Ç NDEK LER II. C LT KONULAR Sayfa Öz De er Öz Vektör.. 2. Lineer Cebir ve Sistem Analizi...

Ebat: px
Şu sayfadan göstermeyi başlat:

Download "Ç NDEK LER II. C LT KONULAR Sayfa Öz De er Öz Vektör.. 2. Lineer Cebir ve Sistem Analizi..."

Transkript

1 ÇNDEKLER II. CLT KONULAR 1. Öz Deer Öz Vektör.. 1 Kare Matrisin Öz Deeri ve Öz Vektörleri Matrisin Karakteristik Denklemi : Cayley Hamilton Teoremi.. 26 Öz Deer - Öz Vektör ve Lineer Transformasyon (reel öz deerler) Kompleks Öz Deerler ve Öz Vektörler Tekrarlı Öz Deerler ve Öz Vektörler.. 65 Karakteristik Denklemler ve Benzer Matrisler. 92 Cayley-Hamilton Teoremi 101 Diyagonal Matrisler ve Matrislerin Diyagonal Yapılması 109 Matrisin Diyagonal Yapılması Matris Diyagonalizasyonuyla lgili Sonuçlar Exponensiyel Matrisler. 133 Diyagonal Matrisin Exponensiyeli 134 Bir Kare Matrisin Exponensiyeli Matrislerin Kuvveti Matrislerin Benzerlii Blok Diyagonal Matrisler Jordan Blokları Jordan Kanonik Form 149 Jordan Kanonik Formunun Dönüüm Matrisinden Elde Edilii Lineer Transformasyonlar : Domain Range Matris Transformasyonları 173 Lineer Transformasyonlar Lineer Cebir ve Sistem Analizi Lineer Sistemler 193 Zamandan Baımsız Sistemler LTI Sistemlerin Lineer Diferansiyel Denklemlerle Gösterimi. 199 Sistem Cevabının Çözümü 199 Sıfır Giri Cevabı Balangıç Koulları ve Sistem Cevabı Sistem Reel Kökleri (reel öz deerler) Katlı Kökler (katlı öz deerler). 203 Kompleks Kökler Sistem Toplam Cevabı Sistemin Karakteristik Modları. 206 LTI Sistemlerde Dıarıdan Girie Sistemin Cevabı Sürekli LTI Sistemlerin Kararlılıı LTI Sistemlerin Lineer Diferansiyel Denklem Sistemleriyle Analizleri Lineer Cebirin Diferansiyel Denklem Uygulamaları 212 Homojen ve Homojen Olmayan Lineer Diferansiyel Denklem Sistemleri Diyagonal Matris Yaklaımıyla Lin. Dif. Denk. Sist. Çöz. (reel öz deerler). 214 I

2 Homojen Lineer Diferansiyel Denklem Sistemleri (reel öz deerler) Öz Deerler, Karakteristik Denklem ve Sistem Cevabı 295 Öz Deerlerin Sistemi Nitelemesi. 297 Farklı reel Öz Deerler. 297 Kompleks Öz Deerler Katlı Öz Deerler Öz Deerlerin Sınıflandırılması 299 Katlı Öz Deerler ve Genelletirilmi Öz Vektörler Yaklaımı Katlı Öz Deerler ve Sistem Cevapları. 307 Kompleks Öz Deerler ve LTI Sistemlerin Homojen Lineer Diferansiyel Denklem Sistemleriyle Analizleri. 383 Kompleks Öz Deerlerin Özel Sonuçları 498 Exponensiyel Matrislerle Diferansiyel Denklem Sistemlerinin Analizi 510 Kompleks Frekans Düzlemi ve Öz Deerler 525 Öz Deerler Öz Vektörlerin Sistem Açısından Önemi Karakteristik Denklem Öz deeler Lineer Sistem Analizi Öz Deeler Ve Kararlılık Üzerine. 540 LTI Sistemlerin Öz Deer Fonksiyonları ve Öz Deerleri Kompleks Exponensiyeller ve Öz Deer Fonksiyonları Kompleks Exponensiyeller ve Transfer Fonksiyonu 542 Sinüzoid Exponensiyeller. 545 Sinüzoid Exponensiyeller ve Öz Deer Fonksiyonları. 546 Öz Deer Fonksiyonlarının Lineer Baımsızlıı Ayrık Sistemlerin Öz Deer Fonksiyonu Öz Deeri. 555 LTI Ayrık Sistemlerin Öz Deerleri. 556 KAYNAKLAR 558 I. CLT KONULAR 1. Lineer Cebire Giri... 1 Lineer Modeller... 3 Lineer Olmayan Modeller... 3 Dorunun Analitik Analizi.. 5 Uzayda Geometrik Büyüklükler. 7 Lineer Cebir ve Lineerite 10 Lineer Denklem Sistemleri. 12 Dorular ve Dorusal Denklem Sistemleri. 16 Lineer Sistemlerin Davranıları.. 18 Homojen Olmayan Lineer Denklem Sistemleri.. 19 Homojen Lineer Denklem Sistemleri. 21 II

3 2. Lineer Denklem Sistemlerinin Elemanter lemlerle Çözümü Matrisler ve Matris lemleri Matris Gösterimleri. 47 Matrisler ve Diziler. 48 Matris Çeitleri 49 Kare Matris. 49 Köegen Matris Sıfır Matris.. 50 Devrik Matris.. 51 Eit Matrisler Matris lemleri Matrisin Skalerle Çarpımı Matrislerin Lineer Kombinasyonu.. 55 Matrislerin Çarpımı. 55 Matris Çarpımı ve Lineer Kombinasyonlar 67 Matrislerin zi.. 70 Birim Matris 71 Üstel Matrisler. 71 Kare Matrisin Kuvvetleri 72 Polinom Matrisler Simetrik Matris Asimetrik Simetrik Matris.. 74 Elenik Matris. 75 Elenik Tranzpoze Matris Hermitian Matris. 76 Asimetrik Hermitian Matris 76 Üçgen Matris Eklenmi Matris 77 Elemanter Matris lemleri.. 78 Elemanter Matris lemlerinin Amacı. 86 Gauss Eliminasyon Yöntemi : Elemanter Matris l. ve Lin. Denkl. Sist. Çöz.. 96 Matrislerin Rankı 129 Matrisin Tersi Rank ve Matrisin Tersi 156 Tekil Tekil Olmayan Matrisler 156 Ortogonal Matrisler. 172 Matrisin Entegrali Matrislerin Türevi Matris Deerlikli Skaler Fonksiyonun Türevi 178 Matrisin Normu Vektör Deerlikli Skaler Fonksiyonun Türevi 179 Vektörlerin Türevi Ters Matris Yaklaımıyla Lineer Denklem Sistemlerinin Çözümü 182 III

4 4. Determinantlar Matrislerin Determinantı. 200 Determinant Hesaplama Yöntemleri Sarrus Kuralı Minörler Eçarpanlar Laplace Kuralıyla Determinant Hesaplanması 206 Determinantların Özellikleri Sıfır Determinantlar 224 Wandermonde Matrisi. 226 Elemanter lemlerle Determinantların Hesaplanması 230 Blok Matrisler. 236 Üçgen Matrislerin Blok Determinantı. 236 Benzer Matrisler Cramer Kuralı ve Lineer Denklem Sistemlerinin Çözümü. 247 Matrislerin Tersi Adjoint Matris. 258 Ters Matris Ters Matris Yaklaımıyla Lineer Denklem Sistemlerinin Çözümleri. 274 Determinantla Rank Belirleme 282 Minörlerin Kuatılması Homojen Olmayan Lineer Denklem Sistemlerin Rank Yaklaımıyla ncelenmesi Homojen Lineer Denklem Sistemleri. 343 Homojen Lineer Denklem Sistemlerinin Çözümü Homojen Lineer Sistemler ve Lineer Baımsızlık Vektörler. 385 Kompleks Sayılar ve Vektörler Vektörlerin Geometrik Gösterimleri Vektörlerin Matrisyel Gösterimi. 388 Doru ve Vektörler. 390 Lineer Denklem Sistemleri ve Vektörel Gösterim Vektörel ilemler : toplam ve skalerle çarpım 402 Konum ve Serbest Vektörler Vektörlerin Ötelenmesi : Deplasman Vektörleri. 405 Dorultu Vektörü 409 Vektör Gösterimleri 411 Norm : Vektörün Uzunluu 412 Birim Vektörler ve Uzunlukları Kompleks Vektörün Uzunluu Vektörler Arasındaki Mesafe Vektörlerin Lineer Süperpozisyonu 417 Vektör Uzayları Reel Vektörler ve Reel Vektör Uzayları. 420 Kompleks Vektörler ve Kompleks Vektör Uzayları Reel ve Kompleks Skaler Çarpım Uzayları 421 Gerçek Deerli Hilbert Uzayın Özellikleri ve Vektörlerin Skaler Çarpımı 421 Kompleks Deerli Hilbert Uzayı : Kompleks Vektörlerin Skaler Çarpımı 423 IV

