ÜÇGENDE AÇI-KENAR BAĞINTILARI
|
|
|
- Ekin Sporel
- 10 yıl önce
- İzleme sayısı:
Transkript
1 ÜÇGN ÇI-NR ĞINTILRI ir üçgende üük çı krşısınd üük kenr, küçük çı krşısınd küçük kenr ulunur. 3 Şekildeki verilere göre, en uzun kenr şğıdkilerden hngisidir? 3 3 üçgeninde, kenrlr rsınd > > ğıntısı vrs, m ( ) > m ( ) > m ( ) ğıntısı vrdır. ) [] ) [] ) [] ) [] ) [] ve irer dik üçgen [] [] [] [] = m = m Yukrıdki verilere göre, nun kç tmsı değeri vrdır? ) 1 ) ) 3 ) ) Üçgenlerdeki tüm çılr erleştirilirse, üçgeninde, < < dur. üçgeninde, < < dur dik üçgeninin en üük çısı dik çı olduğundn, en üük kenr [] dır. urdn, > m dir. dik üçgeninin en üük çısı dik çı olduğundn, en üük kenr [] dır. < m dir. urdn, < < ulunur. nun lileeği tmsı değerleri, 8,, 1 dur. Üç frklı değer lilir. oğru Seçenek: üçgeninde, < < dur. urdn, en uzun kenr, [] dır. 1 o Yukrıdki verilere göre, küçük tmsı değerleri toplmı kçtır? oğru Seçenek: ir üçgen [] ve [] çıortlr. m() = = m = 1m m() nın en üük ve en ) 8 ) 8 ) 88 ) 8 )
2 ve irer üçgen çevre() = 3 m() = = 1m o o o 1 [] iç çıort ve [] dış çıort olduğundn, m() = ve m() = tir. üçgeninde, < olduğundn, < tir. urdn, 33 < tir. en z 3 dir. m()+ = dir. urdn, < 1 Yukrıdki verilere göre, değeri kçtır? o m() nın en küçük tmsı ) ) ) ) ) ulunur. urdn, en çok dir. urdn, + 3 = dir. oğru Seçenek: Üçgende ir kenr uzunluğu; diğer iki kenrın uzunluklrı toplmındn küçük, frklrının mutlk değerinden üüktür. < < < < + < < + ir üçgen = 1m = 3 + = 1 Unkpnı Yınılık 1 üçgeninde, < + dir. şitsizliğin her iki trfın ekleelim; + < + + < Çevre() Çevre() 3 < = = 1 ulunur. urdn, < olduğundn, m ( ) > dir. m() = ulunur. o oğru Seçenek: -1 Yukrıdki verilere göre, nun en üük tmsı değeri kç m dir? ) 1 ) ) 3 ) ) üçgeninde, 3 + ( 1) < 1 < dir. urdn, + < 1 ve1 < + 3 dir. urdn, < ve < ulunur. = 3 + olduğundn, 3 < 1ve = 3 + < ulunur. urdn, = ulunur. ir üçgende ir kenr uzunluğu dim çevrenin rısındn küçüktür. Çevre( ) Çevre( ) <, < ve Çevre( ) < dir. 3
3 ve irer üçgen = m = m = 1m = 13m = ir dörtgen [] [] [] [] = m = m = + = olduğun göre, in tmsı değerleri Yukrıdki verilere göre, = in değer rlığı şğıdkilerden hngisidir? ) 3 < < 1 ) < < 1 toplmı kçtır? ) ) 1 ) 3 ) ) 8 ) < < 1 ) < < 1 ) < < 1 üçgeninde, 1 < < 1 + dır. üçgeninde, 13 < < 13 + tür. urdn, < < 1 ve < < 1 ulunur. şitsizlikler ortk çözülürse, < < 1 ulunur. oğru Seçenek: ir üçgen [ ] [ ] = = m = in değer rlığı (,k) olduğun göre, nun en üük değeri için k kçtır? ) 1 ) ) 3 ) ) Unkpnı Yınılık = ve = olk şekilde noktsı llım. urdn, = = m ve = = m dir. üçgeninde, < < + urdn, < < 1 ulunur. in değerleri toplmı; = 3 ulunur. F 1 oğru Seçenek: ir üçgen F ir dik üçgen [ F] [ ] = 1 m = m = Yukrıdki verilere göre, in en üük tmsı değeri kçtır? ) 1 ) 1 ) 1 ) 1 ) 3 [] çizilirse, = = ulunur. üçgeninde, 1 < < + dır.urdn, = ve + = k ulunur. = ise, F = 3 m ve = 1 m ulunur. = 1 m için, k = 1 + = ulunur. oğru Seçenek:
4 F = F = olsun. üçgeninde, 1 < < + 1 urdn, 3 < < 1 ulunur. F dik üçgeninde, < olduğundn, < 1 dir. = 1 m ulunur. üçgeninde; oğru Seçenek: ir üçgen = = m = m = Yukrıdki verilere göre, in en küçük tmsı değeri kçtır? ) ) 8 ) ) 1 ) m()> ise > + m()< ise < + m() = ise = + dir. ir üçgende uzunluklrın dışınd frklı ir veri (ikizkenrlık, çıort, vs.) vrs u veri çı hkkınd fikir edineilmek için kullnılmlıdır. ir üçgen [] ve [] çıortlr = m = m = Yukrıdki verilere göre, in kç tmsı değeri vrdır? ) ) ) ) ) 8 Unkpnı Yınılık α üçgeninde, m() = m() = α < dir. urdn, β > ulunur. üçgeninde, ve ulunur > + >. en z 8 m ulunur. α β oğru Seçenek: ir üçgen, diklik merkezi = m = m = Yukrıdki verilere göre, in kç tmsı değeri vrdır? ) ) ) ) 3 ) m ( ) üçgeninde,m() = + > dir. üçgeninde, m() > olduğundn, > + urdn, < ulunur. < < + olduğundn, < < ulunur. < ve < tır. in değerleri, 3,, ve dır. dört tmsı değeri lır. oğru Seçenek: üçgeninin diklik merkezi üçgenin içinde olduğundn, üçgen dr çılı ir üçgendir. m()< olduğundn, < + dir. < ulunur. m()< olduğundn, < + dir. < 1 ulunur. 1 dır. < < ; 8, ve 1 değerlerini lilir. Üç frklı değeri vrdır. oğru Seçenek:
5 F ir üçgen [ ] çıort m ( ) = m ( ) = m = m F = P üçgeninde P ir iç nokt ise, < P < { ve nun üük olnı} dır. Yukrıdki verilere göre, in kç tmsı değeri vrdır? ) 3 ) ) ) ) ir üçgen + + F m() = m() =,m() = m() = olsun. m(f) = m() = + ulunur.urdn, F = = m ulunur. F ikizkenr üçgeninde, + < olduğundn, > dir. F üçgeninde > + urdn, < ve - < < +, < < 18 ulunur. indeğerleri;,,,8 dir. oğru Seçenek: ir üçgende kenrlr ile rdımı doğrulr rsınd ters ir ğıntı (kenr üüdükçe rdımı doğrulr küçülür, kenr küçüldükçe rdımı doğrulr üür.) vrdır. üçgeninde, >>ise h <h <h n <n <n v <v <v dir. Üçgende ir kenr it ükseklik çıort ve kenrort rsınd; Unkpnı Yınılık Çevre() = m dir. P un göre, P nun en üük tmsı değeri kçtır? ) ) 1 ) ) 1 ) 1 üçgeninde, < P < { ve nun üükolnı} olduğundn, en uzun kenr olsun. üçgeninde < olduğundn P < < ulunur. urdn P = 1m ulunur. oğru Seçenek: ir üçgen ir iç nokt üçgeninin çevresi tmsı olrk en çok 3 m olduğun göre, + toplmı tmsı olrk en z kçtır? ) ) 1 ) ) 1 ) 1 h n v h n v h n v ğıntısı vrdır. üçgeninde, < + < + olduğundn, < + ve + < + dir. urdn, + + = 3 < ( + ) P z üçgeninde P ir iç nokt ise, Çevre() < + + z < Çevre() dir. =,= ve = olsun. ulunur. 18 < + dir. + = 1 m ulunur. oğru Seçenek:
