeli PİEZOELEKTRİK EYLEYİCİ İLE TETİKLENEN GÜVE BÖCEĞİ KANADIN AERODİNAMİK KUVVET DENEYSEL OLARAK KARŞILAŞTIRILMASI Fadile

Detaylı

Şekil 1:Havacılık tarihinin farklı dönemlerinde geliştirilmiş kanat profilleri

Şekil 1:Havacılık tarihinin farklı dönemlerinde geliştirilmiş kanat profilleri TEORİ Şekil 1:Havacılık tarihinin farklı dönemlerinde geliştirilmiş kanat profilleri İlk motorlu uçuşun yolunu açan ihtiyaç duyulan taşımayı sağlayacak kanat profillerinin geliştirilmesi doğrultusunda

Detaylı

AMFİBİ İHA GÖVDE PARAMETRELERİNİN SÜRÜKLEME KATSAYISI ÜZERİNDEKİ ETKİLERİNİN İNCELENMESİ

AMFİBİ İHA GÖVDE PARAMETRELERİNİN SÜRÜKLEME KATSAYISI ÜZERİNDEKİ ETKİLERİNİN İNCELENMESİ VI. ULUSAL HAVACILIK VE UZAY KONFERANSI 28-30 Eylül 2016, Kocaeli Üniversitesi, Kocaeli AMFİBİ İHA GÖVDE PARAMETRELERİNİN SÜRÜKLEME KATSAYISI ÜZERİNDEKİ ETKİLERİNİN İNCELENMESİ Emre Sazak 1 Orta Doğu Teknik

Detaylı

İNSANSIZ HAVA ARACI PERVANELERİNİN TASARIM, ANALİZ VE TEST YETENEKLERİNİN GELİŞTİRİLMESİ

İNSANSIZ HAVA ARACI PERVANELERİNİN TASARIM, ANALİZ VE TEST YETENEKLERİNİN GELİŞTİRİLMESİ IV. ULUSAL HAVACILIK VE UZAY KONFERANSI 12-14 Eylül 212, Hava Harp Okulu, İstanbul İNSANSIZ HAVA ARACI PERVANELERİNİN TASARIM, ANALİZ VE TEST YETENEKLERİNİN GELİŞTİRİLMESİ Oğuz Kaan ONAY *, Javid KHALILOV,

Detaylı

SÜRÜKLEME DENEYİ TEORİ

SÜRÜKLEME DENEYİ TEORİ SÜRÜKLEME DENEYİ TEORİ Sürükleme kuvveti akışa maruz kalan cismin akışkan ile etkileşimi ve teması sonucu oluşan akış yönündeki kuvvettir.sürükleme kuvveti yüzey sürtünmesi,basınç ve taşıma kuvvetinden

Detaylı

SES-ÜSTÜ KANARD KONTROLLÜ FÜZELER İÇİN SERBEST DÖNEN KUYRUĞUN ŞEKİL OPTİMİZASYONU

SES-ÜSTÜ KANARD KONTROLLÜ FÜZELER İÇİN SERBEST DÖNEN KUYRUĞUN ŞEKİL OPTİMİZASYONU VI. ULUSAL HAVACILIK VE UZAY KONFERANSI 28-30 Eylül 2016, Kocaeli Üniversitesi, Kocaeli UHUK-2016-116 SES-ÜSTÜ KANARD KONTROLLÜ FÜZELER İÇİN SERBEST DÖNEN KUYRUĞUN ŞEKİL OPTİMİZASYONU Erhan Feyzioğlu 1

Detaylı

ANADOLU ÜNİVERSİTESİ HAVACILIK VE UZAY BİLİMLERİ FAKÜLTESİ. Prof. Dr. Mustafa Cavcar 8 Mayıs 2013

ANADOLU ÜNİVERSİTESİ HAVACILIK VE UZAY BİLİMLERİ FAKÜLTESİ. Prof. Dr. Mustafa Cavcar 8 Mayıs 2013 ANADOLU ÜNİVERSİTESİ HAVACILIK VE UZAY BİLİMLERİ FAKÜLTESİ TIRMANMA PERFORMANSI Tırmanma Açısı ve Tırmanma Gradyanı Prof. Dr. Mustafa Cavcar 8 Mayıs 2013 Bu belgede jet motorlu uçakların tırmanma performansı

Detaylı

AKIŞKANLAR MEKANİĞİ-II

AKIŞKANLAR MEKANİĞİ-II AKIŞKANLAR MEKANİĞİ-II Şekil 1. Akışa bırakılan parçacıkların parçacık izlemeli hızölçer ile belirlenmiş cisim arkasındaki (iz bölgesi) yörüngeleri ve hızlarının zamana göre değişimi (renk skalası). Akış

Detaylı

UÇUŞ SIRASINDA BUZLANMA ANALİZLERİNDE DAMLACIK YÖRÜNGELERİNİN PARALEL HESAPLAMA YÖNTEMİYLE BELİRLENMESİ

UÇUŞ SIRASINDA BUZLANMA ANALİZLERİNDE DAMLACIK YÖRÜNGELERİNİN PARALEL HESAPLAMA YÖNTEMİYLE BELİRLENMESİ VI. ULUSAL HAVACILIK VE UZAY KONFERANSI 28-30 Eylül 2016, Kocaeli Üniversitesi, Kocaeli UÇUŞ SIRASINDA BUZLANMA ANALİZLERİNDE DAMLACIK YÖRÜNGELERİNİN PARALEL HESAPLAMA YÖNTEMİYLE BELİRLENMESİ Mert TOKEL

Detaylı

FLOWING FLUIDS and PRESSURE VARIATION

FLOWING FLUIDS and PRESSURE VARIATION 4. FLOWING FLUIDS and PRESSURE VARIATION Akışkan Kinematiği Akışkan kinematiği, harekete neden olan kuvvet ve momentleri dikkate almaksızın, akışkan hareketinin tanımlanmasını konu alır. Yapı üzerindeki

Detaylı

KANAT PROFİLİ ETRAFINDAKİ SIKIŞTIRILAMAZ AKIŞ

KANAT PROFİLİ ETRAFINDAKİ SIKIŞTIRILAMAZ AKIŞ KANAT PROFİLİ ETRAFINDAKİ SIKIŞTIRILAMAZ AKIŞ Uçağı havada tutan kanadın oluşturduğu taşıma kuvvetidir. Taşıma kuvvetinin hesaplanması, hangi parametrelere bağlı olarak değiştiğinin belirlenmesi önemlidir.