5 ki Vektör Arasındaki Açı Ortogonal Vektörler 429 Ortonormal Vektörler Standart Vektörler ve Ortogonalite Ortonormalite Skaler Çarpım ve Benzerlik Ölçüsü 430 Ortogonalite ve Benzerlik Ortogonalite ve Korelasyon 433 Hilbert Uzayında Ortogonallik Ortonormallik. 437 Ortogonallik ve Üçgen Eitlikleri 438 Ortogonal Matrisler. 439 Ortogonal Fonksiyonlar Trigonometrik Fonksiyonların Ortogonallii Trigonometrik Ortogonal Fonksiyonlar ve Fourier Serisi 452 Vektörel Çarpım Alt Vektör Uzayları. 469 Baz Vektörler ve Span 469 Standart Baz Vektörler 472 Homojen Lineer Sistemler ve Vektörlerin Lineer Baımsızlıı. 475 Lineer Baımlılık ve Baımsızlık Lineer Baımsız Vektörlerin Kombinasyonu Lineer Baımsız - Baımlı Vektörler Lineer Baımlı Vektörler 486 Baz Vektör Deiimi ve Koordinat Dönüümü Standart Vektörler ve Koordinat Vektörü Taban (baz) Deiimi Taban Deiiklii ve Koordinat Vektörü 529 Ortogonal Vektör Kümeleri 543 Ortagonol Vektörlerin Lineer Baımsızlıı 543 Ortogonallik Lineer Baımsızlık Ortogonal Projeksiyon Ortogonal Projeksiyon ve Lineer Kombinasyon. 553 Ortogonal Ortonormal Lineer Kombinasyonlar Ortogonal Ortonormal Tabanlar 569 Ortogonal Dekompozisyon Ortogonal Baz Vektörlerinin Avantajı 574 Düzlem Üzerine Ortogonal Projeksiyon. 583 Ortogonal Baz Vektörlerin Elde edilmesi Gram Schmidt Prensibi 594 Gram Schmidt Algoritması Ortogonal Vektörlerin Lineer Baımsızlıı Lineer Denklem Sistemlerinin Vektörel Yaklaımlarla Çözüm ve Analizleri Üzerine KAYNAKLAR V

Ç NDEK LER I. C LT KONULAR Sayfa 1. Lineer Cebire Giri... 2. Lineer Denklem Sistemlerinin Elemanter lemlerle Çözümü

Ç NDEK LER I. C LT KONULAR Sayfa 1. Lineer Cebire Giri... 2. Lineer Denklem Sistemlerinin Elemanter lemlerle Çözümü ÇNDEKLER I. CLT KONULAR 1. Lineer Cebire Giri... 1 Lineer Modeller... 3 Lineer Olmayan Modeller... 3 Dorunun Analitik Analizi.. 5 Uzayda Geometrik Büyüklükler. 7 Lineer Cebir ve Lineerite 10 Lineer Denklem

Detaylı

İÇİNDEKİLER. Bölüm 2 CEBİR 43

İÇİNDEKİLER. Bölüm 2 CEBİR 43 İÇİNDEKİLER ÖNSÖZ III Bölüm 1 SAYILAR 13 1.1 Doğal Sayılar 15 1.1.1. Tek ve Çift Sayılar 15 1.1.2. Asal Sayılar 15 1.1.3 Doğal Sayıların Özellikleri 15 1.1.4 Doğal Sayılarda Özel Toplamlar 16 1.1.5. Faktöriyel

Detaylı

İÇİNDEKİLER ÖNSÖZ Bölüm 1 SAYILAR 11 Bölüm 2 KÜMELER 31 Bölüm 3 FONKSİYONLAR

İÇİNDEKİLER ÖNSÖZ Bölüm 1 SAYILAR 11 Bölüm 2 KÜMELER 31 Bölüm 3 FONKSİYONLAR İÇİNDEKİLER ÖNSÖZ III Bölüm 1 SAYILAR 11 1.1. Sayı Kümeleri 12 1.1.1.Doğal Sayılar Kümesi 12 1.1.2.Tam Sayılar Kümesi 13 1.1.3.Rasyonel Sayılar Kümesi 14 1.1.4. İrrasyonel Sayılar Kümesi 16 1.1.5. Gerçel

Detaylı

18.034 İleri Diferansiyel Denklemler

18.034 İleri Diferansiyel Denklemler MIT AçıkDersSistemi http://ocw.mit.edu 18.034 İleri Diferansiyel Denklemler 2009 Bahar Bu bilgilere atıfta bulunmak veya kullanım koşulları hakkında bilgi için http://ocw.mit.edu/terms web sitesini ziyaret

Detaylı

LİNEER CEBİR. Ders Sorumlusu: Doç.Dr.Kemal HACIEFENDİOĞLU. Ders Notu: Prof. Dr. Şaban EREN

LİNEER CEBİR. Ders Sorumlusu: Doç.Dr.Kemal HACIEFENDİOĞLU. Ders Notu: Prof. Dr. Şaban EREN LİNEER CEBİR Ders Sorumlusu: Doç.Dr.Kemal HACIEFENDİOĞLU Ders Notu: Prof. Dr. Şaban EREN 1.BOLUM DOGRUSAL CEBIR VE DIFERANSIYEL DENKLEMLER LİNEER EŞİTLİKLER 1.1. LİNEER EŞİTLİKLERİN TANIMI x 1, x 2,...,

Detaylı

İÇİNDEKİLER. Bölüm 1 MATEMATİKSEL İKTİSADA GİRİŞ 11 1.1.İktisat Hakkında 12 1.2.İktisatta Grafik ve Matematik Kullanımı 13

İÇİNDEKİLER. Bölüm 1 MATEMATİKSEL İKTİSADA GİRİŞ 11 1.1.İktisat Hakkında 12 1.2.İktisatta Grafik ve Matematik Kullanımı 13 İÇİNDEKİLER ÖNSÖZ III Bölüm 1 MATEMATİKSEL İKTİSADA GİRİŞ 11 1.1.İktisat Hakkında 12 1.2.İktisatta Grafik ve Matematik Kullanımı 13 Bölüm 2 STATİK DENGE ANALİZİ 19 2.1 İktisatta Denge Kavramı 20 2.1.1.

Detaylı

Önsöz. Mustafa Özdemir Antalya 2016

Önsöz. Mustafa Özdemir Antalya 2016 Önsöz Bu kitap üniversitelerimizin Mühendislik Fakültelerinde, Doğrusal Cebir veya Lineer Cebir adıyla okutulan lisans dersine yardımcı bir kaynak olması amacıyla hazırlanmıştır. Konular, teorik anlatımdan

Detaylı

Lineer Denklem Sistemleri Kısa Bilgiler ve Alıştırmalar

Lineer Denklem Sistemleri Kısa Bilgiler ve Alıştırmalar Lineer Denklem Sistemleri Kısa Bilgiler ve Alıştırmalar Bir Matrisin Rankı A m n matrisinin determinantı sıfırdan farklı olan alt kare matrislerinin boyutlarının en büyüğüne A matrisinin rankı denir. rank(a)

Detaylı

İÇİNDEKİLER ÖNSÖZ Bölüm 1 KÜMELER Bölüm 2 SAYILAR

İÇİNDEKİLER ÖNSÖZ Bölüm 1 KÜMELER Bölüm 2 SAYILAR İÇİNDEKİLER ÖNSÖZ III Bölüm 1 KÜMELER 11 1.1. Küme 12 1.2. Kümelerin Gösterimi 13 1.3. Boş Küme 13 1.4. Denk Küme 13 1.5. Eşit Kümeler 13 1.6. Alt Küme 13 1.7. Alt Küme Sayısı 14 1.8. Öz Alt Küme 16 1.9.

Detaylı

x 1,x 2,,x n ler bilinmeyenler olmak üzere, doğrusal denklemlerin oluşturduğu;

x 1,x 2,,x n ler bilinmeyenler olmak üzere, doğrusal denklemlerin oluşturduğu; 4. BÖLÜM DOĞRUSAL DENKLEM SİSTEMLERİ Doğrusal Denklem Sistemi x,x,,x n ler bilinmeyenler olmak üzere, doğrusal denklemlerin oluşturduğu; a x + a x + L + a x = b n n a x + a x + L + a x = b n n a x + a

Detaylı

Salim. Yüce LİNEER CEBİR

Salim. Yüce LİNEER CEBİR Prof. Dr. Salim Yüce LİNEER CEBİR Prof. Dr. Salim Yüce LİNEER CEBİR ISBN 978-605-318-030-2 Kitapta yer alan bölümlerin tüm sorumluluğu yazarına aittir. 2015, Pegem Akademi Bu kitabın basım, yayın ve satış

Detaylı

7. BÖLÜM İÇ ÇARPIM UZAYLARI İÇ ÇARPIM UZAYLARI İÇ ÇARPIM UZAYLARI İÇ ÇARPIM UZAYLARI .= 1 1 + + Genel: Vektörler bölümünde vektörel iç çarpım;

7. BÖLÜM İÇ ÇARPIM UZAYLARI İÇ ÇARPIM UZAYLARI İÇ ÇARPIM UZAYLARI İÇ ÇARPIM UZAYLARI .= 1 1 + + Genel: Vektörler bölümünde vektörel iç çarpım; İÇ ÇARPIM UZAYLARI 7. BÖLÜM İÇ ÇARPIM UZAYLARI Genel: Vektörler bölümünde vektörel iç çarpım;.= 1 1 + + Açıklanmış ve bu konu uzunluk ve uzaklık kavramlarını açıklamak için kullanılmıştır. Bu bölümde öklit

Detaylı

HATA VE HATA KAYNAKLARI...

