Ch. 8: Değişen Varyans

Save this PDF as:
 WORD  PNG  TXT  JPG

Ebat: px
Şu sayfadan göstermeyi başlat:

Download "Ch. 8: Değişen Varyans"

Transkript

1 Yıldız Teknik Üniversitesi İktisat Bölümü Ekonometri II Ders Notları Ders Kitabı: J.M. Wooldridge, Introductory Econometrics A Modern Approach, 2nd. ed., 2002, Thomson Learning. Ch. 8: Değişen Varyans 1

2 Ch.8 : Değişen Varyans (Heteroscedasticity) Ch. 3, MLR.5: sabit varyans (homoscedasticity) varsayımı, gözlenemeyen hata terimi u nun açıklayıcı x değişkenlerine koşullu varyansının sabitliği anlamına geliyordu. Eğer anakütlenin (population) farklı kesimlerinde bu varyans değişiyorsa varsayım sağlanamıyor demektir. Örneğin, bir tasarruf fonksiyonu regresyonunda eğer tasarrufları etkileyen gözlenemez faktörlerin (u) varyansı gelir düzeyiyle birlikte değişiyorsa heteroscedasticity var demektir. 2

3 Ch 3 ve 4 de doğrusal SEKK (OLS) tahmininde homoscedasticity varsayımının t, F testleri yapabilmek ve güven aralıkları oluşturmak için gerekli olduğunu gördük. Büyük örneklem hacimleri için bile bu gereklilik vardır. Bu bölümde değişken varyansın olup olmadığını nasıl anlayacağımızı ve heteroscedasticity varsa ne gibi çözüm yolları geliştireceğimizi göreceğiz. 3

4 SEKK (OLS) de değişen varyans ne gibi sorunlara yol açar? CH.3 ve CH.5 de gördüğümüz gibi, regresyonda betaların sapmasızlık (unbiasedness) ve tutarlılık (consistency) özellikleri MLR.1-MLR.4 varsayımlarına bağlıydı ve homoscedasticity (MLR.5) varsayımına ihtiyaç duymuyorlardı. Örneğin, önemli bir değişkenin dışarıda bırakılması sapma ve tutarsızlığa yol açtığı halde değişen varyans açmamaktadır. 4

5 Peki, sapmaya ve tutarsızlığa yol açmıyorsa, homoscedasticity yi neden Gauss-Markov varsayımları arasına katıyoruz? Yanıt : Çünkü bu varsayım yoksa sapmalı çıkacaktır. Betaşapkaların standart hataları (se) doğrudan bu varyanslardan elde edildiği için, heteroscedasticity varsa t istatistikleri ve onlara dayanan güven aralıkları geçerli olmayacaktır. OLS t istatistiği heteroscedasticity varsa t dağılımı izlemeyecektir. Benzer şekilde F istatistiği F dağılımı izlemeyecek, LM istatistiği asimtotik ki kare dağılımı izlemeyecektir. Üstelik sorun büyük örneklem kullanmakla da aşılamayacaktır. 5

6 Yine, OLS tahmin edicilerin BLUE olduğunu söyleyen Gauss-Markov teoremi de kuvvetli bir şekilde homoscedasticity varsayımına bağlıdır. Bu varsayım olmaksızın OLS nin asimtotik etkinliği (asymptotical efficiency) de kaybolur. 8.4 de göreceğimiz gibi, heteroscedasticity altında OLS den daha etkin tahmin ediciler mevcuttur. Örneklem görece olarak büyükse OLS test istatiklerini, asimtotik olarak geçerli olacak şekilde düzeltmeye tabi tutmak mümkün olacaktır. 6

7 Değişen varyanstan etkilenmeyen (heteroscedasticity-robust) standart hatalar Hipotez testleri değişen varyans durumunda geçerli olmuyorsa, OLS den tamamen vaz mı geçeceğiz? Hayır! Son 20 yılda ekonometride değişen en varyans altında standart hataların nasıl düzeltileceği konusunda önemli gelişmeler kaydedildi. Biçimi bilinmeyen heteroscedasticity nin varlığında betaşapkaların se lerini, t, F ve LM istatistiklerini nasıl bir düzeltmeye tabi tutacağımızı artık biliyoruz. 7

8 Heteroscedasticity dan etkilenmeyen (robust) yöntemler sayesinde u ların varyansı sabit olsun ya da olmasın en azından büyük örneklemlerrde hipotez testleri yapabileceğiz. Heteroscedasticity den etkilenmeyen varyans hesaplama formülleri çok karmaşık olduğu u için burada türetmeyeceğiz. Hazır ekonometri paket programlarında bu yöntemler mevcuttur. 8

9 Bu basit regresyon modelinde Gauss-Markov varsayımlarının ilk dördünün gerçekleştiğini varsayalım. Eğer hata terimlerinde heteroscedasticity varsa şöyle yazacağız : σ 2 formülündeki i alt-endeksi,hata terimleri varyansının x i değerlerine bağlı olarak değiştiğini göstermektedir. 9

10 Basit regresyonda beta(1) in OLS tahmin edicisini yazalım : Yine basit regresyonda var (β1hat) de şuna eşitti : 10

11 (8.2), homoscedasticity altında basit regresyon için hesaplanan varyansın heteroscedasticity altında geçerli olmayacağını gösteriyor. Beta1hat in standart hatası (se) doğrudan Var(β1hat) in karekökü olduğu için heteroscedasticity altında (8.2) nin tahminini bir şekilde yapmamız gerektir. White (1980) bunun nasıl yapılacağını gösterdi. 11

12 , orijinal regresyonumuzun artıkları olsun. Herhangi bir biçim (form) altında ortaya çıkan heteroscedasticity (ki, bu, homoscedasticity yi özel bir hal olarak içerir) için Var(β1hat) in geçerli bir tahmini şudur : (8.3) veriden kolayca hesaplanabilir. (8.3) ün geçerli bir varyans tahmini olduğunun teorik dayanağı şudur : (8.3) ün örnek hacmi n ile çarpılmış hali olasılık olarak ifadesine yakınsar. 12

13 Büyük sayılar yasası ve merkezi limit teoremine dayanan bu yakınsama, standart hataların hipotez testleri ve güven aralıkları için kullanılabilmesinin gerekçesini oluşturur. Çoklu regresyon için de MLR.1-MLR.4 varsayımları altıda benzer bir formül yazılabilir: (8.4) ün kareköküne değişen varyanstan etkilenmeyen standart hatalar (heteroscedasticityrobust standard errors) 13 denir.

14 White (1980) dan önce Eicker (1967) ve Huber (1967) de bu tür sağlam (robust) standart hatalar üzerinde çalışmışlardı. Bu yüzden bazen bu yöntemle bulunan standart hatalara White, Huber ve Ecker standart hataları da diyoruz. Bazen (8.4) ün karekökü alınmadan önce df düzeltmesi yapılarak (8.4) n/(n-k-1) ile çarpılır. Heteroscedasticity den etkilenmeyen se ler hesaplandıktan sonra bunları kullanarak Heteroscedasticity den etkilenmeyen t istatistiklerini hesaplayabiliriz. (bkz s.251) 14

15 Değişen varyanstan etkilenmeyen standart hatalar köşeli parantez içinde gösterilmiştir. 15

16 (8.6) dan görüldüğü gibi, homoscedasticity varsayımı altında hesaplanan se ler (parantez içinde) ile heteroscedasticity den etkilenmeyen se ler (köşeli parantez içinde) test sonuçlarını değiştirecek kadar farklı çıkmamışlardır.ama bu her zaman böyle çıkmaz. (8.6) daki regresyondan da görüldüğü gibi heteroscedasticity den etkilenmeyen se ler (robust se s) geleneksel se lerden büyük ya da küçük olabilmektedirler. Ancak, genellikle robust se ler geleneksel se lerden daha büyük çıkma eğilimindedirler. 16

17 (8.6) daki robust se ler, kitlede ne tür bir heteroscedasticity olduğu, hatta heteroscedasticity olup olmadığı bile bilinmeden hesaplanan asimtotik olarak geçerli se lerdir. Uygulamada çoğu kez heteroscedasticity den etkilenmeyen (robust) se ler geleneksel se lerden daha geçerlidir. Buna rağmen ikisi de hesaplanır. Çünkü, robust se ler örneklem büyükken kullanılır. Küçük örneklerde ise, eğer homoscedasticity ve artıkların normal dağıldığı varsayımları geçerli ise hesaplanan t istatistiği t 17 dağılımı izler, dolayısıyla t dağılımını kullanırız.

18 Regresyonda her iki se lerin verilmesinin bir amacı da, test sonuçlarının se tanımına göre değişip değişmediğini görmektir. Örneğin, (8.6) da test sonuçları se tanımına göre değişmemektedir, yani, se türüne karşı hassas değildir. Se ve t değerlerine benzer şekilde, F ve LM istatistiklerini de heteroscedasticity den etkilenmeyecek şekilde (heteroscedasticity-robust F statistics or Wald statistics) hesaplayabiliriz. (bkz. ss ) 18

19 Değişen-varyans (heteroscedasticity) testleri Heteroscedasticity den etkilenmeyen (robust) se lerden hesaplanan t değerleri asimptotik olarak t dağılmıştır, dolayısıyla, başka herhangi bir teste ihtiyaç duymadan t testlerimizi yaparız. Ancak, yine de veride heteroscedasticity olup olmadığını bilmek isteriz. Bunun için çeşitli testler geliştirilmiştir. Eğer heteroscedasticity varsa OLS artık BLUE değildir, best (min varyans) özelliği kaybolmuştur. 19

20 Çok sayıda heteroscedasticity testi geliştirilmiştir. Burada, geleneksel (usual) OLS istatistiklerini geçersiz kılan heteroscedasticity nin tespitine yönelik modern testler göreceğiz. MLR.1-MLR.4 varsayımları geçerli olsun. Böylece OLS tahmin edicileri sapmasız ve tutarlı olacaktır. Model : H o a MLR.5 in sağlandığı hipotezini koyacağız : 20

21 Eğer belli bir anlamlılık düzeyinde veriler H o ı reddetmemize olanak vermiyorsa heteroscedasticity yoktur ya da ciddi bir sorun değildir diyeceğiz. u ların koşullu beklenen değerinin sıfır olduğunu varsaydığımız için, Var(u x)=e(u2 x) dir. Dolayısıyla, (8.11) şöyle de yazılabilir : Demek ki, homoscedasticity varsayımının ihlal edilip edilmediğinin testi, u 2 nin x lerden birisi ya da bazılarıyla ilişkili olup olmadığının testine dönüşmektedir. 21