6 ir üçgen [ ] 1 m 1. (u test için tvsie edilen süre 3 dkikdır) Yukrıdki verilere göre, üçgeninin çevresi şğıdkilerden hngisi olmz? ) 3 ) 31 ) 3 ) 33 ) 3 üçgeninde [ ] olduğundn, { } ve nun üük olnı ğıntısı vrdır. - 1 ir üçgen = = + 3 = 1 m +3 Yukrıdki verilere göre, in kç tmsı değeri vrdır? ) 1 ) ) 3 ) ) urdn, > kul edersek, 1 m ulunur. üçgeninde, + > olduğundn, + > 1 ulunur. üçgeninin çevresi 3 m den üüktür. oğru Seçenek: ir üçgen [] ükseklik, [] kenrort ve [] çıortdır. = = Unkpnı Yınılık. ir üçgen Çevre() = 1 m dir. un göre, nin kç tmsı değeri vrdır? ) ) 8 ) ) 1 ) Yukrıdki verilere göre, üçgeninin kenrlrı rsındki sırlm şğıdkilerden hngisidir? ) < < ) < < ) < < ) < < ) < < h = v = n verilior. üçgeninde, h < n < v, h < n < v ve h < n < v olduğundn, h = v < v urdn, > ve v = n < v urdn, > ve h = n < n urdn, > ulunur. urdn, > > elde edilir. oğru Seçenek: 3. + ir üçgen m()<m() = m = = + - Yukrıdki verilere göre, in kç tmsı değeri vrdır? ) ) ) ) 8 ). hmet, kn ve Levent ir noktdn herhngi ikisi nı doğru üzerinde olmmk şrtıl sırsıl m, 1m ve m hreket ediorlr. un göre, Levent in hmet ve kn uzklıklrı toplmı tmsı olrk en çok kç m olilir? ) 3 ) ) 1 ) ) 3
7 . 8. ir üçgen ir ikizkenr üçgen Çevre() = m 8 geniş çı m() = m() = 8 m üçgeninin kenr uzunluklrı tmsı olduğun göre, kç frklı üçgeni çizileilir? Yukrıdki verilere göre, üçgeninin çevresinin en küçük tmsı değeri kç m dir? ) 1 ) 3 ) ) ) 8 ) 3 ) ) ) ). - 1 ir üçgen = = = 1 m Ζ 3+3 Yukrıdki verilere göre, üçgeninin çevresi en çok kç m dir? ) ) 13 ) 1 ) 1 ) Unkpnı Yınılık. ir üçgen, üçgeninin diklik merkezi = m = m = Yukrıdki verilere göre, in kç tmsı değeri vrdır? ) ) ) ) ) ir üçgen = = = 1 m 3+3 Yukrıdki verilere göre, üçgeninin çevresinin en üük tmsı değeri kç m dir? ) 1 ) ) ) ) 8 1. ir üçgen [] ve [] çıortlr = m = m = Yukrıdki verilere göre, in kç tmsı değeri vrdır? ) 3 ) ) ) ) 8
8 . 1. ir üçgen [] ve [] dışçıortlr = m = m = Yukrıdki verilere göre, in kç tmsı değeri vrdır? ) 3 ) ) ) ) ir diküçgen = 1 = + 1 = 1 m +1 Yukrıdki verilere göre, in en üük tmsı değeri kçtır? ) ) ) 8 ) ) 1 Unkpnı Yınılık 1. ir üçgen ir dik üçgen [ ] [ ] Çevre( ) = m = Yukrıdki verilere göre, in en üük tmsı değeri kçtır? ) 8 ) ) 1 ) ) 1 1. α β ir üçgen [ ] çıort m() = α m() = β = 18 m α > β = Yukrıdki verilere göre, üçgeninin çevresi en küçük tmsı değerini ldığınd in en üük tmsı değeri kçtır? ) ) 1 ) ) 1 ) ir üçgen ve P irer iç nokt = 8 m P = 13 m 13. ir üçgen [] ükseklik, [] çıort α = m() = m() = α Yukrıdki verilere göre, α nın en üük tmsı değeri kçtır? ) 8 ) ) 1 ) ) un göre, ve P noktlrı rsındki uzklık tmsı olrk en çok kç m dir? ) ) 1 ) 1 ) 18 ) ir üçgen ir iç nokt = 1 m = 1 m Yukrıdki verilere göre, ve üçgenlerinin çevreleri toplmının en üük tmsı değeri kçtır? ) 1 ) 1 ) 13 ) 1 )
9 18. 1 α ir üçgen [ ] [ ] = = 1 m = m = α > olduğun göre, in kç tmsı değeri vrdır? ) 3 ) ) ) ).,, irer üçgen = m = m = m = m Yukrıdki verilere göre, eşgeninin çevresinin en üük tmsı değeri kçtır? ) 33 ) 3 ) 3 ) 3 ) ve irer üçgen = 1 m = 8 m = m = Yukrıdki verilere göre, in en üük tmsı değeri kçtır? ) ) 3 ) ) ) ve irer üçgen = 1 m = 1 m = m = 8 m = Yukrıdki verilere göre, in değer rlığı şğıdkilerden hngisidir? ) 3 < < ) < < 1 ) < < ) 3 < < 1 ) < < z ir üçgen ir iç nokt = 8 m = m = 1 m Yukrıdki verilere göre, + + z toplmının en üük tmsı değeri kçtır? ) ) ) ) 3 ) 3 Unkpnı Yınılık [ ] [ ] = 8 m = 1 m = m = Yukrıdki verilere göre, in en üük değeri kç m dir? ) ) 3 ) ) ). F Yukrıdki verilere göre, küçük tmsı değeri kç m dir? ir geniş çılı üçgen [ ] [ ] [ F] [ ] = + F = m = m F + toplmının en ) ) ) 8 ) )
G E O M E T R İ. Dar Açılı Üçgen. denir. < 90, < 90, < 90 = lik açının karşısındaki kenara hipotenüs denir. > 90
G O M T R İ. ÖLÜM Üçgende çılr. ÜÇGN oğrusl olmyn üç noktyı birleştiren doğru prçlrının birleşim kümesine üçgen denir. ış çı ış çı ış çı. ÇILRIN GÖR ÜÇG N ÇŞİTLR İ r çılı Üçgen Üç çının ölçüsü de 90 den
11. SINIF GEOMETRİ. A, B ve C noktaları O merkezli çember üzerinde. Buna göre, BE uzunluğu kaç cm dir? B) 7 3 C) 8 3 A) 5 2 E) 9 5 D) 7 5 (2008 - ÖSS)
ÇMR ÖSS SRULRI 1., ve noktlrı merkezli çember üzerinde m( ) = m( ) =. ir dik üçgeni için, = cm ve = 4 cm olrk veriliyor. Merkezi, yrıçpı [] oln bir çember, üçgenin kenrını ve noktlrınd kesiyor. un göre,
ÜÇGENDE ALAN. Alan(ABC)= 1 2. (taban x yükseklik)
ÜÇGN LN Üçgende ln Şekilde verilen üçgeninde,, üçgenin köşeleri, [], [], [] üçgenin kenrlrıdır. c b üçgeninin kenrlrı dlndırılırken, her kenr krşısınd bulunn köşenin hrfi ile isimlendirilir. üçgeninin
G E O M E T R İ ÖRNEK. AB = 8 br. BC = x br ÇÖZÜM. Cevap C dir. ÖRNEK. [AF] [BF] [AF açıortay BE = EC EF = 1 br AB = 7 br
G O M T R İ www.kemivizyon.om.tr 3. ÖLÜM Üçgene çı Kenr ğıntılrı 1. < < + < < + < < + ir üçgene ir kenr uzunluğu, iğer iki kenr uzunluklrının toplmınn küçük; mutlk frkınn üyüktür. ÖRNK m() m() m() = r
VEKTÖRLER ÜNİTE 5. ÜNİTE 5. ÜNİTE 5. ÜNİTE 5. ÜNİT
VKTÖRLR ÜNİT 5. ÜNİT 5. ÜNİT 5. ÜNİT 5. ÜNİT VKTÖRLR 1. Kznım : Vektör kvrmını çıklr.. Kznım : İki vektörün toplmını ve vektörün ir gerçek syıyl çrpımını ceirsel ve geometrik olrk gösterir. VKTÖRLR 1.
