H 0 : θ = θ 0 Bu sıfır hipotezi şunu ifade eder: Anakütle parametresi θ belirli bir θ 0

Ebat: px
Şu sayfadan göstermeyi başlat:

Download "H 0 : θ = θ 0 Bu sıfır hipotezi şunu ifade eder: Anakütle parametresi θ belirli bir θ 0"

Transkript

1 YTÜ-İktisat İstatistik II Hipotez Testi 1 HİPOTEZ TESTİ: AMAÇ: Örneklem bilgisinden hareketle anakütleye ilişkin olarak kurulan bir hipotezin (önsavın) geçerliliğinin test edilmesi Genel notasyon: anakütleye ilişkin parametreyi (örneğin anakütle ortalaması, oranı ya da varyansı, oran ya da ortalamalar arasındaki fark vb) θ ile gösterelim. Sıfır Hipotezi (Null Hypothesis): Tersine kanıt bulunmadığı sürece doğru olduğu kabul edilen, araştırmacı tarafından ortaya atılan hipotez Alternatif Hipotez/Karşı Hipotez (alternative hypothesis): Sıfır hipotezine karşı geliştirilen, lehine kanıt aranacak olan hipotez Notasyon: Sıfır hipotezi ya da karşı hipotez anakütle parametresi θ için tek bir değer ifade edebilir. Bu şekilde tanımlanan hipotezlere basit hipotez denir. Örneğin: H 0 : θ = θ 0 Bu sıfır hipotezi şunu ifade eder: Anakütle parametresi θ belirli bir θ 0 değerine eşittir YTÜ-İktisat İstatistik II Hipotez Testi 2 Bileşik Hipotez: Eğer bir sıfır hipotezi ya da karşı hipotez, anakütle katsayısına ilişkin bir değerler aralığı belirtiyorsa bu hipoteze bileşiktir denir. Örneğin H 0 : θ = θ 0 sıfır hipotezini aşağıdaki karşı hipotezle H 1 : θ > θ 0 sınamak isteyebiliriz. Bu durumda sıfır hipotezinin sadece bir yanındaki alternatiflere ilgi duyulur. Eğer karşı hipotez H 1 : θ < θ 0 şeklindeyse sıfır hipotezinde ifade edilen değerden daha küçük değerlere ilişkin alternatiflere ilgi duyulur. Yukarıdaki gibi alternatif hipotezlere tek yanlı alternatif hipotez denir. H 0 : θ = θ 0 sıfır hipotezine karşı geliştirilen alternatif hipotez H 1 : θ θ 0 şeklinde de olabilir. Bu karşı hipotez θ nın gerçek değerinin θ 0 dan farklı olduğunu ifade etmektedir. Buna iki yanlı karşı hipotez denir.

2 YTÜ-İktisat İstatistik II Hipotez Testi 3 Bir şirket çok sayıda parçalardan oluşan partilerle mal almaktadır. Bu partilerde kusurlu oranının %5 ten yüksek olduğundan kuşkulandıracak bir kanıt bulunmadıkça o partiyi kabul etmektedir. θ anakütle kusurlu oranını göstermek üzere bu oranın en çok 0.05 olduğu sıfır hipotezi bundan daha büyük olduğu karşı hipoteziyle sınanabilir: H 0 : θ 0.05 H 1 : θ > 0.05 Bir öğretim üyesi düzenli yapılan quizlerin yararlı olup olmadığıyla ilgilenmektedir. Bu quizler aynı dersi alan iki sınıftan birinde uygulanmakta diğerinde uygulanmamaktadır. Quizlerin dönem sonu başarı notunu etkileyip etkilemediğini görmek için bu iki sınıftaki öğrencilerin ortalama başarıları karşılaştırılabilir: µ x quiz yapılan sınıftaki ortalamayı µ y quiz yapılmayan sınıftaki ortalamayı göstersin. θ = µ x µ y olmak üzere sıfır ve karşı hipotezler H 0 : θ = 0 şeklinde kurulabilir. H 1 : θ > 0 YTÜ-İktisat İstatistik II Hipotez Testi 4 Bir siyaset bilimcisi bir yasa tasarısının erkekler ve kadınlara aynı ölçüde hitap edip etmediğiyle ilgilenmektedir. p x tasarıdan yana olan kadınların anakütle oranını, p y ise tasarıdan yana olan erkeklerin anakütle oranını ifade etsin. θ = p x p y olmak üzere sıfır ve karşı hipotezler aşağıdaki gibi kurulabilir: H 0 : θ = 0 H 1 : θ 0 Bu alternatif hipoteze göre yasa tasarısına destek bu iki anakütleden herhangi birinden gelebilir.

3 YTÜ-İktisat İstatistik II Hipotez Testi 5 KARAR: Sıfır ve karşı hipotezler kurulup örneklem bilgisi elde edildikten sonra belli bir kural çerçevesinde sıfır hipotezine ilişkin bir karar verilmesi gerekir. İki alternatif vardır: Sıfır hipotezini kabul etmek (red edememek) ya da karşı hipotez lehine sıfır hipotezini reddetmek Bu iki sonuçtan birine ulaşmak için örneklem bilgisine dayanan bir karar kuralı geliştirmek gerekir. Bu karar kurallarını nasıl oluşturacağımızı bu derste göreceğiz. Gerçekte bir sıfır hipotezinin doğru mu yoksa yanlış mı olduğu kesinlikle bilinemez. Bir başka deyişle karar kuralımız ne olursa olsun yanlış sonuçlara ulaşma şansı hep vardır. Bir sıfır hipotezi gerçekte ya doğrudur ya da yanlış (bunu kesin olarak bilemeyiz). Öyleyse iki tür hata yapabiliriz. YTÜ-İktisat İstatistik II Hipotez Testi 6 I. Tür Hata (Type I Error): Gerçekte doğru olan bir sıfır hipotezi reddediliyorsa bu hataya 1. Tür Hata denir. Karar kuralı doğru bir sıfır hipotezini reddetme olasılığını α olarak alıyorsa, bu α ya testin anlamlılık düzeyi denir. Bu durumda doğru sıfır hipotezini kabul etme olasılığı (1 α) olur. II. Tür Hata (Type II Error): Gerçekte yanlış olan bir sıfır hipotezinin kabul edilmesine II. tür hata denir. II. Tür Hata olasılığını β ile gösterelim. Bu durumda yanlış bir sıfır hipotezini reddetme olasılığı (1 β) olur. Buna testin gücü denir.

4 YTÜ-İktisat İstatistik II Hipotez Testi 7 KARAR GERÇEK DURUM H 0 DOĞRU H 0 YANLIŞ H 0 KABUL Doğru Karar II. Tür Hata Olasılık= 1 α Olasılık= β α: Testin anlamlılık düzeyi 1 β: Testin gücü H 0 RED I. Tür Hata Doğru Karar Olasılık= α Olasılık= 1 β YTÜ-İktisat İstatistik II Hipotez Testi 8 I. tür hata yapma olasılığı α veriyken karar kuralı (sıfır hipotezinin red ya da kabul edilmesi) belirlenir. Bir sıfır hipotezini test ederken bu iki hatanın olasılığının küçük olmasını isteriz. Ancak bu iki hata olasılığı arasında bir trade-off vardır. yani I. tür hata azalırken II. tür hata artar. Biz önce anlamlılık düzeyini belirleyip karar kuralını oluşturacağız ve II. tür hata olasılığı kendiliğinden belirlenmiş olacak. Uygulamada bu iki hata olasılığını birlikte azaltmanın tek yolu daha fazla gözlem toplamaktır.

5 YTÜ-İktisat İstatistik II Hipotez Testi 9 VARYANSI (σ 2 ) BİLİNİYOR Ortalaması µ varyansı σ 2 olan normal bir dağılımdan çekilmiş n boyutlu r.ö. değerlerini X 1,X 2,...,X n ile gösterelim. Amaç: bilinmeyen anakütle ortalamasına ilişkin hipotezlerin testi. 1. Basit sıfır hipotezi, tek yanlı karşı hipotez (ya da sağ kuyruk testi): H 0 : µ = µ 0 H 1 : µ > µ 0 Örneklem ortalaması X anakütle ortalaması µ nun sapmasız ve etkin bir t.e. olduğuna göre bu testi X a dayandırmamız doğaldır. Eğer gözlenen örneklem ortalaması X sıfır hipotezi altında doğru kabul edilen ortalama µ 0 dan aşırı derecede büyükse, sıfır hipotezinin doğruluğundan kuşkulanırız. Bunun için, doğru hipotezi red olasılığının (yani I. tür hata olasılığının) α olduğu bir karar kuralı geliştirmemiz gerekir. YTÜ-İktisat İstatistik II Hipotez Testi 10 VARYANSI (σ 2 ) BİLİNİYOR Daha önceki derslerimizde gördüğümüz örneklem ortalamasının örneklem dağılımı bilgisinden hareketle bir kurar kuralı geliştirebiliriz. Buna göre standart normal dağılıma uyar. Z = X µ σ/ n N(0,1) Sıfır hipotezini doğru kabul edersek µ = µ 0 olur, böylece Z = X µ 0 σ/ n N(0,1) rassal değişkeni de std normal dağılıma uyar. I. Tür Hata olasılığını P(Z > z α ) = α düzeyinde sabitlersek karar kuralı σ/ n > z α, ise H 0 ı reddedin olur.