22 Eğer H o yanlış ise, u 2 nin x lere koşullu beklenen değeri herhangi bir x in, (x(j),bir fonksiyonu olabilir. En basit yaklaşım şöyle bir doğrusal fonksiyon varsaymaktır : H o daki homoscedasticity varsayımı burada şu hali alır : (8.12) de artık terim v, x lerden bağımsız ise, ki öyle varsayacağız, (8.13) ü F veya LM istatistiği hesaplayarak test edebiliriz. 22

23 u 2 normal dağılmasa bile asimptotik olarak F ve LM istatistiklerini kullanabiliriz. (8.12) yi, u yerine örnek regresyonunu artıklarını (uhat) kullanarak tahmin edeceğiz : (8.14) ün determinasyon katsayısını, kullanarak F istatistiğini hesaplayacağız: k, (8.14) deki bağımsız değişken sayısıdır. 23

24 LM istatistiği ise şuna eşittir: Ho doğru iken, LM istatistiği, asimtotik olarak dağılmıştır. Bu testin LM versiyonu Breusch_Pagan(BP) heteroscedasticity testi diye bilinir. Adımlar : 24

25 ÖRNEK: Bu regresyon bize kitlede hata terimleri varyansının değişken olup olmadığı konusunda bilgi vermaz. BP testi yapacağız. (8.17) nin artıkları karelerinin x ler üzerine regresyonunun R 2 si dir. n=88, k=3. Buradan F=5.34 (p:0.002), LM=14.09 (p:0.0028). Demek ki, H o ı kabul edemeyeceğiz, heteroscedasticity var. (8.17) deki se lere güvenemeyiz. 25

26 Ch.6 da değişkenlerin log alınması halinde heteroscedasticity nin azalacağını söylemiştik. Gerçekten (8.18) deki regresyonda BP testi sonuçları şöyle çıkmaktadır: F=1.41 (p:0.245), LM=4.22 (p:0.239). Yani, log regresyon biçiminde heteroscedasticity çıkmamaktadır. 26

27 WHITE Heteroscedasticity testi Ch. 5 de, Gauss-Markov varsayımlarının tümünün sağlanması halinde OLS standart hatalarının ve test istatistiklerinin asimtotik olarak geçerli olacaklarını gördük. Bu, homoscedasticity varsayımının, daha zayıf şu varsayımla yer değiştirebileceği i anlamına gelir: u2, tüm bağımsız değişkenlerle, x(j), onların kareleriyle, x(j)2, ve çapraz çarpımlarıyla, x(j)*x(h), j h, ilişkisizdir. Bu fikir White (1980) heteroscedasticity testinin esasını oluşturdu. Test, OLS se lerini ve test istatistiklerini geçersiz kılan heteroscedasticity biçimlerinin (forms) testine yöneliktir. 27

28 k=3 için White testi şu regresyonun tahminine dayanır : Breusch-Pagan testiyle kıyaslarsak, bu denklemdeki bağımsız değişken sayısının 6 değişken daha fazla olduğunu görürüz. White testi LM istatistiğini kullanır. (8.19) da sabit hariç tüm δ(j) katsayılarının aynı anda sıfır olup olmadığını test eder. Bu örnekte 9 kısıt test edilmektedir. 28

29 Bu hipotez için F testi de yapabilirdik. Her iki test de asimtotik geçerliliğe sahiptir. x sayısının 6 olduğu bir regresyonda White testi 27 açıklayıcı değişken kullanır. Bu, serbestlik derecesi kaybına yol açar. White testinin zayıf yanı budur. White testini daha az açıklayıcı değişken kullanarak yapmak mümkündür. (8.19) un sağ tarafında açıklayıcı değişken olarak çok sayıda x, x kare ve x lerin çapraz çarpımını kullanmak yerine OLS regresyonumuzdan elde ettiğimiz yhat i ve onun karesini kullanabiliriz. Zira, yhat, x lerin doğrusal bir fonksiyonudur : 29

30 Bu denklemde her iki tarafın karesini alırsak, sağ tarafda x lerin kareleri ve birbirleriyle çapraz çarpımları olacaktır. Yani, (8.19) un sağ tarafına benzeyecektir. O halde, heteroscedasticity yi şöyle test edebiliriz : (8.20) de y nin değil yhat in kullanıldığı unutulmamalı. Zira x lerin ve tahmin edilen beta katsayılarının doğrusal bir fonksiyonu olan y değil yhat dir. H o hipotezi F ya da LM istatistiği ile test edilebilir : 30

31 Bu testte, orijinal modeldeki x sayısı ne olursa olsun, sadece 2 kısıt vardır. Böylece, testin orijinal halindeki serbestlik derecesi (df) kaybı burada söz konusu değildir. yhat y nin x e koşullu beklenen değeri olduğu için, yhat = E(y x), (8.20) deki test, varyansın bu koşullu beklenen değerle erle birlikte değiştiği i durumlarda oldukça yararlı bir testtir. (8.20), White testin özel bir hali olarak görülebilir. Zira (8.20), (8.19) daki parametreler üzerine kısıtlar koyar. 31

32 32

33 Yukarıdaki heteroscedasticity testlerini yaparken MLR.1-MLR.4 varsayımlarımızın sağlandığını varsayıyoruz. Sağlanmazsa, örneğin, regresyonun fonksiyonel biçimi yanlış belirlenmiş ise (ihmal edilmiş değişken varsa ya da log-log yerine level model seçilmişse vs.), heteroscedasticity testi varyans sabitken bile Ho ı reddedebilir. Bu yüzden, ekonometriciler heteroscedasticity testlerini yanlış biçim seçimi (misspecification) testleri olarak değerlendirirler. Ancak, biçim (form) seçimi doğrudan başka testler kullanılarak test edilmeli. Yanlış biçim seçimi heteroscedasticity den daha ciddi bir sorundur. 33

34 Ağırlıklı EKK (Weighted Least Squares) Bölüm 8.3 deki testlerden biriyle heteroscedasticity yi tesbit etmiş olalım. Bir almaşık, Bölüm 8.2 de gördüğümüz heteroscedasticity den etkilenmez (robust) se ve test istatistikleri hesaplamaktır. Ancak, bu robust se leri hesaplamadan önce heteroscedasticity nin türünü tahmin etmeliyiz. Ne türden bir heteroscedasticity olduğunu belirleyebilirsek, OLS den daha etkin tahmin ediciler bulabileceğiz. 34

35 Heteroscedasticity çarpan bir sabit cinsinden biliniyor olsun x, (8.10) daki tüm açıklayıcı değişkenleri temsil etsin. unu varsayalım : Burada, h(x), x lerin herhangi bir fonksiyonudur ve heteroscedasticity yi belirler. Varyans pozitif olacağı için, tüm x değerleri için, h(x) >0 olacaktır. Burada, h(x) fonksiyonunun bilindiğini varsayacağız. Bilinmeyen kitle varyansıσ 2 yerine onun örnekten bulunan tahminini kullanacağız. 35

36 Örneğin, şu basit tasarruf fonksiyonunu ele alalım : Burada, h(inc) = inc dır. Hata terimleri varyansı gelir seviyesine orantılı olarak değişmektedir. Gelir arttıkça tasarruflardaki değişkenlik artacaktır (β 1 > 0 ise). Gelir (inc) her zaman pozitif olduğu için (8.23) deki varyans da pozitif olacaktır. u ların gelire koşullu standart sapması olacaktır. 36

37 (8.21) deki enformasyondan β ların tahmini için nasıl yararlanabiliriz? Orijinal denklemimiz (8.24) de hata terimleri heteroscedastic dir. Bu regresyonu öyle dönüştürmeliyiz ki, hata terimleri homoscedastic olsun ve diğer Gauss-markov koşullarını da sağlasın. h(i), x(i) nin bir fonksiyonu olduğu için, nin x e koşullu beklenen değeri sıfırdır. Ayrıca oluğu için, nin x e koşullu varyansı dir. 37

38 38

39 (8.26) daki dönüştürülmüş regresyondan elde edilen beta tahminleri OLS ninkelerine göre daha etkin olacaktır. Dönüştürülmüş regresyonun sabiti, eski (orijinal) sabitin ile çarpımından meydana gelmektedir. Tasarruf örneğinde dönüştürülmüş regresyon şöyledir : 39

40 (8.26), parametreler bakımından doğrusaldır (linear). Dolayısıyla, MLR.1 varsayımını sağlar. Rasgele örnek (random sampling) varsayımımız yine korunmaktadır. u*(i), x* a göre koşullu olarak, sabit varyansa (σ2) sahiptir. Demek ki, eğer orijinal regresyonumuz Gauss-markov varsayımlarından 4 ünü sağlıyorsa, (8.26) bu varsayımların tümünü sağlayacaktır. Eğer u(i) ~ N ise, u* da N dağılacak, böylece dönüştürülmüş regresyon tüm CLRM varsayımlarını (MLR.1-MLR.6) sağlamış olacaktır. (8.26) nın beta tahminleri (β1*,..., βk*) orijinal modelin betalarından farklı olacaktır. Bu β* lar genelleştirilmiş en küçük kareler (GEKK) tahminidir : generalized least squares (GLS) estimators. 40

41 Burada, GLS tahmin edicilerini hata terimlerindeki değişken varyansı düzeltmek için kullandık. Ch.12 de diğer GLS tahmin edicileri de göreceğiz. Dönüştürülmüş regresyon tüm klasik model varsayımlarını sağladığı için bu regresyondan elde edeceğimiz standart hatalar (se), t ve F istatistikleri geçerli tahminlerdir. GLS tahmin ediciler (β* lar) BLUE oldukları için OLS tahmin edicilerinden (βhat ler) daha etkindirler. Dönüştürülmüş regresyonun yorumunu orijinal regresyonun ışığında yapmamız gerektiğini unutmamalıyız. (8.26) nın R 2 si F istatistiğinin hesabında kullanılır. Ancak, artık uyumun iyiliğinin bir ölçüsü değildir. Dönüştürülmüş regresyonun R 2 si x* ların y* daki değişmelerin % ne kadarını açıkladığını gösterir, ki, bu da fazla bir anlam ifade etmez. 41