11. BÖLÜM. Paralelkenar ve Eşkenar Dörtgen A. PARALELKENAR B. PARALELKENARIN ÖZEL LİKLERİ ÇÖZÜM ÖRNEK ÇÖZÜM ÖRNEK
G O M T R İ www.kdemivizyon.com.tr. ÖÜM Prlelkenr ve şkenr örtgen. PRNR rşılıklı kenrlrı prlel oln dörtgenlere prlelkenr denir. [] // [] [] // [] = =. PRNRIN ÖZ İRİ. rşılıklı çılr eş ve rdışık çılr ütünlerdir.
DOĞRUDA AÇILAR. Temel Kavramlar ve Doğruda Açılar. Açı Ölçü Birimleri. Açı Türleri. çözüm. kavrama sorusu
OĞRU ÇILR Temel Kvrmlr ve oğrud çılr Nokt: Nokt geometrinin en temel terimidir. ni, boyu vey yüksekliği yoktur. İnce uçlu bir klemin kğıt üzerinde bırktığı iz olrk düşünebilirsiniz. oğru: üz, klınlığı
(, ) ( ) [ ] [ ] ve [ ] [ ] ( ) ( ) ÜÇGENLERDE TRİGONOMETRİK ÖZELLİKLER. A. Kosinüs Teoremi: Herhangi bir ABC
ÜÇGNLR TRİGONOMTRİK ÖZLLİKLR. Kosinüs Teoremi: Herhngi ir üçgeninin, kenr uzunluklrı,, ise; = +... os = +... os = +... os İspt: Şekilde görüldüğü üçgeni, köşesi ile orijin, kenrı ile ekseni ile çkışk şekilde
GeoUmetri Notları Mustafa YAĞCI, Deltoit
www.mustfgci.cm.tr, 01 GeUmetri Ntlrı Mustf YĞI, [email protected] eltit n z ir köşegenine göre simetrik ln dörtgene deltit denir. = ve = lmsı deltidin iki ikizkenr üçgen rındırdığını nltır. Şöle de izh edeiliriz
DOĞRUDA AÇILAR GEOMETRİ KAF01 TEMEL KAVRAMLAR NOKTA: AÇI ÖLÇÜ BİRMLERİ: DERECE: = 360 2π DOĞRU: RADYAN: KOMŞU AÇI: KAPALI DOĞRU PARÇASI: TÜMLER AÇI:
ĞRU ÇILR GMTRİ 01 TML VRMLR NT: ĞRU: ÇI ÖLÇÜ İRMLRİ: R: RYN: R = 360 2π PLI ĞRU PRÇSI: MŞU ÇI: YRI ÇI ĞRU PRÇSI: TÜMLR ÇI: ÇI ĞRU PRÇSI: ÜTÜNLR ÇI: PLI YRI ĞRU (IŞIN): R ÇI: ÇI YRI ĞRU: İ ÇI: ÇI: GNİŞ
Mustafa YAĞCI, [email protected] Parabolün Tepe Noktası
Mustf YĞCI www.mustfgci.com.tr, 11 Ceir Notlrı Mustf YĞCI, [email protected] Prolün Tepe Noktsı Ö nce ir prolün tepe noktsı neresidir, onu htırltlım. Kc, prolün rtmktn zlm ve zlmktn rtm geçtiği nokt dieiliriz.
4. BÖLÜM: ÖZEL ÜÇGENLER VE TRİGONOMETRİ KONU ÖZETİ
. ÖLÜM: ÖZL ÜÇGNLR V TRİGONOMTRİ KONU ÖZTİ. ÖZL ÜÇGNLR c. Kenrlrın Göre Özel ik Üçgenler. ik Üçgen. Pisgor ğıntısı k k k k k k c b b b k k k k c c c c b b k k k 7k k 7k k k ir çısı 90 oln üçgene dik üçgen
YÜKSEKÖĞRETİM KURUMLARI SINAVI MATEMATİK SORU BANKASI ANKARA
YÜKSEKÖĞRETİM KURUMLARI SINAVI MATEMATİK SORU ANKASI ANKARA İÇİNDEKİLER Fonksionlr... Polinomlr... II. Dereceden Denklemler... 7 II. Dereceden Fonksionlrın Grfiği (Prbol)... 7 Krmşık Sılr... 9 Mntık...
ÖZEL EGE LİSESİ OKULLAR ARASI 18. MATEMATİK YARIŞMASI 8. SINIF TEST SORULARI
., ÖZEL EGE LİSESİ OKULLR RSI 8. MTEMTİK YRIŞMSI 8. SINI TEST SORULRI 5. 0,0008.0 b 0,0000.0 ise; b.0 kç bsmklı bir sıdır? olduğun göre, ifdesinin değeri şğıdkilerden hngisine eşittir? ) 80 ) 8 ) 8 ) 8
1983 ÖYS A) 410 B) 400 C) 380 D) 370 E) işleminin sonucu kaçtır. 7. a, b, c birer pozitif tam sayıdır. a= 2 A) 9 B) 3 C) 2 E) 8 D) 4
98 ÖYS. işleminin sonucu kçtır. 6. Bir stıcı ir mlı üzde 0 krl strken, stış fitı üzerinden üzde 0 indirim prk 8 lir stıor. Bu mlın mlieti kç lirdır? A) 0 B) 00 C) 80 D) 70 E) 60 7.,, c irer pozitif tm
Öğrenci Seçme Sınavı (Öss) / 7 Nisan Matematik Soruları ve Çözümleri
Öğrenci Seçme Sınvı (Öss) / 7 Nisn 99 Mtemtik Sorulrı ve Çözümleri (0,0 0,8) işleminin sonucu kçtır? 0,00 A) 00 B) 0 C) D), E) 0, Çözüm (0,0 0,00 0,8) 0, 0,00 0, 0,00 0 işleminin sonucu kçtır? A) B) C)
Sunum ve Sistematik. Bu başlıklar altında uygulamalar yaparak öğrenciye yorum, analiz, sentez yetisinin geliştirilmesi hedeflenmiştir.
Sunum ve Sistemtik ÖLÜM: ÖRTNLR LIŞTIRMLR u bşlık ltınd her bölüm kznımlr yrılmış, kznımlr tek tek çözümlü temel lıştırmlr ve sorulr ile trnmıştır. Özellikle bu kısmın sınıf içinde öğrencilerle işlenmesi
5. 6 x = 3 x + 3 x x = f(x) = 2 x + 1
Üstlü Sılrd İşlemler, Üstel Fonksion BÖLÜM 0 Test 0. 7 7 denkleminin çözüm kümesi şğıdkilerden hngisidir?. 6 olduğun göre, ifdesinin değeri kçtır? A) B) C) D) E) 6 9 6 A) {, } B) {, } C) {, } D) {, } E)
TYT / MATEMATİK Deneme - 6
. Herbir hücrenin sol üst köşesinde kreler içine yzıln syılrın işlemin sonucunu verdiğine dikkt ederek syılrı yerleştirmeliyiz. 7 6 T N M 5 6 T X. ^ h ^ h bulur. M N. 0 6 6 6 0 5 5 5 6 6 5 5 ^5h ^5h ^h
Trigonometri - I. Isınma Hareketleri. 1 Aşağıda verilenleri inceleyiniz. 2 Uygun eşleştirmeleri yapınız. 3 Uygun eşleştirmeleri yapınız.