HATA VE HATA KAYNAKLARI... İÇİNDEKİLER 1. GİRİŞ... 1 1.1 Giriş... 1 1.2 Sayısal Analizin İlgi Alanı... 2 1.3 Mühendislik Problemlerinin Çözümü ve Sayısal Analiz... 2 1.4 Sayısal Analizde Bilgisayarın Önemi... 7 1.5 Sayısal Çözümün

Detaylı

İç-Çarpım Uzayları ÜNİTE. Amaçlar. İçindekiler. Yazar Öğr. Grv. Dr. Nevin ORHUN

İç-Çarpım Uzayları ÜNİTE. Amaçlar. İçindekiler. Yazar Öğr. Grv. Dr. Nevin ORHUN İç-Çarpım Uzayları Yazar Öğr. Grv. Dr. Nevin ORHUN ÜNİTE Amaçlar Bu üniteyi çalıştıktan sonra; R n, P n (R), M nxn vektör uzaylarında iç çarpım kavramını tanıyacak ve özelliklerini görmüş olacaksınız.

Detaylı

PERGEL YAYINLARI LYS 1 DENEME-6 KONU ANALİZİ SORU NO LYS 1 MATEMATİK TESTİ KAZANIM NO KAZANIMLAR

PERGEL YAYINLARI LYS 1 DENEME-6 KONU ANALİZİ SORU NO LYS 1 MATEMATİK TESTİ KAZANIM NO KAZANIMLAR 2013-2014 PERGEL YAYINLARI LYS 1 DENEME-6 KONU ANALİZİ SORU NO LYS 1 MATEMATİK TESTİ A B KAZANIM NO KAZANIMLAR 1 1 / 31 12 32173 Üslü İfadeler 2 13 42016 Rasyonel ifade kavramını örneklerle açıklar ve

Detaylı

TUNCELİ ÜNİVERSİTESİ MÜHENDİSLİK FAKÜLTESİ LİNEER CEBİR DERSİ 2012 GÜZ DÖNEMİ ÇIKMIŞ VİZE,FİNAL VE BÜTÜNLEME SORULARI ÖĞR.GÖR.

TUNCELİ ÜNİVERSİTESİ MÜHENDİSLİK FAKÜLTESİ LİNEER CEBİR DERSİ 2012 GÜZ DÖNEMİ ÇIKMIŞ VİZE,FİNAL VE BÜTÜNLEME SORULARI ÖĞR.GÖR. UNCELİ ÜNİVERSİESİ MÜHENDİSLİK FAKÜLESİ LİNEER CEBİR DERSİ 0 GÜZ DÖNEMİ ÇIKMIŞ VİZE,FİNAL VE BÜÜNLEME SORULARI ÖĞR.GÖR.İNAN ÜNAL www.inanunal.com UNCELİ ÜNİVERSİESİ MÜHENDİSLİK FAKÜLESİ MAKİNE MÜHENDİSLİĞİ

Detaylı

Şimdi de [ ] vektörünün ile gösterilen boyu veya büyüklüğü Pisagor. teoreminini iki kere kullanarak

Şimdi de [ ] vektörünün ile gösterilen boyu veya büyüklüğü Pisagor. teoreminini iki kere kullanarak 10.Konu İç çarpım uzayları ve özellikleri 10.1. ve üzerinde uzunluk de [ ] vektörünün ile gösterilen boyu veya büyüklüğü Pisagor teoreminden dir. 1.Ö.: [ ] ise ( ) ( ) ve ( ) noktaları gözönüne alalım.

Detaylı

Özdeğer ve Özvektörler

Özdeğer ve Özvektörler Özdeğer ve Özvektörler Yazar Öğr.Grv.Dr.Nevin ORHUN ÜNİTE 9 Amaçlar Bu üniteyi çalıştıktan sonra; bir lineer dönüşümün ve bir matrisin özdeğer ve özvektör kavramlarını anlayacak, bir dönüşüm matrisinin

Detaylı

13. Karakteristik kökler ve özvektörler

13. Karakteristik kökler ve özvektörler 13. Karakteristik kökler ve özvektörler 13.1 Karakteristik kökler 1.Tanım: A nxn tipinde matris olmak üzere parametrisinin n.dereceden bir polinomu olan şeklinde gösterilen polinomuna A matrisin karakteristik

Detaylı

Chapter 1 İçindekiler

Chapter 1 İçindekiler Chapter 1 İçindekiler Kendinizi Test Edin iii 10 Birinci Mertebeden Diferansiel Denklemler 565 10.1 Arılabilir Denklemler 566 10. Lineer Denklemler 571 10.3 Matematiksel Modeller 576 10.4 Çözümü Olmaan

Detaylı

12.SINIF A VE B GRUBU MATEMATİK-GEOMETRİ DERSİ KURS KONULARI VE TESTLERİ

12.SINIF A VE B GRUBU MATEMATİK-GEOMETRİ DERSİ KURS KONULARI VE TESTLERİ .SINIF A VE B GRUBU MATEMATİK-GEOMETRİ DERSİ KURS KONULARI VE TESTLERİ A-TEST SAYILAR- TEMEL KAVRAMLAR A-TEST SAYILAR- POLİNOMLAR B-TEST POLİNOMLAR- PARALEL DOĞRULARDA VE ÜÇGENDE AÇILAR A- B TEST PARALEL

Detaylı

18.701 Cebir 1. MIT Açık Ders Malzemeleri http://ocw.mit.edu

18.701 Cebir 1. MIT Açık Ders Malzemeleri http://ocw.mit.edu MIT Açık Ders Malzemeleri http://ocw.mit.edu 18.701 Cebir 1 2007 Güz Bu malzemeden alıntı yapmak veya Kullanım Şartları hakkında bilgi almak için http://ocw.mit.edu/terms ve http://tuba.acikders.org.tr

Detaylı

8. HAFTA BLM323 SAYISAL ANALİZ. Okt. Yasin ORTAKCI.

8. HAFTA BLM323 SAYISAL ANALİZ. Okt. Yasin ORTAKCI. 8. HAFTA BLM323 SAYISAL ANALİZ Okt. Yasin ORTAKCI yasinortakci@karabuk.edu.tr Karabük Üniversitesi Uzaktan Eğitim Uygulama ve Araştırma Merkezi 2 MATRİSLER Matris veya dizey, dikdörtgen bir sayılar tablosu

Detaylı

m=n şeklindeki matrislere kare matris adı verilir. şeklindeki matrislere ise sütun matrisi denir. şeklindeki A matrisi bir kare matristir.

m=n şeklindeki matrislere kare matris adı verilir. şeklindeki matrislere ise sütun matrisi denir. şeklindeki A matrisi bir kare matristir. Matrisler Satır ve sütunlar halinde düzenlenmiş tabloya matris denir. m satırı, n ise sütunu gösterir. a!! a!" a!! a!" a!! a!! a!! a!! a!" m=n şeklindeki matrislere kare matris adı verilir. [2 3 1] şeklinde,

Detaylı

İleri Diferansiyel Denklemler

İleri Diferansiyel Denklemler MIT AçıkDersSistemi http://ocw.mit.edu 18.034 İleri Diferansiyel Denklemler 2009 Bahar Bu bilgilere atıfta bulunmak veya kullanım koşulları hakkında bilgi için http://ocw.mit.edu/terms web sitesini ziyaret

Detaylı

Math 103 Lineer Cebir Dersi Final Sınavı

Math 103 Lineer Cebir Dersi Final Sınavı Haliç Üniversitesi, Uygulamalı Matematik Bölümü Math 3 Lineer Cebir Dersi Final Sınavı 8 Ocak 28 Hazırlayan: Yamaç Pehlivan Başlama saati: 4: Bitiş Saati: 5:5 Toplam Süre: Dakika Lütfen adınızı ve soyadınızı

Detaylı

Prof. Dr. Mahmut Koçak.

Prof. Dr. Mahmut Koçak. i Prof. Dr. Mahmut Koçak http://fef.ogu.edu.tr/mkocak/ ii Bu kitabın basım, yayım ve satış hakları Kitabın yazarına aittir. Bütün hakları saklıdır. Kitabın tümü ya da bölümü/bölümleri yazarın yazılı izni

Detaylı

İÇİNDEKİLER KISIM 1: BİRİNCİ MERTEBE ADİ DİFERENSİYEL DENKLEMLER

İÇİNDEKİLER KISIM 1: BİRİNCİ MERTEBE ADİ DİFERENSİYEL DENKLEMLER İÇİNDEKİLER KISIM 1: BİRİNCİ MERTEBE ADİ DİFERENSİYEL DENKLEMLER 1.1. Fiziksel Kanunlar ve Diferensiyel Denklemler Arasındaki İlişki... 1 1.2. Diferensiyel Denklemlerin Sınıflandırılması ve Terminoloji...

