9. ARDIŞIK BAĞIMLILIK SORUNU (AUTOCORRELATION) 9.1. Ardışık Bağımlılık Sorunu Nedir?

Save this PDF as:
 WORD  PNG  TXT  JPG

Ebat: px
Şu sayfadan göstermeyi başlat:

Download "9. ARDIŞIK BAĞIMLILIK SORUNU (AUTOCORRELATION) 9.1. Ardışık Bağımlılık Sorunu Nedir?"

Transkript

1 9. ARDIŞIK BAĞIMLILIK SORUNU (AUTOCORRELATION) 9.1. Ardışık Bağımlılık Sorunu Nedir? Ardışık bağımlılık sorunu, hata terimleri arasında ilişki olmadığı (E(u i,u j ) = 0, i j) varsayımının geçerli olmamasıdır. Diğer bir deyişle hata terimleri arasında ilişki vardır: E(u i,u j ) 0, i j. Hata terimleri zaman içinde aşağıdaki gibi hareket edebilir. Devresel patika Artan doğrusal trend u u Zaman Zaman Azalan doğrusal trend Doğrusal ve karesel hareket u u Zaman Zaman u Ardışık bağımlılık yok Zaman Ardışık bağımlılık olmaması durumunda hata terimlerinin zaman içindeki seyrinde bir sistematik şekil yoktur (bkz. son grafik). Ancak diğer grafiklerde olduğu gibi hata terimi bir şekil içeriyorsa ardışık bağımlılık sorunu söz konusudur. 9-1

2 Matrisler cinsinden gösterecek olursak, Y = Xβ + u genel doğrusal modelinde ardışık bağımlılık sorunu, Var, Cov(u) = E(uu') = σ I olmayıp aşağıdaki gibi olmasıdır. 1 Var, Cov(u) = E(uu') = σ P = σ p p 1 n1 p 1 1 p n p1n p n 1 Ardışık bağımlılık sorunu genellikle zaman serisi verileriyle tahmin yapıldığında ortaya çıkar. Ardışık bağımlılığın bazı nedenleri aşağıdaki gibidir. i) Zaman serilerinde, özellikle trend içermeleri durumunda hata terimleri arasında bir ilişki olması beklenir. Bu tür verilerde devresel hareketler olur, bir momentum vardır ve bu durum değişkenlerin kendileri ile ilişkili olmalarına neden olur. Bir dönemde hata yüksekse diğer dönemde de yüksek olur vb. ii) Denklemde bulunması gerektiği halde yer almayan değişkenler olması durumunda da bu sorun ortaya çıkabilir. Örneğin aslında Y t = β 1 + β X t + β 3 X 3t + u t denklemi tahmin edilmesi gerektiği halde Y t = β 1 + β X t + v t tahmin edildi diyelim. Bu durumda v t X 3 ün etkilerini içerecektir. Çünkü v t = β 3 X 3t + u t dir. Eğer X 3 Y yi etkiliyorsa v bir sistematik şekil içerir. iii) Denklemin matematiksel biçimi yanlış belirlenmişse de ardışık bağımlılık sorunu ortaya çıkabilir. Örneğin model karesel (Y t = β 1 + β X t + β 3 X t + u t ) iken doğrusal bir model (Y t = β 1 + β 1 X t + v t ) tahmin edilmiş olsun. Bu durumda hata terimi matematiksel biçim hatasını da içerir. Örneğin grafikte hatalar (karesel ilişkiyi gösteren noktalar ile tahmin edilen denklemi gösteren düz çizgi arasındaki fark) önce artmakta sonra azalmaktadır. Y Yt = β1 + βxt + β3xt + ut Yt = β1 + β1xt + vt X iv) Yapısal değişiklik de hata terimlerini ardışık bağımlı yapabilir. v) Bağımlı değişkende sistematik ölçme hataları da ardışık bağımlılığa neden olabilir. 9-

3 5.1.1 Ardışık Bağımlılık Süreçleri Ardışık bağımlılık, hata terimlerini üreten iki farklı süreç nedeniyle ortaya çıkabilir. Bunlardan birincisi otoregresif (autoregressive) süreçtir. Kısaca AR ile gösterilir. Eğer t dönemindeki hata terimi sadece t-1 dönemindeki hata terimi ile ilişkili ise AR(1) süreci söz konusudur: AR(1): u t = ρu t-1 + e t Burada ρ otokovaryans katsayısı ( ρ <1), e t beklenen değeri 0, varyansı sabit ve ardışık bağımlı olmayan hata terimidir 1. AR sürecinde gecikme sayısı ardışık bağımlılığın derecesini gösterir. AR(1) süreci birinci derece ardışık bağımlılığa neden olmaktadır. Yine bu süreçte ρ katsayısı, hata terimleri arasındaki ilişkinin yönünü gösterir. Eğer ρ>0 ise artı birinci derece ardışık bağımlılıktan, ρ<0 ise eksi birinci derece ardışık bağımlılıktan söz edilir. Eğer t dönemindeki hata terimi iki dönem gecikmeli hata terimi ile de ilişkili ise AR() süreci geçerlidir: AR(): u t = ρ 1 u t-1 + ρ u t- + e t Bu durumda hata terimleri arasında birinci ve ikinci derece ardışık bağımlılık vardır. Burada ρ 1 birinci derece, ρ ikinci derece ardışık bağımlılığın işaretini gösterir. Örneğin ρ 1 <0, ρ >0 ise eksi birinci derece, artı ikinci derece ardışık bağımlılık vardır. Hata terimi e t yine tüm ideal varsayımları sağlamaktadır. Daha genel olarak AR(m) aşağıdaki gibidir. AR(m): u t = ρ 1 u t-1 + ρ u t- + + ρ m u t-m + e t 1 ρ <1 koşulu hata terimi varyansının sonsuza gitmemesi için gereklidir. 9-3

4 Ardışık bağımlılığa neden olabilecek ikinci tür bir süreç hareketli ortalamalar (moving average) sürecidir. Kısaca MA ile gösterilir. Birinci, ikinci, ve m inci derece ardışık bağımlılığa neden olan MA süreçleri sırasıyla aşağıdaki gibidir. MA(1): u t = e t + λe t-1 MA(): u t = e t + λ 1 e t-1 + λ e t- MA(m): u t = e t + λ 1 e t-1 + λ e t- + + λ m e t-m Burada ardışık bağımlılığın işareti λ katsayısı ( λ <1) tarafından belirlenir. Örneğin MA() sürecinde λ 1 >0, λ <0 ise artı birinci derece, eksi ikinci derece ardışık bağımlılık vardır. Buradaki ifadelerde yer alan e t ise yine beklenen değeri 0, varyansı sabit ve ardışık bağımlı olmayan hata terimidir. Ardışık bağımlılık AR ve MA süreçleri yanında ikisinin bir bileşimi olarak da karşımıza çıkabililir. Böyle bir süreç otoregresif hareketli ortalamalar (autoregressive moving average) süreci olarak adlandırılır ve kısaca ARMA ile gösterilir. AR(p) ve MA(q) sürecinin bileşiminden oluşan ARMA(p,q) süreci aşağıdaki gibidir. u t = ρ 1 u t-1 + ρ u t- + + ρ p u t-p + e t + λ 1 e t-1 + λ e t- + + λ q e t-q Örneğin ARMA(,3) süreci aşağıdaki gibidir. u t = ρ 1 u t-1 + ρ u t- + e t + λ 1 e t-1 + λ e t- + λ 3 e t Ardışık Bağımlılık Sorunu EKK Tahmin Edicilerini Nasıl Etkiler? 1. Ardışık bağımlılık sorunu varken EKK sapmasızlık özelliliğini korur.. Ancak etkinlik özelliliğini kaybeder. 3. Hata terimlerinin varyansının (σσ uu ) tahmin edicisi uu ii aşağı doğru sapmalı olur. Dolayısıyla Var(ββ jj ) aşağı doğru, t istatistikleri yukarı doğru sapmalı olur. Benzer bir şekilde R ve F istatistiği de yukarı doğru sapmalıdır. nn kk 9-4

5 9.3. Ardışık Bağımlılık Sorununun Varlığı Saptanabilir mi? Grafik incelemesi i. Hata terimi tahminlerinin (uu tt ) zaman içindeki seyri ardışık bağımlılığın varlığı ile ilgili bir gösterge olabilir. Hata terimleri tahmini (u t ) hata terimlerine (u t ) eşit olmamakla beraber hata terimlerinin şekli ile ilgili bir ipucu verebilir. Aşağıdaki şekil bir ardışık bağımlılık sorunu olduğunu göstermektedir. u t zaman ii. Hata terimi tahminlerinin (uu tt ) ile (uu tt 1 ) arasındaki ilişkiyi gösteren grafik de ardışık bağımlılık ile ilgili fikir verebilir. Aşağıdaki grafik de ardışık bağımlılığa işaret etmektedir. 6 ut ut