Isınm Hreketleri şğıd verilenleri inceleyiniz. Yönlü çı: Trigonometrik irim Çember: Merkezi orjin, yrıçpı br oln çemberdir. O + yön éo Pozitif yönlü (Stin tersi) O yön éo Negtif yönlü (St yönü) O y x Denklemi:
( ) ( ) ( ) Üslü Sayılar (32) 2. ( ) ( 2 (2) 3. ( ) ( ) 3 4. ( 4 9 ) eşitliğini sağlayan a değeri kaçtır? (0) 0,6 0,4 : 4,9 =?
Üslü Sılr. +.4 8 (8) 4. ( ) (. ). ( ) 4 6 ( ) :( ) () + + 5..4. ( ) ( ) () 4. 5 5 ( 4 9 ) 5. 9 + + 9 = + eşitliğini sğln değeri kçtır (0) 6. ( ) ( ) ( ) 0,6 0,4 : 4,9 (-6) 4 8.. c 7. 4.. c ( c ) 8. 6 8
GEOMETRİ ASF. ÜNİTE 1: AÇI VE ÜÇGEN Doğruda Açılar UYGULAMA TESTİ 1 4. [AB // [CD. 1. Tümler iki açıdan biri diğerinin 5 katına eşittir.
ÜNİT 1: ÇI V ÜÇN oğrud çılr UYULM TSTİ 1 S 1. Tümler iki çıdn iri diğerinin 5 ktın eşittir. un göre, üyük çı ) 60 ) 64 ) 72 ) 75 ) 80 4. [ // [ h= 4-4 ) 30 ) 32 ) 36 ) 40 ) 50 2. [ // [,, noktlrı doğrusl
LYS LİMİT VE SÜREKLİLİK KONU ÖZETLİ ÇÖZÜMLÜ SORU BANKASI
LYS LİMİT VE SÜREKLİLİK KONU ÖETLİ ÇÖÜMLÜ SORU BANKASI ANKARA İÇİNDEKİLER Limit Kvrmı ve Grfik Sorulrı... Limitle İlgili Bzı Özellikler...7 Genişletilmiş Reel Sılrd Limit... Bileşke Fonksionun Limiti...
ÜÇGEN VE PİSAGOR BAĞINTISI
ÜÇGEN VE PİSGOR ĞINTISI KZNIMLR Üçgen kvrmı Üçgen çizimi Üçgenin kenrlrı rsındki ğıntılr Üçgen eşitsizliği Üçgenlerde yükseklik Üçgenlerde kenrorty Üçgenlerde çıorty Kenr ort dikme kvrmı Pisgor ğıntısı
ÖZEL EGE LİSESİ OKULLAR ARASI 19. MATEMATİK YARIŞMASI 8. SINIF TEST SORULARI
OKULLAR ARASI 9. MATEMATİK YARIŞMASI. 700 doğl syısı için şğıdkilerden kç tnesi doğrudur? I. Asl çrpnı tnedir. II. Asl çrpnlrının çrpımı 0 dir. III. Tmsyı bölenlerinin toplmı 0 dır. IV. Asl çrpnlrının
Tek ve Çift Fonksiyonlar. Özel Tanýmlý Fonksiyonlar. Bir Fonksiyonun En Geniþ Taným Kümesi. 1. Parçalý Fonksiyonlar. 2. Mutlak Deðer Fonksiyonu
Fonksionlr Konu Özeti. Köklü fonksionlrın en geniş tnım kümesi: f( f( n f( g( fonksionun en geniş tnım kümesi, g( koşulunu sğln noktlr kümesidir. f( f( n f( g( tüm reel sılrd tnımlıdır. fonksionu g( in
9. log1656 x, log2 y ve log3 z
ÖĞRENCİNİN ADI SOYADI: NUMARASI: Dersin Adı SINIFI: KONU: Logritm Alm Kurllrı Dersin Konusu. log4 loge ln4 işleminin sonucu kçtır? D) ln E) ln 6. olduğun göre, 8 9 log 9 4 ifdesi nee eşittir? D) E). log
ÜÇGENDE BENZERLİK. Benzerlik. Benzerlik Oranı. Uyarı
ÜÇN NZRLİK enzerlik eometride benzerlik kvrmı görsel olrk birbiri ile ynı oln şekiller için kullnılır. enzer iki şeklin krşılıklı kenrlrı rsınd sbit bir orn vrdır. iz bu bölümde sdece üçgenler rsındki
7.SINIF: ÇOKGENLER ÇOKGENDE AÇILAR. Doğrusal olmayan üç veya daha fazla noktanın birleşmesiyle oluşan kapalı geometrik şekillere çokgen denir.
7.SINIF: ÇOKGNLR oğrusl olmyn üç vey dh fzl noktnın birleşmesiyle oluşn kplı geometrik şekillere çokgen denir. n kenrlı bir çokgenin bir dış çısının ölçüsü 360/n dir. n kenrlı bir çokgenin bir iç çısının
2005 ÖSS BASIN KOPYASI SAYISAL BÖLÜM BU BÖLÜMDE CEVAPLAYACAĞINIZ TOPLAM SORU SAYISI 90 DIR. Matematiksel İlişkilerden Yararlanma Gücü,
005 ÖSS SIN KPYSI SYISL ÖLÜM İKKT! U ÖLÜME EVPLYĞINIZ TPLM SRU SYISI 90 IR. İlk 45 Soru Son 45 Soru Mtemtiksel İlişkilerden Yrrlnm Gücü, Fen ilimlerindeki Temel Kvrm ve İlkelerle üşünme Gücü ile ilgilidir.
1990 ÖYS 1. 7 A) 91 B) 84 C) 72 D) 60 E) 52 A) 52 B) 54 C) 55 D) 56 E) 57
99 ÖYS. si oln si kçtır? A) 9 B) 8 C) D) 6 E) 5 6. Bir nın yşı, iki çocuğunun yşlrı toplmındn üyüktür. yıl sonr nın yşı, çocuklrının yşlrı toplmının ktı olcğın göre ugün kç yşınddır? A) 5 B) 5 C) 55 D)
HİPERBOL. Merkezi O noktası olan hiperbole merkezil hiperbol denir. F ve F' noktalarına hiperbolün odakları denir.
Merkezi Hiperoll HİPERBL Merkezi noktsı oln hiperole merkezil hiperol denir. F ve F' noktlrın hiperolün odklrı denir. dklr rsı uzklık FF' dir. odklr rsı uzklık e sl eksen uzunluğu değerine hiperolün dış
MATEMATİK TESTİ. 5. a, b birer gerçek sayı ve a + b < 3tür. Bu sayıların sayı doğrusunda gösterilişi aşağıdakilerden hangisindeki gibi olabilir?