Detaylı

3. İzmir Rüzgar Sempozyumu Ekim 2015, İzmir

3. İzmir Rüzgar Sempozyumu Ekim 2015, İzmir 3. İzmir Rüzgar Sempozyumu 8-9-10 Ekim 2015, İzmir Yatay Eksenli Rüzgar Türbin Kanatlarının Mekanik Tasarım Esasları- Teorik Model Prof. Dr. Erdem KOÇ Arş. Gör. Kadir KAYA Ondokuz Mayıs Üniversitesi Makina

Detaylı

DÜŞÜK VE ORTA OK AÇILI DELTA KANATLAR ÜZERİNDEKİ AKIŞIN PASİF AKITMA YÖNTEMİ İLE KONTROLÜ

DÜŞÜK VE ORTA OK AÇILI DELTA KANATLAR ÜZERİNDEKİ AKIŞIN PASİF AKITMA YÖNTEMİ İLE KONTROLÜ VII. ULUSAL HAVACILIK VE UZAY KONFERANSI 12-14 Eylül 2018, Ondokuz Mayıs Üniversitesi, Samsun DÜŞÜK VE ORTA OK AÇILI DELTA KANATLAR ÜZERİNDEKİ AKIŞIN PASİF AKITMA YÖNTEMİ İLE KONTROLÜ Burcu Ramazanlı 1

Detaylı

EMAT ÇALIŞMA SORULARI

EMAT ÇALIŞMA SORULARI EMAT ÇALIŞMA SORULARI 1) A = 4. ı x 2. ı y ı z ve B = ı x + 4. ı y 4. ı z vektörlerinin dik olduğunu gösteriniz. İki vektörün skaler çarpımlarının sıfır olması gerekir. A. B = 4.1 + ( 2). 4 + ( 1). ( 4)

Detaylı

ki Eksenli Scara Robotun Modellenmesi ve Statik, Dinamik, Titreim Analizleri - 2

ki Eksenli Scara Robotun Modellenmesi ve Statik, Dinamik, Titreim Analizleri - 2 ki Eksenli Scara Robotun Modellenmesi ve Statik, Dinamik, Titreim Analizleri - 2 Emre Armaan, (earmagan@su.sabanciuniv.edu) Ozan Ayhan, (ozana@su.sabanciuniv.edu) Selim Yannier, (selimy@su.sabanciuniv.edu)

Detaylı

Düşük Süpürme Açısına Sahip Delta Kanat Modeli Üzerinde Oluşan Aerodinamik Karakteristiklerin İncelenmesi

Düşük Süpürme Açısına Sahip Delta Kanat Modeli Üzerinde Oluşan Aerodinamik Karakteristiklerin İncelenmesi Gazi Üniversitesi Fen Bilimleri Dergisi Part:C, Tasarım Ve Teknoloji GU J Sci Part:C 4(4):247-258 (2016) Düşük Süpürme Açısına Sahip Delta Kanat Modeli Üzerinde Oluşan Aerodinamik Karakteristiklerin İncelenmesi

Detaylı

BÜYÜK ORANDA ŞEKİL DEĞİŞTİREBİLEN KANATLARIN ÖN TASARIM SÜRECİNDE AERODİNAMİK VE YAPISAL ANALİZLERİNİN EŞLENMESİ

BÜYÜK ORANDA ŞEKİL DEĞİŞTİREBİLEN KANATLARIN ÖN TASARIM SÜRECİNDE AERODİNAMİK VE YAPISAL ANALİZLERİNİN EŞLENMESİ IV. ULUSAL HAVACILIK VE UZAY KONFERANSI 12-14 Eylül 2012, Hava Harp Okulu, İstanbul BÜYÜK ORANDA ŞEKİL DEĞİŞTİREBİLEN KANATLARIN ÖN TASARIM SÜRECİNDE AERODİNAMİK VE YAPISAL ANALİZLERİNİN EŞLENMESİ D. Sinan

Detaylı

Dikey İniş/Kalkış Yapabilen Hareketli Kanatlı İnsansız Hava Aracının Tasarımı

Dikey İniş/Kalkış Yapabilen Hareketli Kanatlı İnsansız Hava Aracının Tasarımı VI. ULUSAL HAVACILIK VE UZAY KONFERANSI 28-30 Eylül 2016, Kocaeli Üniversitesi, Kocaeli Dikey İniş/Kalkış Yapabilen Hareketli Kanatlı İnsansız Hava Aracının Tasarımı Hasan ÇAKIR * Orta Doğu Teknik Üniversitesi

Detaylı

BİR ÇIRPAN KANAT ETRAFINDA MEYDANA GELEN GİRDAP MEKANİZMASININ İNCELENMESİ

BİR ÇIRPAN KANAT ETRAFINDA MEYDANA GELEN GİRDAP MEKANİZMASININ İNCELENMESİ IV. ULUSAL HAVACILIK VE UZAY KONFERANSI 12-14 Eylül 2012, Hava Harp Okulu, İstanbul BİR ÇIRPAN KANAT ETRAFINDA MEYDANA GELEN GİRDAP MEKANİZMASININ İNCELENMESİ Ahmet Selim Durna 1, Bayram Çelik 2, Aydın

Detaylı

İÇİNDEKİLER. Ön Söz...2. Noktanın Analitik İncelenmesi...3. Doğrunun Analitiği Analitik Düzlemde Simetri...25

İÇİNDEKİLER. Ön Söz...2. Noktanın Analitik İncelenmesi...3. Doğrunun Analitiği Analitik Düzlemde Simetri...25 İÇİNDEKİLER Ön Söz...2 Noktanın Analitik İncelenmesi...3 Doğrunun Analitiği...11 Analitik Düzlemde Simetri...25 Analitik Sistemde Eşitsizlikler...34 Çemberin Analitik İncelenmesi...40 Elips...58 Hiperbol...70

Detaylı

YALIN PERVANE VE KANAL İÇİ PERVANE SİSTEMİNİN SAYISAL VE DENEYSEL OLARAK KARŞILAŞTIRILMASI

YALIN PERVANE VE KANAL İÇİ PERVANE SİSTEMİNİN SAYISAL VE DENEYSEL OLARAK KARŞILAŞTIRILMASI V. ULUSAL HAVACILIK VE UZAY KONFERANSI 8-10 Eylül 2014, Erciyes Üniversitesi, Kayseri YALIN PERVANE VE KANAL İÇİ PERVANE SİSTEMİNİN SAYISAL VE DENEYSEL OLARAK KARŞILAŞTIRILMASI Onur Önal *, Zafer Öznalbant

Detaylı

ITAP Fizik Olimpiyat Okulu 2011 Seçme Sınavı

ITAP Fizik Olimpiyat Okulu 2011 Seçme Sınavı ITAP Fizik Olimpiyat Okulu 11 Seçme Sınavı 1. Dikey yönde atılan bir taş hareketin son saniyesinde tüm yolun yarısını geçmektedir. Buna göre taşın uçuş süresinin en fazla olması için taşın zeminden ne

Detaylı

9.14 Burada u ile u r arasındaki açı ve v ile u θ arasındaki acının θ olduğu dikkate alınarak trigonometrik eşitliklerden; İfadeleri elde edilir.