6 9.3.. Durbin-Watson Test i Birinci Ardışık bağımlılık sorununun AR(1) süreci ile ortaya çıktığını varsayalım: u t = ρu t-1 + e t Bu ilişkideki ρ katsayısı için H 0 : ρ=0, (H 1 : ρ 0) hipotezini test ederek ardışık bağımlılık sorunu test edilebilir. Bu hipotezi test etmek için kullanılacak test istatistiği (DW) aşağıdaki gibi hesaplanmaktadır. DW = tt=nn tt= (u t u t 1 ) tt=nn (u t ) tt= DW testinin arkasında aşağıdaki varsayımlar yatmaktadır: 1- Regresyon modeli sabit terim içerir, - Hata terimleri AR(1) süreci ile üretilmiştir. 3- Regresyon modelinde açıklayıcı değişkenler arasında gecikmeli bağımlı değişken yoktur. 4- Verilerde eksik gözlem yoktur. Örneğin arası veri ile tahmin yapıyorsak bu dönem içindeki bir veya daha fazla yıl (örneğin 1988 ve 001) eksik değildir. DW istatistiği ρ nun tahmini olan ρ cinsinden yazılabilir. DW = u t + u t 1 u t u t 1 u t u t ile u t 1 arasında yalnızca bir gözlemlik fark olduğu için birbirlerine yaklaşık olarak eşittirler. Dolayısıyla DW yeniden aşağıdaki gibi yazılabilir. DW u t u t u t 1 u t = 1 u t u t 1 u t Diğer yandan ρρ = CCCCCC(uu tt, uu tt 1 ) VVVVVV(uu tt ) olduğundan ρ = (u t u t )(u t 1 u t 1 ) (u t u t ) = u tu t 1 u t Bu durumda DW aşağıdaki gibi bulunur. DW (1 ρ) 9-6

7 DW ın ρ ile olan ilişkisi bu istatistiğin alabileceği değerlerle ilgili fikir verebilir. Hatırlanacağı gibi -1<ρ<1 dir. Eğer ρ = -1 ise (eksi ardışık bağımlılık) DW = 4, ρ = 0 ise (ardışık bağımlılık yok) DW = ve ρ = 1 ise (artı ardışık bağımlılık) DW = 0 bulunur. Demek ki DW istatistiği 0 ile 4 arasında değerler almaktadır (0<DW<4) ve beklenen değeri dir (E(DW)=). H 0 : ρ=0, H 1 : ρ 0 hipotezinin testinde hesaplanan DW değeri tablo değeri ile karşılaştırılmalıdır. Aşağıdaki grafik kabul, ret ve belirsizlik alanlarını göstermektedir. 1. Ret alanı + Ardışık Bağımlılık var 1. Belirsizlik alanı. Belirsizlik alanı. Ret alanı - Ardışık Bağımlılık var f(dw) H o kabul alanı Ardışık bağımlılık yok 0 d L d U 4-dU 4-d L 4 0 DW h < d L ise DW h 1. Ret alanındadır. H 0 reddedilir. Artı birinci derece ardışık bağımlılık sorunu vardır. d L DW h d U ise DW h 1. Belirsizlik alanındadır. H 0 ın reddi veya kabulu konusunda bir karar verilemez. d U DW h 4-d U ise DW h Kabul alanındadır. H 0 kabul edilir. Artı veya eksi ardışık bağımlılık sorunu yoktur. 4 - d U DW h 4-d L ise DW h. Belirsizlik alanındadır. H 0 ın reddi veya kabulu konusunda yine bir karar verilemez. 4-d L DW h < 4 ise DW h. Ret alanındadır. H 0 reddedilir. Artı eksi birinci derece ardışık bağımlılık sorunu vardır. 9-7

8 Daha önce de belirtildiği gibi DW testi sabit terim olan denklemler için kullanılabilir. Eğer tahmin ettiğimiz denklemde sabit terim yoksa sabit terim ekleyerek yeniden tahmin edilmeli ve test uygulanmalıdır. Ayrıca denklemde gecikmeli bağımlı değişken varsa da bu test uygulanamamaktadır. Böyle bir durumda Durbin bir h istatistiği önermiştir. Y t = β 1 + β X t + β 3 X 3t + + β k X kt + γy t-1 + u t modeli için h istatistiği aşağıdaki gibi hesaplanmaktadır. n h = ρ 1 nvar(γ) DW (1 ρ) ve böylece ρ 1 (DW/) olduğundan h istatistiği aşağıdaki gibi yeniden yazılabilir. h = 1 ( DW ) n 1 nvar(γ) Burada nvar(γ) denklemin sağ tarafında yer alan gecikmeli bağımlı değişkenin katsayısının varyansının tahminidir. Eğer varyans yüksekse ve nvar(γ) kullanılamaz. > 1 bulunuyorsa bu test Bu testte de H 0 : ρ=0, H 1 : ρ 0 hipotezi test edilmektedir. Hesaplana h istatistiği yaklaşık olarak standart normal dağılıma sahiptir. Bu nedenle hesaplana değer standart normal dağılım tablosu ile karşılaştırılmalıdır. Eğer h >z* ise (burada z* kritik değerdir) H 0 reddedilir, ardışık bağımlılık sorunu vardır. Yüzde 5 anlamlılık düzeyinde z* kritik değeri 1.96 dır. 9-8

9 Breusch-Godfrey LM Test i Durbin Watson yalnızda birinci derece ardışık bağımlılığı ve yalnızca AR sürecini dikkate almaktadır. Ayrıca denklemde sabit terim yoksa veya gecikmeli bağımlı değişken varsa kullanılamamaktadır. Yine Durbin in önerdiği h testi gecikmeli bağımlı değişkenin varyansı yüksek ise yine kullanılamamaktadır. Bu sınırlamları aşan, daha yüksek dereceden ve örneğin MA sürecini de dikkate alan daha genel bir test, Breusch ve Godfrey tarafından geliştirilen LM Test idir. Testte öncelikle asıl denklem tahmin edilerek aşağıdaki adımlar izlenmelidir. Y t = β 1 + β X t + β 3 X 3t + + β k X kt + u t 1- Asıl denklem tahmininden hata tahminleri bulunur: u t - Hata tahminlerinin bağımlı değişken olduğu aşağıdaki yardımcı denklem tahmin edilir: u t = β 1 + β 1 X t + + β k X kt + d 1 u t 1 + d u t + + d p u t p + w t Burada dikkat edilecek bir nokta gecikmeler nedeniyle gözlem sayısının n-p olmasıdır. Bu yardımcı denklem için R hesaplanır. Buna R Y diyelim. 3- Bu testte boş hipotez ardışık bağımlılığın olmamasıdır: H 0 : AR(m), MA(m) veya ARMA(p,q) ilişkisi yok H 1 : AR(m), MA(m) veya ARMA(p,q) ilişkisi var R Y nin gözlem sayısı (n-p) ile çarpımı asimptotik olarak ki-kare dağılımına sahiptir ve serbestlik derecesi yardımcı denklemde yer alan gecikme sayısıdır. (n-p)r Y χ (p) 4- Eğer hesaplanan χ değeri tablo değerinden büyükse H 0 reddedilir. Yani ardışık bağımlılık sorunu var demektir. Eğer büyük değilse ardışık bağımlılık sorunu yoktur. 9-9

10 LM yönteminde herhangi bir derece ardışık bağımlılık test edilebilir. Örneğin 1. derece için u t = β 1 + β 1 X t + + β k X kt + d 1 u t 1 w t (p=1) 4. derece için u t = β 1 + β 1 X t + + β k X kt + d 1 u t 4 w t (p=1) 1. den 4. dereceye kadar için u t = β 1 + β 1 X t + + β k X kt + d 1 u t 1 + d u t + d 3 u t 3 + d 4 u t 4 (p=4) 1.,. ve 4. derece için u t = β 1 + β 1 X t + + β k X kt + d 1 u t 1 + d u t + d 4 u t 4 (p=3) yardımcı denklemleri tahmin edilir Ardışık Bağımlılık Sorununun Çözümü Var mıdır? Ardışık bağımlılığın dışlanan değişken, matematiksel kalıp hatası veya yapısal değişiklik gibi bir nedenden kaynaklanıyorsa bu sorunların çözülmesi, örneğin dışlanan değişkenin modele eklenmesi, modelin doğru olarak tanımlanması veya yapısal değişikliğin dikkate alınması çözüm olabilir. Eğer bu önlemler çözüm olmuyorsa aşağıdaki yöntemler izlenmelidir Ardışık bağımlılığın yapısı ve ρ biliniyorsa: GEKK Yöntemi Daha önce de belirtildiği gibi, GEKK yöntemi asıl denklemden bir dönüştürülmüş denklem elde edip bu dönüştürülmüş denklemi EKK ile tahmin etmek anlamına gelir. Y t = β 1 + β X t + β 3 X 3t + + β k X kt + u t asıl denklemimiz olsun ve birinci dereceden ardışık bağımlılık olduğunu varsayalım: u t = ρu t-1 + e t. e t beklenen değeri 0, varyansı sabit ve ardışık bağımlı olmayan hata terimidir. Bu durumda dönüştürme için asıl denklemin bir gecikmesini alıp ρ ile çarpalım. ρy t-1 = ρβ 1 + β ρx t-1 + β 3 ρx 3t β k ρx kt-k + ρu t-1 asıl denklem ile bu denklemin farkı aşağıdaki gibidir: (Y t - ρy t-1 ) = β 1 (1-ρ) + β (X t -ρx t-1 ) + β 3 (X 3t - ρx 3t-1 )+ + β k (X kt - ρx kt-k ) + (u t - ρu t-1 ) veya Y * t = β * 1 + β X * t + β 3 X * 3t + + β k X * kt + e t Burada Y * t = (Y t - ρy t-1 ), β * 1 = β 1 (1-ρ), X * it = (X it ρx it-1 ) ve e t = (u t - ρu t-1 ) dir. Bu dönüştürme ile elde edilen hata terimi tüm ideal varsayımları sağladığından dönüştürülmüş denkleme EKK uygulanması ardışık bağımlılık sorununu çözer. 9-10