42 Ağırlıklandırılmış EKK (Weighted least Squares, WLS) Heteroscedasticity yi düzeltmek için kullandığımız GLS tahmin edicileri Ağırlıklı En Küçük Kareler tahmin edicileri (weighted least squares (WLS) estimators) adını alır. Zira, β* lar (GLS estimators) ağırlıklandırılmış artık kareleri toplamını minimize eder. Her bir u(i) kare, ile ağırlıklandırılmıştır. Yüksek varyansa sahip u lar daha küçük ağırlığa sahiptirler. 42

43 OLS de tüm u lar aynı (eşit) ağırlığa sahiptir. Dolayısıyla, ana kitlenin tümünde hata terimleri varyansı aynı olduğunda OLS minimum varyanslı (en iyi- best) tahmini verecektir. WLS beta katsayılarını şu denklem minimize olacak şekilde seçer : (8.27) de 1/h(i) nin kare kökünü parantez içine dahil edersek, ağırlıklandırılmış artık kareler toplamının dönüştürülmüş regresyonun SSR sine eşit olduğunu görürüz. : 43

44 OLS, WLS in özel bir halidir. Her bir u(i) kareye, başka bir ifadeyle her bir gözleme aynı ağırlığı verir. GLS, her bir u(i) kareyi var(u(i) x) nin tersi ile ağırlıklandırır. Regresyon doğrusundan (düzleminden) uzak gözlemler cezalandırılmış olur. Tablo 8.1, aynı örneğe ait verilere (SAVING.RAW) OLS ve WLS uygulanması ile elde edilmiş regresyonları içeriyor. n=100 aile (1970). WLS uygularken varyansın (8.23) deki gibi olduğunu varsayıyoruz. OLS marjinal tasarruf eğilimini (marginal propensity to save) bulurken WLS buluyor. İki regresyonun R2 leri birbirleriyle mukayese edilemezler. 44

45 45

46 Denklemlere eklenen demografik faktörler hem tek tek (t testi) hem de bir arada (F testi) anlamsız çıkmaktadırlar. Demek ki, ilk denklem, yani sadece gelirin açıklayıcı değişken olarak alınması yeterli olmaktadır. Marjinal tasarruf oranı olarak hangisini (0.147 ya da 0.172) alacağımız çok büyük farklılık yaratmayacaktır. Örnek hacmi küçük olduğu için (sadece 100 aile) bulunan katsayılardan birisi için oluşturacağımız %95 lik güven aralığı diğer katsayıyı da içerecektir. Pratikte varyansın x lerden hangisine bağlı olarak değiştiğini genellikle bilemeyiz. Örneğin, yukarıda varyans gelire değil de eğitim düzeyine ya da yaşa bağlı olarak da değişebilirdi. Pek çok durumda var(y x 1, x 2,..., x k ) konusunda kesin bilgiye sahip değilizdir. 46

47 ehir ya da ülke düzeyinde adam başına ortalama veriler (gelir, tüketim, araba sayısı vs.) kullanıyorsak, bireysel regresyonlar Gaussmarkov varsayımlarını sağladıklarında, adam başına regresyonların artıkları heteroscedastic olacaktır. Örneğin, çeşitli ülkelerin kişi başına geliri, tasarrusu vs. Kullanılıyorsa, nüfusu büyük olan ülkelere ait artıkların varyansı küçük olacaktır. Bu durumda WLS de ağırlık olarak ülke nüfuslarını kullanabiliriz. Örnek : şehirler düzeyinde bira tüketimi regresyonu : beerpc :kişi başına (per capita, pc) bira tüketimi (ounces), incpc: kişi başına gelir. 47

48 ehirler-düzeyinde adam başına bira tüketimi regresyonu : Bu regresyonun artıkları değişken varyansa sahiptir. ehir nüfuslarını ağırlık olarak kullanıp WLS tahmin edebiliriz. Burada, gözlemleri şehir nüfuslarıyla ağırlıklandırırken bireysel regresyonların homoscedastic olduğunu varsayıyoruz. Eğer bireysel regresyonların artıkları da değişken varyansa sahipse, o zaman, ne tür ağırlıklar kullanacağımız heteroscedasticity nin biçimine bağlı 48 olacaktır.

49 Bu nedenle, kişi başına verilerin kullanıldığı araştırmalarda daha çok heteroscedasticity den etkilenmeyen (robust) se tahminleri verilir Feasible GLS (FGLS) / Estimated GLS (EGLS) Yukarıdaki örneklerde, heteroscedasticity nin çarpan biçiminde olduğunu bildiğimizi varsaymıştık. Oysa, pratikte çoğu kez bunu bilmeyiz. Yani, h(x(i)) fonksiyonun biçimini bilemeyiz. Ancak, örnekten bu fonksiyonun parametrelerini tahmin edebiliriz. Böylece, h(i) yerine onun örnekten elde edilen tahminini,, kullanabiliriz. Bu durumda elde edilen tahmin ediciler FGLS ya da EGLS adını alır. 49

50 Heteroscedasticity pek çok farklı biçimde modellenebilir. Ancak burada oldukça esnek özelliklere sahip şu üssel (exponential) modeli göreceğiz : Burada (8.30) un avantajı her zaman pozitif bir varyans tahmini verebilmesidir. (8.12) deki doğrusal alternatifler bu koşulu sağlamaz 50

51 (8.30) da δ ları şöyle tahmin edeceğiz : 51

52 52

53 1. WLS de tüm değişkenler (kuklalar da dahil) e bölünecektir.yani, kullanılacak ağırlık hhat in karekökünün tersidir, hhat in tersi değil. 2. Sabit terim beta(0).( ) şeklinde tahmin edilecektir. ÖRNEK: (8.36) nolu regresyon şöyle tahmin edilmiştir: Cigs/hhat^0.5= beta(0).(1/hhat^0.5)+beta(1).log(income)/ hhat^ beta(5).age2/hhat^0.5+ beta(6).restaurn/hhat^0.5 53

54 54

55 807 gözleme ait yhat in 13 ü negatif çıkmıştır. Doğrusal modellerin bazen negatif tahmin verdiklerini biliyoruz. Ancak, negatif değerler toplamın %2 sinden azdır. Önemli bir sorun oluşturmuyor. Ne gelir ne de sigara fiyatı istatistiksel olarak anlamlıdır. Üstelik etkileri çok ufaktır. Örneğin, eğer gelir %10 artarsa, bir günde içilen sigara sayısı (0.880 / 100)*(10) = sigara kadar artmaktadır. Bir yıllık ilave bir eğitim içilen günlük sigara sayısını yarım sigara kadar azaltmaktadır. İstatistiksel olarak anlamlıdır. Sigara içmek yaşla karesel (quadratic) biçimde ilişkilidir. Tiryakilik yaşa kadar yaşla birlikte artmakta sonra azalmaktadır : / [2 (0.009)] = Restoranlarda sigara yasağı ortalama günlük tüketimi 3 sigara kadar azaltmaktadır. 55

56 (8.35) de heteroscedasticity var mı? Breusch-Pagan regresyonu {uhat2 nin, x1,..., xk üzerine regresyonu} büyüklüğünde bir R 2 veriyor. LM = 807x (0.040) = Serbestlik derecesi 6 olan Ki kare dağılımının tablo değeri eri = H o red. Heteroscedasticity lehine çok güçlü kanıt var. FGLS kullanarak modeli yeniden tahmin edelim: 56

57 Gelirin etkisi şimdi biraz daha büyük ve istatistiksel olarak anlamlıdır. Diğer değişkenlerin katsayıları biraz değişti, ancak sonuçlar yine aynı. Tiryakilik eğitimle ters yönlü ilişkili, yaşla karesel ilişki içinde ve restoran yasağı tüketimi düşürüyor. 57

58 LPM modelinde hata terimlerinin varyansı değişkendir. Robust se ler hesaplamamız gerekmektedir. 58

59 Doğrusal olasılık modelinin (LPM) WLS ile tahmini LPM de y nin koşullu varyansı şuna eşittir: Burada, p(x), başarı olasılığını (y=1 olma olasılığı) göstermektedir. Varyans x lere bağlı olarak değiştiği için WLS kullanabiliriz. 59

60 (8.39) da bilinmeyen kitle beta ları yerine OLS betahat tahminlerini (ki, bunlar sapmasız tahmin edicilerdir) kullanabiliriz. Bu halde, (8.39) yhat i verecektir. Buradan bulduğumuz yhat i (8.38) de yerine koyarak her bir i gözlemi için ayrı bir koşullu varyans bulmuş oluruz: Artık, tüm gözlemleri ile çarparak Bölüm 8.4 de gördüğümüz feasible GLS yöntemini uygulayabiliriz. 1 den büyük ya da 0 dan küçük (negatif) yhat çıkmış ise, bunları 0.99 ve 0.01 olarak alıp daha sonra WLS uygulamamız gerekecektir. 60

61 61

62 62

YTÜ İktisat Bölümü EKONOMETRİ I Ders Notları

YTÜ İktisat Bölümü EKONOMETRİ I Ders Notları Yıldız Teknik Üniversitesi İktisat Bölümü Ekonometri I Ders Kitabı: J.M. Wooldridge, Introductory Econometrics A Modern Approach, 2nd. ed., 2002, Thomson Learning. Ch. 5: SEKK (OLS) nin Asimptotik Özellikleri

Detaylı

Değişen Varyans (Heteroscedasticity) Sabit Varyans (Homoscedasticity) Varsayımı Altında Basit Regresyon Modeli

Değişen Varyans (Heteroscedasticity) Sabit Varyans (Homoscedasticity) Varsayımı Altında Basit Regresyon Modeli 1 2 Değişen Varyans (Heteroscedasticity) DEĞİŞEN VARYANS Hüseyin Taştan 1 1 Yıldız Teknik Üniversitesi İktisat Bölümü Ders Kitabı: Introductory Econometrics: A Modern Approach (2nd ed.) J. Wooldridge 14

Detaylı

OLS Yönteminin Asimptotik (Büyük Örneklem) Özellikleri SIRADAN EN KÜÇÜK KARELER (OLS) Asimptotik Özellikler: Tutarlılık. Asimptotik Özellikler