9.14 Burada u ile u r arasındaki açı ve v ile u θ arasındaki acının θ olduğu dikkate alınarak trigonometrik eşitliklerden; İfadeleri elde edilir. 9.14 Burada u ile u r arasındaki açı ve v ile u θ arasındaki acının θ olduğu dikkate alınarak trigonometrik eşitliklerden; İfadeleri elde edilir. 9.15 Bu bölümde verilen koordinat dönüşümü uygulanırsa;

Detaylı

3 1 x 2 ( ) 2 = E) f( x) ... Bir sigorta portföyünde, t poliçe yln göstermek üzere, sigortal saysnn

3 1 x 2 ( ) 2 = E) f( x) ... Bir sigorta portföyünde, t poliçe yln göstermek üzere, sigortal saysnn SORU : Aada tanm verilen f fonksiyonlarndan hangisi denklemini her R için salar? f + = f t dt integral e A) f = e B) f = e C) f D) f = E) f = e ( ) = e ( ) SORU : Bir sigorta portföyünde, t poliçe yln

Detaylı

AERODİNAMİK İTKİ OPTİMİZASYONU: SAYISAL VE DENEYSEL YAKLAŞIM

AERODİNAMİK İTKİ OPTİMİZASYONU: SAYISAL VE DENEYSEL YAKLAŞIM VI. ULUSAL HAVACILIK VE UZAY KONFERANSI 8-3 Eylül 6, Kocaeli Üniversitesi, Kocaeli UHUK-6- AERODİNAMİK İTKİ OPTİMİZASYONU: SAYISAL VE DENEYSEL YAKLAŞIM Jane Bulut Ferhat Karakaş İdil Fenercioğlu 3 Ülgen

Detaylı

MATHEMATICAL MODELLING OF PORE WATER PRESSURE VARIATION OF SATURATED NORMALLY CONSOLIDATED CLAYEY SOILS

MATHEMATICAL MODELLING OF PORE WATER PRESSURE VARIATION OF SATURATED NORMALLY CONSOLIDATED CLAYEY SOILS MATHEMATICAL MODELLING OF PORE WATER PRESSURE VARIATION OF SATURATED NORMALLY CONSOLIDATED CLAYEY SOILS Uur DADEVREN Res. Ass. Sakarya University Sakarya, TURKEY udagdeviren@sakarya.edu.tr Mustafa TUNCAN

Detaylı

TMMOB Makina Mühendisleri Odası VIII. Ulusal Uçak, Havacılık ve Uzay Mühendisliği Kurultayı Mayıs 2015 / ESKİŞEHİR

TMMOB Makina Mühendisleri Odası VIII. Ulusal Uçak, Havacılık ve Uzay Mühendisliği Kurultayı Mayıs 2015 / ESKİŞEHİR TMMOB Makina Mühendisleri Odası VIII. Ulusal Uçak, Havacılık ve Uzay Mühendisliği Kurultayı -3 Mayıs 015 / ESKİŞEHİR DÜŞÜK İRTİFA UZUN UÇUŞ SÜRELİ VE GÜNEŞ ENERJİLİ İNSANSIZ HAVA ARACININ KANATÇIK TASARIMI

Detaylı

İKİ BOYUTLU PARÇACIK GÖRÜNTÜLEMELİ HIZÖLÇER VERİLERİNDEN BASINÇ ALANI TAHMİNİ

İKİ BOYUTLU PARÇACIK GÖRÜNTÜLEMELİ HIZÖLÇER VERİLERİNDEN BASINÇ ALANI TAHMİNİ VI. ULUSAL HAVACILIK VE UZAY KONFERANSI 8-3 Eylül 16, Kocaeli Üniversitesi, Kocaeli UHUK-16-146 İKİ BOYUTLU PARÇACIK GÖRÜNTÜLEMELİ HIZÖLÇER VERİLERİNDEN BASINÇ ALANI TAHMİNİ Erkan GÜNAYDINOĞLU 1 Orta Doğu

Detaylı

SENTETİK JET PARAMETRELERİNİN ELİPTİK PROFİL VE KANAT KESİDİ ÜZERİNDEKİ AKIŞIN KONTROLÜ İÇİN YANIT YÜZEYİ YÖNTEMİ İLE ENİYİLEŞTİRİLMESİ

SENTETİK JET PARAMETRELERİNİN ELİPTİK PROFİL VE KANAT KESİDİ ÜZERİNDEKİ AKIŞIN KONTROLÜ İÇİN YANIT YÜZEYİ YÖNTEMİ İLE ENİYİLEŞTİRİLMESİ II. ULUSAL HAVACILIK VE UZAY KONFERANSI 15-17 Ekim 008, İTÜ, İstanbul SENTETİK JET PARAMETRELERİNİN ELİPTİK PROFİL VE KANAT KESİDİ ÜZERİNDEKİ AKIŞIN KONTROLÜ İÇİN YANIT YÜZEYİ YÖNTEMİ İLE ENİYİLEŞTİRİLMESİ

Detaylı

AKM BÖLÜM 11 - UYGULAMA SORU VE ÇÖZÜMLERİ Doç.Dr. Ali Can Takinacı

AKM BÖLÜM 11 - UYGULAMA SORU VE ÇÖZÜMLERİ Doç.Dr. Ali Can Takinacı AKM 205 - BÖLÜM 11 - UYGULAMA SORU VE ÇÖZÜMLERİ Doç.Dr. Ali Can Takinacı 1. Bir arabanın 1 atm, 25 C ve 90 km/h lik tasarım şartlarında direnç katsayısı büyük bir rüzgar tünelinde tam ölçekli test ile

Detaylı

AKM 205 BÖLÜM 6 - UYGULAMA SORU VE ÇÖZÜMLERİ Doç.Dr. Ali Can Takinacı Ar.Gör. Yük. Müh. Murat Özbulut

AKM 205 BÖLÜM 6 - UYGULAMA SORU VE ÇÖZÜMLERİ Doç.Dr. Ali Can Takinacı Ar.Gör. Yük. Müh. Murat Özbulut AKM 205 BÖLÜM 6 - UYGULAMA SORU VE ÇÖZÜMLERİ Doç.Dr. Ali Can Takinacı Ar.Gör. Yük. Müh. Murat Özbulut 1. Bir püskürtücü dirsek, 30 kg/s debisindeki suyu yatay bir borudan θ=45 açıyla yukarı doğru hızlandırarak

Detaylı

Bölüm 2. Bir boyutta hareket

Bölüm 2. Bir boyutta hareket Bölüm 2 Bir boyutta hareket Kinematik Dış etkenlere maruz kalması durumunda bir cismin hareketindeki değişimleri tanımlar Bir boyutta hareketten kasıt, cismin bir doğru boyunca hareket ettiği durumların

Detaylı

DÜZ FLAPLI POZİTİF KAMBURA SAHİP NACA 4412 KANAT PROFİLİNİN AERODİNAMİK PERFORMANSININ BİLGİSAYAR DESTEKLİ ANALİZİ

DÜZ FLAPLI POZİTİF KAMBURA SAHİP NACA 4412 KANAT PROFİLİNİN AERODİNAMİK PERFORMANSININ BİLGİSAYAR DESTEKLİ ANALİZİ 2. Ulusal Tasarım İmalat ve Analiz Kongresi 11-12 Kasım 2010- Balıkesir DÜZ FLAPLI POZİTİF KAMBURA SAHİP NACA 4412 KANAT PROFİLİNİN AERODİNAMİK PERFORMANSININ BİLGİSAYAR DESTEKLİ ANALİZİ Barış ÖNEN*, Ali

Detaylı

YATAY UÇUŞ SEYAHAT PERFORMANSI (CRUISE PERFORMANCE)

YATAY UÇUŞ SEYAHAT PERFORMANSI (CRUISE PERFORMANCE) YATAY UÇUŞ SEYAHAT PERFORMANSI (CRUISE PERFORMANCE) Yakıt sarfiyatı Ekonomik uçuş Yakıt maliyeti ile zamana bağlı direkt işletme giderleri arasında denge sağlanmalıdır. Özgül Yakıt Sarfiyatı (Specific