MTEMTİK TESTİ 1 1 1 1 1. + 4 4 1 ) 0 ) 4 işleminin sonucu kçtır? ) 1 ) 1., irer gerçek syı ve + < 3tür. u syılrın syı doğrusund gösterilişi şğıdkilerden hngisindeki gii olilir? ) -3 - -1 0 1 3 ) -3 - -1
T 35 ZAMBAK MERAKLISINA TESTLERİ(GEO): ÇÖZÜM: ŞekildeIBCI=8, IACI=4,m(B)= a,m(c)= q ve = 180 olduğuna göre IABI kaç br dir? A)4 B)5 C)6 D)8 E)10
1) Z RII Rİ(GO): 0 0 ŞekildeII=, II=,m()=,m()= ve + = 10 olduğun göre II kç br dir? ) )5 ) ) )10 ÇÖZÜ-1: 0 5 5 5 0 105 ile yi birleştirelim. @ (.. eşliği) olur. ikizkenr olur.unlr göre çılrı simgelendirirsek
ÇOKGENLER Çokgenler çokgen Dışbükey (Konveks) ve İçbükey (Konkav) Çokgenler dış- bükey (konveks) çokgen içbükey (konkav) çokgen
ÇONLR Çokgenler rdışık en z üç noktsı doğrusl olmyn, düzlemsel şekillere çokgen denir. Çokgenler kenr syılrın göre isimlendirilirler. Üçgen, dörtgen, beşgen gibi. ışbükey (onveks) ve İçbükey (onkv) Çokgenler
Matematik Olimpiyatları İçin
ONU NLTIMLI Mtemtik Olimpiytlrı İçin enzerlik LİS MTMTİ OLİMPİYTLRI İÇİN Mustf Yğı, Osmn kiz enzerlik Mustf Yğı Osmn kiz İki çokgenin köşeleri rsınd ire-ir eşleme ypılırs eşleştirilen köşelere krşılıklı
2009 Soruları. c
Hırvt ıstn Ulusl Mtemt ık Ol ımp ıytı Tkım Seçme Sınvı Geometr ı 2009 Sorulrı c www.sbelin.wordpress.com [email protected] Hırvtistn d ypıln 2009 yılı TST yni Tkım Seçme Sınvın it geometri sorulrı
1988 ÖYS. 1. Toplamları 242 olan gerçel iki sayıdan büyüğü küçüğüne bölündüğünde bölüm 4, kalan 22 dir. Küçük sayı kaçtır?
988 ÖYS. Toplmlrı 4 oln gerçel iki syıdn üyüğü küçüğüne ölündüğünde ölüm 4, kln dir. Küçük syı kçtır? A) 56 B) 5 C) 48 D) 44 E) 40. 0,5 6 devirli (peryodik) ondlık syısı şğıdkilerden hngisine eşittir?
a 4 b a Cevap : A Cevap : E Cevap : C
TYT / TETİK Deneme - 8., 8 - - - - 8-8 - & - - $ c- m + 5 5 0 0 -. 5 5 $ 75. 5 75 89 5 75 5-9 ^5-9h$ ^5 + 9h 5 ^5-9h$ ^5+ 9h $ 7 evp : 5.. 00 + 0 + 00 + 0 + + 00 + 0 + ( + + ) 55 - - 0 & - 0 & olmlıdır.
YILLAR 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 ÖSS-YGS
Rsonel Sılr YILLAR 00 00 00 00 00 00 00 00 00 0 ÖSS-YGS RASYONEL SAYILAR KESĐR: Z ve 0 olmk üzere şeklindeki ifdelere kesir denir p pd kesirçizgisi KESĐR ÇEŞĐTLERĐ: kesri için i) < ise kesir sit kesirdir
LYS 1 / GEOMETRİ DENEME ÇÖZÜMLERİ
LYS / GOMTRİ NM ÇÖZÜMLRİ eneme -. m ( ) + m( ) > 0 m ( ) + m ( ) > 90 + m ( ) + m ( ) + m( ) + m ( ) > 0 m ( ) > 40 4444444444 0 O hlde, çısının çısının ölçüsünün lbileceği en küçük tmsı değeri 4 evp.
KONİKLER KONİKLER...318-357. Sayfa No. r=a A O A. Asal çember. x 2 + y 2 = a 2
Sf No.........................................................8-7 Prol....................................................................... 9 - Etkinlikler.....................................................................
DENKLEM ve EŞİTSİZLİKLER
DENKLEM ve EŞİTSİZLİKLER Sf No..................................................... - 7 Denklem ve Eşitsizlikler Konu Özeti............................................. Konu Testleri ( 0)..........................................................
1993 ÖYS. 1. Rakamları birbirinden farklı olan üç basamaklı en büyük tek sayı aşağıdakilerden hangisine kalansız bölünebilir?
ÖYS. Rkmlrı birbirinden frklı oln üç bsmklı en büyük tek syı şğıdkilerden hngisine klnsız bölünebilir? D) 8 E) 7. +b= b olduğun göre, b kçtır? D) 8 E). İki bsmklı, birbirinden frklı pozitif tmsyının toplmı
1986 ÖSS. olduğuna göre, aşağıdakilerden hangisi doğrudur?
986 ÖSS. (0,78+0,8).(0,3+0,7) Yukrıdki işlemin sonucu nedir? B) C) 0, D) 0, E) 0,0. doğl syısı 4 ile bölünebildiğine göre şğıdkilerden hngisi tek syı olbilir? Yukrıdki çrpm işleminde her nokt bir rkmın
Diğer kitaplar ve testler için aşağıdaki linki tıklayınız. www.izmirkpsskursu.net. EĞİTİM BİLİMLERİ MERKEZİ www.izmirkpsskursu.net 0 232 445 21 25
EĞİTİM BİLİMLERİ MERKEZİ 0 5 5 DÜZLEMDE ÇILR Prlel Ġki Doğrunun Bir Kesenle Yptığı çılr: Tnım: Bşlngıç noktsı ortk iki ışının irleşim kümesine çı denir. d 6 5 d 7 8 O OB OB = BO ÇI ÇEġĠTLERĠ. Dr çı: Ölçüsü
Mobil Test Sonuç Sistemi. Nasıl Kullanılır?
Mobil Test Sonuç Sistemi Nsıl ullnılır? Tkdim Sevgili Öğrenciler ve eğerli Öğretmenler, ğitimin temeli okullrd tılır. İyi bir okul eğitiminden geçmemiş birinin hytt bşrılı olmsı beklenemez. Hedefe ulşmks
UZAYDA VEKTÖRLER / TEST-1
UZAYDA VEKTÖRLER / TEST-. A(,, ) ve B(,, ) noktlrı rsındki uklık kç birimdir? 6. A e e e B e e e AB vektörü ile nı doğrultud ıt öndeki birim vektör şğıdkilerden ( e e e ). A(, b, ) B(,, ) noktlrı ve U
VEKTÖRLER ÜNİTE 5. ÜNİTE 5. ÜNİTE 5. ÜNİTE 5. ÜNİT
VEKTÖRLER ÜNİTE 5. ÜNİTE 5. ÜNİTE 5. ÜNİTE 5. ÜNİT VEKTÖRLER. Kznım : Vektör kvrmını çıklr.. Kznım : İki vektörün toplmını ve vektörün ir gerçek syıyl çrpımını ceirsel ve geometrik olrk gösterir. YÖNLÜ
1. ABC dik üçgen. BD = 3 br DC = 5 br AC = x br. B AB = y br olduğuna göre x 2 y 2 farkı kaçtır? 2. ABC dik üçgen. AB = 3 br. DC = 5 br AC = x br
www.mustfgi.om.tr, 011 GeoUmetri Notlrı Mustf YĞI, [email protected] Yükseklik Teoremi Öğrenilik ıllrımn eri, hngi geometri kitını elime lsm, İç çıort Teoremi, ış çıort Teoremi, Kenrort Teoremi zılrını görükçe
Örnek...2 : Örnek...3 : Örnek...1 : Örnek...4 : a 3 DÜZGÜN ALTIGEN DÜZGÜN ALTIGEN TANIM VE ÖZELLİKLERİ. ABCDEF düzgün
ÜZGÜN TIGN ( ÜZGÜN TIGN TNIMI, ÖZİİ V NI ĞNİM ) ÜZGÜN TIGN Örnek...2 : TNIM V ÖZİİ enr syısı 6 oln çok - gene lt ıgen denir. ltıgeni için [], [] ve [] köşegenlerinin kesim noktsı oln noktsı dü zgün ltıge
LYS Matemat k Deneme Sınavı
LYS Mtemtk Deneme Sınvı., b olduğun göre, b. b ifdesinin değeri şğıdkilerden hngisidir?,,,9 8... b b ifdesinin eşiti şğıdkilerden hngisidir?.. Bun göre, verilior. ifdesinin değeri kçtır? 8. b b c 8 c d
1982 ÖSS =3p olduğuna göre p kaçtır? A) 79 B) 119 C) 237 E) A) 60 B) 90 C) 120 D) 150 E) 160
8 ÖSS. Bir çiftlikte 800 koun 00 inek ve 600 mnd vrdır. Bu hvnlrın tümü bir dire grfikle gösterilirse ineklerle ilgili dilimin merkez çısı kç derece olur? A) 60 B) 0 C) 0 D) 0 E) 60 6. 0 - =p olduğun göre
TEOG. Tam Sayılar ve Mutlak Değer ÇÖZÜM ÖRNEK ÇÖZÜM ÖRNEK TAMSAYILAR MUTLAK DEĞER
TEOG Tm Syılr ve Mutlk Değer TAMSAYILAR Eksi sonsuzdn gelip, rtı sonsuz giden syılr tm syılr denir ve tm syılr kümesi Z ile gösterilir. Z = {...,,, 1,0,1,,,... } Tmsyılr kümesi ikiye yrılır: ) Negtif Tmsyılr:
LYS Matemat k Deneme Sınavı
LYS Mtemtk Deneme Sınvı 8. sısının pozitif tek tmsı bölenlerinin sısı kçtır? 8. olmk üzere; kesrinin değeri şğıdkilerden hngisi olmz?. (8!) sısının sondn kç bsmğı sıfırdır? 8. ifdesinin sonucu kçtır? (
Lisans Yerleştirme Sınavı 1 (Lys 1) / 16 Haziran Matematik Sorularının Çözümleri. sayısının 2 sayı tabanında yazılışı =?
