İşaret ve Sistemler. Ders 2: Spektral Analize Giriş
|
|
|
- Duygu Aldemir
- 8 yıl önce
- İzleme sayısı:
Transkript
1 İşaret ve Sistemler Ders 2: Spektral Analize Giriş
2 Spektral Analiz A 1.Cos (2 f 1 t+ 1 ) ile belirtilen işaret: f 1 Hz frekansında, A 1 genliğinde ve fazı da Cos(2 f 1 t) ye göre 1 olan parametrelere sahiptir. A 2.Sin(2 f 2 t) ile belirtilen işaret: f 2 Hz frekansında, A 2 genliğinde ve fazı da Cos(2 f 2 t) ye göre - /2 ye eşit olan bir işareti belirtir. Eğer zamanın fonksiyonu olan işaret tek bir sinüzoidal değil de birden fazla sinüzoidal toplamı şeklinde ise, bu işaretin bütününü belirlemek için değişik frekanslardaki bu sinüzoidal fonksiyonların genlik ve fazları ayrı ayrı belirlenmelidir. İşaret ve Sistemler 2
3 Örnek 1 s(t)=a.cos w c t +A Cosw m t.cosw c t işaretinin frekans bileşenlerini bulunuz. Trigonometrik açılımdan yararlanarak s(t) ifadesi yeniden yazılabilir. Açılımdan da görüldüğü gibi bu işarette üç frekans bileşeni vardır. Bu bileşenler fc, fc-fm ve fc+fm Hz deki sinüzoidallerin toplamından oluşmuştur. İşaret ve Sistemler 3
4 Örnek 1 İşaretlerin genlikleri sırası ile A ve A/2 dir. Her üçünün fazları da Cosw c t ye göre sıfıra eşittir. Bu üç frekans bileşenini belirten bir grafik, s(t) işaretinin frekans bileşenlerini göstereceğinden bu grafiğe frekans spektrumu adı verilir. Eğer bir işaret sinüzoidal fonksiyonların toplamı biçiminde ise bu işaretin frekans bölgesindeki gösterilişi elde edilebilir. Bu nedenle önce bir işaretin sinüzoidal büyüklüklerin toplamı olarak gösterilebilmesi için bir yöntem geliştirilmelidir. İşaret ve Sistemler 4
5 Fourier serisi Bu amaca uygun olarak, Fourier serisi açılımları periyodik işaretlerin sinüzoidal fonksiyonların toplamı şeklinde elde edilmesini sağlar. Periyodik olmayan işaretler için ise bazı genel koşullar altında Fourier Dönüşümü kullanılarak benzer bir açınım elde edilebilir. Spektral analiz, işaretlerin zaman düzleminden (domeninden) frekans düzlemine (domenine) geçişini sağlayan kurallar bütünüdür. İşaret ve Sistemler 5
6 Fazör Diyagramı m(t)=a.cos(w 1 t+ ) işareti ele alınırsa: Euler teoreminde yararlanarak m(t) işareti, m(t)=re{a.e j(w 1t+ ) } şeklinde yazılabilir. m(t)=re {A[Cos(w 1 t+ ) +jsin(w 1 t+ )]} =A Cos(w 1 t+ ) İşaret ve Sistemler 6
7 Fazör Diyagramı A: Fazörün genliği olup, pozitif bir büyüklüktür. (A 0) : Fazörün fazı, fazörün t=0 anında gerçel eksenle yaptığı açı olarak tanımlanır ve - değerlerini alabilir. w1=2 f1: Fazörün açısal dönme hızı veya açısal frekansı. Fazörün, saat ibresinin tersi yönünde w1, rad/s açısal hızı ile döndüğü varsayılmakta olup bu yön pozitif olarak seçilmiştir. İşaret ve Sistemler 7