6 YTÜ-İktisat İstatistik II Hipotez Testi 11 ÖRNEK 9.1: Bilye yatağı üreten bir süreç düzgün çalışırken bu yatakların ağırlıkları, ortalaması 5 ons standart sapması 0.1 ons olan bir normal dağılıma uymaktadır. Bu süreçte düzeltme yapılmıştır. Fabrika müdürü bunun sonucunda bütün bilye yataklarının ortalama ağırlığının biraz arttığını, standart sapmanın ise aynı kaldığını düşünmektedir. 16 yataklık rassal bir örneklem alınmış, bunların ortalama ağırlığı ons bulunmuştur ve 0.10 anlamlılık düzeylerinde anakütle ortalama ağırlığının 5 ons olduğunu söyleyen sıfır hipotezini bunun 5 onstan büyük olduğu karşı hipoteziyle sınayın. H 0 : µ = 5 H 1 : µ > 5 x = 5.038, µ 0 = 5, σ = 0.1, n = 16. Karar kuralı: σ/ n > z α, ise H 0 ı reddedin σ/ n = / 16 = 1.52 YTÜ-İktisat İstatistik II Hipotez Testi 12 %5 düzeyinde standart normal kritik değer: z 0.05 = , ten büyük olmadığı için sıfır hipotezini reddedemeyiz. Yani, %5 anlamlılık düzeyinde H 0 kabul edilir. Doğru sıfır hipotezini reddetme olasılığı (I. tür hata olasılığı) 0.05 olan bir test kullanırsak, örneklem bilgisi bu sıfır hipotezini reddetmek için yeterli kanıt içermemektedir. %10 düzeyinde sınama yapmak istediğimizi düşünelim. Bu durumda kritik değer z 0.1 = 1.28 olur (örneklem verilerinden elde edilen test istatistiği) 1.28 den büyük olduğundan %10 anlamlılık düzeyinde sıfır hipotezi reddedilir. Anlamlılık düzeyini düşürmekle, doğru bir sıfır hipotezini reddetme olasılığını azaltmış, dolayısıyla karar kuralını, sıfır hipotezi doğru olmasa da, bu hipotezin reddedilme şansını azaltacak biçimde değiştirmiş oluruz. Bir sıfır hipotezinin reddedilebileceği anlamlılık düzeyi düştükçe, doğruluğu konusunda yaratılan kuşku büyür. Anlamlılık düzeyi α yı önceden belirlemek yerine bir sıfır hipotezinin reddedilebileceği en düşük anlamlılık düzeyini hesaplayabiliriz.

7 YTÜ-İktisat İstatistik II Hipotez Testi 13 TANIM: p-değeri: Bir sıfır hipotezinin reddedilebileceği en düşük anlamlılık düzeyine, testin olasılık değeri ya da p-değeri adı verilir. İstatistik ve ekonometride kullanılan çoğu bilgisayar programları bir hipoteze ilişkin p değerlerini otomatik olarak hesaplamaktadır. Örneğimizde test istatistiğini 1.52 olarak bulmuştuk. Acaba buna karşılık gelen p-değeri kaçtır? p-değeri=α olsun. Aradığımız olasılık P(Z > z α ) = α olarak yazılabilir. Tablodan P(Z > 1.52) = 1 F Z (1.52) = bulunur. Öyleyse I. tür hata yapmanın kesin düzeyi %6.43 tür. Bu düzeyden yüksek bütün anlamlılık düzeylerinde bu sıfır hipotezi reddedilebilir. YTÜ-İktisat İstatistik II Hipotez Testi 14 TESTİN GÜCÜNÜN HESAPLANMASI: Gerçekte yanlış olan bir sıfır hipotezinin red olasılığına testin gücü denir. Daha önce II. tür hata yapma olasılığını, yani yanlış hipotezin kabul edilme olasılığını, β ile göstermiştik: P(II. Tür Hata) = β, Testin Gücü=1 P(II. Tür Hata) = 1 β Belirli bir α düzeyinde testin gücünün hesaplanması, testin doğru ile yanlış hipotezi ayırabilme gücü hakkında bize bilgi verir. Böylece bir sıfır hipotezi kabul edildiğinde, bu sıfır hipotezi yanlışken böyle bir karar verilmiş olma şansını değerlendirebiliriz. Bunun için önce β nın hesaplanması gerekir. Bunun adımları şöyledir: Testin karar kuralını kullanıp, örneklem ortalaması değerlerinin sıfır hipotezinin kabulüne yol açan değerler aralığını belirleyin. İlgilenilen anakütle ortalaması µ 1 değeri için, ortalaması µ 1 olan bir anakütleden çekilmiş n gözlemli rassal örneklemlerde örneklem ortalamalarının önceki kısımda belirlenen güven aralığı içine düşme olasılıklarını bulun.

8 YTÜ-İktisat İstatistik II Hipotez Testi 15 1 H 0 :µ=5 vs H 1 :µ>5 Testinin Guc Fonksiyonu (α = 0.05) β µ YTÜ-İktisat İstatistik II Hipotez Testi 16 Güç Fonksiyonunun Özellikleri: Diğer herşey aynıyken, gerçek ortalama µ 1 sıfır hipotezindeki ortalama µ 0 dan ne kadar uzaksa, testin gücü de o kadar fazladır. Bunun anlamı, hipotezdeki ortalamadan sapmaların büyük olanlarını yakalamamızın küçükleri yakalamamızdan daha olası olmasıdır. Diğer herşey aynıyken, testin anlamlılık düzeyi ne kadar küçükse, testin gücü de o kadar düşük olur. I. tür hata olasılığı azaltıldıkça, II. tür hata olasılığı artar. Diğer herşey aynıyken, anakütle varyansı ne kadar büyükse, testin gücü de o kadar düşük olur. Diğer herşey aynıyken, örneklem ne kadar büyükse testin gücü de o kadar fazla olur. Anakütleden daha çok bilgi aldıkça, sıfır hipotezinden herhangi bir sapmayı yakalama şansımız artar.

9 YTÜ-İktisat İstatistik II Hipotez Testi 17 VARYANSI (σ 2 ) BİLİNİYOR 1. Basit sıfır hipotezi, tek yanlı karşı hipotez (ya da sağ kuyruk testi): H 0 : µ = µ 0 H 1 : µ > µ 0 şeklindeki hipotezler için testi nasıl yapacağımızı öğrendik. Yukarıda geliştirdiğimiz karar kuralı aşağıdaki hipotezler için de geçerlidir: Yani Bileşik sıfır hipotezi, tek yanlı karşı hipotez (sağ kuyruk testi) : H 0 : µ µ 0 H 1 : µ > µ 0 için Karar kuralı: σ/ n > z α, ise H 0 ı reddedin YTÜ-İktisat İstatistik II Hipotez Testi 18 VARYANSI (σ 2 ) BİLİNİYOR 2. Basit ya da bileşik sıfır hipotezi, tek yanlı karşı hipotez (sol kuyruk testi): H 0 : µ = µ 0 ya da H 0 : µ µ 0 H 1 : µ < µ 0 için karar kuralı: σ/ n < z α, ise H 0 ı reddedin

10 YTÜ-İktisat İstatistik II Hipotez Testi 19 VARYANSI (σ 2 ) BİLİNİYOR 3. Basit sıfır hipotezi, çift yanlı karşı hipotez: H 0 : µ = µ 0 için karar kuralı: H 1 : µ µ 0 σ/ n > z α/2, ya da σ/ n < z α/2, ise H 0 ı reddedin Bu karar kuralını ifade etmenin başka bir yolu şudur: µ için %100(1 α) güven aralığı µ 0 değerini içermiyorsa H 0 reddedilir. YTÜ-İktisat İstatistik II Hipotez Testi 20 VARYANSI (σ 2 ) BİLİNMİYOR ancak ÖRNEKLEM BÜYÜK Eğer örneklem büyükse anakütle varyansının bilindiği durum için geliştirilmiş sınama süreci, bu varyansın bilinmediği durumda da σ 2 yerine örneklem varyansı s 2 x konularak yapılabilir. Anakütle normal dağılıma uymasa bile örneklem yeterince büyük olduğu sürece bu sınama süreci yaklaşık olarak geçerlidir. ÖRNEK 9.3 s. 376

11 YTÜ-İktisat İstatistik II Hipotez Testi 21 VARYANSI (σ 2 ) BİLİNMİYOR ve ÖRNEKLEM KÜÇÜK Bu durumda test sürecini bilgisine dayandıracağız. 1.Sağ kuyruk testi: x µ s x / n t n 1 H 0 : µ = µ 0 ya da H 0 : µ µ 0 H 1 : µ > µ 0 için karar kuralı: s x / n > t n 1,α, ise H 0 ı reddedin Burada t n 1,α P(t n 1 > t n 1,α) = α eşitliğini sağlayan sayıdır. (kritik değer ya da eşik değeri) YTÜ-İktisat İstatistik II Hipotez Testi 22 VARYANSI (σ 2 ) BİLİNMİYOR ve ÖRNEKLEM KÜÇÜK 2. Sol kuyruk testi: H 0 : µ = µ 0 ya da H 0 : µ µ 0 için karar kuralı: H 1 : µ < µ 0 s x / n < t n 1,α, ise H 0 ı reddedin