Detaylı

T.C. MALTEPE ÜNĠVERSĠTESĠ MÜHENDĠSLĠK FAKÜLTESĠ ENDÜSTRĠ MÜHENDĠSLĠĞĠ BÖLÜMÜ LĠSANS PROGRAMI. 2011-2012 Güz Yarıyılı

T.C. MALTEPE ÜNĠVERSĠTESĠ MÜHENDĠSLĠK FAKÜLTESĠ ENDÜSTRĠ MÜHENDĠSLĠĞĠ BÖLÜMÜ LĠSANS PROGRAMI. 2011-2012 Güz Yarıyılı T.C. MALTEPE ÜNĠVERSĠTESĠ MÜHENDĠSLĠK FAKÜLTESĠ ENDÜSTRĠ MÜHENDĠSLĠĞĠ BÖLÜMÜ LĠSANS PROGRAMI 2011-2012 Güz Yarıyılı LĠNEER CEBĠR MAT 283 6 AKTS 1. yıl 1. yarıyıl Lisans Zorunlu 3 s/hafta Teorik: 3 s/hafta

Detaylı

ÖRNEKLER-VEKTÖR UZAYLARI 1. Çözüm: w=k 1 u+k 2 v olmalıdır.

ÖRNEKLER-VEKTÖR UZAYLARI 1. Çözüm: w=k 1 u+k 2 v olmalıdır. ÖRNEKLER-VEKTÖR UZAYLARI. vektör uzayında yer alan w=(9 7) vektörünün, u=( -), v=(6 ) vektörlerinin doğrusal bir kombinasyonu olduğunu ve z=( - 8) vektörünün ise bu vektörlerin doğrusal bir kombinasyonu

Detaylı

1 Lineer Diferansiyel Denklem Sistemleri

1 Lineer Diferansiyel Denklem Sistemleri Outline İçindekiler 1 Lineer Diferansiyel Denklem Sistemleri 1 1.1 Lineer sistem türleri (iki bilinmeyenli iki denklem)................. 1 2 Normal Formda lineer denklem sistemleri (İki bilinmeyenli iki

Detaylı

Ders Adı Kodu Yarıyılı T+U Saati Ulusal Kredisi AKTS

Ders Adı Kodu Yarıyılı T+U Saati Ulusal Kredisi AKTS DERS BİLGİLERİ Ders Adı Kodu Yarıyılı T+U Saati Ulusal Kredisi AKTS Diferansiyel Denklemler ve Lineer Cebir BIL271 3 3+0 3 5 Ön Koşul Dersleri Yok Dersin Dili Dersin Seviyesi Dersin Türü Türkçe Lisans

Detaylı

VEKTÖR UZAYLARI 1.GİRİŞ

VEKTÖR UZAYLARI 1.GİRİŞ 1.GİRİŞ Bu bölüm lineer cebirin temelindeki cebirsel yapıya, sonlu boyutlu vektör uzayına giriş yapmaktadır. Bir vektör uzayının tanımı, elemanları skalar olarak adlandırılan herhangi bir cisim içerir.

Detaylı

T.C. SİNOP ÜNİVERSİTESİ FEN-EDEBİYAT FAKÜLTESİ MATEMATİK BÖLÜMÜ LİSANS PROGRAMI

T.C. SİNOP ÜNİVERSİTESİ FEN-EDEBİYAT FAKÜLTESİ MATEMATİK BÖLÜMÜ LİSANS PROGRAMI T.C. SİNOP ÜNİVERSİTESİ FEN-EDEBİYAT FAKÜLTESİ MATEMATİK BÖLÜMÜ LİSANS PROGRAMI I.YARIYIL ( Güz) II.YARIYIL (Bahar) DERSİN DERSİN ADI T P K AKTS DERSİN DERSİN ADI T P K AKTS MAT101 ANALİZ I 4 2 5 7 MAT102

Detaylı

AKSARAY KANUNİ ANADOLU İMAM HATİP LİSESİ 2015-2016 EĞİTİM ÖĞRETİM YILI MATEMATİK DERSİ 11.SINIFLAR ÜNİTELENDİRİLMİŞ YILLIK PLANI TEKNİKLER

AKSARAY KANUNİ ANADOLU İMAM HATİP LİSESİ 2015-2016 EĞİTİM ÖĞRETİM YILI MATEMATİK DERSİ 11.SINIFLAR ÜNİTELENDİRİLMİŞ YILLIK PLANI TEKNİKLER AKSARAY KANUNİ ANADOLU İMAM HATİP LİSESİ 015-01 EĞİTİM ÖĞRETİM YILI MATEMATİK DERSİ 11.SINIFLAR ÜNİTELENDİRİLMİŞ YILLIK PLANI SÜRE: MANTIK(30) ÖNERMELER VE BİLEŞİK ÖNERMELER(18) 1. Önermeyi, önermenin

Detaylı

YGS MATEMATİK - CEBİR 01 TEMEL SAYI KAVRAMLARI VE UYGULAMALARI 02 TAMSAYILARDA BÖLME 03 BÖLÜNEBİLME KURALLARI 04 ASAL SAYILAR 05 OBEB VE OKEK 06

YGS MATEMATİK - CEBİR 01 TEMEL SAYI KAVRAMLARI VE UYGULAMALARI 02 TAMSAYILARDA BÖLME 03 BÖLÜNEBİLME KURALLARI 04 ASAL SAYILAR 05 OBEB VE OKEK 06 1 YGS MATEMATİK - CEBİR 01 TEMEL SAYI KAVRAMLARI VE UYGULAMALARI 02 TAMSAYILARDA BÖLME 03 BÖLÜNEBİLME KURALLARI 04 ASAL SAYILAR 05 OBEB VE OKEK 06 RASYONEL SAYILAR KÜMESİ VE ÖZELLİKLERİ 07 BASİT EŞİTSİZLİKLER

Detaylı

Lineer Dönüşümler ÜNİTE. Amaçlar. İçindekiler. Yazar Öğr. Grv.Dr. Nevin ORHUN

Lineer Dönüşümler ÜNİTE. Amaçlar. İçindekiler. Yazar Öğr. Grv.Dr. Nevin ORHUN Lineer Dönüşümler Yazar Öğr. Grv.Dr. Nevin ORHUN ÜNİTE 7 Amaçlar Bu üniteyi çalıştıktan sonra; Vektör uzayları arasında tanımlanan belli fonksiyonları tanıyacak, özelliklerini öğrenecek, Bir dönüşümün,

Detaylı

www.usmatik.com MATEMATİK PROGRAMI YGS-LYS Matematik Çalışma Programı

www.usmatik.com MATEMATİK PROGRAMI YGS-LYS Matematik Çalışma Programı www.usmatik.com MATEMATİK PROGRAMI YGS-LYS Matematik Çalışma Programı Ertuğrul US 01.09.2014 MATEMATİK PROGRAMIM Program 6 aylık (24 haftalık) bir programdır. Konuların veriliş sırasına uyularak çalışılması

Detaylı

İleri Diferansiyel Denklemler

İleri Diferansiyel Denklemler MIT AçıkDersSistemi http://ocw.mit.edu 18.034 İleri Diferansiyel Denklemler 2009 Bahar Bu bilgilere atıfta bulunmak veya kullanım koşulları hakkında bilgi için http://ocw.mit.edu/terms web sitesini ziyaret

Detaylı

Lineer Denklem Sistemleri

Lineer Denklem Sistemleri Lineer Denklem Sistemleri Yazar Yrd. Doç.Dr. Nezahat ÇETİN ÜNİTE 3 Amaçlar Bu üniteyi çalıştıktan sonra; Lineer Denklem ve Lineer Denklem Sistemleri kavramlarını öğrenecek, Lineer Denklem Sistemlerinin

Detaylı

İÇİNDEKİLER. Ön Söz...2. Adi Diferansiyel Denklemler...3. Birinci Mertebeden ve Birinci Dereceden. Diferansiyel Denklemler...9

İÇİNDEKİLER. Ön Söz...2. Adi Diferansiyel Denklemler...3. Birinci Mertebeden ve Birinci Dereceden. Diferansiyel Denklemler...9 İÇİNDEKİLER Ön Söz... Adi Diferansiyel Denklemler... Birinci Mertebeden ve Birinci Dereceden Diferansiyel Denklemler...9 Homojen Diferansiyel Denklemler...15 Tam Diferansiyel Denklemler...19 Birinci Mertebeden

Detaylı

Mühendislikte Sayısal Çözüm Yöntemleri NÜMERİK ANALİZ. Prof. Dr. İbrahim UZUN

Mühendislikte Sayısal Çözüm Yöntemleri NÜMERİK ANALİZ. Prof. Dr. İbrahim UZUN Mühendislikte Sayısal Çözüm Yöntemleri NÜMERİK ANALİZ Prof. Dr. İbrahim UZUN Yayın No : 2415 İşletme-Ekonomi Dizisi : 147 5. Baskı Eylül 2012 - İSTANBUL ISBN 978-605 - 377-438 - 9 Copyright Bu kitabın