8 Fazör Diyagramı Fazörü frekans domeninde gösterebilmek için f 1 Hz frekansında hem genliğinin hem de fazının gösterilmesi gerekir. Bu nedenle, verilen bir fazör, frekans domeninde ancak iki ayrı grafikle belirlenebilir. Fazörün genliğini ve fazını frekansa bağlı olarak gösteren bu iki grafiğe işaretin sırasıyla genlik spektrumu ve faz spektrumu denir. İşaret ve Sistemler 8
9 Örnek 2 m(t)=2cos(2.25t- /4)+4+Sin(2.100t) 3Cos(2.120t) işaretinin pozitif frekans spektrumunu çiziniz. Fazörü çizmeden önce, fazörü tanımlarken genliğinin pozitif olarak tanımlanmasından ve aynı zamanda fazörün fazının reel eksen referans olarak alınması gerektiğinden dolayı, verilen işareti bu tanımlara göre yeniden yazılırsa: İşaret ve Sistemler 9
10 Örnek 2 m(t) işaretinin fazör diyagramı İşaret ve Sistemler 10
11 Örnek 2 m(t) işaretinin pozitif frekans spektrumu İşaret ve Sistemler 11
12 İki Yönlü Frekans Spektrumu İki yönlü frekans spektrumu eksi frekans kavramını içermektedir. Bu kavram ise matematiksel olarak kabul edilen ancak pratikte olmayan bir kavramdır. Negatif frekans Euler teoreminden yararlanarak iki yönlü frekans spektrumu kavramı oluşturulabilir. İşaret ve Sistemler 12
13 İki Yönlü Frekans Spektrumu İki yönlü frekans spektrumu için m(t)=a.cos(w 1 t+ ) işaretinin spektrumunu çizersek, ilk önce bu sinüzoidal işareti Euler teoreminden yararlanarak aşağıdaki şekilde ifade edebiliriz. Bu eşitlikte m(t), eşit genlikli, zıt fazlı ve aynı açısal hızda ters yönlerde dönen iki fazörün toplamından oluşmaktadır. Bu tipten fazörlere eşlenik (konjüge) fazörler adı verilir. İşaret ve Sistemler 13
14 İki Yönlü Frekans Spektrumu İşaret ve Sistemler 14
15 İki Yönlü Frekans Spektrumu m(t)=a.cos(w1t+θ) işaretinin iki yönlü frekans spektrumu aşağıdaki gibi elde edilir. İşaret ve Sistemler 15
16 Örnek 3 m(t)=2cos(2.25t- /4)+4+Sin(2.100t) 3Cos(2.120t) işaretinin iki yönlü frekans spektrumunu çiziniz. İşaret ve Sistemler 16
17 Örnek 3 İşaret ve Sistemler 17
18 Örnek 4 m(t)=18+40.cos2000 t-30sin2000 t-24.cos4000 t+10.sin4000 t işaretinin iki yönlü frekans spektrumunu çiziniz. İşaret ve Sistemler 18
19 Örnek 4 İşaret ve Sistemler 19
20 Örnek 4 İşaret ve Sistemler 20
21 Örnek 4 İşaret ve Sistemler 21
22 Örnek 4 İşaret ve Sistemler 22
23 Örnek 5 Aşağıda verilen spektrumun zaman düzlemindeki ifadesini bulunuz. İşaret ve Sistemler 23
24 Örnek 5 veya işaretin spektrumunun pozitif frekans bileşenlerinin genliğinin iki katını alarak Kosinüslü yazmamız yeterlidir. Yani İşaret ve Sistemler 24
25 Çalışma Sorusu 1 İşaret ve Sistemler 25
İşaret ve Sistemler. Ders 3: Periyodik İşaretlerin Frekans Spektrumu
İşaret ve Sistemler Ders 3: Periyodik İşaretlerin Frekans Spektrumu Fourier Serileri Periyodik işaretlerin spektral analizini yapabilmek için periyodik işaretler sinüzoidal işaretlerin toplamına dönüştürülür
Mekanik Titreşimler ve Kontrolü. Makine Mühendisliği Bölümü