OLS Yönteminin Asimptotik (Büyük Örneklem) Özellikleri SIRADAN EN KÜÇÜK KARELER (OLS) Asimptotik Özellikler: Tutarlılık. Asimptotik Özellikler 1 SIRADAN EN KÜÇÜK KARELER (OLS) YÖNTEMİNİN ASİMPTOTİK ÖZELLİKLERİ Hüseyin Taştan 1 1 Yıldız Teknik Üniversitesi İktisat Bölümü Ders Kitabı: Introductory Econometrics: A Modern Approach (2nd ed.) J. Wooldridge

Detaylı

3. TAHMİN En Küçük Kareler (EKK) Yöntemi 1

3. TAHMİN En Küçük Kareler (EKK) Yöntemi 1 3. TAHMİN 3.1. En Küçük Kareler (EKK) Yöntemi 1 En Küçük Kareler (EKK) yöntemi, regresyon çözümlemesinde en yaygın olarak kullanılan, daha sonra ele alınacak bazı varsayımlar altında çok aranan istatistiki

Detaylı

SIRADAN EN KÜÇÜK KARELER (OLS)

SIRADAN EN KÜÇÜK KARELER (OLS) SIRADAN EN KÜÇÜK KARELER (OLS) YÖNTEMİNİN ASİMPTOTİK ÖZELLİKLERİ Hüseyin Taştan 1 1 Yıldız Teknik Üniversitesi İktisat Bölümü Ders Kitabı: Introductory Econometrics: A Modern Approach (2nd ed.) J. Wooldridge

Detaylı

14 Ekim 2012. Ders Kitabı: Introductory Econometrics: A Modern Approach (2nd ed.) J. Wooldridge. 1 Yıldız Teknik Üniversitesi

14 Ekim 2012. Ders Kitabı: Introductory Econometrics: A Modern Approach (2nd ed.) J. Wooldridge. 1 Yıldız Teknik Üniversitesi ÇOK DEĞİŞKENLİ REGRESYON ANALİZİ: ÇIKARSAMA Hüseyin Taştan 1 1 Yıldız Teknik Üniversitesi İktisat Bölümü Ders Kitabı: Introductory Econometrics: A Modern Approach (2nd ed.) J. Wooldridge 14 Ekim 2012 Ekonometri

Detaylı

YTÜ İktisat Bölümü EKONOMETRİ I Ders Notları

YTÜ İktisat Bölümü EKONOMETRİ I Ders Notları Yıldız Teknik Üniversitesi İktisat Bölümü Ekonometri I Ders Kitabı: J.M. Wooldridge, Introductory Econometrics A Modern Approach, 2nd. edition, Thomson Learning Appendix C: İstatistiksel Çıkarsama Doç.

Detaylı

Matris Cebiriyle Çoklu Regresyon Modeli

Matris Cebiriyle Çoklu Regresyon Modeli Matris Cebiriyle Çoklu Regresyon Modeli Hüseyin Taştan Mart 00 Klasik Regresyon Modeli k açıklayıcı değişkenden oluşan regresyon modelini her gözlem i için aşağıdaki gibi yazabiliriz: y i β + β x i + β

Detaylı

17 Ekim Ders Kitabı: Introductory Econometrics: A Modern Approach (2nd ed.) J. Wooldridge. 1 Yıldız Teknik Üniversitesi

17 Ekim Ders Kitabı: Introductory Econometrics: A Modern Approach (2nd ed.) J. Wooldridge. 1 Yıldız Teknik Üniversitesi ÇOK DEĞİŞKENLİ REGRESYON ANALİZİ: TAHMİN Hüseyin Taştan 1 1 Yıldız Teknik Üniversitesi İktisat Bölümü Ders Kitabı: Introductory Econometrics: A Modern Approach (2nd ed.) J. Wooldridge 17 Ekim 2012 Ekonometri

Detaylı

Ekonometri II 14.02.2009

Ekonometri II 14.02.2009 Yıldız Teknik Üniversitesi İktisat Bölümü Ekonometri II Ders Notları Ders Kitabı: J.M. Wooldridge, Introductory Econometrics A Modern Approach, 2nd. ed., 2002, Thomson Learning. Ch. 8: Değişen Varyans

Detaylı

KONULAR. 14 Ekim 2012. Ders Kitabı: Introductory Econometrics: A Modern Approach (2nd ed.) J. Wooldridge. 1 Yıldız Teknik Üniversitesi

KONULAR. 14 Ekim 2012. Ders Kitabı: Introductory Econometrics: A Modern Approach (2nd ed.) J. Wooldridge. 1 Yıldız Teknik Üniversitesi ÇOKLU REGRESYON ANALİZİNDE EK KONULAR Hüseyin Taştan 1 1 Yıldız Teknik Üniversitesi İktisat Bölümü Ders Kitabı: Introductory Econometrics: A Modern Approach (2nd ed.) J. Wooldridge 14 Ekim 2012 Ekonometri

Detaylı

YTÜ İktisat Bölümü EKONOMETRİ I Ders Notları

YTÜ İktisat Bölümü EKONOMETRİ I Ders Notları Yıldız Teknik Üniversitesi İktisat Bölümü Ekonometri I Ders Kitabı: J.M. Wooldridge, Introductory Econometrics A Modern Approach, 2nd. edition, Thomson Learning Appendix B: Olasılık ve Dağılım Teorisi

Detaylı

YTÜ İktisat Bölümü EKONOMETRİ I Ders Notları

YTÜ İktisat Bölümü EKONOMETRİ I Ders Notları Yıldız Teknik Üniversitesi İktisat Bölümü Ekonometri I Ders Kitabı: J.M. Wooldridge, Introductory Econometrics A Modern Approach, 2nd. edition, Thomson Learning Appendix B: Olasılık ve Dağılım Teorisi

Detaylı

Appendix B: Olasılık ve Dağılım Teorisi

Appendix B: Olasılık ve Dağılım Teorisi Yıldız Teknik Üniversitesi İktisat Bölümü Ekonometri I Ders Notları Ders Kitabı: J.M. Wooldridge, Introductory Econometrics A Modern Approach, 2nd. edition, Thomson Learning Appendix B: Olasılık ve Dağılım

Detaylı

2. REGRESYON ANALİZİNİN TEMEL KAVRAMLARI Tanım

2. REGRESYON ANALİZİNİN TEMEL KAVRAMLARI Tanım 2. REGRESYON ANALİZİNİN TEMEL KAVRAMLARI 2.1. Tanım Regresyon analizi, bir değişkenin başka bir veya daha fazla değişkene olan bağımlılığını inceler. Amaç, bağımlı değişkenin kitle ortalamasını, açıklayıcı

Detaylı

Ch. 9: Model Spesifikasyonu ve Veri Sorunları

Ch. 9: Model Spesifikasyonu ve Veri Sorunları Yıldız Teknik Üniversitesi İktisat Bölümü Ekonometri II Ders Notları Ders Kitabı: J.M. Wooldridge, Introductory Econometrics A Modern Approach, 2nd. ed., 2002, Thomson Learning. Ch. 9: Model Spesifikasyonu

Detaylı

ZAMAN SERİSİ REGRESYONLARINDA ARDIŞIK

ZAMAN SERİSİ REGRESYONLARINDA ARDIŞIK ZAMAN SERİSİ REGRESYONLARINDA ARDIŞIK BAĞINTI ve DEĞİŞEN VARYANS Hüseyin Taştan 1 1 Yıldız Teknik Üniversitesi İktisat Bölümü Ders Kitabı: Introductory Econometrics: A Modern Approach (4th ed.) J. Wooldridge

Detaylı

Zaman Serileri Verileriyle Regresyon Analizinde Ardışık ZAMAN SERİSİ REGRESYONLARINDA

Zaman Serileri Verileriyle Regresyon Analizinde Ardışık ZAMAN SERİSİ REGRESYONLARINDA 1 ZAMAN SERİSİ REGRESYONLARINDA ARDIŞIK BAĞINTI ve DEĞİŞEN VARYANS Hüseyin Taştan 1 1 Yıldız Teknik Üniversitesi İktisat Bölümü Ders Kitabı: Introductory Econometrics: A Modern Approach (4th ed.) J. Wooldridge

Detaylı

9. ARDIŞIK BAĞIMLILIK SORUNU (AUTOCORRELATION) 9.1. Ardışık Bağımlılık Sorunu Nedir?

9. ARDIŞIK BAĞIMLILIK SORUNU (AUTOCORRELATION) 9.1. Ardışık Bağımlılık Sorunu Nedir? 9. ARDIŞIK BAĞIMLILIK SORUNU (AUTOCORRELATION) 9.1. Ardışık Bağımlılık Sorunu Nedir? Ardışık bağımlılık sorunu, hata terimleri arasında ilişki olmadığı (E(u i,u j ) = 0, i j) varsayımının geçerli olmamasıdır.

Detaylı

H 0 : θ = θ 0 Bu sıfır hipotezi şunu ifade eder: Anakütle parametresi θ belirli bir θ 0

H 0 : θ = θ 0 Bu sıfır hipotezi şunu ifade eder: Anakütle parametresi θ belirli bir θ 0 YTÜ-İktisat İstatistik II Hipotez Testi 1 HİPOTEZ TESTİ: AMAÇ: Örneklem bilgisinden hareketle anakütleye ilişkin olarak kurulan bir hipotezin (önsavın) geçerliliğinin test edilmesi Genel notasyon: anakütleye

Detaylı

KORELASYON VE REGRESYON ANALİZİ. Doç. Dr. Bahar TAŞDELEN

KORELASYON VE REGRESYON ANALİZİ. Doç. Dr. Bahar TAŞDELEN KORELASYON VE REGRESYON ANALİZİ Doç. Dr. Bahar TAŞDELEN Günlük hayattan birkaç örnek Gelişim dönemindeki bir çocuğun boyu ile kilosu arasındaki ilişki Bir ailenin tükettiği günlük ekmek sayısı ile ailenin

Detaylı

Bir Normal Dağılım Ortalaması İçin Testler

Bir Normal Dağılım Ortalaması İçin Testler Bir Normal Dağılım Ortalaması İçin Testler İÇERİK o Giriş ovaryansı Bilinen Bir Normal Dağılım Ortalaması İçin Hipotez Testler P-değerleri: II. Çeşit hata ve Örnekleme Büyüklüğü Seçimi Örnekleme Büyüklüğü

Detaylı

YTÜ İktisat Bölümü EKONOMETRİ I Ders Notları

YTÜ İktisat Bölümü EKONOMETRİ I Ders Notları Yıldız Teknik Üniversitesi İktisat Bölümü Ekonometri I Ders Kitabı: J.M. Wooldridge, Introductory Econometrics A Modern Approach, 2nd. ed., 2002, Thomson Learning. Ch. 3: Çok Değişkenli Regresyon Analizi:

Detaylı

İstatistik ve Olasılık

İstatistik ve Olasılık İstatistik ve Olasılık KORELASYON ve REGRESYON ANALİZİ Doç. Dr. İrfan KAYMAZ Tanım Bir değişkenin değerinin diğer değişkendeki veya değişkenlerdeki değişimlere bağlı olarak nasıl etkilendiğinin istatistiksel

Detaylı

İÇİNDEKİLER 1. GİRİŞ...