11 8.4.. ρ bilinmiyorsa GEKK yönteminin uygulanabilmesi için ρ değerinin bilinmesi gerekir. Ancak ρ değeri genellikle bilinmez, tahmin edilmesi gerekir. Bu değerin nasıl tahmin edileceğine bağlı olarak iki farklı GEKK uygulaması vardır. i- Cochrane-Orkutt Yöntemi Cochrane-Orkutt yöntemi bir yineleme yöntemidir. 1- Öncelikle asıl denklemin (Y t = β 1 + β X t + β 3 X 3t + + β k X kt + u t ) tahmini sonucu hata terimleri tahminleri elde edilir: u t (u t = Y t - β 1 + β X t + + β k X kt ) 1 - Bu tahminler kullanılarak u t = ρu t 1 + v t tahmin edilir ve ρ bulunur. Buna ρ diyelim. 3- Elde edilen değerle (Y t - 1 ρ Y t-1 ) = β 1 (1-1 ρ ) + β (X t - 1 ρ X t-1 ) + + β k (X kt - 1 ρ X kt-k ) + (u t - 1 ρ u t-1 ) denklemi tahmin edilir. Bu tahminde kullanılan 1 ρ değerlerinin ρ nun iyi bir tahmini olduğu önceden bilinemediğinden son denklemden elde edilen katsayı tahminlerine de 1 ( β i ) güvenmek mümkün değildir. Bu nedenle katsayı tahminlerini asıl denklemde yerine koyarak bu denklemin hata tahminleri hesaplanır: u t = Y t - β 1 + β X t + + β k X kt Elde edilen hata terimleri ile u t = ρ u t 1 + w t denklemi tahmin edilir. Bulunan katsayıya ρ diyelim. 5- Üçüncü maddedeki yöntemle yine hata terimleri tahminlerini bulalım: u. Bu şekilde devam ettiğimizde ρ tahminleri arasındaki fark çok küçük (örneğin den küçük) bir değer almışsa yineleme durdurulur. 9-11

12 ii- İki aşamalı Durbin Yöntemi Bu yöntem iki aşamadan oluşmaktadır. 1- Birinci aşamada öncelikle aşağıdaki dönüştürülmüş denklem tahmin edilir. Y t = β 1 (1-ρ) + β (X t -ρx t-1 ) + + β k (X kt -ρx kt-k ) + ρy t-1 + e t Y t-1 in katsayısı tahmin edilen değerini ρ nun tahmini olarak ele alalım: ρ - İkinci aşamada, birinci aşamada bulunan ρ değeri kullanılarak Y t * = (Y t - ρy t-1 ), β 1 * = β 1 (1-ρ), X it * = (X it ρx it-1 ) ve e t = (u t - ρu t-1 ) tanımları yapılarak aşağıdaki dönüştürülmüş denklem tahmin edilir. Y t * = β 1 * + β X t * + + β k X kt * + e t Bu denklemin hata terimi e t tüm ideal varsayımları sağladığından dönüştürülmüş denkleme EKK uygulanması ardışık bağımlılık sorununu çözer. 9-1

3. TAHMİN En Küçük Kareler (EKK) Yöntemi 1

3. TAHMİN En Küçük Kareler (EKK) Yöntemi 1 3. TAHMİN 3.1. En Küçük Kareler (EKK) Yöntemi 1 En Küçük Kareler (EKK) yöntemi, regresyon çözümlemesinde en yaygın olarak kullanılan, daha sonra ele alınacak bazı varsayımlar altında çok aranan istatistiki

Detaylı

A EKONOMETRİ. n iken de aynı sonuç geçerliyse, β hangi. A) β nın sabit olması. D) Xβ nın normal dağılımlı olması. E) n olması. dur?

A EKONOMETRİ. n iken de aynı sonuç geçerliyse, β hangi. A) β nın sabit olması. D) Xβ nın normal dağılımlı olması. E) n olması. dur? EKONOMETRİ KPSS-AB-PÖ/007 1. 6. SORULARI AŞAĞIDAKİ BİLGİLERE β β β ( ) Y i = 1 + x + + i k x ik+ u i i = 1,, n denkleminin matrislerle ifadesi Y = X + u dur. Y( nx1 ), β ( kx1 ), X( nxk) ve β u nx1 boyutludur

Detaylı

4. TAHMİN SONUÇLARININ DEĞERLENDİRİLMESİ Katsayıların Yorumu

4. TAHMİN SONUÇLARININ DEĞERLENDİRİLMESİ Katsayıların Yorumu 4. TAHMİN SONUÇLARININ DEĞERLENDİRİLMESİ 4.1. Katsayıların Yorumu Y i = β 0 + β 1 X 1i + β X i + + β k X ki + u i gibi çok açıklayıcı değişkene sahip bir modelde, anakütle regresyon fonksiyonu, E(Y i X

Detaylı

2. REGRESYON ANALİZİNİN TEMEL KAVRAMLARI Tanım

2. REGRESYON ANALİZİNİN TEMEL KAVRAMLARI Tanım 2. REGRESYON ANALİZİNİN TEMEL KAVRAMLARI 2.1. Tanım Regresyon analizi, bir değişkenin başka bir veya daha fazla değişkene olan bağımlılığını inceler. Amaç, bağımlı değişkenin kitle ortalamasını, açıklayıcı

Detaylı

Matris Cebiriyle Çoklu Regresyon Modeli

Matris Cebiriyle Çoklu Regresyon Modeli Matris Cebiriyle Çoklu Regresyon Modeli Hüseyin Taştan Mart 00 Klasik Regresyon Modeli k açıklayıcı değişkenden oluşan regresyon modelini her gözlem i için aşağıdaki gibi yazabiliriz: y i β + β x i + β

Detaylı

3 KESİKLİ RASSAL DEĞİŞKENLER VE OLASILIK DAĞILIMLARI

3 KESİKLİ RASSAL DEĞİŞKENLER VE OLASILIK DAĞILIMLARI ÖNSÖZ İÇİNDEKİLER III Bölüm 1 İSTATİSTİK ve SAYISAL BİLGİ 11 1.1 İstatistik ve Önemi 12 1.2 İstatistikte Temel Kavramlar 14 1.3 İstatistiğin Amacı 15 1.4 Veri Türleri 15 1.5 Veri Ölçüm Düzeyleri 16 1.6

Detaylı

TOBB Ekonomi ve Teknoloji Üniversitesi İKT352 Ekonometri II, Dönem Sonu Sınavı

TOBB Ekonomi ve Teknoloji Üniversitesi İKT352 Ekonometri II, Dönem Sonu Sınavı TOBB Ekonomi ve Teknoloji Üniversitesi Öğr.Gör.: Yrd. Doç. Dr. A. Talha YALTA Ad, Soyad: Açıklamalar: Bu sınav toplam 100 puan değerinde 5 sorudan oluşmaktadır. Sınav süresi 90 dakikadır ve tüm soruların

Detaylı

8. BÖLÜM: DEĞİŞEN VARYANS

8. BÖLÜM: DEĞİŞEN VARYANS 8. BÖLÜM: DEĞİŞEN VARYANS Bu bölümde; Değişen Varyans Tespiti için Grafik Çizme Değişen Varyans Testi: Park Testi Değişen Varyans Testi: White Testi Değişen Varyans Probleminin Çözümü: Ağırlıklandırılmış

Detaylı

ZAMAN SERİSİ REGRESYONLARINDA ARDIŞIK

ZAMAN SERİSİ REGRESYONLARINDA ARDIŞIK ZAMAN SERİSİ REGRESYONLARINDA ARDIŞIK BAĞINTI ve DEĞİŞEN VARYANS Hüseyin Taştan 1 1 Yıldız Teknik Üniversitesi İktisat Bölümü Ders Kitabı: Introductory Econometrics: A Modern Approach (4th ed.) J. Wooldridge

Detaylı

Zaman Serileri Verileriyle Regresyon Analizinde Ardışık ZAMAN SERİSİ REGRESYONLARINDA

Zaman Serileri Verileriyle Regresyon Analizinde Ardışık ZAMAN SERİSİ REGRESYONLARINDA 1 ZAMAN SERİSİ REGRESYONLARINDA ARDIŞIK BAĞINTI ve DEĞİŞEN VARYANS Hüseyin Taştan 1 1 Yıldız Teknik Üniversitesi İktisat Bölümü Ders Kitabı: Introductory Econometrics: A Modern Approach (4th ed.) J. Wooldridge

Detaylı

OLS Yönteminin Asimptotik (Büyük Örneklem) Özellikleri SIRADAN EN KÜÇÜK KARELER (OLS) Asimptotik Özellikler: Tutarlılık. Asimptotik Özellikler

OLS Yönteminin Asimptotik (Büyük Örneklem) Özellikleri SIRADAN EN KÜÇÜK KARELER (OLS) Asimptotik Özellikler: Tutarlılık. Asimptotik Özellikler 1 SIRADAN EN KÜÇÜK KARELER (OLS) YÖNTEMİNİN ASİMPTOTİK ÖZELLİKLERİ Hüseyin Taştan 1 1 Yıldız Teknik Üniversitesi İktisat Bölümü Ders Kitabı: Introductory Econometrics: A Modern Approach (2nd ed.) J. Wooldridge

Detaylı

İÇİNDEKİLER ÖN SÖZ...