Detaylı

KONUYLA LGL FAYDALANILABLNECEK DOKÜMANLAR FEMA 273 FEMA 274 FEMA 356 ATC 40 DBYBHY

KONUYLA LGL FAYDALANILABLNECEK DOKÜMANLAR FEMA 273 FEMA 274 FEMA 356 ATC 40 DBYBHY ıı! "#$$%$ ıı ı KONUYLA LGL FAYDALANILABLNECEK DOKÜMANLAR FEMA 273 FEMA 274 FEMA 356 ATC 40 DBYBHY SÜNEKLK: Taıyıcı sistemin yük taıma kapasitesinde önemli bir azalma olmadan yer deitirme yapabilme yetenei

Detaylı

BAŞKENT ÜNİVERSİTESİ MAKİNE MÜHENDİSLİĞİ BÖLÜMÜ MAK - 402 MAKİNE MÜHENDİSLİĞİ LABORATUVARI DENEY 4

BAŞKENT ÜNİVERSİTESİ MAKİNE MÜHENDİSLİĞİ BÖLÜMÜ MAK - 402 MAKİNE MÜHENDİSLİĞİ LABORATUVARI DENEY 4 BAŞKENT ÜNİVERSİTESİ MAKİNE MÜHENDİSLİĞİ BÖLÜMÜ MAK - 0 MAKİNE MÜHENDİSLİĞİ LABORATUVARI DENEY İÇİNDE SABİT SICAKLIKTA SİLİNDİRİK ISITICI BULUNAN DİKDÖRTGEN PRİZMATİK SAC KUTU YÜZEYLERİNDEN ZORLANMIŞ TAŞINIM

Detaylı

Mühendislik Mekaniği Statik. Yrd.Doç.Dr. Akın Ataş

Mühendislik Mekaniği Statik. Yrd.Doç.Dr. Akın Ataş Mühendislik Mekaniği Statik Yrd.Doç.Dr. Akın Ataş Bölüm 10 Eylemsizlik Momentleri Kaynak: Mühendislik Mekaniği: Statik, R. C.Hibbeler, S. C. Fan, Çevirenler: A. Soyuçok, Ö. Soyuçok. 10. Eylemsizlik Momentleri

Detaylı

ELASTİSİTE TEORİSİ I. Yrd. Doç Dr. Eray Arslan

ELASTİSİTE TEORİSİ I. Yrd. Doç Dr. Eray Arslan ELASTİSİTE TEORİSİ I Yrd. Doç Dr. Eray Arslan Mühendislik Tasarımı Genel Senaryo Analitik çözüm Fiziksel Problem Matematiksel model Diferansiyel Denklem Problem ile ilgili sorular:... Deformasyon ne kadar

Detaylı

1. Giriş. 2. Dört Rotorlu Hava Aracı Dinamiği 3. Kontrolör Tasarımı 4. Deneyler ve Sonuçları. 5. Sonuç

1. Giriş. 2. Dört Rotorlu Hava Aracı Dinamiği 3. Kontrolör Tasarımı 4. Deneyler ve Sonuçları. 5. Sonuç Kayma Kipli Kontrol Yöntemi İle Dört Rotorlu Hava Aracının Kontrolü a.arisoy@hho.edu.tr TOK 1 11-13 Ekim, Niğde M. Kemal BAYRAKÇEKEN k.bayrakceken@hho.edu.tr Hava Harp Okulu Elektronik Mühendisliği Bölümü

Detaylı

Borularda Akış. Hesaplamalarda ortalama hız kullanılır.

Borularda Akış. Hesaplamalarda ortalama hız kullanılır. En yaygın karşılaşılan akış sistemi Su, petrol, doğal gaz, yağ, kan. Boru akışkan ile tam dolu (iç akış) Dairesel boru ve dikdörtgen kanallar Borularda Akış Dairesel borular içerisi ve dışarısı arasındaki

Detaylı

Mukavemet-II PROF. DR. MURAT DEMİR AYDIN

Mukavemet-II PROF. DR. MURAT DEMİR AYDIN Mukavemet-II PROF. DR. MURAT DEMİR AYDIN KAYNAK KİTAPLAR Cisimlerin Mukavemeti F.P. BEER, E.R. JOHNSTON Mukavemet-2 Prof.Dr. Onur SAYMAN, Prof.Dr. Ramazan Karakuzu Mukavemet Mehmet H. OMURTAG 1 SİMETRİK

Detaylı

INVESTIGATION OF THE FACTORS AFFECTING DESIGN OF ANCHORED SHEET PILES

INVESTIGATION OF THE FACTORS AFFECTING DESIGN OF ANCHORED SHEET PILES INVESTIGATION OF THE FACTORS AFFECTING DESIGN OF ANCHORED SHEET PILES Özcan TAN Selim ALTUN M. Tarık DLAVER. Hakkı ERKAN Assoc. Prof. Dr. Asst. Prof. Dr. Civil Engineer (MSc) Research Asst. Selçuk Univ.

Detaylı

GEMİ EĞİLME MOMENTİ ve KESME KUVVETİ KESİT ZORLARININ BUREAU VERITAS KURALLARI ve NÜMERİK YÖNTEM ile ANALİZİ

GEMİ EĞİLME MOMENTİ ve KESME KUVVETİ KESİT ZORLARININ BUREAU VERITAS KURALLARI ve NÜMERİK YÖNTEM ile ANALİZİ GEMİ EĞİLME MOMENTİ ve KESME KUVVETİ KESİT ZORLARININ BUREAU VERITAS KURALLARI ve NÜMERİK YÖNTEM ile ANALİZİ Erhan ASLANTAŞ 1 ve Aydoğan ÖZDAMAR 2 ÖZET Gemilerin ön dizayn aşamasında, boyuna mukavemet

Detaylı

Ödev 1. Ödev1: 600N luk kuvveti u ve v eksenlerinde bileşenlerine ayırınız. 600 N

Ödev 1. Ödev1: 600N luk kuvveti u ve v eksenlerinde bileşenlerine ayırınız. 600 N Ödev 1 Ödev1: 600N luk kuvveti u ve v eksenlerinde bileşenlerine ayırınız. 600 N 1 600 N 600 N 600 N u sin120 600 N sin 30 u 1039N v sin 30 600 N sin 30 v 600N 2 Ödev 2 Ödev2: 2 kuvvetinin şiddetini, yönünü

Detaylı

Bu çalışmada, Rüzgar türbinlerinin tasarım ve performans hesaplamalarında sıkça kullanılan

Bu çalışmada, Rüzgar türbinlerinin tasarım ve performans hesaplamalarında sıkça kullanılan VI. ULUSAL HAVACILIK VE UZAY KONFERANSI 28-30 Eylül 2016, Kocaeli Üniversitesi, Kocaeli RANS VE PAL ELEMANLARI YÖNTEMİ İLE YATAY EKSENLİ RÜZGAR TÜRBİNİ PERFORMANS ANALİZİ Özcan YIRTICI İsmail Hakkı TUNCER

Detaylı

NACA 23012 VE NREL S 809 KANAT KESİTLERİNİN HAD İLE ANALİZİ ANALYSING OF NACA 23012 AND NREL S 809 AIRFOILS BY CFD

NACA 23012 VE NREL S 809 KANAT KESİTLERİNİN HAD İLE ANALİZİ ANALYSING OF NACA 23012 AND NREL S 809 AIRFOILS BY CFD Electronic Journal of Vocational Colleges-May/Mayıs 015 301 VE NREL S 809 KANAT KESİTLERİNİN HAD İLE ANALİZİ Mehmet BAKIRCI 1, Hüseyin CEYLAN, Sezayi YILMAZ 3 ÖZET Bu çalışmada, 301 ve NREL S809 kanat