İÇİNDEKİLER 1. GİRİŞ... İÇİNDEKİLER 1. GİRİŞ... 1 1.1. Regresyon Analizi... 1 1.2. Uygulama Alanları ve Veri Setleri... 2 1.3. Regresyon Analizinde Adımlar... 3 1.3.1. Problemin İfadesi... 3 1.3.2. Konu ile İlgili Potansiyel

Detaylı

8. BÖLÜM: DEĞİŞEN VARYANS

8. BÖLÜM: DEĞİŞEN VARYANS 8. BÖLÜM: DEĞİŞEN VARYANS Bu bölümde; Değişen Varyans Tespiti için Grafik Çizme Değişen Varyans Testi: Park Testi Değişen Varyans Testi: White Testi Değişen Varyans Probleminin Çözümü: Ağırlıklandırılmış

Detaylı

İÇİNDEKİLER. BÖLÜM 1 Değişkenler ve Grafikler 1. BÖLÜM 2 Frekans Dağılımları 37

İÇİNDEKİLER. BÖLÜM 1 Değişkenler ve Grafikler 1. BÖLÜM 2 Frekans Dağılımları 37 İÇİNDEKİLER BÖLÜM 1 Değişkenler ve Grafikler 1 İstatistik 1 Yığın ve Örnek; Tümevarımcı ve Betimleyici İstatistik 1 Değişkenler: Kesikli ve Sürekli 1 Verilerin Yuvarlanması Bilimsel Gösterim Anlamlı Rakamlar

Detaylı

BASİT REGRESYON MODELİ

BASİT REGRESYON MODELİ BASİT REGRESYON MODELİ Hüseyin Taştan 1 1 Yıldız Teknik Üniversitesi İktisat Bölümü Ders Kitabı: Introductory Econometrics: A Modern Approach (2nd ed.) J. Wooldridge 14 Ekim 2012 Ekonometri I: Basit Regresyon

Detaylı

MIT OpenCourseWare Ekonomide İstatistiksel Yöntemlere Giriş Bahar 2009

MIT OpenCourseWare Ekonomide İstatistiksel Yöntemlere Giriş Bahar 2009 MIT OpenCourseWare http://ocw.mit.edu 14.30 Ekonomide İstatistiksel Yöntemlere Giriş Bahar 2009 Bu materyale atıfta bulunmak ve kullanım koşulları için http://ocw.mit.edu/terms sayfasını ziyaret ediniz.

Detaylı

İçindekiler. Ön Söz... xiii

İçindekiler. Ön Söz... xiii İçindekiler Ön Söz.................................................... xiii Bölüm 1 İstatistiğe Giriş....................................... 1 1.1 Giriş......................................................1

Detaylı

Örnek. Aşağıdaki veri setlerindeki X ve Y veri çiftlerini kullanarak herbir durumda X=1,5 için Y nin hangi değerleri alacağını hesaplayınız.

Örnek. Aşağıdaki veri setlerindeki X ve Y veri çiftlerini kullanarak herbir durumda X=1,5 için Y nin hangi değerleri alacağını hesaplayınız. Örnek Aşağıdaki veri setlerindeki X ve Y veri çiftlerini kullanarak herbir durumda X=1,5 için Y nin hangi değerleri alacağını hesaplayınız. i. ii. X 1 2 3 4 1 2 3 4 Y 2 3 4 5 4 3 2 1 Örnek Aşağıdaki veri

Detaylı

YTÜ İktisat Bölümü EKONOMETRİ I Ders Notları

YTÜ İktisat Bölümü EKONOMETRİ I Ders Notları Yıldız Teknik Üniversitesi İktisat Bölümü Ekonometri I Ders Kitabı: J.M. Wooldridge, Introductory Econometrics A Modern Approach, 2nd. ed., 2002, Thomson Learning. Ch. 2: Basit Regresyon Modeli Doç. Dr.

Detaylı

Ch. 3: Çok Değişkenli Regresyon Analizi: Tahmin

Ch. 3: Çok Değişkenli Regresyon Analizi: Tahmin Yıldız Teknik Üniversitesi İktisat Bölümü Ekonometri I Ders Notları Ders Kitabı: J.M. Wooldridge, Introductory Econometrics A Modern Approach, 2nd. ed., 2002, Thomson Learning. Ch. 3: Çok Değişkenli Regresyon

Detaylı

4. TAHMİN SONUÇLARININ DEĞERLENDİRİLMESİ Katsayıların Yorumu

4. TAHMİN SONUÇLARININ DEĞERLENDİRİLMESİ Katsayıların Yorumu 4. TAHMİN SONUÇLARININ DEĞERLENDİRİLMESİ 4.1. Katsayıların Yorumu Y i = β 0 + β 1 X 1i + β X i + + β k X ki + u i gibi çok açıklayıcı değişkene sahip bir modelde, anakütle regresyon fonksiyonu, E(Y i X

Detaylı

UYGULAMALAR. Normal Dağılımlılık

UYGULAMALAR. Normal Dağılımlılık UYGULAMALAR EKONOMETRİYE GİRİŞ 0.01.008 1 Normal Dağılımlılık Amerika da 195-1941 yılları arasında sığır eti fiyatı ile kişi başı sığır eti tüketimi arasındaki ilişki incelenmiş ve aşağıdaki sonuç bulunmuştur.

Detaylı

YTÜ İktisat Bölümü EKONOMETRİ I Ders Notları

YTÜ İktisat Bölümü EKONOMETRİ I Ders Notları Ch. 3: Çok Değişkenli Regresyon Analizi: Tahmin Doç. Dr. Hüseyin Taştan 1 1 Yıldız Teknik Üniversitesi, İktisat Bölümü, Yıldız Kampüsü H Blok, Oda no. 124, Beşiktaş, İstanbul. Email: tastan@yildiz.edu.tr

Detaylı

YTÜ İktisat Bölümü EKONOMETRİ I Ders Notları

YTÜ İktisat Bölümü EKONOMETRİ I Ders Notları Yıldız Teknik Üniversitesi İktisat Bölümü Ekonometri I Ders Kitabı: J.M. Wooldridge, Introductory Econometrics A Modern Approach, 2nd. ed., 2002, Thomson Learning. Ch. 2: Basit Regresyon Modeli Doç. Dr.

Detaylı

MIT OpenCourseWare http://ocw.mit.edu. 14.30 Ekonomide İstatistiksel Yöntemlere Giriş Bahar 2009

MIT OpenCourseWare http://ocw.mit.edu. 14.30 Ekonomide İstatistiksel Yöntemlere Giriş Bahar 2009 MIT OpenCourseWare http://ocw.mit.edu 14.30 Ekonomide İstatistiksel Yöntemlere Giriş Bahar 2009 Bu materyale atıfta bulunmak ve kullanım koşulları için http://ocw.mit.edu/terms sayfasını ziyaret ediniz.

Detaylı

Yrd. Doç. Dr. Fatih TOSUNOĞLU Erzurum Teknik Üniversitesi Mühendislik Fakültesi İnşaat Mühendisliği Bölümü

Yrd. Doç. Dr. Fatih TOSUNOĞLU Erzurum Teknik Üniversitesi Mühendislik Fakültesi İnşaat Mühendisliği Bölümü Mühendislikte İstatistiksel Yöntemler Yrd. Doç. Dr. Fatih TOSUNOĞLU Erzurum Teknik Üniversitesi Mühendislik Fakültesi İnşaat Mühendisliği Bölümü 1 Araştırma sonuçlarının açıklanmasında frekans tablosu

Detaylı

MIT OpenCourseWare http://ocw.mit.edu. 14.30 Ekonomide İstatistiksel Yöntemlere Giriş Bahar 2009

MIT OpenCourseWare http://ocw.mit.edu. 14.30 Ekonomide İstatistiksel Yöntemlere Giriş Bahar 2009 MIT OpenCourseWare http://ocw.mit.edu 14.30 Ekonomide İstatistiksel Yöntemlere Giriş Bahar 2009 Bu materyale atıfta bulunmak ve kullanım koşulları için http://ocw.mit.edu/terms sayfasını ziyaret ediniz.

Detaylı

Ch. 2: Basit Regresyon Modeli

Ch. 2: Basit Regresyon Modeli Yıldız Teknik Üniversitesi İktisat Bölümü Ekonometri I Ders Notları Ders Kitabı: J.M. Wooldridge, Introductory Econometrics A Modern Approach, 2nd. ed., 2002, Thomson Learning. Ch. 2: Basit Regresyon Modeli

Detaylı

Çoklu Bağlanım Çıkarsama Sorunu

Çoklu Bağlanım Çıkarsama Sorunu Çoklu Bağlanım Çıkarsama Sorunu Diğer Sınama ve Konular Ekonometri 1 Konu 27 Sürüm 2,0 (Ekim 2011) UADMK Açık Lisans Bilgisi İşbu belge, Creative Commons Attribution-Non-Commercial ShareAlike 3.0 Unported

Detaylı

Korelasyon ve Regresyon

Korelasyon ve Regresyon Korelasyon ve Regresyon Korelasyon- (lineer korelasyon) Açıklayıcı (Bağımsız) Değişken x çalışma zamanı ayakkabı numarası İki değişken arasındaki ilişkidir. Günlük sigara sayısı SAT puanı boy Yanıt (Bağımlı)

Detaylı

Yapılan alan araştırması sonucunda aşağıdaki sonuçlar elde edilmiştir. ( ) ( ) ( ) ( )

Yapılan alan araştırması sonucunda aşağıdaki sonuçlar elde edilmiştir. ( ) ( ) ( ) ( ) İKİ DEĞİŞKENLİ OLASILIK Rassal bir deneme yapılmakta ve farklı iki olay ile ilgilenilmektedir. A 1, A 2,,A i olayları bağdaşmaz ve bütünü kapsayıcıdır. B 1, B 2,,B j olayları bağdaşmaz ve bütünü kapsayıcıdır.