İÇİNDEKİLER ÖN SÖZ... İÇİNDEKİLER ÖN SÖZ... v GİRİŞ... 1 1. İSTATİSTİK İN TARİHÇESİ... 1 2. İSTATİSTİK NEDİR?... 3 3. SAYISAL BİLGİDEN ANLAM ÇIKARILMASI... 4 4. BELİRSİZLİĞİN ELE ALINMASI... 4 5. ÖRNEKLEME... 5 6. İLİŞKİLERİN

Detaylı

ZAMAN SERİLERİNDE REGRESYON ANALİZİ

ZAMAN SERİLERİNDE REGRESYON ANALİZİ ZAMAN SERİLERİNDE REGRESYON ANALİZİ 1 1. GİRİŞ Trent, serinin genelinde yukarıya ya da aşağıya doğru olan hareketlere denmektedir. Bu hareket bazen düz bir doğru şeklinde olmaktadır. Bu tür harekete sahip

Detaylı

SIRADAN EN KÜÇÜK KARELER (OLS)

SIRADAN EN KÜÇÜK KARELER (OLS) SIRADAN EN KÜÇÜK KARELER (OLS) YÖNTEMİNİN ASİMPTOTİK ÖZELLİKLERİ Hüseyin Taştan 1 1 Yıldız Teknik Üniversitesi İktisat Bölümü Ders Kitabı: Introductory Econometrics: A Modern Approach (2nd ed.) J. Wooldridge

Detaylı

DİNAMİK PANEL VERİ MODELLERİ. FYT Panel Veri Ekonometrisi 1

DİNAMİK PANEL VERİ MODELLERİ. FYT Panel Veri Ekonometrisi 1 DİNAMİK PANEL VERİ MODELLERİ FYT Panel Veri Ekonometrisi 1 Dinamik panel veri modeli (tek gecikme için) aşağıdaki gibi gösterilebilir; y it y it 1 x v it ' it i Gecikmeli bağımlı değişkenden başka açıklayıcı

Detaylı

İÇİNDEKİLER. BÖLÜM 1 Değişkenler ve Grafikler 1. BÖLÜM 2 Frekans Dağılımları 37

İÇİNDEKİLER. BÖLÜM 1 Değişkenler ve Grafikler 1. BÖLÜM 2 Frekans Dağılımları 37 İÇİNDEKİLER BÖLÜM 1 Değişkenler ve Grafikler 1 İstatistik 1 Yığın ve Örnek; Tümevarımcı ve Betimleyici İstatistik 1 Değişkenler: Kesikli ve Sürekli 1 Verilerin Yuvarlanması Bilimsel Gösterim Anlamlı Rakamlar

Detaylı

İstatistik ve Olasılık

İstatistik ve Olasılık İstatistik ve Olasılık KORELASYON ve REGRESYON ANALİZİ Doç. Dr. İrfan KAYMAZ Tanım Bir değişkenin değerinin diğer değişkendeki veya değişkenlerdeki değişimlere bağlı olarak nasıl etkilendiğinin istatistiksel

Detaylı

ÇOKLU REGRESYON ANALİZİNDE VARSAYIMLARDAN SAPMALARIN İNCELENMESİ

ÇOKLU REGRESYON ANALİZİNDE VARSAYIMLARDAN SAPMALARIN İNCELENMESİ ÇOKLU REGRESYON ANALİZİNDE VARSAYIMLARDAN SAPMALARIN İNCELENMESİ 1. ÇOKLU REGRESYON ANALİZİ VE VARSAYIMALARDAN SAPMALAR 1.1. Çoklu Regresyon modeli Varsayımları 1.2. Tahmincilerin anlamlılığının sınanması

Detaylı

YTÜ İktisat Bölümü EKONOMETRİ I Ders Notları

YTÜ İktisat Bölümü EKONOMETRİ I Ders Notları Yıldız Teknik Üniversitesi İktisat Bölümü Ekonometri I Ders Kitabı: J.M. Wooldridge, Introductory Econometrics A Modern Approach, 2nd. ed., 2002, Thomson Learning. Ch. 5: SEKK (OLS) nin Asimptotik Özellikleri

Detaylı

istatistik El 10 1_ ve 2_ sorular a Ş3 gldakl bilgilere göre Al 4 Bl 6 cı 7 Dl 8 Al 5 B) 12 CL 27 D) 28 E) 35 2Q 10 BS 4200-A

istatistik El 10 1_ ve 2_ sorular a Ş3 gldakl bilgilere göre Al 4 Bl 6 cı 7 Dl 8 Al 5 B) 12 CL 27 D) 28 E) 35 2Q 10 BS 4200-A 2Q 10 BS 4200- İstatistik sorulannın cevap l anmasında gerekli olabilecek tablolar ve f ormüller bu kita p ç ığın sonunda ver-ilmiştir. 1_ ve 2_ sorular a Ş3 gldakl bilgilere göre cevaplandırılacaktır

Detaylı

27 Mart Ders Kitabı: Introductory Econometrics: A Modern Approach (4th ed.) J. Wooldridge. 1 Yıldız Teknik Üniversitesi

27 Mart Ders Kitabı: Introductory Econometrics: A Modern Approach (4th ed.) J. Wooldridge. 1 Yıldız Teknik Üniversitesi ZAMAN SERİLERİ VERİLERİYLE REGRESYON ANALİZİNDE EK KONULAR Hüseyin Taştan 1 1 Yıldız Teknik Üniversitesi İktisat Bölümü Ders Kitabı: Introductory Econometrics: A Modern Approach (4th ed.) J. Wooldridge

Detaylı

Özilinti. Hatalar İlintili ise Ne Olur? Yrd. Doç. Dr. A. Talha YALTA Ekonometri 2 Ders Notları Sürüm 2,0 (Ekim 2011)

Özilinti. Hatalar İlintili ise Ne Olur? Yrd. Doç. Dr. A. Talha YALTA Ekonometri 2 Ders Notları Sürüm 2,0 (Ekim 2011) Özilinti Hatalar İlintili ise Ne Olur? Yrd. Doç. Dr. A. Talha YALTA Ekonometri 2 Ders Notları Sürüm 2,0 (Ekim 2011) Açık Lisans Bilgisi İşbu belge, Creative Commons Attribution-Non-Commercial ShareAlike

Detaylı

DOĞRUSAL ZAMAN SERİSİ MODELLERİ. Durağan ARIMA Modelleri: Otoregresiv Modeller AR(p) Süreci

DOĞRUSAL ZAMAN SERİSİ MODELLERİ. Durağan ARIMA Modelleri: Otoregresiv Modeller AR(p) Süreci DOĞRUSAL ZAMAN SERİSİ MODELLERİ Durağan ARIMA Modelleri: Otoregresiv Modeller AR(p) Süreci Tek Değişkenli Zaman Serisi Modelleri Ekonomik verilerin analizi ile ekonomik değişkenlerin gelecekte alabilecekleri

Detaylı

İçindekiler. Ön Söz... xiii

İçindekiler. Ön Söz... xiii İçindekiler Ön Söz.................................................... xiii Bölüm 1 İstatistiğe Giriş....................................... 1 1.1 Giriş......................................................1

Detaylı

Zaman Serileri Ekonometrisine Giriş

Zaman Serileri Ekonometrisine Giriş Zaman Serileri Ekonometrisine Giriş Box-Jenkins Yöntemi Ekonometri 2 Konu 26 Sürüm 2,0 (Ekim 2011) UADMK Açık Lisans Bilgisi İşbu belge, Creative Commons Attribution-Non-Commercial ShareAlike 3.0 Unported

Detaylı

7.Ders Bazı Ekonometrik Modeller. Đktisat (ekonomi) biliminin bir kavramı: gayrisafi milli hasıla.

7.Ders Bazı Ekonometrik Modeller. Đktisat (ekonomi) biliminin bir kavramı: gayrisafi milli hasıla. 7.Ders Bazı Ekonometrik Modeller Đktisat (ekonomi) biliminin bir kavramı: gayrisafi milli hasıla. Kaynak: TÜĐK dönemler gayri safi yurt içi hasıla düzeyi 1987-1 8680793 1987-2 9929354 1987-3 13560135 1987-4

Detaylı

İÇİNDEKİLER 1. GİRİŞ...