12 YTÜ-İktisat İstatistik II Hipotez Testi 23 VARYANSI (σ 2 ) BİLİNMİYOR ve ÖRNEKLEM KÜÇÜK 2. İki taraflı test: H 0 : µ = µ 0 için karar kuralı: H 1 : µ µ 0 s x / n > t n 1,α/2, ya da s x / n < t n 1,α/2, ise H 0 ı reddedin ÖRNEK: 9.4, ALIŞTIRMALAR: 1,2,3,4,5,12,13, ss

Hipotez Testleri. Mühendislikte İstatistik Yöntemler

Hipotez Testleri. Mühendislikte İstatistik Yöntemler Hipotez Testleri Mühendislikte İstatistik Yöntemler Hipotez Testleri Parametrik Testler ( z ve t testleri) Parametrik Olmayan Testler (χ 2 Testi) Hipotez Testleri Ana Kütle β( µ, σ ) Örnek Kütle b ( µ

Detaylı

Hipotez Testi. gibi hususlar ayrıbirer hipotezin konusudur. () Kafkas Üniversitesi May 23, / 11

Hipotez Testi. gibi hususlar ayrıbirer hipotezin konusudur. () Kafkas Üniversitesi May 23, / 11 Hipotez Testi Bu dersde anakütle parametresinin varsayılan değeri ile başlayıp, örneklem kullanarak varsayılan değerin uygunluğunun kabul edilmesi ya da reddedilmesi sonucuna karar verilecektir. Ortaya

Detaylı

OLASILIK ve İSTATİSTİK Hipotez Testleri

OLASILIK ve İSTATİSTİK Hipotez Testleri OLASILIK ve İSTATİSTİK Hipotez Testleri Yrd.Doç.Dr. Pınar YILDIRIM Okan Üniversitesi Mühendislik ve Mimarlık Fakültesi Bilgisayar Mühendisliği Bölümü Hipotezler ve Testler Hipotez, kitleye(yığına) ait

Detaylı

3 KESİKLİ RASSAL DEĞİŞKENLER VE OLASILIK DAĞILIMLARI

3 KESİKLİ RASSAL DEĞİŞKENLER VE OLASILIK DAĞILIMLARI ÖNSÖZ İÇİNDEKİLER III Bölüm 1 İSTATİSTİK ve SAYISAL BİLGİ 11 1.1 İstatistik ve Önemi 12 1.2 İstatistikte Temel Kavramlar 14 1.3 İstatistiğin Amacı 15 1.4 Veri Türleri 15 1.5 Veri Ölçüm Düzeyleri 16 1.6

Detaylı

İstatistik ve Olasılık

İstatistik ve Olasılık İstatistik ve Olasılık Ders 8: Prof. Dr. Tanım Hipotez, bir veya daha fazla anakütle hakkında ileri sürülen, ancak doğruluğu önceden bilinmeyen iddialardır. Ortaya atılan iddiaların, örnekten elde edilen

Detaylı

HİPOTEZ TESTLERİ HİPOTEZ NEDİR?

HİPOTEZ TESTLERİ HİPOTEZ NEDİR? HİPOTEZ TESTLERİ HİPOTEZ NEDİR? Örnekleme ile test edilmeye çalışılan bir popülasyonun ilgili parametresi hakkında ortaya sunulan iddiadır. Örneğin; A dersi için vize ortalaması 50 nin altındadır Firestone

Detaylı

İSTATİSTİK 2. Hipotez Testi 21/03/2012 AYŞE S. ÇAĞLI. aysecagli@beykent.edu.tr

İSTATİSTİK 2. Hipotez Testi 21/03/2012 AYŞE S. ÇAĞLI. aysecagli@beykent.edu.tr İSTATİSTİK 2 Hipotez Testi 21/03/2012 AYŞE S. ÇAĞLI aysecagli@beykent.edu.tr 1 Güven aralığı ve Hipotez testi Güven aralığı µ? µ? Veriler, bir değer aralığında hangi değeri gösteriyor? (Parametrenin gerçek

Detaylı

BÖLÜM 12 STUDENT T DAĞILIMI

BÖLÜM 12 STUDENT T DAĞILIMI 1 BÖLÜM 12 STUDENT T DAĞILIMI 'Student t dağılımı' ya da kısaca 't dağılımı'; normal dağılım ve Z dağılımının da içerisinde bulunduğu 'sürekli olasılık dağılımları' ailesinde yer alan dağılımlardan bir

Detaylı

HİPOTEZ TESTLERİ. Yrd. Doç. Dr. Emre ATILGAN

HİPOTEZ TESTLERİ. Yrd. Doç. Dr. Emre ATILGAN HİPOTEZ TESTLERİ Yrd. Doç. Dr. Emre ATILGAN Hipotez Nedir? HİPOTEZ: parametre hakkındaki bir inanıştır. Parametre hakkındaki inanışı test etmek için hipotez testi yapılır. Hipotez testleri sayesinde örneklemden

Detaylı

Nokta ve Aralık Tahmini Merkezi Limit Teoremi Örneklem Dağılımı Hipotez Testlerine Giriş

Nokta ve Aralık Tahmini Merkezi Limit Teoremi Örneklem Dağılımı Hipotez Testlerine Giriş Nokta ve Aralık Tahmini Merkezi Limit Teoremi Örneklem Dağılımı Hipotez Testlerine Giriş Doç. Dr. Ertuğrul ÇOLAK Eskişehir Osmangazi Üniversitesi Tıp Fakültesi Biyoistatistik Anabilim Dalı Nokta Tahmini

Detaylı

altında ilerde ele alınacaktır.

altında ilerde ele alınacaktır. YTÜ-İktisat İstatistik II Nokta Tahmin Yöntemleri 1 NOKTA TAHMİN YÖNTEMLERİ Şimdiye kadar verilmiş tahmin edicilerin sonlu örneklem ve asimptotik özelliklerini inceledik. Acaba bilinmeyen anakütle parametrelerini

Detaylı

14 Ekim 2012. Ders Kitabı: Introductory Econometrics: A Modern Approach (2nd ed.) J. Wooldridge. 1 Yıldız Teknik Üniversitesi

14 Ekim 2012. Ders Kitabı: Introductory Econometrics: A Modern Approach (2nd ed.) J. Wooldridge. 1 Yıldız Teknik Üniversitesi ÇOK DEĞİŞKENLİ REGRESYON ANALİZİ: ÇIKARSAMA Hüseyin Taştan 1 1 Yıldız Teknik Üniversitesi İktisat Bölümü Ders Kitabı: Introductory Econometrics: A Modern Approach (2nd ed.) J. Wooldridge 14 Ekim 2012 Ekonometri

Detaylı

Z = S n E(S n ) V ar(sn ) = S n nµ. S nn. n 1/2 n σ

Z = S n E(S n ) V ar(sn ) = S n nµ. S nn. n 1/2 n σ YTÜ-İktisat İstatistik II Merkezi Limit Teoremi 1 MERKEZİ LİMİT TEOREMİ CENTRAL LIMIT THEOREM X 1,X 2,...,X n herbirinin ortalaması µ ve varyansı σ 2 olan ve aynı dağılıma uyan n tane bağımsız r.d. olsun.

Detaylı

PARAMETRİK OLMAYAN İSTATİSTİKSEL TEKNİKLER

PARAMETRİK OLMAYAN İSTATİSTİKSEL TEKNİKLER PARAMETRİK OLMAYAN İSTATİSTİKSEL TEKNİKLER Prof. Dr. Ali ŞEN 1 ANAKÜTLE Anakütle kavramı insan, yer ve şeyler toplulugunu ifade etmek için kullanır. İlgi alanına gore, araştırmacı hangi topluluk üzerinde

Detaylı

Hipotez Testi Rehberi. Orhan Çevik İstanbul, 30 Ağustos 2014

Hipotez Testi Rehberi. Orhan Çevik İstanbul, 30 Ağustos 2014 Hipotez Testi Rehberi Orhan Çevik İstanbul, 30 Ağustos 2014 Hipotezler Sıfır Hipotezi: H 0 Aksi kanıtlanmadığı sürece doğru olduğu düşünülen varsayımdır. H 0 ın kanıta ihtiyacı yoktur. H 0 ı ret etmek

Detaylı

K-S Testi hipotezde ileri sürülen dağılımla örnek yığılmalı dağılım fonksiyonunun karşılaştırılması ile yapılır.