Detaylı

HİTİT ÜNİVERSİTESİ MATEMATİK BÖLÜMÜ DERS TANIMLARI

HİTİT ÜNİVERSİTESİ MATEMATİK BÖLÜMÜ DERS TANIMLARI HİTİT ÜNİVERSİTESİ MATEMATİK BÖLÜMÜ DERS TANIMLARI ZORUNLU DERSLER Matematiğin Temelleri (3-0) 3: Sembolik Mantık; Kümeler Kuramı; Kartezyen Çarpım; Bağıntılar; Fonksiyonlar; Birebir ve Örten Fonksiyonlar;

Detaylı

Lineer Bağımlılık ve Lineer Bağımsızlık

Lineer Bağımlılık ve Lineer Bağımsızlık Lineer Bağımlılık ve Lineer Bağımsızlık Yazar Öğr.Grv.Dr.Nevin ORHUN ÜNİTE 5 Amaçlar Bu üniteyi çalıştıktan sonra; Vektör uzayı ve alt uzay yapısını daha iyi tanıyacak, Bir vektör uzayındaki vektörlerin

Detaylı

Nazım K. Ekinci Matematiksel İktisat Notları ax 1 + bx 2 = α cx 1 + dx 2 =

Nazım K. Ekinci Matematiksel İktisat Notları ax 1 + bx 2 = α cx 1 + dx 2 = Naım K. Ekinci Matematiksel İktisat Notları 0.6. DOĞRUSL DENKLEM SİSTEMLERİ ax + bx = α cx + dx = gibi bir doğrusal denklem sistemini, x ve y bilinmeyenler olmak üere, çömeyi hepimi biliyoru. ma probleme

Detaylı

LİSANS DERS İÇERİKLERİ

LİSANS DERS İÇERİKLERİ T.C. SÜLEYMAN DEMİREL ÜNİVERSİTESİ MÜHENDİSLİK MİMARLIK FAKÜLTESİ LİSANS DERS İÇERİKLERİ I. YARIYIL FIZ-125 Fizik I (Zorunlu) T=2 P=1 U=0 AKTS=3 Fiziksel Büyüklükler, Standartlar, Birimler. Vektörler.

Detaylı

İkinci Mertebeden Lineer Diferansiyel Denklemler

İkinci Mertebeden Lineer Diferansiyel Denklemler A(x)y + B(x)y + C(x)y = F (x) (5) Denklem (5) in sağ tarafında bulunan F (x) fonksiyonu, I aralığı üzerinde sıfıra özdeş ise, (5) denklemine lineer homogen; aksi taktirde lineer homogen olmayan denklem

Detaylı

8.Konu Vektör uzayları, Alt Uzaylar

8.Konu Vektör uzayları, Alt Uzaylar 8.Konu Vektör uzayları, Alt Uzaylar 8.1. Düzlemde vektörler Düzlemdeki her noktası ile reel sayılardan oluşan ikilisini eşleştirebiliriz. Buna P noktanın koordinatları denir. y-ekseni P x y O dan P ye

Detaylı

Genel Matematik (MATH 103) Ders Detayları

Genel Matematik (MATH 103) Ders Detayları Genel Matematik (MATH 103) Ders Detayları Ders Adı Ders Kodu Dönemi Ders Saati Uygulama Saati Laboratuar Saati Kredi AKTS Genel Matematik MATH 103 Güz 3 2 0 4 6 Ön Koşul Ders(ler)i - Dersin Dili Dersin

Detaylı

MATLAB DA SAYISAL ANALİZ DOÇ. DR. ERSAN KABALCI

MATLAB DA SAYISAL ANALİZ DOÇ. DR. ERSAN KABALCI MATLAB DA SAYISAL ANALİZ DOÇ. DR. ERSAN KABALCI Konu Başlıkları Lineer Denklem Sistemlerinin Çözümü İntegral ve Türev İntegral (Alan) Türev (Sayısal Fark ) Diferansiyel Denklem çözümleri Denetim Sistemlerinin

Detaylı

. [ ] vektörünü S deki vektörlerin bir lineer

. [ ] vektörünü S deki vektörlerin bir lineer 11.Gram-Schmidt metodu 11.1. Ortonormal baz 11.1.Teorem: { }, V Öklid uzayı için bir ortonormal baz olsun. Bu durumda olmak üzere. 1.Ö.: { }, de bir ortonormal baz olsun. Burada. vektörünü S deki vektörlerin

Detaylı

İKİNCİ DERECEDEN BİR BİLİNMEYENLİ DENKLEMLER,, olmak üzere 2. ÜNİTE. İKİNCİ DERECEDEN DENKLEMLER, EŞİTSİZLİKLER ve FONKSİYONLAR

İKİNCİ DERECEDEN BİR BİLİNMEYENLİ DENKLEMLER,, olmak üzere 2. ÜNİTE. İKİNCİ DERECEDEN DENKLEMLER, EŞİTSİZLİKLER ve FONKSİYONLAR - 1-2 ÜNİTE İKİNCİ DERECEDEN DENKLEMLER, EŞİTSİZLİKLER ve FONKSİYONLAR ÖĞRENME ALANI CEBİR İKİNCİ DERECEDEN BİR BİLİNMEYENLİ DENKLEMLER,, olmak üzere Şeklindeki açık önermelere, ikinci dereceden bir bilinmeyenli

Detaylı

Ders Adı Kodu Yarıyılı T+U Saati Ulusal Kredisi AKTS. Lineer Cebir ve Vektörler EEE118 2 3+0 3 4

Ders Adı Kodu Yarıyılı T+U Saati Ulusal Kredisi AKTS. Lineer Cebir ve Vektörler EEE118 2 3+0 3 4 DERS BİLGİLERİ Ders Adı Kodu Yarıyılı T+U Saati Ulusal Kredisi AKTS Lineer Cebir ve Vektörler EEE118 2 3+0 3 4 Ön Koşul Dersleri Dersin Dili Dersin Seviyesi Dersin Türü İngilizce Lisans Zorunlu / Yüz Yüze

Detaylı

Matematikte karşılaştığınız güçlükler için endişe etmeyin. Emin olun benim karşılaştıklarım sizinkilerden daha büyüktür.

Matematikte karşılaştığınız güçlükler için endişe etmeyin. Emin olun benim karşılaştıklarım sizinkilerden daha büyüktür. - 1 - ÖĞRENME ALANI CEBİR BÖLÜM KARMAŞIK SAYILAR ALT ÖĞRENME ALANLARI 1) Karmaşık Sayılar Karmaşık Sayıların Kutupsal Biçimi KARMAŞIK SAYILAR Kazanım 1 : Gerçek sayılar kümesini genişletme gereğini örneklerle

Detaylı

Math 103 Lineer Cebir Dersi Ara Sınavı

Math 103 Lineer Cebir Dersi Ara Sınavı Haliç Üniversitesi, Uygulamalı Matematik Bölümü Math 3 Lineer Cebir Dersi Ara Sınavı 9 Kasım 27 Hazırlayan: Yamaç Pehlivan Başlama saati: 3: Bitiş Saati: 4:5 Toplam Süre: Dakika Lütfen adınızı ve soyadınızı

Detaylı

İÇİNDEKİLER. iii ÖNSÖZ BÖLÜM 1 TEMEL KAVRAMLAR 1 BÖLÜM 2 LİNEER KISMİ DİFERENSİYEL DENKLEMLER 9

İÇİNDEKİLER. iii ÖNSÖZ BÖLÜM 1 TEMEL KAVRAMLAR 1 BÖLÜM 2 LİNEER KISMİ DİFERENSİYEL DENKLEMLER 9 İÇİNDEKİLER ÖNSÖZ ix BÖLÜM 1 TEMEL KAVRAMLAR 1 1.1. Tanımlar 2 1.2. Diferensiyel Denklemlerin Çözümü (İntegrali) 5 1.3. Başlangıç Değer ve Sınır Değer Problemleri 7 BÖLÜM 2 LİNEER KISMİ DİFERENSİYEL DENKLEMLER

Detaylı

30 NİSAN-14 MAYIS ZEYNEP KAYAR. 1) L : R 3 R 2, L(x 1, x 2, x 3 ) = ( 3x 1 + 2x 3 4x 2, 2x 1 + x 2 3x 3 )

30 NİSAN-14 MAYIS ZEYNEP KAYAR. 1) L : R 3 R 2, L(x 1, x 2, x 3 ) = ( 3x 1 + 2x 3 4x 2, 2x 1 + x 2 3x 3 ) 3 NİSAN-4 MAYIS ZEYNEP KAYAR MATEMATİK BÖLÜMÜ LİNEER CEBİR-II DERSİ ÖDEV 4 Soru I: Aşağıda verilen dönüşümlerin lineer olup olmadığını gösteriniz. ) L : R 3 R, L(x, x, x 3 ) = ( 3x + x 3 4x 4, x + x 3x

Detaylı

2014 - LYS TESTLERİNE YÖNELİK ALAN STRATEJİLERİ

2014 - LYS TESTLERİNE YÖNELİK ALAN STRATEJİLERİ 2014 - LYS TESTLERİNE YÖNELİK ALAN STRATEJİLERİ YGS sonrası adayları puan getirisinin daha çok olan LYS ler bekliyor. Kalan süre içinde adayların girecekleri testlere kaynaklık eden derslere sabırla çalışmaları