Mekanik Titreşimler ve Kontrolü Makine Mühendisliği Bölümü [email protected] 10.10.018 Titreşim sinyalinin özellikleri Daimi sinyal Daimi olmayan sinyal Herhangi bir sistemden elde edilen titreşim sinyalinin
Enerji Sistemleri Mühendisliği Bölümü
YALOVA ÜNİVERSİTESİ MÜHENDİSLİK FAKÜLTESİ Enerji Sistemleri Mühendisliği Bölümü ESM 413 Enerji Sistemleri Laboratuvarı-II RL, RC ve RLC DEVRELERİNİN AC ANALİZİ Puanlandırma Sistemi: Hazırlık Soruları:
Leyla Yıldırım Bölüm BÖLÜM 2
BÖLÜM 2 PERİYODİK HAREKETLERİN ÜSTÜSTE GELMESİ Birçok fiziksel durum, aynı sistemde iki veya daha fazla harmonik titreşimin aynı anda uygulanmasını gerektirir. Burada aşağıdaki temel kabule bağlı olarak
NİĞDE ÜNİVERSİTESİ MÜHENDİSLİK FAKÜLTESİ ELEKTRİK-ELEKTRONİK MÜHENDİSLİĞİ BÖLÜMÜ
History in Pictures - On January 5th, 1940, Edwin H. Armstrong transmitted thefirstfmradiosignalfromyonkers, NY to Alpine, NJ to Meriden, CT to Paxton, MA to Mount Washington. 5 January is National FM
İşaret ve Sistemler. Ders 1: Giriş
İşaret ve Sistemler Ders 1: Giriş Ders 1 Genel Bakış Haberleşme sistemlerinde temel kavramlar İşaretin tanımı ve çeşitleri Spektral Analiz Fazörlerin frekans düzleminde gösterilmesi. Periyodik işaretlerin
4. Sunum: AC Kalıcı Durum Analizi. Kaynak: Temel Mühendislik Devre Analizi, J. David IRWIN-R. Mark NELMS, Nobel Akademik Yayıncılık
4. Sunum: AC Kalıcı Durum Analizi Kaynak: Temel Mühendislik Devre Analizi, J. David IRWIN-R. Mark NELMS, Nobel Akademik Yayıncılık 1 Giriş Aşağıdaki şekillere ve ifadelere bakalım ve daha önceki derslerimizden
TİTREŞİM VE DALGALAR BÖLÜM PERİYODİK HAREKET
TİTREŞİM VE DALGALAR Periyodik Hareketler: Belirli aralıklarla tekrarlanan harekete periyodik hareket denir. Sabit bir nokta etrafında periyodik hareket yapan cismin hareketine titreşim hareketi denir.
KATI CİSİMLERİN BAĞIL İVME ANALİZİ:
KATI CİSİMLERİN BAĞIL İVME ANALİZİ: Genel düzlemsel hareket yapmakta olan katı cisim üzerinde bulunan iki noktanın ivmeleri aralarındaki ilişki, bağıl hız v A = v B + v B A ifadesinin zamana göre türevi
Alternatif Akım; Zaman içerisinde yönü ve şiddeti belli bir düzen içerisinde değişen akıma alternatif akım denir.
ALTERNATiF AKIM Alternatif Akım; Zaman içerisinde yönü ve şiddeti belli bir düzen içerisinde değişen akıma alternatif akım denir. Doğru akım ve alternatif akım devrelerinde akım yönleri şekilde görüldüğü
Bölüm 2. İşaretler ve Doğrusal Sistemler
Bölüm 2 İşaretler ve Doğrusal Sistemler 2.1 TEMEL KAVRAMLAR 2.1.1 İşaret Üzerinde Temel İşlemler 2.1.2.İşaretlerin Sınıflandırılması 2.1.3 Bazı Önemli İşaretler ve Özellikleri 2.1.4. Sistemlerin Sınıflandırılması
Şeklinde ifade edilir. Çift yan bant modülasyonlu işaret ise aşağıdaki biçimdedir. ile çarpılırsa frekans alanında bu sinyal w o kadar kayar.