Detaylı

İKİ BOYUTLU ÇUBUK SİSTEMLER İÇİN YAPI ANALİZ PROGRAM YAZMA SİSTEMATİĞİ

İKİ BOYUTLU ÇUBUK SİSTEMLER İÇİN YAPI ANALİZ PROGRAM YAZMA SİSTEMATİĞİ İKİ BOYUTLU ÇUBUK SİSTEMLER İÇİN YAPI ANALİZ PROGRAM YAZMA SİSTEMATİĞİ Yapı Statiği nde incelenen sistemler çerçeve sistemlerdir. Buna ek olarak incelenen kafes ve karma sistemler de aslında çerçeve sistemlerin

Detaylı

ÖLÜM 3 DENGE, İR KUVVETİN MOMENTİ 3.1 ir Kuvvetin Momenti elirli bir doğrultu ve şiddete sahip bir kuvvetin, bir cisim üzerine etkisi, kuvvetin etki çizgisine bağlıdır. Şekil.3.1 de F 1 kuvveti cismi sağa

Detaylı

SIKI TIRILMI YOL ZEM NLER N N KOMPAKS YON PARAMETRELER N N KONTROLÜ

SIKI TIRILMI YOL ZEM NLER N N KOMPAKS YON PARAMETRELER N N KONTROLÜ SIKITIRILMI YOL ZEMNLERNN KOMPAKSYON PARAMETRELERNN KONTROLÜ Selim ALTUN Yrd. Doç. Dr. Ege Üniversitesi naat Müh. Bölümü zmir,türkiye Alper SEZER n.yük.müh. Ege Üniversitesi naat Müh. Bölümü zmir,türkiye

Detaylı

DENEY 2. Şekil 1. Çalışma bölümünün şematik olarak görünümü

DENEY 2. Şekil 1. Çalışma bölümünün şematik olarak görünümü Deney-2 /5 DENEY 2 SĐLĐNDĐR ÜZERĐNE ETKĐ EDEN SÜRÜKLEME KUVVETĐNĐN BELĐRLENMESĐ AMAÇ Bu deneyin amacı, silindir üzerindeki statik basınç dağılımını, akışkan tarafından silindir üzerine uygulanan kuvveti

Detaylı

Bir cisme etki eden kuvvetlerin bileşkesi sıfır ise, cisim ya durur, ya da bir doğru boyunca sabit hızla hareketine devam eder.

Bir cisme etki eden kuvvetlerin bileşkesi sıfır ise, cisim ya durur, ya da bir doğru boyunca sabit hızla hareketine devam eder. DİNAMİK Hareket veya hareketteki değişmelerin sebeplerini araştırarak kuvvetle hareket arasındaki ilişkiyi inceleyen mekaniğin bölümüne dinamik denir. Dinamiğin üç temel prensibi vardır. 1. Eylemsizlik

Detaylı

Mühendislik Mekaniği Dinamik. Yrd.Doç.Dr. Akın Ataş

Mühendislik Mekaniği Dinamik. Yrd.Doç.Dr. Akın Ataş Mühendislik Mekaniği Dinamik Yrd.Doç.Dr. Akın Ataş Bölüm 17 Rijit Cismin Düzlemsel Kinetiği; Kuvvet ve İvme Kaynak: Mühendislik Mekaniği: Dinamik, R.C.Hibbeler, S.C.Fan, Çevirenler: A. Soyuçok, Ö. Soyuçok.

Detaylı

Pervane 10. PERVANE TEORİLERİ. P 2 v 2. P 1 v 1. Gemi İlerleme Yönü P 0 = P 2. Geliştirilmiş pervane teorileri aşağıdaki gibi sıralanabilir:

Pervane 10. PERVANE TEORİLERİ. P 2 v 2. P 1 v 1. Gemi İlerleme Yönü P 0 = P 2. Geliştirilmiş pervane teorileri aşağıdaki gibi sıralanabilir: . PEVANE TEOİLEİ Geliştirilmiş perane teorileri aşağıdaki gibi sıralanabilir:. Momentum Teorisi. Kanat Elemanı Teorisi 3. Sirkülasyon (Girdap) Teorisi. Momentum Teorisi Momentum teorisinde aşağıdaki kabuller

Detaylı

DEĞİ KEN KAMBURA SAHİP NACA 4412 KANAT KESİTİNİN 2-BOYUTLU AERODİNAMİK ANALİZİ

DEĞİ KEN KAMBURA SAHİP NACA 4412 KANAT KESİTİNİN 2-BOYUTLU AERODİNAMİK ANALİZİ II. ULUSAL HAVACILIK VE UZAY KONFERANSI 5-7 Ekim 2008, İTÜ, İstanbul DEĞİ KEN KAMBURA SAHİP NACA 442 KANAT KESİTİNİN 2-BOYUTLU AERODİNAMİK ANALİZİ Güçlü Seber *, Erdoğan Tolga İnsuyu, Serkan Özgen, Melin

Detaylı

ÜÇ BOYUTLU SINIR TABAKA AKIŞLARININ KARARLILIK ÖZELLİKLERİNİN DOĞRUSAL KARARLILIK TEORİSİ YAKLAŞIMI İLE BELİRLENMESİ

ÜÇ BOYUTLU SINIR TABAKA AKIŞLARININ KARARLILIK ÖZELLİKLERİNİN DOĞRUSAL KARARLILIK TEORİSİ YAKLAŞIMI İLE BELİRLENMESİ V. ULUSAL HAVACILIK VE UZAY KONFERANSI 8-10 Eylül 2014, Erciyes Üniversitesi, Kayseri ÜÇ BOYUTLU SINIR TABAKA AKIŞLARININ KARARLILIK ÖZELLİKLERİNİN DOĞRUSAL KARARLILIK TEORİSİ YAKLAŞIMI İLE BELİRLENMESİ

Detaylı

Yapı Sistemlerinin Hesabı İçin. Matris Metotları. Prof.Dr. Engin ORAKDÖĞEN Doç.Dr. Ercan YÜKSEL Bahar Yarıyılı

Yapı Sistemlerinin Hesabı İçin. Matris Metotları. Prof.Dr. Engin ORAKDÖĞEN Doç.Dr. Ercan YÜKSEL Bahar Yarıyılı Yapı Sistemlerinin Hesabı İçin Matris Metotları 2015-2016 Bahar Yarıyılı Prof.Dr. Engin ORAKDÖĞEN Doç.Dr. Ercan YÜKSEL 1 BÖLÜM VIII YAPI SİSTEMLERİNİN DİNAMİK DIŞ ETKİLERE GÖRE HESABI 2 Bu bölümün hazırlanmasında

Detaylı

DİŞLİ ÇARKLAR II: HESAPLAMA

DİŞLİ ÇARKLAR II: HESAPLAMA DİŞLİ ÇARLAR II: HESAPLAMA Prof. Dr. İrfan AYMAZ Atatürk Üniversitesi Mühendislik Fakültesi Makine Mühendisliği Bölümü Giriş Bu bölüm sonunda öğreneceğiniz konular: Dişli Çark uvvetleri Diş Dibi Gerilmeleri

Detaylı

DİŞLİ ÇARKLAR IV: KONİK DİŞLİ ÇARKLAR

DİŞLİ ÇARKLAR IV: KONİK DİŞLİ ÇARKLAR Helisel Dişli Dişli Çarklar DİŞLİ ÇARKLAR IV: KONİK DİŞLİ ÇARKLAR Prof. Dr. İrfan KAYMAZ Erzurum Teknik Üniversitesi Mühendislik ve Mimarlık Fakültesi Makine Mühendisliği Bölümü Erzurum Teknik Üniversitesi

Detaylı

DENEYSAN EĞİTİM CİHAZLARI SAN. VE TİC. LTD. ŞTİ.