Detaylı

II. DERECEDEN DENKLEMLER Test -1

II. DERECEDEN DENKLEMLER Test -1 II. DERECEDEN DENKLEMLER Test -. 5 {, 5} {, 5} { 5, } {, 5} {, 5} 5. 5 {,, } {,, } {,, } {,, } {,, }.. 5 7 7 5 5,, 5 5, 5 5, 5 5, 6. 7. 5 95 { 5,, } {,, 5} { 5,, 9} {,, 5} { 9,, 5} 6 66 {, } {,, } {,,

Detaylı

İNÖNÜ ÜNİVERSİTESİ FEN EDEBİYAT FAKÜLTESİ MATEMATİK BÖLÜMÜ DERSLERİN KODU, ADI, TEORİK SAATİ, UYGULAMA SAATİ, KREDİSİ VE DERS İÇERİĞİ

İNÖNÜ ÜNİVERSİTESİ FEN EDEBİYAT FAKÜLTESİ MATEMATİK BÖLÜMÜ DERSLERİN KODU, ADI, TEORİK SAATİ, UYGULAMA SAATİ, KREDİSİ VE DERS İÇERİĞİ İNÖNÜ ÜNİVERSİTESİ FEN EDEBİYAT FAKÜLTESİ MATEMATİK BÖLÜMÜ DERSLERİN KODU, ADI, TEORİK SAATİ, UYGULAMA SAATİ, KREDİSİ VE DERS İÇERİĞİ DERSLER T P K DERSLER T P K 1.Sınıf Güz Dönemi 1.Sınıf Bahar Dönemi

Detaylı

İLKÖĞRETİM MATEMATİK SOYUT CEBİR LİNEER CEBİR

İLKÖĞRETİM MATEMATİK SOYUT CEBİR LİNEER CEBİR ÖABT 205 Soruları yakalayan komisyon tarafından hazırlanmıştır. ÖĞRETMENLİK ALAN BİLGİSİ TESTİ ÖABT İLKÖĞRETİM MATEMATİK SOYUT CEBİR LİNEER CEBİR Konu Anlatımı Özgün Sorular Ayrıntılı Çözümler Test Stratejileri

Detaylı

Lineer Cebir (MATH 275) Ders Detayları

Lineer Cebir (MATH 275) Ders Detayları Lineer Cebir (MATH 275) Ders Detayları Ders Adı Ders Kodu Dönemi Ders Saati Uygulama Saati Laboratuar Saati Kredi AKTS Lineer Cebir MATH 275 Her İkisi 4 0 0 4 6 Ön Koşul Ders(ler)i Yok Dersin Dili Dersin

Detaylı

İleri Diferansiyel Denklemler

İleri Diferansiyel Denklemler MIT AçıkDersSistemi http://ocw.mit.edu 18.034 İleri Diferansiyel Denklemler 2009 Bahar Bu bilgilere atıfta bulunmak veya kullanım koşulları hakkında bilgi için http://ocw.mit.edu/terms web sitesini ziyaret

Detaylı

İNÖNÜ ÜNİVERSİTESİ FEN EDEBİYAT FAKÜLTESİ MATEMATİK BÖLÜMÜ GÜZ DÖNEMİ DERSLERİ VE İÇERİKLERİ

İNÖNÜ ÜNİVERSİTESİ FEN EDEBİYAT FAKÜLTESİ MATEMATİK BÖLÜMÜ GÜZ DÖNEMİ DERSLERİ VE İÇERİKLERİ GÜZ DÖNEMİ DERSLERİ VE İÇERİKLERİ 1. SINIF GÜZ DÖNEMİ Dersin Kodu ve Adı: 00101 Fizik I Vektörler, tek boyutta hareket, iki boyutta hareket, hareket kanunları, dairesel hareket ve Newton kanunlarının uygulamaları,

Detaylı

BİRİNCİ YIL 1. YARIYIL KODU DERSİN ADI T U K AKTS. TAR - 153 Ata Meken Tarihi I 2 0 0 1 İNG-101/ RUS-101. İngilizce I/ Rusça I 2 4 4 6

BİRİNCİ YIL 1. YARIYIL KODU DERSİN ADI T U K AKTS. TAR - 153 Ata Meken Tarihi I 2 0 0 1 İNG-101/ RUS-101. İngilizce I/ Rusça I 2 4 4 6 KIRGIZİSTAN TÜRKİYE MANAS ÜNİVERSİTESİ FEN FAKÜLTESİ MATEMATİK BÖLÜMÜ UYGULAMALI MATEMATİK VE ENFORMATİK LİSANS PROGRAMI DERSLERİN YARIYILLARA GÖRE DAĞILIMI BİRİNCİ YIL 1. YARIYIL TAR - 153 Ata Meken Tarihi

Detaylı

MATEMATİK ÖĞRETMENLİK ALAN BİLGİSİ - DENEME SINAVI DENEME. Diğer sayfaya geçiniz.

MATEMATİK ÖĞRETMENLİK ALAN BİLGİSİ - DENEME SINAVI DENEME. Diğer sayfaya geçiniz. MATEMATİK. DENEME ÖĞRETMENLİK ALAN BİLGİSİ - DENEME SINAVI. f : X tanımlı y = f() fonksiyonu için lim f ( ) = L ise aşağıdaki önermelerden kaç tanesi kesinlikle doğrudur? 0 I. X dir. 0 II. f() fonksiyonu

Detaylı

Meslek Yüksek Okulları İçin UYGULAMALI MATEMATİK. İstanbul, 2009

Meslek Yüksek Okulları İçin UYGULAMALI MATEMATİK. İstanbul, 2009 i Meslek Yüksek Okulları İçin UYGULAMALI MATEMATİK Yrd.Doç.Dr. Kamil TEMİZYÜREK Beykent Üniversitesi Öğretim Üyesi Yrd.Doç.Dr. Nurdan ÇOLAKOĞLU Beykent Üniversitesi Öğretim Üyesi İstanbul, 2009 ii Yay

Detaylı

DOKUZ EYLÜL ÜNİVERSİTESİ MÜHENDİSLİK FAKÜLTESİ YAYINLARI NO:89 MATEMATİK I (12. BASKI) Prof. Dr. A. Nihat BADEM Yrd. Doç. Dr.

DOKUZ EYLÜL ÜNİVERSİTESİ MÜHENDİSLİK FAKÜLTESİ YAYINLARI NO:89 MATEMATİK I (12. BASKI) Prof. Dr. A. Nihat BADEM Yrd. Doç. Dr. MATEMATİK I (12. BASKI) Prof. Dr. A. Nihat BADEM Yrd. Doç. Dr. Ali Tekin TİN MATEMATİK I DOKUZ EYLÜL ÜNİVERSİTESİ MÜHENDİSLİK FAKÜLTESİ YAYINLARI NO:89 Prof. Dr. A. Nihat BADEM Yrd. Doç. Dr. Ali Tekin

Detaylı

Math 103 Lineer Cebir Dersi Final Sınavı

Math 103 Lineer Cebir Dersi Final Sınavı Haliç Üniversitesi, Uygulamalı Matematik Bölümü Math 3 Lineer Cebir Dersi Final Sınavı 3 Araliık 27 Hazırlayan: Yamaç Pehlivan Başlama saati: 2: Bitiş Saati: 3:4 Toplam Süre: Dakika Lütfen adınızı ve soyadınızı

Detaylı

ÇUKUROVA ÜNİVERSİTESİ FEN EDEBİYAT FAKÜLTESİ MATEMATİK BÖLÜMÜ DERS İÇERİKLERİ

ÇUKUROVA ÜNİVERSİTESİ FEN EDEBİYAT FAKÜLTESİ MATEMATİK BÖLÜMÜ DERS İÇERİKLERİ ÇUKUROVA ÜNİVERSİTESİ FEN EDEBİYAT FAKÜLTESİ MATEMATİK BÖLÜMÜ DERS İÇERİKLERİ (2014-2015) Bu bilgilere (güncel olarak) http://eobs.cu.edu.tr/progdersplan_tr.aspx?progid=13 den erişilebilir. NOT: Bir seçmeli

Detaylı

Uzayda iki doğrunun ortak dikme doğrusunun denklemi

Uzayda iki doğrunun ortak dikme doğrusunun denklemi Uzayda iki doğrunun ortak dikme doğrusunun denklemi Uzayda verilen d 1 ve d aykırı doğrularının ikisine birden dik olan doğruya ortak dikme doğrusu denir... olmak üzere bu iki doğru denkleminde değilse

Detaylı

18.034 İleri Diferansiyel Denklemler

18.034 İleri Diferansiyel Denklemler MIT AçıkDersSistemi http://ocw.mit.edu 18.034 İleri Diferansiyel Denklemler 2009 Bahar Bu bilgilere atıfta bulunmak veya kullanım koşulları hakkında bilgi için http://ocw.mit.edu/terms web sitesini ziyaret