Lisns Yerleştirme Sınvı (Ls ) 6 Hirn Mtemtik Sorulrının Çöümleri 8 sı tnınd verilen ( ) 8 sısının sı tnınd ılışı? Bu durumd ( ) 8 sısı önce tnın çevrilir Sonr tnınd ılır ( ) 8 8 8 8 Bun göre ( ) 8 ( )
6 ise. = b = c = d. olsun. x 3 = 0. x = 3 için Q(3 + 2) = 6. ve sayılarının sayısına uzaklığı sayısı kadar ise c a = d. Q(5) = 6 dır.
TYT / MTEMTİ eneme - 9. 7 + + + = + 9 = + = + = = bulunur. 0 evp : ^ + h. ^+ h = ^+ h $ ^+ h & ^+ h = & ^+ h = $ ^+ h = ^ h $ ^+ h & ^+ h = 6 ^+ h@ = ^ + h urdn = bulunur. evp :. 0,, ^ h + 0, $ ^0, h,,
RASYONEL SAYILAR KESİR ÇEŞİTLERİ. www.unkapani.com.tr. 1. Basit Kesir. olduğuna göre, a, b tamsayı ve b 0 olmak üzere, a şeklindeki ifadelere
RASYONEL SAYILAR, tmsyı ve 0 olmk üzere, şeklindeki ifdelere kesir denir. y kesrin pyı, ye kesrin pydsı denir. Örneğin,,,, kesirdir. kesrinde, py kesir çizgisi pyd, 0, 0 ise 0 0 dır.,, 0, syılrı irer 0
Ö.Y.S. 1998. MATEMATĐK SORULARI ve ÇÖZÜMLERĐ
Ö.Y.S. 998 MATEMATĐK SORULARI ve ÇÖZÜMLERĐ. Üç bsmklı bir doğl syısının ktı, iki bsmklı bir y doğl syısın eşittir. 7 Bun göre, y doğl syısı en z kç olbilir? A) B) C) 8 D) E) Çözüm y 7 7y (, en küçük bsmklı,
LYS Matemat k Deneme Sınavı
LYS Mtemtk Deneme Sınvı. İki bsmklı bir sının rkmlrı toplmı dir. Rkmlrı er değiştirdiğinde elde edilen sı, ilk sının sinden fzldır.. Birbirinden frklı tne pozitif tmsının OKEK i olduğun göre, en çok kçtır?
Geometri Notları. Kenar-Açı Bağıntıları Mustafa YAĞCI,
www.mustfygi.om, 00 Geometri Notlrı Mustf YĞI, [email protected] Kenr-çı ğıntılrı Üçgenin tnımını htırlyrk derse şlylım:,, doğrusl olmyn üç nokt olduğund, [], [] ve [] nin irleşimine üçgeni denirdi. ir
1992 ÖYS. 1. Bir öğrenci, harçlığının 7. liralık otobüs biletinden 20 adet almıştır. Buna göre öğrencinin harçlığı kaç liradır?
99 ÖYS. Bir öğrenci, hrçlığının 7 si ile, 000 lirlık otobüs biletinden 0 det lmıştır. Bun göre öğrencinin hrçlığı kç lirdır? 0 000 B) 0 000 C) 60 000 D) 80 000 E) 00 000 6. Bir lstik çekilip uztıldığınd
DENKLEM ve EŞİTSİZLİKLER ÜNİTE 2. ÜNİTE 2. ÜNİTE 2. ÜNİTE 2. ÜNİT
DENKLEM ve EŞİTSİZLİKLER ÜNİTE. ÜNİTE. ÜNİTE. ÜNİTE. ÜNİT BİRİNCİ DERECEDEN DENKLEM ve EŞİTSİZLİKLER. Kznım : Gerçek syılr kümesinde birinci dereceden eşitsizliğin özelliklerini belirtir.. Kznım : Gerçek
MUTLAK DEĞER. Sayı doğrusu üzerinde x sayısının sıfıra olan uzaklığına x in mutlak değeri denir ve x ile. gösterilir. x x. = a olarak tanımlanır.
gösterilir. MUTLAK DEĞER Syı doğrusu üzerinde syısının sıfır oln uzklığın in mutlk değeri denir ve ile B O A 0 OA = OB =, 0 =, < 0 olrk tnımlnır. < 0 < y için y = y işleminin eşitini bulunuz. < 0 için
Örnek...1 : Örnek...2 : DÜZGÜN BEŞGEN DÜZGÜN BEŞGEN ÖZELLİK 3 TANIM VE ÖZELLİKLERİ ÖZELLİK 1 ÖZELLİK 2. A Köşe. köşeleri A, B, C, D ve E dir, β θ
ÜZGÜN ŞGN ( ÜZGÜN ŞGN TNII, ÖZİRİ ĞRNİRR ) ÜZGÜN ŞGN ÖZİ 3 TNI V ÖZİRİ enr syısı 5 oln düzgün çokgene öşe düzgün beşgen denir. üzgün beşgenin; köşeleri,,, ve dir, kenrlrı [], [], β θ [], [] ve [] dır,
MATEMATİK 2 TESTİ (Mat 2)
009 - ÖSS / MT- MTEMTİK TESTİ (Mt ). u testte sırsıl, Mtemtik ( 8) Geometri (9 7) nlitik Geometri (8 0) lnlrın it 0 soru vrdır.. evplrınızı, cevp kâğıdının Mtemtik Testi için rıln kısmın işretleiniz..