DENEYSAN EĞİTİM CİHAZLARI SAN. VE TİC. LTD. ŞTİ. 1 DENEY FÖYLERİ DENEYSAN EĞİTİM CİHAZLARI SAN. VE TİC. LTD. ŞTİ. Küçük Sanayi sitesi 12 Ekim Cad. 52.Sok. No:18/A- BALIKESİR Tel:0266 2461075 Faks:0266 2460948 http://www.deneysan.com mail: deneysan@deneysan.com

Detaylı

DİŞLİ ÇARKLAR IV: KONİK DİŞLİ ÇARKLAR

DİŞLİ ÇARKLAR IV: KONİK DİŞLİ ÇARKLAR DİŞLİ ÇARKLAR IV: KONİK DİŞLİ ÇARKLAR Prof. Dr. İrfan KAYMAZ Atatürk Üniversitesi Mühendislik Fakültesi Makine Mühendisliği Bölümü Atatürk Üniversitesi Giriş Bu bölüm sonunda öğreneceğiniz konular: ın

Detaylı

4.1 denklemine yakından bakalım. Tanımdan α = dω/dt olduğu bilinmektedir (ω açısal hız). O hâlde eğer cisme etki eden tork sıfır ise;

4.1 denklemine yakından bakalım. Tanımdan α = dω/dt olduğu bilinmektedir (ω açısal hız). O hâlde eğer cisme etki eden tork sıfır ise; Deney No : M3 Deneyin Adı : EYLEMSİZLİK MOMENTİ VE AÇISAL İVMELENME Deneyin Amacı : Dönme hareketinde eylemsizlik momentinin ne demek olduğunu ve nelere bağlı olduğunu deneysel olarak gözlemlemek. Teorik

Detaylı

DİŞLİ ÇARKLAR II. Makine Elemanları 2 HESAPLAMALAR. Doç.Dr. Ali Rıza Yıldız. BURSA TECHNICAL UNIVERSITY (BTU) Department of Mechanical Engineering

DİŞLİ ÇARKLAR II. Makine Elemanları 2 HESAPLAMALAR. Doç.Dr. Ali Rıza Yıldız. BURSA TECHNICAL UNIVERSITY (BTU) Department of Mechanical Engineering Makine Elemanları 2 DİŞLİ ÇARKLAR II HESAPLAMALAR Doç.Dr. Ali Rıza Yıldız 1 Bu Bölümden Elde Edilecek Kazanımlar Dişli Çark Kuvvetleri Diş Dibi Gerilmeleri Mukavemeti Etkileyen Faktörler Yüzey Basıncı

Detaylı

Sistem Dinamiği. Bölüm 3- Rijit Gövdeli Mekanik Sistemlerin Modellenmesi. Doç.Dr. Erhan AKDOĞAN

Sistem Dinamiği. Bölüm 3- Rijit Gövdeli Mekanik Sistemlerin Modellenmesi. Doç.Dr. Erhan AKDOĞAN Sistem Dinamiği Bölüm 3- Rijit Gövdeli Mekanik Sistemlerin Modellenmesi Doç. Sunumlarda kullanılan semboller: El notlarına bkz. Yorum Soru MATLAB Bolum No.Alt Başlık No.Denklem Sıra No Denklem numarası

Detaylı

İ çindekiler. xvii GİRİŞ 1 TEMEL AKIŞKANLAR DİNAMİĞİ BERNOULLİ DENKLEMİ 68 AKIŞKANLAR STATİĞİ 32. xvii

İ çindekiler. xvii GİRİŞ 1 TEMEL AKIŞKANLAR DİNAMİĞİ BERNOULLİ DENKLEMİ 68 AKIŞKANLAR STATİĞİ 32. xvii Last A Head xvii İ çindekiler 1 GİRİŞ 1 1.1 Akışkanların Bazı Karakteristikleri 3 1.2 Boyutlar, Boyutsal Homojenlik ve Birimler 3 1.2.1 Birim Sistemleri 6 1.3 Akışkan Davranışı Analizi 9 1.4 Akışkan Kütle

Detaylı

DİNAMİK TEKNOLOJİNİN BİLİMSEL İLKELERİ

DİNAMİK TEKNOLOJİNİN BİLİMSEL İLKELERİ 7 TEKNOLOJİNİN BİLİMSEL İLKELERİ Adem ÇALIŞKAN Hareket veya hareketteki değişmelerin sebeplerini araştırarak kuvvetle hareket arasındaki ilişkiyi inceleyen mekaniğin bölümüne dinamik denir. Hareket, bir

Detaylı

Saf Eğilme(Pure Bending)

Saf Eğilme(Pure Bending) Saf Eğilme(Pure Bending) Saf Eğilme (Pure Bending) Bu bölümde doğrusal, prizmatik, homojen bir elemanın eğilme etkisi altındaki şekil değiştirmesini/ deformasyonları incelenecek. Burada çıkarılacak formüller

Detaylı

Şekil 2: Kanat profili geometrisi

Şekil 2: Kanat profili geometrisi Kanat Profili ve Seçimi Şekil 1: İki boyutlu akım modeli Herhangi bir kanat, uçuş doğrultusuna paralel olarak (gövde doğrultusunda) kesildiğinde şekil 1 olduğu gibi bir görüntü elde edilir. Şekil 2: Kanat

Detaylı

ÜST ÜSTE ÇIRPAN İKİ KANAT KESİTİNİN MAKSİMUM İTKİ İÇİN PARALEL ENİYİLEŞTİRMESİ

ÜST ÜSTE ÇIRPAN İKİ KANAT KESİTİNİN MAKSİMUM İTKİ İÇİN PARALEL ENİYİLEŞTİRMESİ ÜST ÜSTE ÇIRPAN İKİ KANAT KESİTİNİN MAKSİMUM İTKİ İÇİN PARALEL ENİYİLEŞTİRMESİ Mustafa KAYA 1 Dr. İsmail H. TUNCER 2 e-posta: mkaya@ae.metu.edu.tr e-posta: tuncer@ae.metu.edu.tr 1, 2 Orta Doğu Teknik Üniversitesi,

Detaylı

Bölüm 2: Kuvvet Vektörleri. Mühendislik Mekaniği: Statik

Bölüm 2: Kuvvet Vektörleri. Mühendislik Mekaniği: Statik Bölüm 2: Kuvvet Vektörleri Mühendislik Mekaniği: Statik Hedefler Kuvvetleri toplama, bileşenlerini ve bileşke kuvvetlerini Paralelogram Kuralı kullanarak belirleme. Diktörtgen (Cartesian) koordinat sistemi