İÇİNDEKİLER 1. GİRİŞ... İÇİNDEKİLER 1. GİRİŞ... 1 1.1. Regresyon Analizi... 1 1.2. Uygulama Alanları ve Veri Setleri... 2 1.3. Regresyon Analizinde Adımlar... 3 1.3.1. Problemin İfadesi... 3 1.3.2. Konu ile İlgili Potansiyel

Detaylı

Normallik Varsayımı ve Ençok Olabilirlik Yöntemi

Normallik Varsayımı ve Ençok Olabilirlik Yöntemi Normallik Varsayımı ve Ençok Olabilirlik Yöntemi EO Açıklayıcı Örnekler Ekonometri 1 Konu 14 Sürüm 2,0 (Ekim 2011) UADMK Açık Lisans Bilgisi İşbu belge, Creative Commons Attribution-Non-Commercial ShareAlike

Detaylı

Hipotez. Hipotez Testleri. Y. Doç. Dr. İbrahim Turan Nisan 2011

Hipotez. Hipotez Testleri. Y. Doç. Dr. İbrahim Turan Nisan 2011 Hipotez Hipotez Testleri Y. Doç. Dr. İbrahim Turan Nisan 2011 Hipotez Nedir? Gözlemlenebilir (araştırılabilir) bir olay, olgu veya fikri mantıklı ve bilimsel olarak açıklamaya yönelik yapılan tahminlerdir.

Detaylı

17 Ekim Ders Kitabı: Introductory Econometrics: A Modern Approach (2nd ed.) J. Wooldridge. 1 Yıldız Teknik Üniversitesi

17 Ekim Ders Kitabı: Introductory Econometrics: A Modern Approach (2nd ed.) J. Wooldridge. 1 Yıldız Teknik Üniversitesi ÇOK DEĞİŞKENLİ REGRESYON ANALİZİ: TAHMİN Hüseyin Taştan 1 1 Yıldız Teknik Üniversitesi İktisat Bölümü Ders Kitabı: Introductory Econometrics: A Modern Approach (2nd ed.) J. Wooldridge 17 Ekim 2012 Ekonometri

Detaylı

A. Regresyon Katsayılarında Yapısal Kırılma Testleri

A. Regresyon Katsayılarında Yapısal Kırılma Testleri A. Regresyon Katsayılarında Yapısal Kırılma Testleri Durum I: Kırılma Tarihinin Bilinmesi Durumu Kırılmanın bilinen bir tarihte örneğin tarihinde olduğunu önceden bilinmesi durumunda uygulanır. Örneğin,

Detaylı

KORELASYON VE REGRESYON ANALİZİ. Doç. Dr. Bahar TAŞDELEN

KORELASYON VE REGRESYON ANALİZİ. Doç. Dr. Bahar TAŞDELEN KORELASYON VE REGRESYON ANALİZİ Doç. Dr. Bahar TAŞDELEN Günlük hayattan birkaç örnek Gelişim dönemindeki bir çocuğun boyu ile kilosu arasındaki ilişki Bir ailenin tükettiği günlük ekmek sayısı ile ailenin

Detaylı

İki Değişkenli Bağlanım Çıkarsama Sorunu

İki Değişkenli Bağlanım Çıkarsama Sorunu İki Değişkenli Bağlanım Çıkarsama Sorunu Aralık Tahmini Ekonometri 1 Konu 15 Sürüm 2,0 (Ekim 2011) UADMK Açık Lisans Bilgisi İşbu belge, Creative Commons Attribution-Non-Commercial ShareAlike 3.0 Unported

Detaylı

10. BÖLÜM: MODEL KURMA: FONKSİYONEL FORM SEÇİMİ

10. BÖLÜM: MODEL KURMA: FONKSİYONEL FORM SEÇİMİ 10. BÖLÜM: MODEL KURMA: FONKSİYONEL FORM SEÇİMİ Bu bölümde; Fonksiyonel Form için EViews Tablosu EViews ta Quasi R 2 Hesaplanması EViews ta Doğrusal ve Log-Lin Modeller için Quasi R 2 Hesaplanması EViews

Detaylı

14 Ekim 2012. Ders Kitabı: Introductory Econometrics: A Modern Approach (2nd ed.) J. Wooldridge. 1 Yıldız Teknik Üniversitesi

14 Ekim 2012. Ders Kitabı: Introductory Econometrics: A Modern Approach (2nd ed.) J. Wooldridge. 1 Yıldız Teknik Üniversitesi ÇOK DEĞİŞKENLİ REGRESYON ANALİZİ: ÇIKARSAMA Hüseyin Taştan 1 1 Yıldız Teknik Üniversitesi İktisat Bölümü Ders Kitabı: Introductory Econometrics: A Modern Approach (2nd ed.) J. Wooldridge 14 Ekim 2012 Ekonometri

Detaylı

UYGULAMALAR. Normal Dağılımlılık

UYGULAMALAR. Normal Dağılımlılık UYGULAMALAR EKONOMETRİYE GİRİŞ 0.01.008 1 Normal Dağılımlılık Amerika da 195-1941 yılları arasında sığır eti fiyatı ile kişi başı sığır eti tüketimi arasındaki ilişki incelenmiş ve aşağıdaki sonuç bulunmuştur.

Detaylı

EŞANLI DENKLEM MODELLERİ

EŞANLI DENKLEM MODELLERİ EŞANLI DENKLEM MODELLERİ Eşanlı denklem modelleri, tek denklemli modeller ile açıklanamayan iktisadi olayları açıklamak için kullanılan model türlerinden birisidir. Çift yönlü neden-sonuç ilişkisi söz

Detaylı

İSTATİSTİKSEL VERİ ANALİZİ

İSTATİSTİKSEL VERİ ANALİZİ İSTATİSTİKSEL VERİ ANALİZİ Prof. Dr. Gül ERGÜN Hacettepe Üniversitesi Kasım 2013 İstatistik Nedir? İSTATİSTİK Belirli bir konuda toplanan sayısal değerlerdir. Buna göre, 2012 yılında Türkiye de kayıtlı

Detaylı

İstatistik ve Olasılık

İstatistik ve Olasılık İstatistik ve Olasılık -II Prof. Dr. İrfan KAYMAZ İki Ortalama Farkının Güven Aralığı Anakütle Varyansı Biliniyorsa İki ortalama arasındaki farkın dağılımına ilişkin Z değişkeni: Güven aralığı ifadesinde

Detaylı

Zaman Serileri Ekonometrisine Giriş

Zaman Serileri Ekonometrisine Giriş Zaman Serileri Ekonometrisine Giriş Yöney Özbağlanım Modeli Ekonometri 2 Konu 27 Sürüm 2,0 (Ekim 2011) UADMK Açık Lisans Bilgisi İşbu belge, Creative Commons Attribution-Non-Commercial ShareAlike 3.0 Unported

Detaylı

DOĞRUSAL ve DOĞRUSAL OLMAYAN SINIRLAMALAR DOĞRUSAL OLMAYAN SINIRLAMALARIN TESTİ

DOĞRUSAL ve DOĞRUSAL OLMAYAN SINIRLAMALAR DOĞRUSAL OLMAYAN SINIRLAMALARIN TESTİ DOĞRUSAL ve DOĞRUSAL OLMAYAN SINIRLAMALAR DOĞRUSAL SINIRLAMALARIN TESTİ t testi F testi Diğer testler: Chow testi MWD testi DOĞRUSAL OLMAYAN SINIRLAMALARIN TESTİ Benzerlik Oranı Testi Lagrange Çarpanı

Detaylı

ÜSTEL DÜZLEŞTİRME YÖNTEMİ

ÜSTEL DÜZLEŞTİRME YÖNTEMİ ÜSEL DÜLEŞİRME YÖNEMİ ÜSEL DÜLEŞİRME YÖNEMİ Bu bölüme kadar anlatılan yöntemler zaman içinde değişmeyen parametre varsayımına uygun serilerin tahminlerinde kullanılmaktaydı. Bu tür seriler deterministik

Detaylı

Çoklu Bağlanım Çıkarsama Sorunu

Çoklu Bağlanım Çıkarsama Sorunu Çoklu Bağlanım Çıkarsama Sorunu Diğer Sınama ve Konular Ekonometri 1 Konu 27 Sürüm 2,0 (Ekim 2011) UADMK Açık Lisans Bilgisi İşbu belge, Creative Commons Attribution-Non-Commercial ShareAlike 3.0 Unported

Detaylı

Korelasyon, Korelasyon Türleri ve Regresyon

Korelasyon, Korelasyon Türleri ve Regresyon Korelasyon, Korelasyon Türleri ve Regresyon İçerik Korelasyon Korelasyon Türleri Korelasyon Katsayısı Regresyon KORELASYON Korelasyon iki ya da daha fazla değişken arasındaki doğrusal ilişkiyi gösterir.

Detaylı

İstatistik ve Olasılık

İstatistik ve Olasılık İstatistik ve Olasılık Ders 8: Prof. Dr. Tanım Hipotez, bir veya daha fazla anakütle hakkında ileri sürülen, ancak doğruluğu önceden bilinmeyen iddialardır. Ortaya atılan iddiaların, örnekten elde edilen

Detaylı

MIT OpenCourseWare Ekonomide İstatistiksel Yöntemlere Giriş Bahar 2009

MIT OpenCourseWare Ekonomide İstatistiksel Yöntemlere Giriş Bahar 2009 MIT OpenCourseWare http://ocw.mit.edu 14.30 Ekonomide İstatistiksel Yöntemlere Giriş Bahar 2009 Bu materyale atıfta bulunmak ve kullanım koşulları için http://ocw.mit.edu/terms sayfasını ziyaret ediniz.