Detaylı

CUMHURİYET ÜNİVERSİTESİ FEN FAKÜLTESİ Yaz Öğretimi programı kapsamında açılan dersler ve kontenjanları

CUMHURİYET ÜNİVERSİTESİ FEN FAKÜLTESİ Yaz Öğretimi programı kapsamında açılan dersler ve kontenjanları CUMHURİYET ÜNİVERSİTESİ FEN FAKÜLTESİ 2012 2013 Yaz Öğretimi programı kapsamında açılan dersler ve kontenjanları AÇILAN DERSLERİN İÇERİKLERİ MAT 1001 ANALİZ-I (4 2 5) DERSİN KODU VE ADI KREDİ Kontenjan

Detaylı

SÜLEYMAN DEMİREL ÜNİVERSİTESİ FEN-EDEBİYAT FAKÜLTESİ MATEMATİK BÖLÜMÜ DERS İÇERİKLERİ

SÜLEYMAN DEMİREL ÜNİVERSİTESİ FEN-EDEBİYAT FAKÜLTESİ MATEMATİK BÖLÜMÜ DERS İÇERİKLERİ SÜLEYMAN DEMİREL ÜNİVERSİTESİ FEN-EDEBİYAT FAKÜLTESİ MATEMATİK BÖLÜMÜ DERS İÇERİKLERİ 1. YARIYIL DERSLERİ MAT101 Analiz I Kredi(Teorik-Pratik-Lab.): 5 (4-0-2) AKTS: 6 Matematik Analizin temel kavramları,

Detaylı

ANADOLU ÜNİVERSİTESİ AÇIKÖĞRETİM FAKÜLTESİ İLKÖĞRETİM ÖĞRETMENLİĞİ LİSANS TAMAMLAMA PROGRAMI. Lineer. Cebir. Ünite 6. 7. 8. 9. 10

ANADOLU ÜNİVERSİTESİ AÇIKÖĞRETİM FAKÜLTESİ İLKÖĞRETİM ÖĞRETMENLİĞİ LİSANS TAMAMLAMA PROGRAMI. Lineer. Cebir. Ünite 6. 7. 8. 9. 10 ANADOLU ÜNİVERSİTESİ AÇIKÖĞRETİM FAKÜLTESİ İLKÖĞRETİM ÖĞRETMENLİĞİ LİSANS TAMAMLAMA PROGRAMI Lineer Cebir Ünite 6. 7. 8. 9. 10 T.C. ANADOLU ÜNİVERSİTESİ YAYINLARI NO: 1074 AÇIKÖĞRETİM FAKÜLTESİ YAYINLARI

Detaylı

Genel Matematik (MATH 103) Ders Detayları

Genel Matematik (MATH 103) Ders Detayları Genel Matematik (MATH 103) Ders Detayları Ders Adı Ders Kodu Dönemi Ders Saati Uygulama Saati Laboratuar Saati Kredi AKTS Genel Matematik MATH 103 Güz 3 2 0 4 6 Ön Koşul Ders(ler)i - Dersin Dili Dersin

Detaylı

18.701 Cebir 1. MIT Açık Ders Malzemeleri http://ocw.mit.edu

18.701 Cebir 1. MIT Açık Ders Malzemeleri http://ocw.mit.edu MIT Açık Ders Malzemeleri http://ocw.mit.edu 18.701 Cebir 1 2007 Güz Bu malzemeden alıntı yapmak veya Kullanım Şartları hakkında bilgi almak için http://ocw.mit.edu/terms ve http://tuba.acikders.org.tr

Detaylı

Polinomlar, Temel Kavramlar, Polinomlar Kümesinde Toplama, Çıkarma, Çarpma TEST D 9. E 10. C 11. B 14. D 16. D 12. C 12. A 13. B 14.

Polinomlar, Temel Kavramlar, Polinomlar Kümesinde Toplama, Çıkarma, Çarpma TEST D 9. E 10. C 11. B 14. D 16. D 12. C 12. A 13. B 14. 1. Ünite: Polinomlar Polinomlar, Temel Kavramlar, Polinomlar Kümesinde Toplama, Çıkarma, Çarpma 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 Polinomlarda Bölme, Bölüm ve Kalan Bulma 1 1 1 1 1 1 1 1 1

Detaylı

fonksiyonu için in aralığındaki bütün değerleri için sürekli olsun. in bu aralıktaki olsun. Fonksiyonda meydana gelen artma miktarı

fonksiyonu için in aralığındaki bütün değerleri için sürekli olsun. in bu aralıktaki olsun. Fonksiyonda meydana gelen artma miktarı 10.1 Türev Kavramı fonksiyonu için in aralığındaki bütün değerleri için sürekli olsun. in bu aralıktaki bir değerine kadar bir artma verildiğinde varılan x = x 0 + noktasında fonksiyonun değeri olsun.

Detaylı

9. SINIF Geometri TEMEL GEOMETRİK KAVRAMLAR

9. SINIF Geometri TEMEL GEOMETRİK KAVRAMLAR TEMEL GEOMETRİK KAVRAMLAR 9. SINIF Geometri Amaç-1: Nokta, Doğru, Düzlem, Işın ve Uzayı Kavrayabilme. 1. Nokta, doğru, düzlem ve uzay kavramlarım açıklama. 2. Farklı iki noktadan geçen doğru sayışım söyleme

Detaylı

2 Ders Kodu: FZK Ders Türü: Zorunlu 4 Ders Seviyesi Lisans

2 Ders Kodu: FZK Ders Türü: Zorunlu 4 Ders Seviyesi Lisans FİZİKSEL MATEMATİK II 1 Ders Adi: FİZİKSEL MATEMATİK II 2 Ders Kodu: FZK2004 3 Ders Türü: Zorunlu 4 Ders Seviyesi Lisans 5 Dersin Verildiği Yıl: 2 6 Dersin Verildiği Yarıyıl 4 7 Dersin AKTS Kredisi: 8.00

Detaylı

DEVRE VE SİSTEM ANALİZİ ÇALIŞMA SORULARI

DEVRE VE SİSTEM ANALİZİ ÇALIŞMA SORULARI DEVRE VE SİSTEM ANALİZİ 01.1.015 ÇALIŞMA SORULARI 1. Aşağıda verilen devrede anahtar uzun süre konumunda kalmış ve t=0 anında a) v 5 ( geriliminin tam çözümünü diferansiyel denklemlerden faydalanarak bulunuz.

Detaylı

2013 KAMU PERSONEL SEÇME SINAVI ÖABT MATEMATİK ÖĞRETMENLİĞİ (İLKÖĞRETİM) TESTİ DEĞERLENDİRME RAPORU, SORULARI VE ÇÖZÜMLERİ

2013 KAMU PERSONEL SEÇME SINAVI ÖABT MATEMATİK ÖĞRETMENLİĞİ (İLKÖĞRETİM) TESTİ DEĞERLENDİRME RAPORU, SORULARI VE ÇÖZÜMLERİ 0 KAMU PERSONEL SEÇME SINAI ÖABT MATEMATİK ÖĞRETMENLİĞİ (İLKÖĞRETİM) TESTİ DEĞERLENDİRME RAPORU, SORULARI E ÇÖZÜMLERİ Temmuz, 0 MATEMATİK (İLKÖĞRETİM) ÖĞRETMENLİĞİ Analizden soru sorulmuştur. İlk 8 soru

Detaylı

ÖZEL ÖĞRETİM KURSU MATEMATİK-III ÇERÇEVE PROGRAMI. : Kesikkapı Mah. Atatürk Cad. No 79 Fethiye /MUĞLA

ÖZEL ÖĞRETİM KURSU MATEMATİK-III ÇERÇEVE PROGRAMI. : Kesikkapı Mah. Atatürk Cad. No 79 Fethiye /MUĞLA ÖZEL ÖĞRETİM KURSU MATEMATİK-III ÇERÇEVE PROGRAMI 1.KURUMUN ADI 2.KURUMUN ADRESİ 3.KURUCUNUN ADI :Tercih Özel Öğretim Kursu : Kesikkapı Mah. Atatürk Cad. No 79 Fethiye /MUĞLA : ARTI ÖZEL EĞİTİM ÖĞRETİM

Detaylı

ÖZEL ÇORUM ADA ÖZEL ÖĞRETİM KURSU MATEMATİK 3 BİLİM GRUBU ÇERÇEVE PROGRAMI

ÖZEL ÇORUM ADA ÖZEL ÖĞRETİM KURSU MATEMATİK 3 BİLİM GRUBU ÇERÇEVE PROGRAMI ÖZEL ÇORUM ADA ÖZEL ÖĞRETİM KURSU MATEMATİK 3 BİLİM GRUBU ÇERÇEVE PROGRAMI 1.KURUM ADI: Özel Çorum Ada Özel Öğretim Kursu 2. KURUMUN ADRESİ: Yavruturna Mah. Kavukçu Sok. No:46/A ÇORUM/MERKEZ 3. KURUCUNUN

Detaylı

DERS BİLGİLERİ. Ders Kodu Yarıyıl T+U Saat Kredi AKTS. İşletme Matematiği MATH ) Matris hesaplamayı öğrenir.