K-S Testi hipotezde ileri sürülen dağılımla örnek yığılmalı dağılım fonksiyonunun karşılaştırılması ile yapılır. İstatistiksel güven aralıkları uygulamalarında normallik (normal dağılıma uygunluk) oldukça önemlidir. Kullanılan parametrik istatistiksel tekniklerin geçerli olabilmesi için populasyon şans değişkeninin

Detaylı

Hatalar Bilgisi ve İstatistik Ders Kodu: Kredi: 3 / ECTS: 5

Hatalar Bilgisi ve İstatistik Ders Kodu: Kredi: 3 / ECTS: 5 Ders Kodu: 0010070021 Kredi: 3 / ECTS: 5 Yrd. Doç. Dr. Serkan DOĞANALP Necmettin Erbakan Üniversitesi Harita Mühendisliği Bölümü Konya 07.01.2015 1 Giriş 2 Giriş Matematiksel istatistiğin konusu yığın

Detaylı

ISTATISTIK VE OLASILIK SINAVI EKİM 2016 WEB SORULARI

ISTATISTIK VE OLASILIK SINAVI EKİM 2016 WEB SORULARI SORU- 1 : ISTATISTIK VE OLASILIK SINAVI EKİM 2016 WEB SORULARI X ve Y birbirinden bağımsız iki rasgele değişken olmak üzere, sırasıyla aşağıdaki moment çıkaran fonksiyonlarına sahiptir: 2 2 M () t = e,

Detaylı

NORMAL DAĞILIM. 2., anakütle sayısı ile Poisson dağılımına uyan rassal bir değişkense ve 'a gidiyorsa,

NORMAL DAĞILIM. 2., anakütle sayısı ile Poisson dağılımına uyan rassal bir değişkense ve 'a gidiyorsa, NORMAL DAĞILIM TEORİK 1., ortalaması, standart sapması olan bir normal dağılıma uyan rassal bir değişkense, bir sabitken nin beklem üreten fonksiyonunu bulun. 2., anakütle sayısı ile Poisson dağılımına

Detaylı

PARAMETRİK OLMAYAN İSTATİSTİKSEL TEKNİKLER

PARAMETRİK OLMAYAN İSTATİSTİKSEL TEKNİKLER PARAMETRİK OLMAYAN İSTATİSTİKSEL TEKNİKLER Prof. Dr. Ali ŞEN 1 Tek Örneklem İşaret Testi İşaret Testi parametrik olmayan prosedürler içinde en eski olanıdır. Analiz yapılırken serideki verileri artı ve

Detaylı

TOBB Ekonomi ve Teknoloji Üniversitesi İKT351 Ekonometri I, Dönem Sonu Sınavı

TOBB Ekonomi ve Teknoloji Üniversitesi İKT351 Ekonometri I, Dönem Sonu Sınavı TOBB Ekonomi ve Teknoloji Üniversitesi Öğr.Gör.: Yrd. Doç. Dr. A. Talha YALTA Ad, Soyad: Açıklama ve uyarılar: Bu sınav toplam 100 puan değerinde 6 sorudan oluşmaktadır. Sınav süresi 90 dakikadır ve tüm

Detaylı

rasgele değişkeninin olasılık yoğunluk fonksiyonu,

rasgele değişkeninin olasılık yoğunluk fonksiyonu, 3.6. Bazı Sürekli Dağılımlar 3.6.1 Normal Dağılım Normal dağılım hem uygulamalı hem de teorik istatistikte kullanılan oldukça önemli bir dağılımdır. Normal dağılımın istatistikte önemli bir yerinin olmasının

Detaylı

TOBB Ekonomi ve Teknoloji Üniversitesi İKT351 Ekonometri I, Ara Sınavı

TOBB Ekonomi ve Teknoloji Üniversitesi İKT351 Ekonometri I, Ara Sınavı TOBB Ekonomi ve Teknoloji Üniversitesi Öğr.Gör.: Yrd. Doç. Dr. A. Talha YALTA Ad, Soyad: Açıklamalar: Bu sınav toplam 100 puan değerinde 4 sorudan oluşmaktadır. Sınav süresi 90 dakikadır ve tüm soruların

Detaylı

26.12.2013. Farklı iki ilaç(a,b) kullanan iki grupta kan pıhtılaşma zamanları farklı mıdır?

26.12.2013. Farklı iki ilaç(a,b) kullanan iki grupta kan pıhtılaşma zamanları farklı mıdır? 26.2.23 Gözlem ya da deneme sonucu elde edilmiş sonuçların, raslantıya bağlı olup olmadığının incelenmesinde kullanılan istatistiksel yöntemlere HĐPOTEZ TESTLERĐ denir. Sonuçların raslantıya bağlı olup

Detaylı

BÖLÜM 13 HİPOTEZ TESTİ

BÖLÜM 13 HİPOTEZ TESTİ 1 BÖLÜM 13 HİPOTEZ TESTİ Bilimsel yöntem aşamalarıyla tanımlanmış sistematik bir bilgi üretme biçimidir. Bilimsel yöntemin aşamaları aşağıdaki gibi sıralanabilmektedir (Karasar, 2012): 1. Bir problemin

Detaylı

NORMAL DAĞILIM VE ÖNEMLİLİK TESTLERİ İLE İLGİLİ PROBLEMLER

NORMAL DAĞILIM VE ÖNEMLİLİK TESTLERİ İLE İLGİLİ PROBLEMLER NORMAL DAĞILIM VE ÖNEMLİLİK TESTLERİ İLE İLGİLİ PROBLEMLER A) Normal Dağılım ile İlgili Sorular Sayfa /4 Hamileler ile ilgili bir araştırmada, bu grubun hemoglobin değerlerinin normal dağılım gösterdiği

Detaylı

DOĞRUSAL ZAMAN SERİSİ MODELLERİ. Durağan ARIMA Modelleri: Otoregresiv Modeller AR(p) Süreci

DOĞRUSAL ZAMAN SERİSİ MODELLERİ. Durağan ARIMA Modelleri: Otoregresiv Modeller AR(p) Süreci DOĞRUSAL ZAMAN SERİSİ MODELLERİ Durağan ARIMA Modelleri: Otoregresiv Modeller AR(p) Süreci Tek Değişkenli Zaman Serisi Modelleri Ekonomik verilerin analizi ile ekonomik değişkenlerin gelecekte alabilecekleri

Detaylı

Geçerliliği olasılık esaslarına göre araştırılabilen ve karar verebilmek için öne sürülen varsayımlara istatistikte hipotez denir.

Geçerliliği olasılık esaslarına göre araştırılabilen ve karar verebilmek için öne sürülen varsayımlara istatistikte hipotez denir. BÖLÜM 4. HİPOTEZ TESTİ VE GÜVEN ARALIĞI 4.1. Hipotez Testi Geçerliliği olasılık esaslarına göre araştırılabilen ve karar verebilmek için öne sürülen varsayımlara istatistikte hipotez denir. Örneklem dağılımlarından

Detaylı

GÜVEN ARALIĞI KESTİRİM

GÜVEN ARALIĞI KESTİRİM GÜVEN ARALIĞI KESTİRİM GÜVEN ARALIĞI Herhangi bir parametre için güven aralığı iki istatistikle verilir: U ve L. Öyle ki, eğer parametrenin doğru değeri θ ise, o zaman P(L θ U) = 1 - α Burada θ parametrenin

Detaylı

12. Hafta Ders Notları GENEL TEKRAR

12. Hafta Ders Notları GENEL TEKRAR 12. Hafta Ders Notları GENEL TEKRAR A Veri Türleri Anakütle bir bütünü temsil ederken; örneklem, bir bütünün sadece bir kısmını temsil etmektedir. Anakütledeki gözlem sayısı N ile temsil edilirken; örneklemdeki

Detaylı

1203608-SIMÜLASYON DERS SORUMLUSU: DOÇ. DR. SAADETTIN ERHAN KESEN. Ders No:5 Rassal Değişken Üretimi

1203608-SIMÜLASYON DERS SORUMLUSU: DOÇ. DR. SAADETTIN ERHAN KESEN. Ders No:5 Rassal Değişken Üretimi 1203608-SIMÜLASYON DERS SORUMLUSU: DOÇ. DR. SAADETTIN ERHAN KESEN Ders No:5 RASSAL DEĞIŞKEN ÜRETIMI Bu bölümde oldukça yaygın bir biçimde kullanılan sürekli ve kesikli dağılımlardan örneklem alma prosedürleri

Detaylı

Parametrik Olmayan Testler. İşaret Testi-The Sign Test Mann-Whiney U Testi Wilcoxon Testi Kruskal-Wallis Testi

Parametrik Olmayan Testler. İşaret Testi-The Sign Test Mann-Whiney U Testi Wilcoxon Testi Kruskal-Wallis Testi Yrd. Doç. Dr. Neşet Demirci, Balıkesir Üniversitesi NEF Fizik Eğitimi Parametrik Olmayan Testler İşaret Testi-The Sign Test Mann-Whiney U Testi Wilcoxon Testi Kruskal-Wallis Testi Rank Korelasyon Parametrik

Detaylı

SIRADAN EN KÜÇÜK KARELER (OLS)