Detaylı

DİŞLİ ÇARKLAR IV: KONİK DİŞLİ ÇARKLAR

DİŞLİ ÇARKLAR IV: KONİK DİŞLİ ÇARKLAR DİŞLİ ÇARKLAR IV: KONİK DİŞLİ ÇARKLAR Prof. Dr. İrfan KAYMAZ Atatürk Üniversitesi Mühendislik Fakültesi Makine Mühendisliği Bölümü Atatürk Üniversitesi Giriş Bu bölüm sonunda öğreneceğiniz konular: ın

Detaylı

(b) Model ve prototipi eşleştirmek için Reynolds benzerliğini kurmalıyız:

(b) Model ve prototipi eşleştirmek için Reynolds benzerliğini kurmalıyız: AKM 205 BÖLÜM 7 - UYGULAMA SORU VE ÇÖZÜMLERİ Doç.Dr. Ali Can Takinacı Ar.Gör. Yük. Müh. Murat Özbulut 1. Askeri amaçlı hafif bir paraşüt tasarlanmaktadır. Çapı 7.3 m, deney yükü, paraşüt ve donanım ağırlığı

Detaylı

TÜMLEŞİK KANAT ELEMANI - HESAPLAMALI AKIŞKANLAR DİNAMİĞİ YÖNTEMİ İLE DİKEY RÜZGAR TÜRBİNİ PERFORMANSININ HESAPLANMASI

TÜMLEŞİK KANAT ELEMANI - HESAPLAMALI AKIŞKANLAR DİNAMİĞİ YÖNTEMİ İLE DİKEY RÜZGAR TÜRBİNİ PERFORMANSININ HESAPLANMASI III. ULUSAL HAVACILIK VE UZAY KONFERANSI 16-18 Eylül 2010, Anadolu Üniversitesi, Eskişehir TÜMLEŞİK KANAT ELEMANI - HESAPLAMALI AKIŞKANLAR DİNAMİĞİ YÖNTEMİ İLE DİKEY RÜZGAR TÜRBİNİ PERFORMANSININ HESAPLANMASI

Detaylı

ÇIRPAN KANAT KESİTLERİNDE İTKİNİN PARALEL OLARAK HESAPLANMASI VE ENİYİLEŞTİRİLMESİ

ÇIRPAN KANAT KESİTLERİNDE İTKİNİN PARALEL OLARAK HESAPLANMASI VE ENİYİLEŞTİRİLMESİ ÇIRPAN KANAT KESİTLERİNDE İTKİNİN PARALEL OLARAK HESAPLANMASI VE ENİYİLEŞTİRİLMESİ Mustafa Kaya Dr. İsmail H. TUNCER e-posta: maya@ae.metu.edu.tr e-posta: tuncer@ae.metu.edu.tr, Orta Doğu Teni Üniversitesi,

Detaylı

Konut Tipi Rüzgar Türbini Kanatlarının Teorik Modellenmesi ve Güç Üretimini Etkileyen Belirli Aerodinamik Özelliklerin Karşılaştırılması

Konut Tipi Rüzgar Türbini Kanatlarının Teorik Modellenmesi ve Güç Üretimini Etkileyen Belirli Aerodinamik Özelliklerin Karşılaştırılması Konut Tipi Rüzgar Türbini Kanatlarının Teorik Modellenmesi ve Güç Üretimini Etkileyen Belirli Aerodinamik Özelliklerin Karşılaştırılması Mak. Müh. Feyzullah Mertkan Arslan Dr. Halil Tuzcu Doç. Dr. Hüseyin

Detaylı

MODEL HELİKOPTER DÖNER KANAT SİSTEMİ İÇİN YER ETKİSİ DURUMUNDA PERFORMANS VE AKIŞ ARAŞTIRMASI

MODEL HELİKOPTER DÖNER KANAT SİSTEMİ İÇİN YER ETKİSİ DURUMUNDA PERFORMANS VE AKIŞ ARAŞTIRMASI VI. ULUSAL HAVACILIK VE UZAY KONFERANSI 28-30 Eylül 2016, Kocaeli Üniversitesi, Kocaeli MODEL HELİKOPTER DÖNER KANAT SİSTEMİ İÇİN YER ETKİSİ DURUMUNDA PERFORMANS VE AKIŞ ARAŞTIRMASI Mehmet Şahbaz 1 ODTÜ/Havacılık

Detaylı

2. POTANSİYEL VE KİNETİK ENERJİ 2.1. CİSİMLERİN POTANSİYEL ENERJİSİ. Konumundan dolayı bir cismin sahip olduğu enerjiye Potansiyel Enerji denir.

2. POTANSİYEL VE KİNETİK ENERJİ 2.1. CİSİMLERİN POTANSİYEL ENERJİSİ. Konumundan dolayı bir cismin sahip olduğu enerjiye Potansiyel Enerji denir. BÖLÜM POTANSİYEL VE KİNETİK ENERJİ. POTANSİYEL VE KİNETİK ENERJİ.1. CİSİMLERİN POTANSİYEL ENERJİSİ Konumundan dolayı bir cismin sahip olduğu enerjiye Potansiyel Enerji denir. Mesela Şekil.1 de görülen

Detaylı

Kayma Kipli Kontrol Yöntemi le Dört Rotorlu Hava Aracının Kontrolü

Kayma Kipli Kontrol Yöntemi le Dört Rotorlu Hava Aracının Kontrolü Otomati k Kontrol Ulusal Toplantısı, TOK-, -3 Ekim, Niğde Kayma Kipli Kontrol Yöntemi le Dört Rotorlu Hava Aracının Kontrolü Aydemir Arısoy, M. Kemal Bayrakçeken Elektronik Mühendislii Bölümü, Hava Harp

Detaylı

MÜHENDİSLİK MEKANİĞİ (STATİK)

MÜHENDİSLİK MEKANİĞİ (STATİK) MÜHENDİSLİK MEKANİĞİ (STATİK) Prof. Dr. Metin OLGUN Ankara Üniversitesi Ziraat Fakültesi Tarımsal Yapılar ve Sulama Bölümü HAFTA KONU 1 Giriş, temel kavramlar, statiğin temel ilkeleri 2-3 Düzlem kuvvetler

Detaylı

RÜZGAR TÜNELĐNDEKĐ KANAT PROFĐLĐNĐN DĐKEY HAREKETĐNĐN MODELLENMESĐ

RÜZGAR TÜNELĐNDEKĐ KANAT PROFĐLĐNĐN DĐKEY HAREKETĐNĐN MODELLENMESĐ makale RÜZGAR TÜNELĐNDEKĐ KANAT PROFĐLĐNĐN DĐKEY HAREKETĐNĐN MODELLENMESĐ Cem ONAT, Şaban ÇETĐN Yıldız Teknik Üniversitesi, Makina Fakültesi Yatay eksenli rüzgar türbinlerinde, pervane kanatlarına etkiyen

Detaylı

Ç NDEK LER II. C LT KONULAR Sayfa Öz De er Öz Vektör.. 2. Lineer Cebir ve Sistem Analizi...