Geometri Notları. Dik ve Özel Üçgenler Mustafa YAĞCI,
www.mustfgci.com, 005 Geometri Notlrı Mustf YĞI, [email protected] ik ve Özel Üçgenler ik üçgen. Herngi iki kenrı dik kesişen d şk ir ifdele (iç ve dış) ir çısı dik çı oln üçgenlere dik üçgen denir. ik çının
TYT / MATEMATİK Deneme - 2
TYT / MTMTİK eneme -. 7 ^7h ^h $ bulunur. evp : 6. b b c 6 c 6, b ve c nin ritmetik ortlmsı O b c 6 bulunur.. y z y z ^ h $ bulunur. evp : 7. y çift ne olurs olsun çift syı olduğundn in yd çift olduğundn
ORTĐK ÜÇGEN ve EŞ ÖZELLĐKLĐ NOKTALAR
ORTÖĞRETĐM ÖĞRENĐLERĐ RSI RŞTIRM ROJELERĐ YRIŞMSI (2008 2009) ORTĐK ÜÇGEN ve EŞ ÖZELLĐKLĐ NOKTLR rojeyi Hzırlyn Öğrencilerin dı Soydı : Sinem ÇKIR Sınıf ve Şuesi : 11- dı Soydı : Fund ERDĐ Sınıf ve Şuesi
II. DERECEDEN DENKLEMLER
ünite DEEEDE DEKEME Dereceden Denklemler TEST 0 x x + = 0 denkleminin kökleri x ve x dir 6 x + x + x işleminin sonucu kçtır? ) B) ) D) E) x + bx + = 0 x - denkleminin reel syılrdki çözüm kümesi bir elemnlı
1992 ÖYS A) 0,22 B) 0,24 C) 0,27 D) 0,30 E) 0, Bir havuza açılan iki musluktan, birincisi havuzun tamamını a saatte, ikincisi havuzun
99 ÖYS. Bir öğrenci, hrçlığının 7 si ile, 000 lirlık otobüs biletinden 0 det lmıştır. Bun göre öğrencinin hrçlığı kç lirdır? 0 000 B) 0 000 C) 60 000 D) 80 000 E) 00 000. Bir stıcı, elindeki mlın önce
7.SINIF: PARALELKENARIN ve ÜÇGENİN ALANI
7.SINIF: PRLLKNRIN ve ÜÇGNİN LNI ikdörtgen şeklindeki ir krtonu şekildeki gii işretlenen yerden kesip diğer trf eklediğimizde krtonun eksilmediğini,sdece görüntüsünün değiştiğini görürüz. Prlelkenrd Yükseklik
Mtemtik Öğretmeni: Mhmut BAĞMANCI www.zevklimtemtik.com LOGARİTMA ÇALIŞMA SORULARI.) Aşğıdkı ifdelerde x i veren ifdeyi yzınız x ) x b) 7 x c) 0 7 d) +x.) 7 7 7 ise x... ise x... ise x... ise x....) Aşğıdki
0;09 0;00018. 5 3 + 3 2 : 1 3 + 2 3 4 5 1 2 işleminin sonucu kaçtır? A) 136 87 0;36 0;09. 10. a = 0,39 b = 9,9 c = 1,8 d = 3,7.
MC. + + +.. Rsyonel Syılr TEST I sonsuz kesrinin eşiti kçtır? A) B) C) D) E) 4 www.mtemtikclu.com, 006 Ceir Notlrı. 8. Gökhn DEMĐR, [email protected] 0;0 0;0008 = 0; x ise x kçtır? A) 0,0 B) 0,000 C)
MATEMATİK.
MTEMTİK www.e-ershne.iz. s( \ ) = 6, s( \ ) = 8 tür. kümesinin lt küme syısı ise, kümesinin elemn syısı kçtır?... D. 7 Ynıt:. s( ) =? s( ) = = s( ) = 6 8 s( ) = 6 + + 8 =. Rkmlrı frklı üç smklı üç oğl
A C İ L Y A Y I N L A R I
ünite ÇM = 1 Çemberde çılr Çemberde Uzunluk Çemberin Çevresi irenin lnı 1 0 1 ÇM ÇM Ç 1.. 70 8 60 ukrıd merkezli çember verilmiştir. m( ) =, m( ) = 8 olduğun göre, m( ) = kç derecedir? Şekilde merkezli
ÖZEL EGE LİSESİ EGE BÖLGESİ OKULLAR ARASI 17. MATEMATİK YARIŞMASI 11. SINIF TEST SORULARI
EGE BÖLGESİ OKULLAR ARASI 7. MATEMATİK YARIŞMASI. SINIF TEST SORULARI. + işleminin sonucu kçtır? 5 5 A) 0 B) 0 C) 0 7 D) 0 9 E). y = x x + prbolünün y = x doğrusun en ykın noktsının koordintlrı toplmı
12. a = log 5 7, b = log 3 2 ve c = log 2 13 sayıları arasındaki. 13. log 3 75 sayısı aşağıdaki aralıkların hangisinde bulunur?
www.mtemtikclub.cm, 00 MC Cebir Ntlrı Gökhn DEMĐR, [email protected] Lgritm. lg TEST I lg + lg 9 işleminin snucu C) 4. lg + = ise kçtır? 9 C) 4 9. lg 7! = ise lg 8! C) + 0. lg = ve lg = b ise lg 9 0 nin ve
1987 ÖSS A) 0 B) 2. A) a -2 B) (-a) 3 C) a -3 D) a -1 E) (-a) 2 A) 1 B) 10 C) 10 D) 5 10 E) a+b+c=6 olduğuna göre a 2 +b 2 +c 2 toplamı kaçtır?
987 ÖSS. Yukrıdki çıkrm işlemine göre, K+L+M toplmı şğıdkilerden hngisine dim eşittir? A) M B) L C) K M K 5. 4 işleminin sonucu kçtır? A) 0 B) C) 5 4 5. Aşğıdki toplm işleminde her hrf sıfırın dışınd fklı
Bu ürünün bütün hakları. ÇÖZÜM DERGİSİ YAYINCILIK SAN. TİC. LTD. ŞTİ. ne aittir. Tamamının ya da bir kısmının ürünü yayımlayan şirketin
Bu ürünün ütün hklrı ÇÖZÜM DERGİSİ YAYINCILIK SAN. TİC. LTD. ŞTİ. ne ittir. Tmmının y d ir kısmının ürünü yyımlyn şirketin önceden izni olmksızın fotokopi y d elektronik, meknik herhngi ir kyıt sistemiyle
ÇOKGENLER HAKKINDA GENEL HATIRLATMALAR
ÇONLR IN NL TIRLTMLR nr sısı (n) 3 d d zl oln kplı gomtrik şkillr çokgn dnir n NRLI İR ONV ÇON; 1) İç çılr toplmı (n )180 ) ış çılr toplmı 360 3) öşgn sısı n ( n 3) onvks çokgn (ışük) onkv çokgn (İçük)
Milli Eğitim Bakanlığı, Talim ve Terbiye Kurulu Bakanlığı'nın 30.12.2010 tarih ve 330 sayılı kararı ile kabul edilen ve 2011 2012 Öğretim Yılından
Milli ğitim knlığı, Tlim ve Terbie urulu knlığı'nın 0.1.010 trih ve 0 sılı krrı ile kbul edilen ve 011 01 Öğretim Yılındn itibren ugulnck progrm göz önüne lınrk hzırlnmıştır. u kitb n her hkk skl d r ve
ÜÇGENLERDE EŞLİK VE BENZERLİK Bölüm 4.1. Eşlik
Ünite 4 ÜÇGNLR ŞLİK V NZRLİK ölüm 4.1. şlik u ölümde Neler Öğreneceğiz? Üçgenin iç ve dış çılrının ölçüleri toplmını İki üçgenin eşliğini Üçgenin kenrlrı ile çılrı rsındki ilişkiyi Üçgenin kenrlrı rsındki
(bbb) üç basamaklı sayılardır. x ile y arasında kaç tane asal sayı vardır? A)0 B)1 C) 2 D) 3 E) x, y, z reel sayılar olmak üzere, ifadesinin
4 () ve (bb) iki bsmklı syılr, () ve 1 x=15! +1 y=15!+16 olmk üzere, (bbb) üç bsmklı syılrdır x ile y rsınd kç tne sl syı vrdır? A)0 B)1 C) D) 3 E) 4 b + bb + bbb = 6 olduğun göre, b çrpımı en çok kçtır?
ek tremum LYS-1 MATEMATİK MATEMATİK TESTİ 1. Bu testte Matematik Alanına ait toplam 80 soru vardır.