SIRADAN EN KÜÇÜK KARELER (OLS) SIRADAN EN KÜÇÜK KARELER (OLS) YÖNTEMİNİN ASİMPTOTİK ÖZELLİKLERİ Hüseyin Taştan 1 1 Yıldız Teknik Üniversitesi İktisat Bölümü Ders Kitabı: Introductory Econometrics: A Modern Approach (2nd ed.) J. Wooldridge

Detaylı

0.04.03 Standart Hata İstatistikte hesaplanan her istatistik değerin mutlaka hatası da hesaplanmalıdır. Çünkü hesaplanan istatistikler, tahmini bir değer olduğu için mutlaka hataları da vardır. Standart

Detaylı

RASSAL DEĞİŞKENLER VE OLASILIK DAĞILIMLARI. Yrd. Doç. Dr. Emre ATILGAN

RASSAL DEĞİŞKENLER VE OLASILIK DAĞILIMLARI. Yrd. Doç. Dr. Emre ATILGAN RASSAL DEĞİŞKENLER VE OLASILIK DAĞILIMLARI Yrd. Doç. Dr. Emre ATILGAN 1 RASSAL DEĞİŞKENLER VE OLASILIK DAĞILIMLARI Olasılığa ilişkin olayların çoğunluğunda, deneme sonuçlarının bir veya birkaç yönden incelenmesi

Detaylı

SÜREKLİ ŞANS DEĞİŞKENLERİ. Üstel Dağılım Normal Dağılım

SÜREKLİ ŞANS DEĞİŞKENLERİ. Üstel Dağılım Normal Dağılım SÜREKLİ ŞANS DEĞİŞKENLERİ Üstel Dağılım Normal Dağılım 1 Üstel Dağılım Meydana gelen iki olay arasındaki geçen süre veya bir başka ifadeyle ilgilenilen olayın ilk defa ortaya çıkması için geçen sürenin

Detaylı

15.433 YATIRIM. Ders 7: CAPM ve APT. Bölüm 2: Uygulamalar ve Sınamalar

15.433 YATIRIM. Ders 7: CAPM ve APT. Bölüm 2: Uygulamalar ve Sınamalar 15.433 YATIRIM Ders 7: CAPM ve APT Bölüm 2: Uygulamalar ve Sınamalar Bahar 2003 Öngörüler ve Uygulamalar Öngörüler: - CAPM: Piyasa dengesinde yatırımcılar sadece piyasa riski taşıdıklarında ödüllendirilir.

Detaylı

HİPOTEZ TESTLERİ ALIŞTIRMA SORULARI Araş.Gör. Efe SARIBAY

HİPOTEZ TESTLERİ ALIŞTIRMA SORULARI Araş.Gör. Efe SARIBAY HİPOTEZ TESTLERİ ALIŞTIRMA SORULARI 2012 Araş.Gör. Efe SARIBAY 1) Bir kafede yaz aylarında satılan limonataların satış miktarının ortalamasının 24 lt. den az olduğu iddia edilmektedir. İddiayı test etmek

Detaylı

8. BÖLÜM: DEĞİŞEN VARYANS

8. BÖLÜM: DEĞİŞEN VARYANS 8. BÖLÜM: DEĞİŞEN VARYANS Bu bölümde; Değişen Varyans Tespiti için Grafik Çizme Değişen Varyans Testi: Park Testi Değişen Varyans Testi: White Testi Değişen Varyans Probleminin Çözümü: Ağırlıklandırılmış

Detaylı

BÖLÜM 14 BİLGİSAYAR UYGULAMALARI - 3 (ORTALAMALARIN KARŞILAŞTIRILMASI)

BÖLÜM 14 BİLGİSAYAR UYGULAMALARI - 3 (ORTALAMALARIN KARŞILAŞTIRILMASI) 1 BÖLÜM 14 BİLGİSAYAR UYGULAMALARI - 3 (ORTALAMALARIN KARŞILAŞTIRILMASI) Hipotez testi konusunda görüldüğü üzere temel betimleme, sayma ve sınıflama işlemlerine dayalı yöntemlerin ötesinde normal dağılım

Detaylı

Tanımlayıcı İstatistikler. Yrd. Doç. Dr. Emre ATILGAN

Tanımlayıcı İstatistikler. Yrd. Doç. Dr. Emre ATILGAN Tanımlayıcı İstatistikler Yrd. Doç. Dr. Emre ATILGAN 1 Tanımlayıcı İstatistikler Yer Gösteren Ölçüler Yaygınlık Ölçüleri Merkezi Eğilim Ölçüleri Konum Ölçüleri 2 3 Aritmetik Ortalama Aritmetik ortalama,

Detaylı

Örneklem Dağılımları ve Merkezi Limit Teoremi

Örneklem Dağılımları ve Merkezi Limit Teoremi Örneklem Dağılımları ve Merkezi Limit Teoremi Çıkarımsal İstatistik (Inferential Statistics) : Örneklemden yola çıkarak ana kütleyle (popülasyonla) ilgili çıkarımlarda bulunmak (Smidt, 2001) İstatistiksel

Detaylı

Herhangi bir oranın belli bir değere eşit olmadığını test etmek için kullanılır.

Herhangi bir oranın belli bir değere eşit olmadığını test etmek için kullanılır. Hipotez testleri-oran testi Oran Testi Herhangi bir oranın belli bir değere eşit olmadığını test etmek için kullanılır Örnek: Yüz defa atılan bir para 34 defa yazı gelmiştir Paranın yazı gelme olasılığının

Detaylı

EVREN, ÖRNEK, TEMSİLİYET. Prof. Mustafa Necmi İlhan

EVREN, ÖRNEK, TEMSİLİYET. Prof. Mustafa Necmi İlhan EVREN, ÖRNEK, TEMSİLİYET Prof. Mustafa Necmi İlhan MD, PhD, PhD, MBA Gazi Üniversitesi Tıp Fakültesi Halk Sağlığı AbD mnilhan@gazi.edu.tr 1 Neden Araştırma Yaparız? Bilimsel gerçeğe ulaşmak Bilinenlerin

Detaylı

SÜREKLĠ OLASILIK DAĞILIMLARI

SÜREKLĠ OLASILIK DAĞILIMLARI SÜREKLĠ OLASILIK DAĞILIMLARI Sayı ekseni üzerindeki tüm noktalarda değer alabilen değişkenler, sürekli değişkenler olarak tanımlanmaktadır. Bu bölümde, sürekli değişkenlere uygun olasılık dağılımları üzerinde

Detaylı

SÜREKLİ RASSAL DEĞİŞKENLER

SÜREKLİ RASSAL DEĞİŞKENLER SÜREKLİ RASSAL DEĞİŞKENLER Sürekli Rassal Değişkenler Sürekli Rassal Değişken: Değerleriölçümyadatartımla elde edilen, bir başka anlatımla sayımla elde edilemeyen, değişkene sürekli rassal değişken denir.

Detaylı

Araş.Gör. Efe SARIBAY

Araş.Gör. Efe SARIBAY HİPOTEZ TESTLERİ ALIŞTIRMA SORULARI Araş.Gör. Efe SARIBAY 1) Telekom da çalışan bir operatör A ve B şehirleri arasında yapılan telefon görüşmelerinin ortalamasının 6 dakikadan daha fazla sürdüğünü iddia

Detaylı

10. Bir ana kütle oranının tahmininde α = 0,05 ise kullanılan Z değeri nedir? A) 1,64 B) 1,84 C) 1,96 D) 2,28 E) 3,08

10. Bir ana kütle oranının tahmininde α = 0,05 ise kullanılan Z değeri nedir? A) 1,64 B) 1,84 C) 1,96 D) 2,28 E) 3,08 1. Tanımlanan ana kütleden rassal seçilen örneklemlerden hesaplanan istatistikler yardımı ile ilgili ana kütle parametrelerinin değerini araştırma sürecine ne ad verilir? A) İstatistiksel hata B) İstatistiksel

Detaylı

SPSS E GİRİŞ SPSS TE TEMEL İŞLEMLER. Abdullah Can

SPSS E GİRİŞ SPSS TE TEMEL İŞLEMLER. Abdullah Can SPSS E GİRİŞ SPSS TE TEMEL İŞLEMLER SPSS in üzerinde işlem yapılabilecek iki ana ekran görünümü vardır. DATA VIEW (VERİ görünümü) VARIABLE VIEW (DEĞİŞKEN görünümü) 1 DATA VIEW (VERİ görünümü) İstatistiksel

Detaylı

İÇİNDEKİLER. BÖLÜM 1 Değişkenler ve Grafikler 1. BÖLÜM 2 Frekans Dağılımları 37

İÇİNDEKİLER. BÖLÜM 1 Değişkenler ve Grafikler 1. BÖLÜM 2 Frekans Dağılımları 37 İÇİNDEKİLER BÖLÜM 1 Değişkenler ve Grafikler 1 İstatistik 1 Yığın ve Örnek; Tümevarımcı ve Betimleyici İstatistik 1 Değişkenler: Kesikli ve Sürekli 1 Verilerin Yuvarlanması Bilimsel Gösterim Anlamlı Rakamlar

Detaylı

Gerçek uygulamalarda, standart normal olmayan sürekli bir rassal. değişken, sıfırdan farklı bir ortalama ve birden farklı standart sapma