GENLİK MODÜLASYONU Mesaj sinyali m(t) nin taşıyıcı sinyal olan c(t) nin genliğini modüle etmesine genlik modülasyonu (GM) denir. Çeşitli genlik modülasyonu türleri vardır, bunlar: Çift yan bant modülasyonu,
BÖLÜM I GİRİŞ (1.1) y(t) veya y(x) T veya λ. a t veya x. Şekil 1.1 Dalga. a genlik, T peryod (veya λ dalga boyu)
BÖLÜM I GİRİŞ 1.1 Sinyal Bir sistemin durum ve davranış bilgilerini taşıyan, bir veya daha fazla değişken ile tanımlanan bir fonksiyon olup veri işlemde dalga olarak adlandırılır. Bir dalga, genliği, dalga
Toplam İkinci harmonik. Temel Üçüncü harmonik. Şekil 1. Temel, ikinci ve üçüncü harmoniğin toplamı
FOURIER SERİLERİ Bu bölümde Fourier serilerinden bahsedeceğim. Önce harmoniklerle (katsıklıklarla) ilişkili sinüsoidin tanımından başlıyacağım ve serilerin trigonometrik açılımlarını kullanarak katsayıları
BÖLÜM-2. Sabit katsayılı çizgisel homojen diferansiyel denklem örneği olarak
BÖLÜM-2 2.1 PERİYODİK TİTREŞİMLERİN ÜST ÜSTE GELMESİ (Süperpozisyon) Kütle-yay problemlerini geri çağırıcı kuvvetin sadece x ile orantılı olduğu durumlar için inceleyeceğiz, yani Hook yasasının ( ) geçerli
EEM HABERLEŞME TEORİSİ NİĞDE ÜNİVERSİTESİ MÜHENDİSLİK FAKÜLTESİ ELEKTRİK-ELEKTRONİK MÜHENDİSLİĞİ BÖLÜMÜ
EEM3006 - HABERLEŞME TEORİSİ NİĞDE ÜNİVERSİTESİ MÜHENDİSLİK FAKÜLTESİ ELEKTRİK-ELEKTRONİK MÜHENDİSLİĞİ BÖLÜMÜ EEM3006 - HABERLEŞME TEORİSİ Dersin Öğretim Elemanı: Yrd. Doç. Dr. Yasin KABALCI Ders Görüşme
3 VEKTÖRLER. Pilot uçağın kokpit inden havaalanını nasıl bulur?
3.1 Koordinat sistemleri 3.2 Kartezyen koordinatlar 3.3 Vektörler 3.4 Vektörlerin bileşenleri 3.5 Vektörlerin toplanması 3.6 Vektörlerin çıkarılması 37Bii 3.7 Birim vektör 3 VEKTÖRLER Pilot uçağın kokpit
SÜREKLİLİK. 9.1 Süreklilik ve Süreksizlik Kavramları
SÜREKLİLİK Bu bölümde süreklilik kavramı, süreksizlik, sürekli fonksiyonların özellikleri ile buna ilişkin teoremler örnekler ve grafiklerle açıklanmaktadır. 9.1 Süreklilik ve Süreksizlik Kavramları Tanım
8. ALTERNATİF AKIM VE SERİ RLC DEVRESİ
8. ATENATİF AKIM E SEİ DEESİ AMAÇA 1. Alternatif akım ve gerilim ölçmeyi öğrenmek. Direnç, kondansatör ve indüktans oluşan seri bir alternatif akım devresini analiz etmek AAÇA oltmetre, ampermetre, kondansatör
RİJİT CİSİMLERİN DÜZLEMSEL KİNEMATİĞİ
RİJİT CİSİMLERİN DÜZLEMSEL KİNEMATİĞİ MUTLAK GENEL DÜZLEMSEL HAREKET: Genel düzlemsel hareket yapan bir karı cisim öteleme ve dönme hareketini eşzamanlı yapar. Eğer cisim ince bir levha olarak gösterilirse,
Sürekli-zaman İşaretlerin Ayrık İşlenmesi
Sürekli-zaman İşaretlerin Ayrık İşlenmesi Bir sürekli-zaman işaretin sayısal işlenmesi üç adımdan oluşmaktadır: 1. Sürekli-zaman işaretinin bir ayrık-zaman işaretine dönüştürülmesi 2. Ayrık-zaman işaretin
ALTERNATİF AKIMIN VEKTÖRLERLE GÖSTERİLMESİ
1 ALTERNATİF AKIMIN VEKTÖRLERLE GÖSTERİLMESİ Fazör: Zamanla değişen gerilim ve akımın gösterildiği vektörlerdir. Vektör büyüklüğü maksimum değere eşit alınmayıp en çok kullanılan etkin değere eşit alınır.