Detaylı

TOBB Ekonomi ve Teknoloji Üniversitesi İKT351 Ekonometri I, Ara Sınavı

TOBB Ekonomi ve Teknoloji Üniversitesi İKT351 Ekonometri I, Ara Sınavı TOBB Ekonomi ve Teknoloji Üniversitesi Öğr.Gör.: Yrd. Doç. Dr. A. Talha YALTA Ad, Soyad: Açıklamalar: Bu sınav toplam 100 puan değerinde 4 sorudan oluşmaktadır. Sınav süresi 90 dakikadır ve tüm soruların

Detaylı

Rastgele Değişkenlerin Dağılımları. Mühendislikte İstatistik Yöntemler

Rastgele Değişkenlerin Dağılımları. Mühendislikte İstatistik Yöntemler Rastgele Değişkenlerin Dağılımları Mühendislikte İstatistik Yöntemler Ayrık Rastgele Değişkenler ve Olasılık Dağılımları Yapılan çalışmalarda elde edilen verilerin dağılışı ve dağılış fonksiyonu her seferinde

Detaylı

7. Ders Genel Lineer Modeller Singüler Modeller, Yanlış veya Bilinmeyen Kovaryanslar, Đlişkili Hatalar

7. Ders Genel Lineer Modeller Singüler Modeller, Yanlış veya Bilinmeyen Kovaryanslar, Đlişkili Hatalar 7. Ders Genel Lineer Modeller Singüler Modeller, Yanlış veya Bilinmeyen Kovaryanslar, Đlişkili Hatalar Y = X β + ε Lineer Modeli pekçok özel hallere sahiptir. Bunlar, ε nun dağılımına, Cov( ε ) kovaryans

Detaylı

Doç. Dr. Dilek ALTAŞ İSTATİSTİKSEL ANALİZ

Doç. Dr. Dilek ALTAŞ İSTATİSTİKSEL ANALİZ I Doç. Dr. Dilek ALTAŞ İSTATİSTİKSEL ANALİZ II Yayın No : 2845 Teknik Dizisi : 158 1. Baskı Şubat 2013 İSTANBUL ISBN 978-605 - 377 868-4 Copyright Bu kitabın bu basısı için Türkiye deki yayın hakları BETA

Detaylı

11. BÖLÜM: EŞANLI DENKLEM SİSTEMLERİ

11. BÖLÜM: EŞANLI DENKLEM SİSTEMLERİ 11. BÖLÜM: EŞANLI DENKLEM SİSTEMLERİ Bu bölümde; Yapısal denklemleri kullanarak vergiler ve net ihracatın zaman serilerini oluşturma EKK ile CO tahmini EViews TSLS metodu ile iki aşamalı EKK regresyon

Detaylı

Avrasya Ekonomik Birliği Elektrik Piyasası Entegrasyonu Kapsamında Kırgızistan ın Enerji Tüketim Projeksiyonu

Avrasya Ekonomik Birliği Elektrik Piyasası Entegrasyonu Kapsamında Kırgızistan ın Enerji Tüketim Projeksiyonu Avrasya Ekonomik Birliği Elektrik Piyasası Entegrasyonu Kapsamında Kırgızistan ın Enerji Tüketim Projeksiyonu Prof. Dr. Ahmet BurçinYERELİ Hacettepe Üniversitesi, İktisadi ve İdari Bilimler Fakültesi,

Detaylı

Bu örnekte kullanılan veri 200 gözleme sahiptir ve örnek için özel olarak oluşturulmuştur.

Bu örnekte kullanılan veri 200 gözleme sahiptir ve örnek için özel olarak oluşturulmuştur. Değişen Varyans Örnek Bu örnekte kullanılan veri 200 gözleme sahiptir ve örnek için özel olarak oluşturulmuştur. 1 Aşağıda yer alan denklemi tahmin edelim; y i = β 0 + β 1 x 1i + β 2 x 2i + u i EViews

Detaylı

Eşanlı Denklem Modelleri

Eşanlı Denklem Modelleri Eşanlı Denklem Modelleri Eşanlı Denklem Yöntemleri Ekonometri 2 Konu 23 Sürüm 2,0 (Ekim 2011) UADMK Açık Lisans Bilgisi İşbu belge, Creative Commons Attribution-Non-Commercial ShareAlike 3.0 Unported (CC

Detaylı

Hipotez Testlerine Giriş. Hipotez Testlerine Giriş

Hipotez Testlerine Giriş. Hipotez Testlerine Giriş Hipotez Testlerine Giriş Hipotez Testlerine Giriş Hipotez Testlerine Giriş Gözlem ya da deneme sonucu elde edilmiş sonuçların, raslantıya bağlı olup olmadığının incelenmesinde kullanılan istatistiksel

Detaylı

İstatistiksel Yorumlama

İstatistiksel Yorumlama İstatistiksel Yorumlama Amaç, popülasyon hakkında yorumlamalar yapmaktadır. Populasyon Parametre Karar Vermek Örnek İstatistik Tahmin 1 Tahmin Olaylar hakkında tahminlerde bulunmak ve karar vermek zorundayız

Detaylı

ARALIK TAHMİNİ (INTERVAL ESTIMATION):

ARALIK TAHMİNİ (INTERVAL ESTIMATION): YTÜ-İktisat İstatistik II Aralık Tahmini I 1 ARALIK TAHMİNİ INTERVAL ESTIMATION): Nokta tahmininde ilgilenilen anakütle parametresine ilişkin örneklem bilgisinden hareketle tek bir sayı üretilir. Bir nokta

Detaylı

Appendix B: Olasılık ve Dağılım Teorisi

Appendix B: Olasılık ve Dağılım Teorisi Yıldız Teknik Üniversitesi İktisat Bölümü Ekonometri I Ders Notları Ders Kitabı: J.M. Wooldridge, Introductory Econometrics A Modern Approach, 2nd. edition, Thomson Learning Appendix B: Olasılık ve Dağılım

Detaylı

YTÜ İktisat Bölümü EKONOMETRİ I Ders Notları

YTÜ İktisat Bölümü EKONOMETRİ I Ders Notları Yıldız Teknik Üniversitesi İktisat Bölümü Ekonometri I Ders Kitabı: J.M. Wooldridge, Introductory Econometrics A Modern Approach, 2nd. edition, Thomson Learning Appendix B: Olasılık ve Dağılım Teorisi

Detaylı

YTÜ İktisat Bölümü EKONOMETRİ I Ders Notları

YTÜ İktisat Bölümü EKONOMETRİ I Ders Notları Yıldız Teknik Üniversitesi İktisat Bölümü Ekonometri I Ders Kitabı: J.M. Wooldridge, Introductory Econometrics A Modern Approach, 2nd. edition, Thomson Learning Appendix B: Olasılık ve Dağılım Teorisi

Detaylı

3. BÖLÜM: EN KÜÇÜK KARELER

3. BÖLÜM: EN KÜÇÜK KARELER 3. BÖLÜM: EN KÜÇÜK KARELER Bu bölümde; Kilo/Boy Örneği için Basit bir Regresyon EViews Denklem Penceresinin İçeriği Biftek Talebi Örneği için Çalışma Dosyası Oluşturma Beef 2.xls İsimli Çalışma Sayfasından

Detaylı

ZAMAN SERİLERİNDE AYRIŞTIRMA YÖNTEMLERİ

ZAMAN SERİLERİNDE AYRIŞTIRMA YÖNTEMLERİ ZAMAN SERİLERİNDE AYRIŞTIRMA YÖNTEMLERİ 1 A. GİRİŞ Gözlemlerin belirli bir dönem için gün, hafta, ay, üç ay, altı ay, yıl gibi birbirini izleyen eşit aralıklarla yapılması ile elde edilen seriler zaman

Detaylı

009 BS 400- İstatistik sonılannın cevaplanmasında gerekli olabilecek tablolar ve formüller bu kitapçığın sonunda verilmiştir. 1. şağıdakilerden hangisi doğal birimdir? l TV alıcısı Bl Trafik kazası CL

Detaylı

KORELASYON VE TEKLİ REGRESYON ANALİZİ-EN KÜÇÜK KARELER YÖNTEMİ

KORELASYON VE TEKLİ REGRESYON ANALİZİ-EN KÜÇÜK KARELER YÖNTEMİ KORELASYON VE TEKLİ REGRESYON ANALİZİ-EN KÜÇÜK KARELER YÖNTEMİ 1 KORELASYON ANALİZİ İki değişken arasındaki doğrusal ilişkinin gücünü(derecesini) ve yönünü belirlemek için hesaplanan bir sayıdır. Belirli

Detaylı

Mühendislikte İstatistiksel Yöntemler

Mühendislikte İstatistiksel Yöntemler Mühendislikte İstatistiksel Yöntemler BÖLÜM 7 TAHMİNLER Yrd. Doç. Dr. Fatih TOSUNOĞLU 1 Tahmin (kestirim veya öngörü): Mevcut bilgi ve deneylere dayanarak olayın bütünü hakkında bir yargıya varmaktır.