DERS BİLGİLERİ. Ders Kodu Yarıyıl T+U Saat Kredi AKTS. İşletme Matematiği MATH ) Matris hesaplamayı öğrenir. DERS BİLGİLERİ Ders Kodu Yarıyıl T+U Saat Kredi AKTS İşletme Matematiği MATH 175 1 3 + 0 3 6 Ön Koşul Dersleri - Dersin Dili Dersin Seviyesi Dersin Türü Almanca Lisans Zorunlu Dersin Koordinatörü Dersi

Detaylı

BÖLÜM I MATEMATİK NEDİR? 13 1.1. Matematik Nedir? 14

BÖLÜM I MATEMATİK NEDİR? 13 1.1. Matematik Nedir? 14 İÇİNDEKİLER Önsöz. V BÖLÜM I MATEMATİK NEDİR? 13 1.1. Matematik Nedir? 14 BÖLÜM II KÜMELER 17 2.1.Küme Tanımı ve Özellikleri 18 2.2 Kümelerin Gösterimi 19 2.2.1 Venn Şeması Yöntemi 19 2.2.2 Liste Yöntemi

Detaylı

Prof.Dr. ÜNAL ERKAN MUMCUOĞLU. merkan@metu.edu.tr

Prof.Dr. ÜNAL ERKAN MUMCUOĞLU. merkan@metu.edu.tr Ders Bilgisi Ders Kodu 9060528 Ders Bölüm 1 Ders Başlığı BİLİŞİM SİSTEMLERİ İÇİN MATEMATİĞİN TEMELLERİ Ders Kredisi 3 ECTS 8.0 Katalog Tanımı Ön koşullar Ders saati Bu dersin amacı altyapısı teknik olmayan

Detaylı

2014 / 2015 LYS HAFTA İÇİ KURS TAKVİMİ (TM) DAF NO DERS 2

2014 / 2015 LYS HAFTA İÇİ KURS TAKVİMİ (TM) DAF NO DERS 2 TÜRKÇE EDEBİYAT MATEMATİK 1 MATEMATİK 2 GEOMETRİ COĞRAFYA EKİM 2014 540 68 55 75 100 90 92 1 Çarşamba ARİFE 2 Perşembe TARİH FELSEFE 3 Cuma TATİL 45 15 KURBAN BAYR. 4 Cumartesi TATİL 1.GÜN KURBAN BAYR.

Detaylı

DERS BİLGİLERİ. Ders Kodu Yarıyıl T+U Saat Kredi AKTS. Ön Koşul Dersleri - Dersin Dili. Dersin Seviyesi. Dersin Türü. Dersin Koordinatörü

DERS BİLGİLERİ. Ders Kodu Yarıyıl T+U Saat Kredi AKTS. Ön Koşul Dersleri - Dersin Dili. Dersin Seviyesi. Dersin Türü. Dersin Koordinatörü DERS BİLGİLERİ Ders Kodu Yarıyıl T+U Saat Kredi AKTS KÜME TEORİSİNE GİRİŞ VE MANTIK MATH 101 1 3 + 2 4 8 Ön Koşul Dersleri - Dersin Dili Dersin Seviyesi Dersin Türü İngilizce Lisans Zorunlu Dersin Koordinatörü

Detaylı

DERS BİLGİ FORMU. Zorunlu Ders X. Haftalık Ders Saati Okul Eğitimi Süresi

DERS BİLGİ FORMU. Zorunlu Ders X. Haftalık Ders Saati Okul Eğitimi Süresi DERSİN ADI MATEMATİK 1 BÖLÜM PROGRAM DÖNEMİ DERSİN DİLİ DERS KATEGORİSİ ÖN ŞARTLAR SÜRE VE DAĞILIMI KREDİ DERSİN AMACI ÖĞRENME ÇIKTILARI VE YETERLİKLER DERSİN İÇERİĞİ VE DAĞILIMI (MODÜLLER VE HAFTALARA

Detaylı

1: DENEYLERİN TASARIMI VE ANALİZİ...

1: DENEYLERİN TASARIMI VE ANALİZİ... İÇİNDEKİLER Bölüm 1: DENEYLERİN TASARIMI VE ANALİZİ... 1 1.1. Deneyin Stratejisi... 1 1.2. Deneysel Tasarımın Bazı Tipik Örnekleri... 11 1.3. Temel Kurallar... 16 1.4. Deneyleri Tasarlama Prensipleri...

Detaylı

OKUL ADI : ÖMER ÇAM ANADOLU İMAM HATİP LİSESİ EĞİTİM VE ÖĞRETİM YILI : 2015 2016 DERSİN ADI : MATEMATİK SINIFLAR : 9

OKUL ADI : ÖMER ÇAM ANADOLU İMAM HATİP LİSESİ EĞİTİM VE ÖĞRETİM YILI : 2015 2016 DERSİN ADI : MATEMATİK SINIFLAR : 9 OKUL ADI : ÖMER ÇAM ANADOLU İMAM HATİP LİSESİ EĞİTİM VE ÖĞRETİM YILI : 015 01 1 Eylül 18 Eylül Kümelerde Temel Kavramlar 1. Küme kavramını örneklerle açıklar ve kümeleri ifade etmek için farklı gösterimler.

Detaylı

10 Mart Fen Liseleri, Sosyal Bilimler Liseleri, Güzel Sanatlar ve Spor Liseleri ile Her Türdeki Anadolu Liseleri. Öğretmenlerini Seçme Sınavı

10 Mart Fen Liseleri, Sosyal Bilimler Liseleri, Güzel Sanatlar ve Spor Liseleri ile Her Türdeki Anadolu Liseleri. Öğretmenlerini Seçme Sınavı Mart Fen Liseleri, Sosyal Bilimler Liseleri, Güzel Sanatlar ve Spor Liseleri ile Her Türdeki Anadolu Liseleri Öğretmenlerini Seçme Sınavı Matematik Soruları ve Çözümleri p : Her gerçek sayısı için > q

Detaylı

2.3. MATRİSLER Matris Tanımlama

2.3. MATRİSLER Matris Tanımlama 2.3. MATRİSLER 2.3.1. Matris Tanımlama Matrisler girilirken köşeli parantez kullanılarak ( [ ] ) ve aşağıdaki yollardan biri kullanılarak girilir: 1. Elemanları bir tam liste olarak girmek Buna göre matris

Detaylı

İleri Diferansiyel Denklemler

İleri Diferansiyel Denklemler MIT AçıkDersSistemi http://ocw.mit.edu 18.034 İleri Diferansiyel Denklemler 2009 Bahar Bu bilgilere atıfta bulunmak veya kullanım koşulları hakkında bilgi için http://ocw.mit.edu/terms web sitesini ziyaret

Detaylı

2014 / 2015 LYS HAFTA SONU KURS TAKVİMİ (TM)

2014 / 2015 LYS HAFTA SONU KURS TAKVİMİ (TM) TÜRKÇE EDEBİYAT MATEMATİK 1 MATEMATİK 2 GEOMETRİ COĞRAFYA TARİH 540 68 55 75 100 90 92 45 FELSEFE 15 1 Cuma Ağustos 2014 2 Cumartesi 3 Pazar 4 Pazartesi SINAVLAR DERSLER DAĞILIMLARI 5 Salı 1. Hafta 2.

Detaylı

DOKUZ EYLÜL ÜNİVERSİTESİ FEN BİLİMLERİ ENSTİTÜSÜ MÜDÜRLÜĞÜ DERS/MODÜL/BLOK TANITIM FORMU. Dersin Kodu: MAT 5001

DOKUZ EYLÜL ÜNİVERSİTESİ FEN BİLİMLERİ ENSTİTÜSÜ MÜDÜRLÜĞÜ DERS/MODÜL/BLOK TANITIM FORMU. Dersin Kodu: MAT 5001 Dersi Veren Birim: Fen Bilimleri Enstitüsü Dersin Türkçe Adı: Uygulamalı Matematik Dersin Orjinal Adı: Applied Mathematics Dersin Düzeyi:(Ön lisans, Lisans, Yüksek Lisans, Doktora) Lisansüstü Dersin Kodu:

Detaylı

11. SINIF MATEMATİK DERSİ İLERİ DÜZEY ÖĞRETİM PROGRAMI

11. SINIF MATEMATİK DERSİ İLERİ DÜZEY ÖĞRETİM PROGRAMI 11. SINIF MATEMATİK DERSİ İLERİ DÜZEY ÖĞRETİM PROGRAMI Programın öğrencilerde geliştirmeyi hedeflediği becerilerle 11. sınıf matematik öğretim programı ilişkisi Modelleme/Problem çözme Matematiksel Süreç

Detaylı

Kompleks Değişkenli Fonksiyonlar Teorisi

Kompleks Değişkenli Fonksiyonlar Teorisi Kompleks Değişkenli Fonksiyonlar Teorisi Ders Notları Dr. Serkan Aksoy 2016 http://www.gyte.edu.tr/dosya/102/~saksoy/ana.html 1 Gelecek önerileri için, lütfen Dr. Serkan Aksoy (saksoy@gyte.edu.tr) ile

Detaylı