ALTERNATİF AKIMIN VEKTÖRLERLE GÖSTERİLMESİ
1 ALTERNATİF AKIMIN VEKTÖRLERLE GÖSTERİLMESİ ALTERNATİF AKIMIN VEKTÖRLERLE GÖSTERİLMESİ Fazör: Zamanla değişen gerilim ve akımın gösterildiği vektörlerdir. Vektör büyüklüğü maksimum değere eşit alınmayıp
DÜZLEMDE GERİLME DÖNÜŞÜMLERİ
3 DÜZLEMDE GERİLME DÖNÜŞÜMLERİ Gerilme Kavramı Dış kuvvetlerin etkisi altında dengedeki elastik bir cismi matematiksel bir yüzeyle rasgele bir noktadan hayali bir yüzeyle ikiye ayıracak olursak, F 3 F
Alternatif Akım Devre Analizi
Alternatif Akım Devre Analizi Öğr.Gör. Emre ÖZER Alternatif Akımın Tanımı Zamaniçerisindeyönüveşiddeti belli bir düzen içerisinde (periyodik) değişen akıma alternatif akımdenir. En bilinen alternatif akım
Nedim Tutkun, PhD, MIEEE Düzce Üniversitesi Elektrik-Elektronik Mühendisliği Bölümü Konuralp Düzce
ELEKTRİK DEVRELERİ II ÖRNEK ARASINAV SORULARI Nedim Tutkun, PhD, MIEEE [email protected] Düzce Üniversitesi Elektrik-Elektronik Mühendisliği Bölümü 81620 Konuralp Düzce Soru-1) Şekildeki devrede
ALTERNATİF AKIMIN TEMEL ESASLARI
ELEKTRİK-ELEKTRONİK MÜHENDİSLİĞİ BÖLÜMÜ ELEKTRİK-ELEKTRONİK MÜHENDİSLİĞİNE GİRİŞ DERSİ ALTERNATİF AKIMIN TEMEL ESASLARI Dr. Öğr. Üyesi Ahmet ÇİFCİ Elektrik enerjisi, alternatif akım ve doğru akım olarak
5. Elektriksel Büyüklüklerin Ölçülebilen Değerleri
Elektrik devrelerinde ölçülebilen büyüklükler olan; 5. Elektriksel Büyüklüklerin Ölçülebilen Değerleri Akım Gerilim Devrede bulunan kaynakların tiplerine göre değişik şekillerde olabilir. Zamana bağlı
Elektromanyetik Dalga Teorisi
Elektromanyetik Dalga Teorisi Ders-2 Dalga Denkleminin Çözümü Düzlem Elektromanyetik Dalgalar Enine Elektromanyetik Dalgalar Kayıplı Ortamda Düzlem Dalgalar Düzlem Dalgaların Polarizasyonu Dalga Denkleminin
KUVVET, MOMENT ve DENGE
2.1. Kuvvet 2.1.1. Kuvvet ve cisimlere etkileri Kuvvetler vektörel büyüklüklerdir. Kuvvet vektörünün; uygulama noktası, kuvvetin cisme etkidiği nokta; doğrultu ve yönü, kuvvetin doğrultu ve yönü; modülüyse
Şekil-1. Doğru ve Alternatif Akım dalga şekilleri
2. Alternatif Akım =AC (Alternating Current) Değeri ve yönü zamana göre belirli bir düzen içerisinde değişen akıma AC denir. En çok bilinen AC dalga biçimi Sinüs dalgasıdır. Bununla birlikte farklı uygulamalarda
Işıma Şiddeti (Radiation Intensity)