Detaylı

BASİT REGRESYON MODELİ

BASİT REGRESYON MODELİ BASİT REGRESYON MODELİ Hüseyin Taştan 1 1 Yıldız Teknik Üniversitesi İktisat Bölümü Ders Kitabı: Introductory Econometrics: A Modern Approach (2nd ed.) J. Wooldridge 14 Ekim 2012 Ekonometri I: Basit Regresyon

Detaylı

ANADOLU ÜNİVERSİTESİ REGRESYON KATSAYILARININ GÜVEN ARALIĞI = + REGRESYON KATSAYILARININ GÜVEN ARALIĞI

ANADOLU ÜNİVERSİTESİ REGRESYON KATSAYILARININ GÜVEN ARALIĞI = + REGRESYON KATSAYILARININ GÜVEN ARALIĞI ANADOLU ÜNİVERSİTESİ Deney Tasarımı ve Regresyon Analizi Regresyonda Güven Aralıkları ve Hipotez Testleri Doç. Dr. Nihal ERGİNEL-2015 REGRESYON KATSAYILARININ GÜVEN ARALIĞI + in güven aralığı : i-) n 30

Detaylı

Hipotez Testleri. Mühendislikte İstatistik Yöntemler

Hipotez Testleri. Mühendislikte İstatistik Yöntemler Hipotez Testleri Mühendislikte İstatistik Yöntemler Hipotez Testleri Parametrik Testler ( z ve t testleri) Parametrik Olmayan Testler (χ 2 Testi) Hipotez Testleri Ana Kütle β( µ, σ ) Örnek Kütle b ( µ

Detaylı

Nokta ve Aralık Tahmini Merkezi Limit Teoremi Örneklem Dağılımı Hipotez Testlerine Giriş

Nokta ve Aralık Tahmini Merkezi Limit Teoremi Örneklem Dağılımı Hipotez Testlerine Giriş Nokta ve Aralık Tahmini Merkezi Limit Teoremi Örneklem Dağılımı Hipotez Testlerine Giriş Doç. Dr. Ertuğrul ÇOLAK Eskişehir Osmangazi Üniversitesi Tıp Fakültesi Biyoistatistik Anabilim Dalı Nokta Tahmini

Detaylı

Prof. Dr. Özkan ÜNVER Prof. Dr. Hamza GAMGAM Doç. Dr. Bülent ALTUNKAYNAK SPSS UYGULAMALI TEMEL İSTATİSTİK YÖNTEMLER

Prof. Dr. Özkan ÜNVER Prof. Dr. Hamza GAMGAM Doç. Dr. Bülent ALTUNKAYNAK SPSS UYGULAMALI TEMEL İSTATİSTİK YÖNTEMLER Prof. Dr. Özkan ÜNVER Prof. Dr. Hamza GAMGAM Doç. Dr. Bülent ALTUNKAYNAK SPSS UYGULAMALI TEMEL İSTATİSTİK YÖNTEMLER Gözden Geçirilmiş ve Genişletilmiş 8. Baskı Frekans Dağılımları Varyans Analizi Merkezsel

Detaylı

Korelasyon ve Regresyon

Korelasyon ve Regresyon Korelasyon ve Regresyon Korelasyon- (lineer korelasyon) Açıklayıcı (Bağımsız) Değişken x çalışma zamanı ayakkabı numarası İki değişken arasındaki ilişkidir. Günlük sigara sayısı SAT puanı boy Yanıt (Bağımlı)

Detaylı

OLASILIK ve İSTATİSTİK Hipotez Testleri

OLASILIK ve İSTATİSTİK Hipotez Testleri OLASILIK ve İSTATİSTİK Hipotez Testleri Yrd.Doç.Dr. Pınar YILDIRIM Okan Üniversitesi Mühendislik ve Mimarlık Fakültesi Bilgisayar Mühendisliği Bölümü Hipotezler ve Testler Hipotez, kitleye(yığına) ait

Detaylı

Bir Normal Dağılım Ortalaması İçin Testler

Bir Normal Dağılım Ortalaması İçin Testler Bir Normal Dağılım Ortalaması İçin Testler İÇERİK o Giriş ovaryansı Bilinen Bir Normal Dağılım Ortalaması İçin Hipotez Testler P-değerleri: II. Çeşit hata ve Örnekleme Büyüklüğü Seçimi Örnekleme Büyüklüğü

Detaylı

KONULAR. 14 Ekim 2012. Ders Kitabı: Introductory Econometrics: A Modern Approach (2nd ed.) J. Wooldridge. 1 Yıldız Teknik Üniversitesi

KONULAR. 14 Ekim 2012. Ders Kitabı: Introductory Econometrics: A Modern Approach (2nd ed.) J. Wooldridge. 1 Yıldız Teknik Üniversitesi ÇOKLU REGRESYON ANALİZİNDE EK KONULAR Hüseyin Taştan 1 1 Yıldız Teknik Üniversitesi İktisat Bölümü Ders Kitabı: Introductory Econometrics: A Modern Approach (2nd ed.) J. Wooldridge 14 Ekim 2012 Ekonometri

Detaylı

Değişen Varyans (Heteroscedasticity) Sabit Varyans (Homoscedasticity) Varsayımı Altında Basit Regresyon Modeli

Değişen Varyans (Heteroscedasticity) Sabit Varyans (Homoscedasticity) Varsayımı Altında Basit Regresyon Modeli 1 2 Değişen Varyans (Heteroscedasticity) DEĞİŞEN VARYANS Hüseyin Taştan 1 1 Yıldız Teknik Üniversitesi İktisat Bölümü Ders Kitabı: Introductory Econometrics: A Modern Approach (2nd ed.) J. Wooldridge 14

Detaylı

MATE 211 BİYOİSTATİSTİK DÖNEM SONU SINAVI

MATE 211 BİYOİSTATİSTİK DÖNEM SONU SINAVI Öğrenci Bilgileri Ad Soyad: İmza: MATE 211 BİYOİSTATİSTİK DÖNEM SONU SINAVI 26 Mayıs, 2014 Numara: Grup: Soru Bölüm 1 10 11 12 TOPLAM Numarası (1-9) Ağırlık 45 15 30 20 110 Alınan Puan Yönerge 1. Bu sınavda

Detaylı

Editörler Prof.Dr. Ömer Yılmaz & Doç.Dr. Nihat Işık EKONOMETRİ

Editörler Prof.Dr. Ömer Yılmaz & Doç.Dr. Nihat Işık EKONOMETRİ Editörler Prof.Dr. Ömer Yılmaz & Doç.Dr. Nihat Işık EKONOMETRİ Yazarlar Prof. Dr. Hüseyin Özer Prof.Dr. Murat Karagöz Doç.Dr. H. Bayram Işık Doç.Dr. Mustafa Kemal Beşer Doç.Dr. Nihat Işık Doç.Dr. Selçuk

Detaylı

TOBB Ekonomi ve Teknoloji Üniversitesi İKT351 Ekonometri I, Dönem Sonu Sınavı

TOBB Ekonomi ve Teknoloji Üniversitesi İKT351 Ekonometri I, Dönem Sonu Sınavı TOBB Ekonomi ve Teknoloji Üniversitesi Öğr.Gör.: Yrd. Doç. Dr. A. Talha YALTA Ad, Soyad: Açıklama ve uyarılar: Bu sınav toplam 100 puan değerinde 6 sorudan oluşmaktadır. Sınav süresi 90 dakikadır ve tüm

Detaylı

BÖLÜM 12 STUDENT T DAĞILIMI

BÖLÜM 12 STUDENT T DAĞILIMI 1 BÖLÜM 12 STUDENT T DAĞILIMI 'Student t dağılımı' ya da kısaca 't dağılımı'; normal dağılım ve Z dağılımının da içerisinde bulunduğu 'sürekli olasılık dağılımları' ailesinde yer alan dağılımlardan bir

Detaylı

altında ilerde ele alınacaktır.

altında ilerde ele alınacaktır. YTÜ-İktisat İstatistik II Nokta Tahmin Yöntemleri 1 NOKTA TAHMİN YÖNTEMLERİ Şimdiye kadar verilmiş tahmin edicilerin sonlu örneklem ve asimptotik özelliklerini inceledik. Acaba bilinmeyen anakütle parametrelerini

Detaylı

Nedensel Modeller Y X X X

Nedensel Modeller Y X X X Tahmin Yöntemleri Nedensel Modeller X 1, X 2,...,X n şeklinde tanımlanan n değişkenin Y ile ilgili olmakta; Y=f(X 1, X 2,...,X n ) şeklinde bir Y fonksiyonu tanımlanmaktadır. Fonksiyon genellikle aşağıdaki

Detaylı

İSTATİSTİK-II. Korelasyon ve Regresyon

İSTATİSTİK-II. Korelasyon ve Regresyon İSTATİSTİK-II Korelasyon ve Regresyon 1 Korelasyon ve Regresyon Genel Bakış Korelasyon Regresyon Belirleme katsayısı Varyans analizi Kestirimler için aralık tahminlemesi 2 Genel Bakış İkili veriler aralarında