LYS- MTEMTİK MTEMTİK TESTİ. u testte Mtemtik lnın it toplm 0 soru vrdır.. evplrınızı, cevp kâğıdının Mtemtik Testi için yrıln kısmın işretleyiniz.. = 5! +! olduğun göre,! syısının türünden eşiti şğıdkilerden
YILLAR ÖSS-YGS /LYS /1 0/1 ÇÖZÜM: 1) xοy A ise ο işlemi A da kapalıdır.
YILLAR 00 00 00 005 006 007 008 009 00 0 ÖSS-YGS /LYS - - - 0/ 0/ ĐŞLEM ( ) ( ) (+ ) ( ) 7 6 76+ bulunur ve e bğlı bütün tnımlı fonksionlr bir işlem belirtir i göstermek için +,,*, gibi işretler kullnılır
Cebirsel ifadeler ve Özdeslik Föyü
6 Ceirsel ifdeler ve Özdeslik Föyü KAZANIMLAR Bsit ceirsel ifdeleri nlr ve frklı içimlerde yzr. Ceirsel ifdelerin çrpımını ypr. Özdeslikleri modellerle çıklr. 06 8. SINIF CEBiRSEL ifadeler VE ÖZDESLiK
1997 ÖYS A) 30 B) 35 C) 40 D) 45 E) 50. olduğuna göre, k kaçtır? A) 1 B) 2 C) 3 D) 4 E) 5
7 ÖYS. 0,00 0,00 k 0,00 olduğun göre, k kçtır? 6. Bir ust günde çift ykkbı, bir klf ise günde çift ykkbı ypmktdır. İkisi birlikte, 8 çift ykkbıyı kç günde yprlr? 0 C) 0 D) 0 C) D). (0 ) ( 0) işleminin
Çevre ve Alan. İlköğretim 6. Sınıf
Çevre ve Aln İlköğretim 6. Sınıf Çevre Merhb,ilk olrk seninle birlikte evin çevresini bulmy çlışlım Kırmızı çizgiler evin çevre uzunluğunu verir. Çevre Şimdi sır futbol shsınd Çevre Şimdi,Keloğlnın Pmuk
D) 240 E) 260 D) 240 E) 220
01 Test Ünite? AYT Mtemtik EBOB - EKOK 1. 240 ve 300 syılrının en büyük ortk böleni kçtır? A) 20 B) 40 C) 60 3. 18, 24 ve 32 syılrının en küçük ortk ktı kçtır? A) 248 B) 260 C) 276 5. Kenr uzunluklrı 60
İkinci Dereceden Denklemler
İkini Dereeden Denkleler İKİNCİ DERECEDEN BİR BİLİNMEYENLİ DENKLEMLER TANIMLAR :,, R ve olk üzere + + denkleine, ikini dereeden ir ilineyenli denkle denir Bu denkledeki,, gerçel syılrın ktsyılr, e ilineyen
TEST. Rasyonel Sayılar. 1. Aşağıdaki bilgilerden hangisi yanlıştır? 2. Aşağıda verilen, 3. Aşağıdaki sayılardan hangisi hem tam sayı,
Rsyonel Syılr. Sınıf Mtemtik Soru Bnksı TEST. Aşğıdki bilgilerden hngisi ynlıştır? A) Rsyonel syılr Q sembolü ile gösterilir. B) Her tm syı bir rsyonel syıdır. şeklinde yzıln bütün syılr rsyoneldir. b
Vektörler ÜNİTE. Amaçlar. İçindekiler. Yazar Yrd.Doç.Dr.Nevin MAHİR
Vektörler zr rd.doç.dr.nevin MAHİR ÜNİTE 3 Amçlr Bu üniteyi çlıştıktn sonr; Düzlemde vektör kvrmını öğrenecek, İki vektörün eşitliği, toplmı, doğrusl bğımlılığı ile bir vektörün bir gerçel syı ile çrpımı,
Temel Kavramlar. Alıştırma Şekil ile, ifade edilişini eşleştiriniz.
Temel Kvrmlr Giriş Sıfırdn Mtemtik kitımızd kznımlr; gerçekten sıfırdn şlrk ve o n dek nltıln ilgiler eterli olck şekilde, enzer ol örnek ve hiçir kitpt olmdığı kdr lt şlıklrl verilmiş ve kitı itirenlerin
steme Adresi Ekstrem Yayıncılık Tlf: (0322) 235 64 65 Belgeç : (0322) 232 86 27 www.ekstrem.com.tr Grafik Tasar m Dizgi Ekstrem Yay nc l k
u kit n her hkk skl d r ve kstrem Y nc l k ittir. Kit it metin ve sorulr, knk gösterilerek de ols kulln lmz. Kit n hz rln fl öntemi tklit edilemez. ISN: 978 0 9 8 9 steme dresi kstrem Yıncılık Tlf: (0)
İÇİNDEKİLER ORAN VE ORANTI... 267-278... 01-06 KESİR PROBLEMLERİ... 279-288... 01-05 HAVUZ VE İŞ PROBLEMLERİ... 289-298... 01-06
PROBLEMLER İÇİNDEKİLER Syf No Test No ORAN VE ORANTI... 267-278... 01-06 KESİR PROBLEMLERİ... 279-288... 01-05 HAVUZ VE İŞ PROBLEMLERİ... 289-298... 01-06 SAYI PROBLEMLERİ... 299-314... 01-08 YAŞ PROBLEMLERİ...
LOGARİTMA. çözüm. için. Tanım kümesindeki 1 elemanını değer kümesindeki herhangi. çözüm. çözüm
LOGARİTMA Üstel Fonksion >0 ve olmk üzere f:r R +, f() = şeklindeki fonksionlr üstel fonksion denir. Üstel fonksionlr birebir ve örtendir. f:r R +, f()=( ) bğıntısının üstel fonksion olup olmdığını inceleiniz.
Soru 1- Köşegenleri dik kesişen bir dikdörtgende köşegenlerin uzunlukları toplamı 12 ise bu dörtgenin alanı en çok kaç olabilir?
Soru - Köşegenleri dik kesişen bir dikdörtgende köşegenlerin uzunluklrı toplmı ise bu dörtgenin lnı en çok kç olbilir? A) 8 B) C) 6 D) E)6 Köşegenlerin uzunluklrı ve y olsun. Köşegenleri dik kesiştiği
4. x ve y pozitif tam sayıları için,
YGS MTEMTİK ENEMESİ., b ve c pozitif tm syılrı için, b c b b c c biçiminde tnımlnıyor. un göre, işleminin sonucu kçtır? ) 6 ) 4 ) 0 ) 6 E) 8. Rkmlrı frklı dört bsmklı doğl syısının ilk iki bsmğı ile son
Örnek...3 : Örnek...1 : ABCD yamuk [AC] köşegen E [AC] [AB] // [CD] AB = AE. Örnek...2 : ABCD yamuk [AB] // [CD] BC = CE AE = BE. Örnek...
YU ( YU TNII ORT TN YU NI İİZNR YU İ YU ) YU TNII Ylnız iki kenrı birbirine prlel oln dörtgene YU denir. [] // [] ise ymuktur. rlel oln kenrlr ymuğun tbnlrıdır. [] ve [] tbn. iğer iki kenr yn kenrlrdır.