Işıma Şiddeti (Radiation Intensity) Bir antenin birim katı açıdan yaydığı güçtür U=Işıma şiddeti [W/sr] P or =Işıma yoğunluğu [ W/m 2 ] Örnek-4 Bir antenin güç yoğunluğu Olarak verildiğine göre, ışıyan
TRIGONOMETRI AÇI, YÖNLÜ AÇI, YÖNLÜ YAY
TRIGONOMETRI AÇI, YÖNLÜ AÇI, YÖNLÜ YAY A. AÇI Başlangıç noktaları aynı olan iki ışının birleşim kümesine açı denir. Bu ışınlara açının kenarları, başlangıç noktasına ise açının köşesi denir. B. YÖNLÜ AÇI
ALTERNATİF AKIMIN DENKLEMİ
1 ALTERNATİF AKIMIN DENKLEMİ Ani ve Maksimum Değerler Alternatif akımın elde edilişi incelendiğinde iletkenin 90 ve 270 lik dönme hareketinin sonunda maksimum emk nın indüklendiği görülür. Alternatif akımın
ANALOG HABERLEŞME (GM)
ANALOG HABERLEŞME (GM) Taşıyıcı sinyalin sinüsoidal olduğu haberleşme sistemidir. Sinüs işareti formül olarak; V. sin(2 F ) ya da i I. sin(2 F ) dır. Formülde; - Zamana bağlı değişen ani gerilim (Volt)
Güç elektroniği elektrik mühendisliğinde enerji ve elektronik bilim dalları arasında bir bilim dalıdır.
3. Bölüm Güç Elektroniğinde Temel Kavramlar ve Devre Türleri Doç. Dr. Ersan KABALC AEK-207 GÜNEŞ ENERJİSİ İLE ELEKTRİK ÜRETİMİ Güç Elektroniğine Giriş Güç elektroniği elektrik mühendisliğinde enerji ve
EEM HABERLEŞME TEORİSİ NİĞDE ÜNİVERSİTESİ MÜHENDİSLİK FAKÜLTESİ ELEKTRİK-ELEKTRONİK MÜHENDİSLİĞİ BÖLÜMÜ
EEM3006 - HABERLEŞME TEORİSİ NİĞDE ÜNİVERSİTESİ MÜHENDİSLİK FAKÜLTESİ ELEKTRİK-ELEKTRONİK MÜHENDİSLİĞİ BÖLÜMÜ EEM3006 - HABERLEŞME TEORİSİ Dersin Öğretim Elemanı: Yrd. Doç. Dr. Yasin KABALCI Ders Görüşme
Elektromanyetik Dalga Teorisi
Elektromanyetik Dalga Teorisi Ders-1 Diferansiyel Formda Maxwell Denklemleri İntegral Formda Maxwell Denklemleri Fazörlerin Kullanımı Zamanda Harmonik Alanlar Malzeme Ortamı Dalga Denklemleri Michael Faraday,
FİZ217 TİTREŞİMLER VE DALGALAR DERSİNİN 2. ARA SINAV SORU CEVAPLARI
1) Gerilmiş bir ipte enine titreşimler denklemi ile tanımlıdır. Değişkenlerine ayırma yöntemiyle çözüm yapıldığında için [ ] [ ] ifadesi verilmiştir. 1.a) İpin enine titreşimlerinin n.ci modunu tanımlayan
ELEKTRİK DEVRELERİ-2 LABORATUVARI VIII. DENEY FÖYÜ
EEKTRİK DEVREERİ-2 ABORATUVARI VIII. DENEY FÖYÜ SERİ VE PARAE REZONANS DEVRE UYGUAMASI Amaç: Seri ve paralel rezonans devrelerini incelemek, devrelerin karakteristik parametrelerini ölçmek, rezonans eğrilerini
ELEKTROMANYETİK DALGALAR