Detaylı

ANADOLU ÜNİVERSİTESİ. ENM 317 MÜHENDİSLİK İSTATİSTİĞİ PARAMETRİK OLMAYAN TESTLER Prof. Dr. Nihal ERGİNEL

ANADOLU ÜNİVERSİTESİ. ENM 317 MÜHENDİSLİK İSTATİSTİĞİ PARAMETRİK OLMAYAN TESTLER Prof. Dr. Nihal ERGİNEL ANADOLU ÜNİVERSİTESİ ENM 317 MÜHENDİSLİK İSTATİSTİĞİ PARAMETRİK OLMAYAN TESTLER Prof. Dr. Nihal ERGİNEL PARAMETRİK OLMAYAN TESTLER Daha önce incelediğimiz testler, normal dağılmış ana kütleden örneklerin

Detaylı

Hatalar Bilgisi ve İstatistik Ders Kodu: Kredi: 3 / ECTS: 5

Hatalar Bilgisi ve İstatistik Ders Kodu: Kredi: 3 / ECTS: 5 Ders Kodu: 0010070021 Kredi: 3 / ECTS: 5 Yrd. Doç. Dr. Serkan DOĞANALP Necmettin Erbakan Üniversitesi Harita Mühendisliği Bölümü Konya 07.01.2015 1 Giriş 2 Giriş Matematiksel istatistiğin konusu yığın

Detaylı

BİYOİSTATİSTİK DERSLERİ AMAÇ VE HEDEFLERİ

BİYOİSTATİSTİK DERSLERİ AMAÇ VE HEDEFLERİ BİYOİSTATİSTİK DERSLERİ AMAÇ VE HEDEFLERİ DÖNEM I-I. DERS KURULU Konu: Bilimsel yöntem ve istatistik Amaç: Biyoistatistiğin tıptaki önemini kavrar ve sonraki dersler için gerekli terminolojiye hakim olur.

Detaylı

YTÜ İktisat Bölümü EKONOMETRİ I Ders Notları

YTÜ İktisat Bölümü EKONOMETRİ I Ders Notları Yıldız Teknik Üniversitesi İktisat Bölümü Ekonometri I Ders Kitabı: J.M. Wooldridge, Introductory Econometrics A Modern Approach, 2nd. edition, Thomson Learning Appendix C: İstatistiksel Çıkarsama Doç.

Detaylı

İstatistik ve Olasılık

İstatistik ve Olasılık İstatistik ve Olasılık - I Prof. Dr. İrfan KAYMAZ Tanım Tahmin (kes1rim veya öngörü): Mevcut bilgi ve deneylere dayanarak olayın bütünü hakkında bir yargıya varmak7r. ü Bu anlamda, anakütleden çekilen

Detaylı

Ch. 11: Zaman Serileri Verileriyle Regresyon Analizinde Ek Konular

Ch. 11: Zaman Serileri Verileriyle Regresyon Analizinde Ek Konular Yıldız Teknik Üniversitesi İktisat Bölümü Ekonometri II Ders Notları Ders Kitabı: J.M. Wooldridge, Introductory Econometrics A Modern Approach, 2nd. ed., 2002, Thomson Learning. Ch. 11: Zaman Serileri

Detaylı

MIT OpenCourseWare http://ocw.mit.edu. 14.30 Ekonomide İstatistiksel Yöntemlere Giriş Bahar 2009

MIT OpenCourseWare http://ocw.mit.edu. 14.30 Ekonomide İstatistiksel Yöntemlere Giriş Bahar 2009 MIT OpenCourseWare http://ocw.mit.edu 14.30 Ekonomide İstatistiksel Yöntemlere Giriş Bahar 2009 Bu materyale atıfta bulunmak ve kullanım koşulları için http://ocw.mit.edu/terms sayfasını ziyaret ediniz.

Detaylı

MAK 210 SAYISAL ANALİZ

MAK 210 SAYISAL ANALİZ MAK 210 SAYISAL ANALİZ BÖLÜM 2- HATA VE HATA KAYNAKLARI Doç. Dr. Ali Rıza YILDIZ 1 GİRİŞ Bir denklemin veya problemin çözümünde kullanılan sayısal yöntem belli bir giriş verisini işleme tabi tutarak sayısal

Detaylı

Meslek lisesi ve devlet lisesine giden N tane öğrenci olduğu ve bunların yıllık okul harcamalarına ait verilerin olduğu varsayılsın.

Meslek lisesi ve devlet lisesine giden N tane öğrenci olduğu ve bunların yıllık okul harcamalarına ait verilerin olduğu varsayılsın. KUKLA DEĞİŞKENLİ MODELLER Bir kukla değişkenli modeller (Varyans Analiz Modelleri) Kukla değişkenlerin diğer kantitatif değişkenlerle alındığı modeller (Kovaryans Analizi Modeller) Kukla değişkenlerin

Detaylı

Bir özvektörün sıfırdan farklı herhangi bri sabitle çarpımı yine bir özvektördür.

Bir özvektörün sıfırdan farklı herhangi bri sabitle çarpımı yine bir özvektördür. ÖZDEĞER VE ÖZVEKTÖRLER A n n tipinde bir matris olsun. AX = λx (1.1) olmak üzere n 1 tipinde bileşenleri sıfırdan farklı bir X matrisi için λ sayıları için bu denklemi sağlayan bileşenleri sıfırdan farklı

Detaylı

Prof. Dr. Aydın Yüksel MAN 504T Yön. için Finansal Analiz & Araçları Ders: Risk-Getiri İlişkisi ve Portföy Yönetimi I

Prof. Dr. Aydın Yüksel MAN 504T Yön. için Finansal Analiz & Araçları Ders: Risk-Getiri İlişkisi ve Portföy Yönetimi I Risk-Getiri İlişkisi ve Portföy Yönetimi I 1 Giriş İşlenecek ana başlıkları sıralarsak: Finansal varlıkların risk ve getirisi Varlık portföylerinin getirisi ve riski 2 Risk ve Getiri Yatırım kararlarının

Detaylı

rasgele değişkeninin olasılık yoğunluk fonksiyonu,

rasgele değişkeninin olasılık yoğunluk fonksiyonu, 3.6. Bazı Sürekli Dağılımlar 3.6.1 Normal Dağılım Normal dağılım hem uygulamalı hem de teorik istatistikte kullanılan oldukça önemli bir dağılımdır. Normal dağılımın istatistikte önemli bir yerinin olmasının

Detaylı

BİYOİSTATİSTİK Korelasyon Analizi Yrd. Doç. Dr. Aslı SUNER KARAKÜLAH

BİYOİSTATİSTİK Korelasyon Analizi Yrd. Doç. Dr. Aslı SUNER KARAKÜLAH BİYOİSTATİSTİK Korelasyon Analizi Yrd. Doç. Dr. Aslı SUNER KARAKÜLAH Ege Üniversitesi, Tıp Fakültesi, Biyoistatistik ve Tıbbi Bilişim AD. Web: www.biyoistatistik.med.ege.edu.tr 1 Bir değişkenin değerinin,

Detaylı

Sürelerine Göre Tahmin Tipleri

Sürelerine Göre Tahmin Tipleri Girişimcilik Bölüm 5: Talep Tahmini scebi@ktu.edu.tr 5.1. Talep Tahmini Tahmin: Gelecek olayları önceden kestirme bilim ve sanatı. İstatistiksel Tahmin: Geçmiş verileri matematiksel modellerde kullanarak

Detaylı

Nitel Tepki Bağlanım Modelleri

Nitel Tepki Bağlanım Modelleri Doğrusal-Dışı Yaklaşım ve Nitel Tepki Bağlanım Modelleri Doğrusal-Dışı Yaklaşım ve Ekonometri 2 Konu 18 Sürüm 2,0 (Ekim 2011) Doğrusal-Dışı Yaklaşım ve UADMK Açık Lisans Bilgisi İşbu belge, Creative Commons

Detaylı

Rastgele Süreçler. Rastgele süreç konsepti (Ensemble) Örnek Fonksiyonlar. deney. Zaman (sürekli veya kesikli) Ensemble.

Rastgele Süreçler. Rastgele süreç konsepti (Ensemble) Örnek Fonksiyonlar. deney. Zaman (sürekli veya kesikli) Ensemble. 1 Rastgele Süreçler Olasılık taması Rastgele Deney Çıktı Örnek Uzay, S (s) Zamanın Fonksiy onu (t, s) Olayları Tanımla Rastgele süreç konsepti (Ensemble) deney (t,s 1 ) 1 t Örnek Fonksiyonlar (t,s ) t

Detaylı

χ 2 Testi Mühendislikte İstatistik Yöntemler Bağımsızlık Testi Homojenlik Testi Uygunluk Testi

χ 2 Testi Mühendislikte İstatistik Yöntemler Bağımsızlık Testi Homojenlik Testi Uygunluk Testi χ Testi Mühendislikte İstatistik Yöntemler χ Testi Bağımsızlık Testi Homojenlik Testi Uygunluk Testi χ Testi Sayısal olmayan değişkenler arasındaki ilişkinin testi (Bağımsızlık) Farklı örnek kütlelerin

Detaylı

Regresyon Modelinin Uzantılar

Regresyon Modelinin Uzantılar Bölüm m 6:İki Degişkenli Dogrusal Regresyon Modelinin Uzantılar ları İki degişkenli modellere paralel olarak Sıfır r noktasından ndan geçen en regresyonu yani β 1 yok iken... Ölçü birimleri sorunu ve Y

Detaylı