Gerçek uygulamalarda, standart normal olmayan sürekli bir rassal. değişken, sıfırdan farklı bir ortalama ve birden farklı standart sapma 2 13.1 Normal Dağılımın Standartlaştırılması Gerçek uygulamalarda, standart normal olmayan sürekli bir rassal değişken, sıfırdan farklı bir ortalama ve birden farklı standart sapma değerleriyle normal

Detaylı

Araş.Gör. Efe SARIBAY

Araş.Gör. Efe SARIBAY GÜVEN ARALIKLARI (ARALIK TAHMİNİ) ALIŞTIRMA SORULARI Araş.Gör. Efe SARIBAY 1) Bir hisse senedinin $ bazında fiyatının ortalamasını incelemek için yapılan bir araştırmada 18 gün boyunca hisse senedinin

Detaylı

Olasılık ve İstatistiğe Giriş-II (STAT 202) Ders Detayları

Olasılık ve İstatistiğe Giriş-II (STAT 202) Ders Detayları Olasılık ve İstatistiğe Giriş-II (STAT 202) Ders Detayları Ders Adı Ders Kodu Dönemi Ders Saati Uygulama Saati Laboratuar Saati Kredi AKTS Olasılık ve İstatistiğe Giriş-II STAT 202 Bahar 3 0 0 3 5 Ön Koşul

Detaylı

ENM 316 BENZETİM ÖDEV SETİ

ENM 316 BENZETİM ÖDEV SETİ ENM 16 BENZETİM ÖDEV SETİ Ödev 1. Bir depo ve N adet müşteriden oluşan bir taşımacılık sisteminde araç depodan başlayıp bütün müşterileri teker teker ziyaret ederek depoya geri dönmektedir. Sistemdeki

Detaylı

RİSK ANALİZİ VE AKTÜERYAL MODELLEME

RİSK ANALİZİ VE AKTÜERYAL MODELLEME SORU 1: Bir hasar sıklığı dağılımının rassal değişken olan ortalaması (0,8) aralığında tekdüze dağılmaktadır. Hasar sıklığı dağılımının Poisson karma dağılıma uyduğu bilindiğine göre 1 ya da daha fazla

Detaylı

MATE 211 BİYOİSTATİSTİK İKİ FARKIN ÖNEMLİLİK TESTİ VE İKİ EŞ ARASINDAKİ FARKIN ÖNEMLİLİK TEST SORULARI

MATE 211 BİYOİSTATİSTİK İKİ FARKIN ÖNEMLİLİK TESTİ VE İKİ EŞ ARASINDAKİ FARKIN ÖNEMLİLİK TEST SORULARI MATE 211 BİYOİSTATİSTİK İKİ FARKIN ÖNEMLİLİK TESTİ VE İKİ EŞ ARASINDAKİ FARKIN ÖNEMLİLİK TEST SORULARI 1. Doğum sırasının çocuğun zeka düzeyini etkileyip etkilemediğini araştıran bir araştırmacı çocuklar

Detaylı

Yrd. Doç. Dr. Neşet Demirci, Balıkesir Üniversitesi NEF Fizik Eğitimi. Parametrik Olmayan Testler. Ki-kare (Chi-Square) Testi

Yrd. Doç. Dr. Neşet Demirci, Balıkesir Üniversitesi NEF Fizik Eğitimi. Parametrik Olmayan Testler. Ki-kare (Chi-Square) Testi Parametrik Olmayan Testler Ki-kare (Chi-Square) Testi Ki-kare (Chi-Square) Testi En iyi Uygunluk (Goodness of Fit) Ki-kare Dağılımı Bir çok önemli istatistik testi ki kare diye bilinen ihtimal dağılımı

Detaylı

Dr. Mehmet AKSARAYLI

Dr. Mehmet AKSARAYLI Dr. Mehmet AKSARAYLI Şans Değişkeni: Bir dağılışı olan ve bu dağılışın yapısına uygun frekansta oluşum gösteren değişkendir. Şans Değişkenleri KESİKLİ RASSAL DEĞİŞKENLER ve OLASILIK DAĞILIMLARI Kesikli

Detaylı

Öğrenim Kazanımları Bu programı başarı ile tamamlayan öğrenci;

Öğrenim Kazanımları Bu programı başarı ile tamamlayan öğrenci; Image not found http://bologna.konya.edu.tr/panel/images/pdflogo.png Ders Adı : İSTATİSTİK II Ders No : 0020050027 Teorik : 3 Pratik : 0 Kredi : 3 ECTS : 4 Ders Bilgileri Ders Türü Öğretim Dili Öğretim

Detaylı

Hipotez Testinin Temelleri

Hipotez Testinin Temelleri Hipotez Testleri Hipotez Testinin Temelleri Tanımlar: Hipotez teori, önerme yada birinin araştırdığı bir iddiadır. Boş Hipotez, H 0 popülasyon parametresi ile ilgili şu anda kabul edilen değeri tanımlamaktadır.

Detaylı

İstatistik I Ders Notları

İstatistik I Ders Notları İstatistik I Ders Notları Sürekli Rassal Değişkenler Hüseyin Taştan Kasım 2, 26 İçindekiler Sürekli Rassal Değişkenlerin Özellikleri 2 2 Olasılık Yoğunluk Fonksiyonu 2 Birikimli Olasılık Fonksiyonu 6 4

Detaylı

MIT OpenCourseWare Ekonomide İstatistiksel Yöntemlere Giriş Bahar 2009

MIT OpenCourseWare Ekonomide İstatistiksel Yöntemlere Giriş Bahar 2009 MIT OpenCourseWare http://ocw.mit.edu 14.30 Ekonomide İstatistiksel Yöntemlere Giriş Bahar 2009 Bu materyale atıfta bulunmak ve kullanım koşulları için http://ocw.mit.edu/terms sayfasını ziyaret ediniz.

Detaylı

Faktöriyel: 1'den n'ye kadar olan tüm pozitif tamsayıların çarpımına, biçiminde gösterilir. Aynca; 0! = 1 ve 1!=1 1 dir. [Bunlar kabul değildir,

Faktöriyel: 1'den n'ye kadar olan tüm pozitif tamsayıların çarpımına, biçiminde gösterilir. Aynca; 0! = 1 ve 1!=1 1 dir. [Bunlar kabul değildir, 14. Binom ve Poisson olasılık dağılımları Faktöriyeller ve kombinasyonlar Faktöriyel: 1'den n'ye kadar olan tüm pozitif tamsayıların çarpımına, n! denir ve n! = 1.2.3...(n-2).(n-l).n biçiminde gösterilir.

Detaylı

A İSTATİSTİK. 1. nc r, n tane nesneden her defasında r tanesinin alındığı (sıralama önemsiz) kombinasyonların sayısını göstermektedir.

A İSTATİSTİK. 1. nc r, n tane nesneden her defasında r tanesinin alındığı (sıralama önemsiz) kombinasyonların sayısını göstermektedir. . nc r, n tane nesneden her defasında r tanesinin alındığı (sıralama önemsiz) kombinasyonların sayısını göstermektedir. Buna göre, n C r + n C r toplamı aşağıdakilerden hangisine eşittir? A) n + C r B)

Detaylı

Matematik Ders Notları. Doç. Dr. Murat Donduran

Matematik Ders Notları. Doç. Dr. Murat Donduran Matematik Ders Notları Doç. Dr. Murat Donduran Mart 18, 28 2 İçindekiler 1 Tanımlı Integral Uygulamaları 5 1.1 Olasılık.............................. 5 3 4 İÇINDEKILER Bölüm 1 Tanımlı Integral Uygulamaları

Detaylı

BİYOİSTATİSTİK. p<0,05 pozitif bir bulgu mudur??