Detaylı

ANADOLU ÜNİVERSİTESİ REGRESYON KATSAYILARININ GÜVEN ARALIĞI = + REGRESYON KATSAYILARININ GÜVEN ARALIĞI

ANADOLU ÜNİVERSİTESİ REGRESYON KATSAYILARININ GÜVEN ARALIĞI = + REGRESYON KATSAYILARININ GÜVEN ARALIĞI ANADOLU ÜNİVERSİTESİ Deney Tasarımı ve Regresyon Analizi Regresyonda Güven Aralıkları ve Hipotez Testleri Doç. Dr. Nihal ERGİNEL-2015 REGRESYON KATSAYILARININ GÜVEN ARALIĞI + in güven aralığı : i-) n 30

Detaylı

DOĞRUSAL ve DOĞRUSAL OLMAYAN SINIRLAMALAR DOĞRUSAL OLMAYAN SINIRLAMALARIN TESTİ

DOĞRUSAL ve DOĞRUSAL OLMAYAN SINIRLAMALAR DOĞRUSAL OLMAYAN SINIRLAMALARIN TESTİ DOĞRUSAL ve DOĞRUSAL OLMAYAN SINIRLAMALAR DOĞRUSAL SINIRLAMALARIN TESTİ t testi F testi Diğer testler: Chow testi MWD testi DOĞRUSAL OLMAYAN SINIRLAMALARIN TESTİ Benzerlik Oranı Testi Lagrange Çarpanı

Detaylı

Hipotez Testlerine Giriş. Hipotez Testlerine Giriş

Hipotez Testlerine Giriş. Hipotez Testlerine Giriş Hipotez Testlerine Giriş Hipotez Testlerine Giriş Hipotez Testlerine Giriş Gözlem ya da deneme sonucu elde edilmiş sonuçların, raslantıya bağlı olup olmadığının incelenmesinde kullanılan istatistiksel

Detaylı

Kazanımlar. Z puanları yerine T istatistiğini ne. zaman kullanacağını bilmek. t istatistiği ile hipotez test etmek

Kazanımlar. Z puanları yerine T istatistiğini ne. zaman kullanacağını bilmek. t istatistiği ile hipotez test etmek T testi Kazanımlar Z puanları yerine T istatistiğini ne 1 zaman kullanacağını bilmek 2 t istatistiği ile hipotez test etmek 3 Cohen ind sini ve etki büyüklüğünü hesaplamak 1 9.1 T İstatistiği: zalternatifi

Detaylı

MODEL KURMA HATALARI ve VERİ SORUNLARI

MODEL KURMA HATALARI ve VERİ SORUNLARI MODEL KURMA HATALARI ve VERİ SORUNLARI Hüseyin Taştan 1 1 Yıldız Teknik Üniversitesi İktisat Bölümü Ders Kitabı: Introductory Econometrics: A Modern Approach (2nd ed.) J. Wooldridge 14 Ekim 2012 Ekonometri

Detaylı

Basit Regresyon Modeli BASİT REGRESYON MODELİ. Basit Regresyon Modeli. Basit Regresyon Modeli: y = β 0 + β 1 x + u

Basit Regresyon Modeli BASİT REGRESYON MODELİ. Basit Regresyon Modeli. Basit Regresyon Modeli: y = β 0 + β 1 x + u 1 2 Basit Regresyon Modeli BASİT REGRESYON MODELİ Hüseyin Taştan 1 1 Yıldız Teknik Üniversitesi İktisat Bölümü Ders Kitabı: Introductory Econometrics: A Modern Approach (2nd ed.) J. Wooldridge 14 Ekim

Detaylı

Zaman Serisi Verileriyle Regresyon Analizi

Zaman Serisi Verileriyle Regresyon Analizi Zaman Serisi Verileriyle Regresyon Analizi Hüseyin Taştan 1 1 Yıldız Teknik Üniversitesi Iktisat Bölümü Textbook: Introductory Econometrics (4th ed.) J. Wooldridge 13 Mart 2013 Ekonometri II: Zaman Serisi

Detaylı

A EKONOMETRİ. n iken de aynı sonuç geçerliyse, β hangi. A) β nın sabit olması. D) Xβ nın normal dağılımlı olması. E) n olması. dur?

A EKONOMETRİ. n iken de aynı sonuç geçerliyse, β hangi. A) β nın sabit olması. D) Xβ nın normal dağılımlı olması. E) n olması. dur? EKONOMETRİ KPSS-AB-PÖ/007 1. 6. SORULARI AŞAĞIDAKİ BİLGİLERE β β β ( ) Y i = 1 + x + + i k x ik+ u i i = 1,, n denkleminin matrislerle ifadesi Y = X + u dur. Y( nx1 ), β ( kx1 ), X( nxk) ve β u nx1 boyutludur

Detaylı

BÖLÜM 6 MERKEZDEN DAĞILMA ÖLÇÜLERİ

BÖLÜM 6 MERKEZDEN DAĞILMA ÖLÇÜLERİ 1 BÖLÜM 6 MERKEZDEN DAĞILMA ÖLÇÜLERİ Gözlenen belli bir özelliği, bu özelliğe ilişkin ölçme sonuçlarını yani verileri kullanarak betimleme, istatistiksel işlemlerin bir boyutunu oluşturmaktadır. Temel

Detaylı

Normallik Varsayımı ve Ençok Olabilirlik Yöntemi

Normallik Varsayımı ve Ençok Olabilirlik Yöntemi Normallik Varsayımı ve Ençok Olabilirlik Yöntemi EO Açıklayıcı Örnekler Ekonometri 1 Konu 14 Sürüm 2,0 (Ekim 2011) UADMK Açık Lisans Bilgisi İşbu belge, Creative Commons Attribution-Non-Commercial ShareAlike

Detaylı

27 Mart Ders Kitabı: Introductory Econometrics: A Modern Approach (4th ed.) J. Wooldridge. 1 Yıldız Teknik Üniversitesi

27 Mart Ders Kitabı: Introductory Econometrics: A Modern Approach (4th ed.) J. Wooldridge. 1 Yıldız Teknik Üniversitesi ZAMAN SERİLERİ VERİLERİYLE REGRESYON ANALİZİNDE EK KONULAR Hüseyin Taştan 1 1 Yıldız Teknik Üniversitesi İktisat Bölümü Ders Kitabı: Introductory Econometrics: A Modern Approach (4th ed.) J. Wooldridge

Detaylı

3 KESİKLİ RASSAL DEĞİŞKENLER VE OLASILIK DAĞILIMLARI

3 KESİKLİ RASSAL DEĞİŞKENLER VE OLASILIK DAĞILIMLARI ÖNSÖZ İÇİNDEKİLER III Bölüm 1 İSTATİSTİK ve SAYISAL BİLGİ 11 1.1 İstatistik ve Önemi 12 1.2 İstatistikte Temel Kavramlar 14 1.3 İstatistiğin Amacı 15 1.4 Veri Türleri 15 1.5 Veri Ölçüm Düzeyleri 16 1.6

Detaylı

MAK 210 SAYISAL ANALİZ

MAK 210 SAYISAL ANALİZ MAK 210 SAYISAL ANALİZ BÖLÜM 6- İSTATİSTİK VE REGRESYON ANALİZİ Doç. Dr. Ali Rıza YILDIZ 1 İSTATİSTİK VE REGRESYON ANALİZİ Bütün noktalardan geçen bir denklem bulmak yerine noktaları temsil eden, yani

Detaylı

BÖLÜM 1: YAşAM ÇÖzÜMLEMEsİNE GİRİş... 1

BÖLÜM 1: YAşAM ÇÖzÜMLEMEsİNE GİRİş... 1 ÖN SÖZ...iii BÖLÜM 1: Yaşam Çözümlemesine Giriş... 1 1.1. Giriş... 1 1.2. Yaşam Süresi... 2 1.2.1. Yaşam süresi verilerinin çözümlenmesinde kullanılan fonksiyonlar... 3 1.2.1.1. Olasılık yoğunluk fonksiyonu...

Detaylı

İÇİNDEKİLER ÖN SÖZ...

İÇİNDEKİLER ÖN SÖZ... İÇİNDEKİLER ÖN SÖZ... v GİRİŞ... 1 1. İSTATİSTİK İN TARİHÇESİ... 1 2. İSTATİSTİK NEDİR?... 3 3. SAYISAL BİLGİDEN ANLAM ÇIKARILMASI... 4 4. BELİRSİZLİĞİN ELE ALINMASI... 4 5. ÖRNEKLEME... 5 6. İLİŞKİLERİN

Detaylı

MIT OpenCourseWare Ekonomide İstatistiksel Yöntemlere Giriş Bahar 2009

MIT OpenCourseWare Ekonomide İstatistiksel Yöntemlere Giriş Bahar 2009 MIT OpenCourseWare http://ocw.mit.edu 14.30 Ekonomide İstatistiksel Yöntemlere Giriş Bahar 2009 Bu materyale atıfta bulunmak ve kullanım koşulları için http://ocw.mit.edu/terms sayfasını ziyaret ediniz.