Ç NDEK LER II. C LT KONULAR Sayfa Öz De er Öz Vektör.. 2. Lineer Cebir ve Sistem Analizi... ÇNDEKLER II. CLT KONULAR 1. Öz Deer Öz Vektör.. 1 Kare Matrisin Öz Deeri ve Öz Vektörleri... 21 Matrisin Karakteristik Denklemi : Cayley Hamilton Teoremi.. 26 Öz Deer - Öz Vektör ve Lineer Transformasyon

Detaylı

BÖLÜM 9 ÇÖZÜLMESİ ÖNERİLEN ÖRNEK VE PROBLEMLER

BÖLÜM 9 ÇÖZÜLMESİ ÖNERİLEN ÖRNEK VE PROBLEMLER BÖLÜM 9 ÇÖZÜLMESİ ÖNERİLEN ÖRNEK VE PROBLEMLER b) İkinci süreç eğik atış hareketine karşılık geliyor. Orada örendiğin problem çözüm adımlarını kullanarak topun sopadan ayrıldığı andaki hızını bağıntı olarak

Detaylı

34. Dörtgen plak örnek çözümleri

34. Dörtgen plak örnek çözümleri 34. Dörtgen plak örnek çözümleri Örnek 34.1: Teorik çözümü Timoshenko 1 tarafından verilen dört tarafından ankastre ve merkezinde P=100 kn tekil yükü olan kare plağın(şekil 34.1) çözümü 4 farklı model

Detaylı

Dairesel Dalga Kılavuzlarının 2 Boyutlu FDTD Yöntemi le Modellenmesi

Dairesel Dalga Kılavuzlarının 2 Boyutlu FDTD Yöntemi le Modellenmesi Dairesel Dalga Kılavuzlarının 2 Boyutlu FDTD Yöntemi le Modellenmesi Yavuz EROL, Hasan H. BALIK Fırat Üniversitesi Elektrik-Elektronik Mühendisli i Bölümü 23119 Elazı yerol@firat.edu.tr, hasanbalik@gmail.com

Detaylı

RÜZGAR YÜKÜNÜN BİR TİCARİ ARAÇ SERVİS KAPISINA OLAN ETKİLERİNİN İNCELENMESİ

RÜZGAR YÜKÜNÜN BİR TİCARİ ARAÇ SERVİS KAPISINA OLAN ETKİLERİNİN İNCELENMESİ RÜZGAR YÜKÜNÜN BİR TİCARİ ARAÇ SERVİS KAPISINA OLAN ETKİLERİNİN İNCELENMESİ Melih Tuğrul, Serkan Er Hexagon Studio Araç Mühendisliği Bölümü OTEKON 2010 5. Otomotiv Teknolojileri Kongresi 07 08 Haziran

Detaylı

ALTERNATİF AKIMIN TEMEL ESASLARI

ALTERNATİF AKIMIN TEMEL ESASLARI ELEKTRİK-ELEKTRONİK MÜHENDİSLİĞİ BÖLÜMÜ ELEKTRİK-ELEKTRONİK MÜHENDİSLİĞİNE GİRİŞ DERSİ ALTERNATİF AKIMIN TEMEL ESASLARI Dr. Öğr. Üyesi Ahmet ÇİFCİ Elektrik enerjisi, alternatif akım ve doğru akım olarak

Detaylı

Hareket Kanunları Uygulamaları

Hareket Kanunları Uygulamaları Fiz 1011 Ders 6 Hareket Kanunları Uygulamaları Sürtünme Kuvveti Dirençli Ortamda Hareket Düzgün Dairesel Hareket http://kisi.deu.edu.tr/mehmet.tarakci/ Sürtünme Kuvveti Çevre faktörlerinden dolayı (hava,

Detaylı

Pozisyon Kontrol Sistemi Üzerine Karakteristik Yapı Çalı ması: STANBUL - 2010

Pozisyon Kontrol Sistemi Üzerine Karakteristik Yapı Çalı ması: STANBUL - 2010 Pozisyon Kontrol Sistemi Üzerine Karakteristik Yapı Çalıması: Set Üzerinde Kullanılacak Ekipman: 1 Motor sürücü ve çıkı potansiyometresi, 1 Ayarlama amplifikatörü, 1 Türevsel amplifikatör, 1 Toplama amplifikatörü,

Detaylı

Toplam İkinci harmonik. Temel Üçüncü harmonik. Şekil 1. Temel, ikinci ve üçüncü harmoniğin toplamı

Toplam İkinci harmonik. Temel Üçüncü harmonik. Şekil 1. Temel, ikinci ve üçüncü harmoniğin toplamı FOURIER SERİLERİ Bu bölümde Fourier serilerinden bahsedeceğim. Önce harmoniklerle (katsıklıklarla) ilişkili sinüsoidin tanımından başlıyacağım ve serilerin trigonometrik açılımlarını kullanarak katsayıları

Detaylı

DÜŞÜK OK AÇILI DELTA KANAT ÜZERİNDEKİ AKIŞIN PASİF AKITMA YÖNTEMİYLE KONTROLÜ

DÜŞÜK OK AÇILI DELTA KANAT ÜZERİNDEKİ AKIŞIN PASİF AKITMA YÖNTEMİYLE KONTROLÜ VI. ULUSAL HAVACILIK VE UZAY KONFERANSI 28-3 Eylül 216, Kocaeli Üniversitesi, Kocaeli DÜŞÜK OK AÇILI DELTA KANAT ÜZERİNDEKİ AKIŞIN PASİF AKITMA YÖNTEMİYLE KONTROLÜ Alper Çelik 1 Orta Doğu Teknik Üniversitesi,Ankara

Detaylı

ELK-301 ELEKTRİK MAKİNALARI-1

ELK-301 ELEKTRİK MAKİNALARI-1 ELK-301 ELEKTRİK MAKİNALARI-1 KAYNAKLAR 1. Prof. Dr. Güngör BAL, Elektrik Makinaları I, Seçkin Yayınevi, Ankara 2016 2. Stephen J. Chapman, Elektrik Makinalarının Temelleri, Çağlayan Kitabevi, 2007, Çeviren:

Detaylı

STATİK AĞIRLIK MERKEZİ. 3.1 İki Boyutlu Cisimler 3.2 Düzlem Eğriler 3.3 Bileşik Cisimler. 3.4 Integrasyon ile ağırlık merkezi hesabı

STATİK AĞIRLIK MERKEZİ. 3.1 İki Boyutlu Cisimler 3.2 Düzlem Eğriler 3.3 Bileşik Cisimler. 3.4 Integrasyon ile ağırlık merkezi hesabı 1 STATİK AĞIRLIK MERKEZİ 3.1 İki Boyutlu Cisimler 3.2 Düzlem Eğriler 3.3 Bileşik Cisimler 3.4 Integrasyon ile ağırlık merkezi hesabı 3.5 Pappus-Guldinus Teoremi 3.6 Yayılı Yüke Eşdeğer Tekil Yük 3.7 Sıvı

Detaylı

statistiksel Proses Kontrol -Uygulamalar -

statistiksel Proses Kontrol -Uygulamalar - statistiksel Proses Kontrol -Uygulamalar - Prof.Dr. Erhan Öner eoner@marmara.edu.tr Prof.Dr. Erhan Öner/PK Problemleri/2002-1/34 Kontrol Diyagramları Niceliksel (kantitatif) kalite özellikleri ile oluturulan

Detaylı

Bölüm 5: Sonlu Kontrol Hacmi Analizi

Bölüm 5: Sonlu Kontrol Hacmi Analizi Bölüm 5: Sonlu Kontrol Hacmi Analizi Reynolds Transport Teoremi (RTT) Temel korunma kanunları (kütle,enerji ve momentumun korunumu) doğrudan sistem yaklaşımı ile türetilmiştir. Ancak, birçok akışkanlar

Detaylı