BİYOİSTATİSTİK. p<0,05 pozitif bir bulgu mudur?? BİYOİSTATİSTİK Yrd.Doç.Dr. Ömer UYSAL Bezmialem Vakıf Üniversitesi Tıp Fakültesi Biyoistatistik ve Tıp Bilişimi Anabilim Dalı British Medical J, The New England J of Medicine, The Lancet...vb gibi 30 dergi

Detaylı

Araştırma Oyunu Avrupa Bilimsel Araştırma Oyunu Oyun rehberi

Araştırma Oyunu Avrupa Bilimsel Araştırma Oyunu Oyun rehberi Araştırma Oyunu Avrupa Bilimsel Araştırma Oyunu Oyun rehberi Oynarken nelere ihtiyacınız olacak? Kayıt oldunuz mu? Bir takımınız var mı? Öyleyse şimdi oyuna başlama zamanı! Adımları takip et ve Aşama 1

Detaylı

Parti Bazında Kabul Örneklemesi

Parti Bazında Kabul Örneklemesi KABUL ÖRNEKLEMESİ Hammadde, yarı mamul veya bitmiş (son) ürünün kabul / red kararının verilebilmesi için kullanılan bir yaklaşımdır. Kabul örneklemesi sadece partinin kabul / red kararı için kullanılır,

Detaylı

TOBB Ekonomi ve Teknoloji Üniversitesi İKT351 Ekonometri I, Dönem Sonu Sınavı

TOBB Ekonomi ve Teknoloji Üniversitesi İKT351 Ekonometri I, Dönem Sonu Sınavı TOBB Ekonomi ve Teknoloji Üniversitesi Öğr. Gör.: Yrd. Doç. Dr. A. Talha YALTA Ad, Soyad: Açıklamalar: Bu sınav toplam 100 puan değerinde 4 sorudan oluşmaktadır. Sınav süresi 90 dakikadır ve tüm soruların

Detaylı

İSTATİSTİK 2. Tahmin Teorisi 07/03/2012 AYŞE S. ÇAĞLI. aysecagli@beykent.edu.tr

İSTATİSTİK 2. Tahmin Teorisi 07/03/2012 AYŞE S. ÇAĞLI. aysecagli@beykent.edu.tr İSTATİSTİK 2 Tahmi Teorisi 07/03/2012 AYŞE S. ÇAĞLI aysecagli@beyket.edu.tr İstatistik yötemler İstatistik yötemler Betimsel istatistik Çıkarımsal istatistik Tahmi Hipotez testleri Nokta tahmii Aralık

Detaylı

Örnek. Aşağıdaki veri setlerindeki X ve Y veri çiftlerini kullanarak herbir durumda X=1,5 için Y nin hangi değerleri alacağını hesaplayınız.

Örnek. Aşağıdaki veri setlerindeki X ve Y veri çiftlerini kullanarak herbir durumda X=1,5 için Y nin hangi değerleri alacağını hesaplayınız. Örnek Aşağıdaki veri setlerindeki X ve Y veri çiftlerini kullanarak herbir durumda X=1,5 için Y nin hangi değerleri alacağını hesaplayınız. i. ii. X 1 2 3 4 1 2 3 4 Y 2 3 4 5 4 3 2 1 Örnek Aşağıdaki veri

Detaylı

Student t Testi. Doç. Dr. Ertuğrul ÇOLAK. Eskişehir Osmangazi Üniversitesi Tıp Fakültesi Biyoistatistik Anabilim Dalı

Student t Testi. Doç. Dr. Ertuğrul ÇOLAK. Eskişehir Osmangazi Üniversitesi Tıp Fakültesi Biyoistatistik Anabilim Dalı Student t Testi Doç. Dr. Ertuğrul ÇOLAK Eskişehir Osmangazi Üniversitesi Tıp Fakültesi Biyoistatistik Anabilim Dalı Konu Başlıkları Tek örnek t testi SPSS de tek örnek t testi uygulaması Bağımsız iki örnek

Detaylı

Zaman Serileri Ekonometrisine Giriş

Zaman Serileri Ekonometrisine Giriş Zaman Serileri Ekonometrisine Giriş Durağanlık ve Durağan-Dışılık Ekonometri 2 Konu 24 Sürüm 2,0 (Ekim 2011) UADMK Açık Lisans Bilgisi İşbu belge, Creative Commons Attribution-Non-Commercial ShareAlike

Detaylı

BMÜ-421 Benzetim ve Modelleme Kesikli Olay Benzetimi. İlhan AYDIN

BMÜ-421 Benzetim ve Modelleme Kesikli Olay Benzetimi. İlhan AYDIN BMÜ-421 Benzetim ve Modelleme Kesikli Olay Benzetimi İlhan AYDIN KESİKLİ-OLAY BENZETİMİ Kesikli olay benzetimi, durum değişkenlerinin zaman içinde belirli noktalarda değiştiği sistemlerin modellenmesi

Detaylı

Hipotez Testleri. Kazanımlar

Hipotez Testleri. Kazanımlar Hipotez Testleri Kazanımlar 1 2 3 4 5 6 Hipotez testlerinin mantığını anlamak Hipotezleri ve kritik bölgeyi belirlemek Z testi yapmak ve karar vermek TipI and Tip II hataları tanımlamak ve farklarını bilmek

Detaylı

ÖLÇME VE DEĞERLENDİRME. Antrenörlük Eğitimi 4. Sınıf. Ölçme ve Değerlendirme - Yrd. Doç. Dr. Yetkin Utku KAMUK

ÖLÇME VE DEĞERLENDİRME. Antrenörlük Eğitimi 4. Sınıf. Ölçme ve Değerlendirme - Yrd. Doç. Dr. Yetkin Utku KAMUK ÖLÇME VE DEĞERLENDİRME Antrenörlük Eğitimi 4. Sınıf ÖLÇME VE DEĞERLENDİRME Merkezi Eğilim Ölçütleri Mod En çok görülen puandır ve hesaplanma yöntemi yoktur. İnceleme yolu ile bulunur. Terminal istatistiktir.

Detaylı

Nicel / Nitel Verilerde Konum ve Değişim Ölçüleri. BBY606 Araştırma Yöntemleri 2013-2014 Bahar Dönemi 13 Mart 2014

Nicel / Nitel Verilerde Konum ve Değişim Ölçüleri. BBY606 Araştırma Yöntemleri 2013-2014 Bahar Dönemi 13 Mart 2014 Nicel / Nitel Verilerde Konum ve Değişim Ölçüleri BBY606 Araştırma Yöntemleri 2013-2014 Bahar Dönemi 13 Mart 2014 1 Konum ölçüleri Merkezi eğilim ölçüleri Verilerin ortalamaya göre olan gruplanması nasıl?

Detaylı

Ki- Kare Testi ANADOLU ÜNİVERSİTESİ. ENM 317 MÜHENDİSLİK İSTATİSTİĞİ İYİ UYUM TESTİ Prof.Dr. Nihal ERGİNEL

Ki- Kare Testi ANADOLU ÜNİVERSİTESİ. ENM 317 MÜHENDİSLİK İSTATİSTİĞİ İYİ UYUM TESTİ Prof.Dr. Nihal ERGİNEL ANADOLU ÜNİVERSİTESİ ENM 317 MÜHENDİSLİK İSTATİSTİĞİ İYİ UYUM TESTİ Prof.Dr. Nihal ERGİNEL İYİ UYUM TESTİ Rassal değişkenin olasılık yoğunluk fonksiyonunun ve parametresinin bilinmediği, ancak belirli

Detaylı

İçindekiler vii Yazarların Ön Sözü xiii Çevirenin Ön Sözü xiv Teşekkürler xvi Semboller Listesi xvii. Ölçme, İstatistik ve Araştırma...

İçindekiler vii Yazarların Ön Sözü xiii Çevirenin Ön Sözü xiv Teşekkürler xvi Semboller Listesi xvii. Ölçme, İstatistik ve Araştırma... İçindekiler İçindekiler vii Yazarların Ön Sözü xiii Çevirenin Ön Sözü xiv Teşekkürler xvi Semboller Listesi xvii BÖLÜM 1 Ölçme, İstatistik ve Araştırma...1 Ölçme Nedir?... 3 Ölçme Süreci... 3 Değişkenler

Detaylı

A t a b e y M e s l e k Y ü k s e k O k u l u İstatistik Sunum 4 Öğr.Gör. Şükrü L/O/G/O KAYA www.sukrukaya.org www.themegallery.com 1 Yer Ölçüleri Yer ölçüleri, verilerin merkezini veya yığılma noktasını

Detaylı

UYGULAMA 4 TANIMLAYICI İSTATİSTİK DEĞERLERİNİN HESAPLANMASI

UYGULAMA 4 TANIMLAYICI İSTATİSTİK DEĞERLERİNİN HESAPLANMASI 1 UYGULAMA 4 TANIMLAYICI İSTATİSTİK DEĞERLERİNİN HESAPLANMASI Örnek 1: Ders Kitabı 3. konuda verilen 100 tane yaş değeri için; a. Aritmetik ortalama, b. Ortanca değer, c. Tepe değeri, d. En küçük ve en

Detaylı

ÖĞRENCİNİN ADI SOYADI:. NO:

ÖĞRENCİNİN ADI SOYADI:. NO: ÖĞRENCİNİN ADI SOYADI:. NO: İMZA: 2011-2012 ÖĞRETİM YILI TIP 1. SINIF TEMEL BİYOİSTATİSTİK DERSİ ARA SINAVI (04.11.2011) Biyoistatistik ve Tıp Bilişimi Anabilim Dalı Başarılar Temel Biyoistatistik dersi

Detaylı

TANIMLAYICI İSTATİSTİKLER

TANIMLAYICI İSTATİSTİKLER TANIMLAYICI İSTATİSTİKLER Tanımlayıcı İstatistikler ve Grafikle Gösterim Grafik ve bir ölçüde tablolar değişkenlerin görsel bir özetini verirler. İdeal olarak burada değişkenlerin merkezi (ortalama) değerlerinin

Detaylı

15.433 YATIRIM. Ders 2: Menkul Kıymetler ve Wall Street de Rassal Yürüyüş. Bahar 2003

15.433 YATIRIM. Ders 2: Menkul Kıymetler ve Wall Street de Rassal Yürüyüş. Bahar 2003 15.433 YATIRIM Ders 2: Menkul Kıymetler ve Wall Street de Rassal Yürüyüş Bahar 2003 İçerik Olasılık Teorisi Olasılık dağılımlarının kısa bir gözden geçirmesi Rassal olayları normal olaylarla değerlendirmek