Detaylı

Tanımlayıcı İstatistikler. Yrd. Doç. Dr. Emre ATILGAN

Tanımlayıcı İstatistikler. Yrd. Doç. Dr. Emre ATILGAN Tanımlayıcı İstatistikler Yrd. Doç. Dr. Emre ATILGAN 1 Tanımlayıcı İstatistikler Yer Gösteren Ölçüler Yaygınlık Ölçüleri Merkezi Eğilim Ölçüleri Konum Ölçüleri 2 3 Aritmetik Ortalama Aritmetik ortalama,

Detaylı

EME 3105 SİSTEM SİMÜLASYONU. Girdi Analizi Prosedürü. Dağılıma Uyum Testleri. Dağılıma Uyumun Kontrol Edilmesi. Girdi Analizi-II Ders 9

EME 3105 SİSTEM SİMÜLASYONU. Girdi Analizi Prosedürü. Dağılıma Uyum Testleri. Dağılıma Uyumun Kontrol Edilmesi. Girdi Analizi-II Ders 9 EME 3105 1 Girdi Analizi Prosedürü SİSTEM SİMÜLASYONU Modellenecek sistemi (prosesi) dokümante et Veri toplamak için bir plan geliştir Veri topla Verilerin grafiksel ve istatistiksel analizini yap Girdi

Detaylı

10. BÖLÜM: MODEL KURMA: FONKSİYONEL FORM SEÇİMİ

10. BÖLÜM: MODEL KURMA: FONKSİYONEL FORM SEÇİMİ 10. BÖLÜM: MODEL KURMA: FONKSİYONEL FORM SEÇİMİ Bu bölümde; Fonksiyonel Form için EViews Tablosu EViews ta Quasi R 2 Hesaplanması EViews ta Doğrusal ve Log-Lin Modeller için Quasi R 2 Hesaplanması EViews

Detaylı

rasgele değişkeninin olasılık yoğunluk fonksiyonu,

rasgele değişkeninin olasılık yoğunluk fonksiyonu, 3.6. Bazı Sürekli Dağılımlar 3.6.1 Normal Dağılım Normal dağılım hem uygulamalı hem de teorik istatistikte kullanılan oldukça önemli bir dağılımdır. Normal dağılımın istatistikte önemli bir yerinin olmasının

Detaylı

ARALIK TAHMİNİ (INTERVAL ESTIMATION):

ARALIK TAHMİNİ (INTERVAL ESTIMATION): YTÜ-İktisat İstatistik II Aralık Tahmini I 1 ARALIK TAHMİNİ INTERVAL ESTIMATION): Nokta tahmininde ilgilenilen anakütle parametresine ilişkin örneklem bilgisinden hareketle tek bir sayı üretilir. Bir nokta

Detaylı

İstatistik ve Olasılık

İstatistik ve Olasılık İstatistik ve Olasılık -II Prof. Dr. İrfan KAYMAZ İki Ortalama Farkının Güven Aralığı Anakütle Varyansı Biliniyorsa İki ortalama arasındaki farkın dağılımına ilişkin Z değişkeni: Güven aralığı ifadesinde

Detaylı

Bu örnekte kullanılan veri 200 gözleme sahiptir ve örnek için özel olarak oluşturulmuştur.

Bu örnekte kullanılan veri 200 gözleme sahiptir ve örnek için özel olarak oluşturulmuştur. Değişen Varyans Örnek Bu örnekte kullanılan veri 200 gözleme sahiptir ve örnek için özel olarak oluşturulmuştur. 1 Aşağıda yer alan denklemi tahmin edelim; y i = β 0 + β 1 x 1i + β 2 x 2i + u i EViews

Detaylı

Farklıserpilimsellik

Farklıserpilimsellik Farklıserpilimsellik Hata Varyansı Sabit Değilse Ne Olur? Yrd. Doç. Dr. A. Talha YALTA Ekonometri 2 Ders Notları Sürüm 2,0 (Ekim 2011) Açık Lisans Bilgisi İşbu belge, Creative Commons Attribution-Non-Commercial

Detaylı

8.Hafta. Değişkenlik Ölçüleri. Öğr.Gör.Muhsin ÇELİK. Uygun değişkenlik ölçüsünü hesaplayıp yorumlayabilecek,

8.Hafta. Değişkenlik Ölçüleri. Öğr.Gör.Muhsin ÇELİK. Uygun değişkenlik ölçüsünü hesaplayıp yorumlayabilecek, İSTATİSTİK 8.Hafta Değişkenlik Ölçüleri Hedefler Bu üniteyi çalıştıktan sonra; Uygun değişkenlik ölçüsünü hesaplayıp yorumlayabilecek, Serilerin birbirlerine değişkenliklerini yorumlayabileceksiniz. 2

Detaylı

26.12.2013. Farklı iki ilaç(a,b) kullanan iki grupta kan pıhtılaşma zamanları farklı mıdır?

26.12.2013. Farklı iki ilaç(a,b) kullanan iki grupta kan pıhtılaşma zamanları farklı mıdır? 26.2.23 Gözlem ya da deneme sonucu elde edilmiş sonuçların, raslantıya bağlı olup olmadığının incelenmesinde kullanılan istatistiksel yöntemlere HĐPOTEZ TESTLERĐ denir. Sonuçların raslantıya bağlı olup

Detaylı

Nicel / Nitel Verilerde Konum ve Değişim Ölçüleri. BBY606 Araştırma Yöntemleri 2013-2014 Bahar Dönemi 13 Mart 2014

Nicel / Nitel Verilerde Konum ve Değişim Ölçüleri. BBY606 Araştırma Yöntemleri 2013-2014 Bahar Dönemi 13 Mart 2014 Nicel / Nitel Verilerde Konum ve Değişim Ölçüleri BBY606 Araştırma Yöntemleri 2013-2014 Bahar Dönemi 13 Mart 2014 1 Konum ölçüleri Merkezi eğilim ölçüleri Verilerin ortalamaya göre olan gruplanması nasıl?

Detaylı

ÇOKLU REGRESYON ANALİZİNDE VARSAYIMLARDAN SAPMALARIN İNCELENMESİ

ÇOKLU REGRESYON ANALİZİNDE VARSAYIMLARDAN SAPMALARIN İNCELENMESİ ÇOKLU REGRESYON ANALİZİNDE VARSAYIMLARDAN SAPMALARIN İNCELENMESİ 1. ÇOKLU REGRESYON ANALİZİ VE VARSAYIMALARDAN SAPMALAR 1.1. Çoklu Regresyon modeli Varsayımları 1.2. Tahmincilerin anlamlılığının sınanması

Detaylı

OLASILIK ve İSTATİSTİK Hipotez Testleri

OLASILIK ve İSTATİSTİK Hipotez Testleri OLASILIK ve İSTATİSTİK Hipotez Testleri Yrd.Doç.Dr. Pınar YILDIRIM Okan Üniversitesi Mühendislik ve Mimarlık Fakültesi Bilgisayar Mühendisliği Bölümü Hipotezler ve Testler Hipotez, kitleye(yığına) ait

Detaylı

Nokta ve Aralık Tahmini Merkezi Limit Teoremi Örneklem Dağılımı Hipotez Testlerine Giriş

Nokta ve Aralık Tahmini Merkezi Limit Teoremi Örneklem Dağılımı Hipotez Testlerine Giriş Nokta ve Aralık Tahmini Merkezi Limit Teoremi Örneklem Dağılımı Hipotez Testlerine Giriş Doç. Dr. Ertuğrul ÇOLAK Eskişehir Osmangazi Üniversitesi Tıp Fakültesi Biyoistatistik Anabilim Dalı Nokta Tahmini

Detaylı

MIT OpenCourseWare Ekonomide İstatistiksel Yöntemlere Giriş Bahar 2009

MIT OpenCourseWare Ekonomide İstatistiksel Yöntemlere Giriş Bahar 2009 MIT OpenCourseWare http://ocw.mit.edu 14.30 Ekonomide İstatistiksel Yöntemlere Giriş Bahar 2009 Bu materyale atıfta bulunmak ve kullanım koşulları için http://ocw.mit.edu/terms sayfasını ziyaret ediniz.

Detaylı

MIT OpenCourseWare Ekonomide İstatistiksel Yöntemlere Giriş Bahar 2009

MIT OpenCourseWare Ekonomide İstatistiksel Yöntemlere Giriş Bahar 2009 MIT OpenCourseWare http://ocw.mit.edu 14.30 Ekonomide İstatistiksel Yöntemlere Giriş Bahar 2009 Bu materyale atıfta bulunmak ve kullanım koşulları için http://ocw.mit.edu/terms sayfasını ziyaret ediniz.

Detaylı

PARAMETRİK OLMAYAN İSTATİSTİKSEL TEKNİKLER 8

PARAMETRİK OLMAYAN İSTATİSTİKSEL TEKNİKLER 8 PARAMETRİK OLMAYAN İSTATİSTİKSEL TEKNİKLER 8 Prof. Dr. Ali ŞEN İki Populasyonun Karşılaştırılması: Eşleştirilmiş Örnekler için Wilcoxon İşaretli Mertebe Testi -BÜYÜK ÖRNEK Bağımsız populasyonlara uygulanan

Detaylı

İSTATİSTİK 2. Hipotez Testi 21/03/2012 AYŞE S. ÇAĞLI. aysecagli@beykent.edu.tr

İSTATİSTİK 2. Hipotez Testi 21/03/2012 AYŞE S. ÇAĞLI. aysecagli@beykent.edu.tr İSTATİSTİK 2 Hipotez Testi 21/03/2012 AYŞE S. ÇAĞLI aysecagli@beykent.edu.tr 1 Güven aralığı ve Hipotez testi Güven aralığı µ? µ? Veriler, bir değer aralığında hangi değeri gösteriyor? (Parametrenin gerçek

Detaylı

MIT OpenCourseWare http://ocw.mit.edu. 14.30 Ekonomide İstatistiksel Yöntemlere Giriş Bahar 2009

MIT OpenCourseWare http://ocw.mit.edu. 14.30 Ekonomide İstatistiksel Yöntemlere Giriş Bahar 2009 MIT OpenCourseWare http://ocw.mit.edu 14.30 Ekonomide İstatistiksel Yöntemlere Giriş Bahar 2009 Bu materyale atıfta bulunmak ve kullanım koşulları için http://ocw.mit.edu/terms sayfasını ziyaret ediniz.

Detaylı

HİPOTEZ TESTLERİ HİPOTEZ NEDİR?

HİPOTEZ TESTLERİ HİPOTEZ NEDİR? HİPOTEZ TESTLERİ HİPOTEZ NEDİR? Örnekleme ile test edilmeye çalışılan bir popülasyonun ilgili parametresi hakkında ortaya sunulan iddiadır. Örneğin; A dersi için vize ortalaması 50 nin altındadır Firestone

Detaylı

MIT OpenCourseWare Ekonomide İstatistiksel Yöntemlere Giriş Bahar 2009

MIT OpenCourseWare Ekonomide İstatistiksel Yöntemlere Giriş Bahar 2009 MIT OpenCourseWare http://ocw.mit.edu 14.30 Ekonomide İstatistiksel Yöntemlere Giriş Bahar 2009 Bu materyale atıfta bulunmak ve kullanım koşulları için http://ocw.mit.edu/terms sayfasını ziyaret ediniz.