Detaylı

11.Konu Tam sayılarda bölünebilme, modüler aritmetik, Diofant denklemler

11.Konu Tam sayılarda bölünebilme, modüler aritmetik, Diofant denklemler 11.Konu Tam sayılarda bölünebilme, modüler aritmetik, Diofant denklemler 1. Asal sayılar 2. Bir tam sayının bölenleri 3. Modüler aritmetik 4. Bölünebilme kuralları 5. Lineer modüler aritmetik 6. Euler

Detaylı

İki Varyansın Karşılaştırılması

İki Varyansın Karşılaştırılması 6.DERS İki Varyansın Karşılaştırılması Comparing Two Variances t-testinde iki varyansın eşit kabul edilip edilmemesi için kullanılır 1 Varyans için ikili-örnek Testi ve gibi iki varyansı karşılaştırmak

Detaylı

EKONOMİK KATILIM VE FIRSATLARDA CİNSİYET EŞİTSİZLİĞİNİN SOSYOEKONOMİK VE KÜLTÜREL DEĞİŞKENLERLE İLİŞKİSİ. Aslı AŞIK YAVUZ

EKONOMİK KATILIM VE FIRSATLARDA CİNSİYET EŞİTSİZLİĞİNİN SOSYOEKONOMİK VE KÜLTÜREL DEĞİŞKENLERLE İLİŞKİSİ. Aslı AŞIK YAVUZ EKONOMİK KATILIM VE FIRSATLARDA CİNSİYET EŞİTSİZLİĞİNİN SOSYOEKONOMİK VE KÜLTÜREL DEĞİŞKENLERLE İLİŞKİSİ Aslı AŞIK YAVUZ 1 İçindekiler 1. Küresel Cinsiyet Eşitsizliği Endeksi 2. Çalışmanın Amacı 3. Çalışmada

Detaylı

KAMUYA AİT BİNA İNŞAATLARINDA TAHMİN EDİLEN MALİYET İLE GERÇEKLEŞEN MALİYET ARASINDAKİ İLİŞKİNİN BELİRLENMESİ ÖZET

KAMUYA AİT BİNA İNŞAATLARINDA TAHMİN EDİLEN MALİYET İLE GERÇEKLEŞEN MALİYET ARASINDAKİ İLİŞKİNİN BELİRLENMESİ ÖZET Politeknik Dergisi Journal of Polytechnic Cilt: 6 Sayı: 4 s. 677-69, 003 Vol: 6 No: 4 pp. 677-69, 003 KAMUYA AİT BİNA İNŞAATLARINDA TAHMİN EDİLEN MALİYET İLE GERÇEKLEŞEN MALİYET ARASINDAKİ İLİŞKİNİN BELİRLENMESİ

Detaylı

İstatistik ve Olasılık

İstatistik ve Olasılık İstatistik ve Olasılık Rastgele Değişkenlerin Dağılımları I Prof. Dr. İrfan KAYMAZ Ders konusu Bu derste; Rastgele değişkenlerin tanımı ve sınıflandırılması Olasılık kütle fonksiyonu Olasılık yoğunluk

Detaylı

Ödev TeslimTarihi 12.Ocak 2010 KAR PLANLAMASI

Ödev TeslimTarihi 12.Ocak 2010 KAR PLANLAMASI İTÜ Tekstil Teknolojileri ve Tasarımı Fakültesi / Tekstil Mühendisliği Bölümü 2009-2010Öğretim Yılı / Güz Yarıyılı TEK485-MALİYET MUHASEBESİ DERSİ ÖDEV5 (YÖNETİM MUHASEBESİ) 30.Aralık.2009 Ödev TeslimTarihi

Detaylı

MIT OpenCourseWare http://ocw.mit.edu. 14.30 Ekonomide İstatistiksel Yöntemlere Giriş Bahar 2009

MIT OpenCourseWare http://ocw.mit.edu. 14.30 Ekonomide İstatistiksel Yöntemlere Giriş Bahar 2009 MIT OpenCourseWare http://ocw.mit.edu 14.30 Ekonomide İstatistiksel Yöntemlere Giriş Bahar 2009 Bu materyale atıfta bulunmak ve kullanım koşulları için http://ocw.mit.edu/terms sayfasını ziyaret ediniz.

Detaylı

Kesikli Şans Değişkenleri İçin; Olasılık Dağılımları Beklenen Değer ve Varyans Olasılık Hesaplamaları

Kesikli Şans Değişkenleri İçin; Olasılık Dağılımları Beklenen Değer ve Varyans Olasılık Hesaplamaları Kesikli Şans Değişkenleri İçin; Olasılık Dağılımları Beklenen Değer ve Varyans Olasılık Hesaplamaları 1 Şans Değişkeni: Bir dağılışı olan ve bu dağılışın yapısına uygun frekansta oluşum gösteren değişkendir.

Detaylı

BİYOİSTATİSTİK ÖRNEKLEME

BİYOİSTATİSTİK ÖRNEKLEME BİYOİSTATİSTİK ÖRNEKLEME B Doç. Dr. Mahmut AKBOLAT *Bir araştırmada, üzerinde çalışılan konu için gerekli olan bilginin elde edilebilmesi için konu ile ilgili bütün verilerin tek tek araştırılmasına tamsayım

Detaylı

Nitel Tepki Bağlanım Modelleri

Nitel Tepki Bağlanım Modelleri Doğrusal-Dışı Yaklaşım ve Nitel Tepki Bağlanım Modelleri Doğrusal-Dışı Yaklaşım ve Ekonometri 2 Konu 18 Sürüm 2,0 (Ekim 2011) Doğrusal-Dışı Yaklaşım ve UADMK Açık Lisans Bilgisi İşbu belge, Creative Commons

Detaylı

Hayvan Islahı ve Yetiştirme 2. ders

Hayvan Islahı ve Yetiştirme 2. ders Hayvan Islahı ve Yetiştirme 2. ders Akin Pala akin@comu.edu.tr Seleksiyona cevap Et sığırlarında doğum ağırlığını arttırmak istiyoruz. Ağır doğmuş olan bireyleri ebeveyn olarak seçip çiftleştiriyoruz.

Detaylı

Doç. Dr. Dilek ALTAŞ İSTATİSTİKSEL ANALİZ

Doç. Dr. Dilek ALTAŞ İSTATİSTİKSEL ANALİZ I Doç. Dr. Dilek ALTAŞ İSTATİSTİKSEL ANALİZ II Yayın No : 2845 Teknik Dizisi : 158 1. Baskı Şubat 2013 İSTANBUL ISBN 978-605 - 377 868-4 Copyright Bu kitabın bu basısı için Türkiye deki yayın hakları BETA

Detaylı

1-2 - * Bu Ders Notları tam olarak emin olmamakla birlikte 2012-2013 yıllarına aiitir.tekrardan Sn.Hakan Paçal'a çoook tsk ederiz...

1-2 - * Bu Ders Notları tam olarak emin olmamakla birlikte 2012-2013 yıllarına aiitir.tekrardan Sn.Hakan Paçal'a çoook tsk ederiz... 1-2 - * Bu Ders Notları tam olarak emin olmamakla birlikte 2012-2013 yıllarına aiitir.tekrardan Sn.Hakan Paçal'a çoook tsk ederiz... CABİR VURAL BAHAR 2006 Açıklamalar

Detaylı

1. FARKLILIKLARIN TESPİTİNE YÖNELİK HİPOTEZ TESTLERİ

1. FARKLILIKLARIN TESPİTİNE YÖNELİK HİPOTEZ TESTLERİ 1. FARKLILIKLARIN TESPİTİNE YÖNELİK HİPOTEZ TESTLERİ Örneklem verileri kullanılan her çalışmada bir örneklem hatası çıkma riski her zaman söz konusudur. Dolayısıyla istatistikte bu örneklem hatasının meydana

Detaylı

İSTATİSTİK I KAVRAMLARININ

İSTATİSTİK I KAVRAMLARININ YTÜ-İktisat İstatistik II İstatistik I Gözden Geçirme İSTATİSTİK I KAVRAMLARININ GÖZDEN GEÇİRİLMESİ Hüseyin Taştan Yıldız Teknik Üniversitesi, İktisat Bölümü, email: tastan@yildiz.edu.tr YTÜ-İktisat İstatistik

Detaylı

MIT OpenCourseWare http://ocw.mit.edu. 14.30 Ekonomide İstatistiksel Yöntemlere Giriş Bahar 2009

MIT OpenCourseWare http://ocw.mit.edu. 14.30 Ekonomide İstatistiksel Yöntemlere Giriş Bahar 2009 MIT OpenCourseWare http://ocw.mit.edu 14.30 Ekonomide İstatistiksel Yöntemlere Giriş Bahar 2009 Bu materyale atıfta bulunmak ve kullanım koşulları için http://ocw.mit.edu/terms sayfasını ziyaret ediniz.

Detaylı