Detaylı

Prof. Dr. Aydın Yüksel MAN 504T Yön. için Finansal Analiz & Araçları Ders: Risk-Getiri İlişkisi ve Portföy Yönetimi I

Prof. Dr. Aydın Yüksel MAN 504T Yön. için Finansal Analiz & Araçları Ders: Risk-Getiri İlişkisi ve Portföy Yönetimi I Risk-Getiri İlişkisi ve Portföy Yönetimi I 1 Giriş İşlenecek ana başlıkları sıralarsak: Finansal varlıkların risk ve getirisi Varlık portföylerinin getirisi ve riski 2 Risk ve Getiri Yatırım kararlarının

Detaylı

MATEMATiKSEL iktisat

MATEMATiKSEL iktisat DİKKAT!... BU ÖZET 8 ÜNİTEDİR BU- RADA İLK ÜNİTE GÖSTERİLMEKTEDİR. MATEMATiKSEL iktisat KISA ÖZET KOLAY AOF Kolayaöf.com 0362 233 8723 Sayfa 2 içindekiler 1.ünite-Türev ve Kuralları..3 2.üniteTek Değişkenli

Detaylı

Z = S n E(S n ) V ar(sn ) = S n nµ. S nn. n 1/2 n σ

Z = S n E(S n ) V ar(sn ) = S n nµ. S nn. n 1/2 n σ YTÜ-İktisat İstatistik II Merkezi Limit Teoremi 1 MERKEZİ LİMİT TEOREMİ CENTRAL LIMIT THEOREM X 1,X 2,...,X n herbirinin ortalaması µ ve varyansı σ 2 olan ve aynı dağılıma uyan n tane bağımsız r.d. olsun.

Detaylı

Genel olarak test istatistikleri. Merkezi Eğilim (Yığılma) Ölçüleri Dağılım (Yayılma) Ölçüleri. olmak üzere 2 grupta incelenebilir.

Genel olarak test istatistikleri. Merkezi Eğilim (Yığılma) Ölçüleri Dağılım (Yayılma) Ölçüleri. olmak üzere 2 grupta incelenebilir. 4.SUNUM Genel olarak test istatistikleri Merkezi Eğilim (Yığılma) Ölçüleri Dağılım (Yayılma) Ölçüleri olmak üzere 2 grupta incelenebilir. 2 Ranj Çeyrek Kayma Çeyrekler Arası Açıklık Standart Sapma Varyans

Detaylı

HİPOTEZ TESTLERİ. Yrd. Doç. Dr. Emre ATILGAN

HİPOTEZ TESTLERİ. Yrd. Doç. Dr. Emre ATILGAN HİPOTEZ TESTLERİ Yrd. Doç. Dr. Emre ATILGAN Hipotez Nedir? HİPOTEZ: parametre hakkındaki bir inanıştır. Parametre hakkındaki inanışı test etmek için hipotez testi yapılır. Hipotez testleri sayesinde örneklemden

Detaylı

1: DENEYLERİN TASARIMI VE ANALİZİ...

1: DENEYLERİN TASARIMI VE ANALİZİ... İÇİNDEKİLER Bölüm 1: DENEYLERİN TASARIMI VE ANALİZİ... 1 1.1. Deneyin Stratejisi... 1 1.2. Deneysel Tasarımın Bazı Tipik Örnekleri... 11 1.3. Temel Kurallar... 16 1.4. Deneyleri Tasarlama Prensipleri...

Detaylı

REGRESYON ANALİZİ VE UYGULAMA. Yrd. Doç. Dr. Hidayet Takcı

REGRESYON ANALİZİ VE UYGULAMA. Yrd. Doç. Dr. Hidayet Takcı REGRESYON ANALİZİ VE UYGULAMA Yrd. Doç. Dr. Hidayet Takcı htakci@cumhuriyet.edu.tr Sunum içeriği Bu sunumda; Lojistik regresyon konu anlatımı Basit doğrusal regresyon problem çözümleme Excel yardımıyla

Detaylı

Nitel Tepki Bağlanım Modelleri

Nitel Tepki Bağlanım Modelleri Doğrusal-Dışı Yaklaşım ve Nitel Tepki Bağlanım Modelleri Doğrusal-Dışı Yaklaşım ve Ekonometri 2 Konu 18 Sürüm 2,0 (Ekim 2011) Doğrusal-Dışı Yaklaşım ve UADMK Açık Lisans Bilgisi İşbu belge, Creative Commons

Detaylı

7. Ders Genel Lineer Modeller Singüler Modeller, Yanlış veya Bilinmeyen Kovaryanslar, Đlişkili Hatalar

7. Ders Genel Lineer Modeller Singüler Modeller, Yanlış veya Bilinmeyen Kovaryanslar, Đlişkili Hatalar 7. Ders Genel Lineer Modeller Singüler Modeller, Yanlış veya Bilinmeyen Kovaryanslar, Đlişkili Hatalar Y = X β + ε Lineer Modeli pekçok özel hallere sahiptir. Bunlar, ε nun dağılımına, Cov( ε ) kovaryans

Detaylı

ANADOLU ÜNİVERSİTESİ. ENM317 Mühendislik İstatistiği İSTATİSTİKSEL TAHMİN Prof. Dr. Nihal ERGİNEL

ANADOLU ÜNİVERSİTESİ. ENM317 Mühendislik İstatistiği İSTATİSTİKSEL TAHMİN Prof. Dr. Nihal ERGİNEL ANADOLU ÜNİVERSİTESİ ENM317 Mühendislik İstatistiği İSTATİSTİKSEL TAHMİN Prof. Dr. Nihal ERGİNEL İSTATİSTİKSEL TAHMİN Örnekten anakütle parametrelerinin tahmin edilmesidir. İki tür tahminleme yöntemi vardır:

Detaylı

MIT OpenCourseWare Ekonomide İstatistiksel Yöntemlere Giriş Bahar 2009

MIT OpenCourseWare Ekonomide İstatistiksel Yöntemlere Giriş Bahar 2009 MIT OpenCourseWare http://ocw.mit.edu 14.30 Ekonomide İstatistiksel Yöntemlere Giriş Bahar 2009 Bu materyale atıfta bulunmak ve kullanım koşulları için http://ocw.mit.edu/terms sayfasını ziyaret ediniz.

Detaylı

2. BASİT DOĞRUSAL REGRESYON 12

2. BASİT DOĞRUSAL REGRESYON 12 1. GİRİŞ 1 1.1 Regresyon ve Model Kurma / 1 1.2 Veri Toplama / 5 1.3 Regresyonun Kullanım Alanları / 9 1.4 Bilgisayarın Rolü / 10 2. BASİT DOĞRUSAL REGRESYON 12 2.1 Basit Doğrusal Regresyon Modeli / 12

Detaylı

MIT OpenCourseWare Ekonomide İstatistiksel Yöntemlere Giriş Bahar 2009

MIT OpenCourseWare Ekonomide İstatistiksel Yöntemlere Giriş Bahar 2009 MIT OpenCourseWare http://ocw.mit.edu 14.30 Ekonomide İstatistiksel Yöntemlere Giriş Bahar 2009 Bu materyale atıfta bulunmak ve kullanım koşulları için http://ocw.mit.edu/terms sayfasını ziyaret ediniz.

Detaylı

İstatistiksel Kavramların Gözden Geçirilmesi

İstatistiksel Kavramların Gözden Geçirilmesi İstatistiksel Kavramların Gözden Geçirilmesi İstatistiksel Çıkarsama Ekonometri 1 Konu 3 Sürüm 2,0 (Ekim 2011) UADMK Açık Lisans Bilgisi İşbu belge, Creative Commons Attribution-Non-Commercial ShareAlike

Detaylı

TOBB Ekonomi ve Teknoloji Üniversitesi İKT351 Ekonometri I, Dönem Sonu Sınavı

TOBB Ekonomi ve Teknoloji Üniversitesi İKT351 Ekonometri I, Dönem Sonu Sınavı TOBB Ekonomi ve Teknoloji Üniversitesi Öğr.Gör.: Yrd. Doç. Dr. A. Talha YALTA Ad, Soyad: Açıklama ve uyarılar: Bu sınav toplam 100 puan değerinde 6 sorudan oluşmaktadır. Sınav süresi 90 dakikadır ve tüm

Detaylı

MIT OpenCourseWare Ekonomide İstatistiksel Yöntemlere Giriş Bahar 2009

MIT OpenCourseWare Ekonomide İstatistiksel Yöntemlere Giriş Bahar 2009 MIT OpenCourseWare http://ocw.mit.edu 14.30 Ekonomide İstatistiksel Yöntemlere Giriş Bahar 2009 Bu materyale atıfta bulunmak ve kullanım koşulları için http://ocw.mit.edu/terms sayfasını ziyaret ediniz.

Detaylı

Eşanlı Denklem Modelleri

Eşanlı Denklem Modelleri Eşanlı Denklem Modelleri Eşanlı Denklem Yöntemleri Ekonometri 2 Konu 23 Sürüm 2,0 (Ekim 2011) UADMK Açık Lisans Bilgisi İşbu belge, Creative Commons Attribution-Non-Commercial ShareAlike 3.0 Unported (CC

Detaylı

BÖLÜM 12 STUDENT T DAĞILIMI

BÖLÜM 12 STUDENT T DAĞILIMI 1 BÖLÜM 12 STUDENT T DAĞILIMI 'Student t dağılımı' ya da kısaca 't dağılımı'; normal dağılım ve Z dağılımının da içerisinde bulunduğu 'sürekli olasılık dağılımları' ailesinde yer alan dağılımlardan bir

Detaylı

7.Ders Bazı Ekonometrik Modeller. Đktisat (ekonomi) biliminin bir kavramı: gayrisafi milli hasıla.

7.Ders Bazı Ekonometrik Modeller. Đktisat (ekonomi) biliminin bir kavramı: gayrisafi milli hasıla. 7.Ders Bazı Ekonometrik Modeller Đktisat (ekonomi) biliminin bir kavramı: gayrisafi milli hasıla. Kaynak: TÜĐK dönemler gayri safi yurt içi hasıla düzeyi 1987-1 8680793 1987-2 9929354 1987-3 13560135 1987-4

Detaylı