ELEKTROMANYETİK DALGALAR Hareket eden bir yük manyetik alan oluşturur. Yük sabit hızla hareket ederse, sabit bir akım ve sabit bir manyetik alan oluşturur. Yük osilasyon hareketi yaparsa değişken bir manyetik
YAPI ZEMİN ETKİLEŞİMİ. Yrd. Doç. Dr Mehmet Alpaslan KÖROĞLU
YAPI ZEMİN ETKİLEŞİMİ Yrd. Doç. Dr Mehmet Alpaslan KÖROĞLU Serbest Titreşim Dinamik yüklemenin pek çok çeşidi, zeminlerde ve yapılarda titreşimli hareket oluşturabilir. Zeminlerin ve yapıların dinamik
REZONANS DEVRELERİ. Seri rezonans devreleri bir bobinle bir kondansatörün seri bağlanmasından elde edilir. RL C Rc
KTÜ, Elektrik Elektronik Müh. Böl. Temel Elektrik aboratuarı. Giriş EZONNS DEVEEİ Bir kondansatöre bir selften oluşan devrelere rezonans devresi denir. Bu devre tipinde selfin manyetik enerisi periyodik
ELEKTRİK DEVRELERİ-2 LABORATUVARI VI. DENEY FÖYÜ
ELEKTİK DEELEİ-2 LABOATUAI I. DENEY FÖYÜ ALTENATİF AKIM DEESİNDE GÜÇ ÖLÇÜMÜ Amaç: Alternatif akım devresinde harcanan gücün analizi ve ölçülmesi. Gerekli Ekipmanlar: AA Güç Kaynağı, 1kΩ Direnç, 0.5H Bobin,
RİJİT CİSMİN DÜZLEMSEL KİNETİĞİ: ENERJİNİN KORUNUMU
RİJİT CİSMİN DÜZLEMSEL KİNETİĞİ: ENERJİNİN KORUNUMU Amaçlar: a) Korunumlu kuvvetlerin potansiyel enerjisinin hesabı. b) Enerjinin korunumu prensibinin uygulanması. ENERJİNİN KORUNUMU Enerjinin korunumu
Düzlem Elektromanyetik Dalgalar
Düzlem Elektromanetik Dalgalar Düzgün Düzlem Dalga: E nin, (benzer şekilde H nin) aılma önüne dik sonsuz düzlemlerde, anı öne, anı genliğe ve anı faza sahip olduğu özel bir Maxwell denklemleri çözümüdür.
ELEKTRİK VE ELEKTRİK DEVRELERİ 2
1 ELEKTİK VE ELEKTİK DEVELEİ ALTENATİF AKIM Enstrümantal Analiz, Doğru Akım Analitik sinyal transduserlerinden çıkan elektrik periyodik bir salınım gösterir. Bu salınımlar akım veya potansiyelin zamana
Doğrultucularda ve Eviricilerde Kullanılan Pasif Filtre Türlerinin İncelenmesi ve Karşılaştırılması
Enerji Verimliliği ve Kalitesi Sempozyumu EVK 2015 Doğrultucularda ve Eviricilerde Kullanılan Pasif Filtre Türlerinin İncelenmesi ve Karşılaştırılması Mehmet Oğuz ÖZCAN Ezgi Ünverdi AĞLAR Ali Bekir YILDIZ
Deney 5 : Ayrık Filtre Tasarımı. Prof. Dr. Aydın Akan Bahattin Karakaya Umut Gündoğdu Yeşim Hekim Tanç
İ. Ü. Elektrik&Elektronik Müh. Böl. İŞARET İŞLEME ve UYGULAMALARI Deney 5 : Ayrık Filtre Tasarımı Prof. Dr. Aydın Akan Bahattin Karakaya Umut Gündoğdu Yeşim Hekim Tanç Deney 5 : Ayrık Filtre Tasarımı 1.
Matematikte karşılaştığınız güçlükler için endişe etmeyin. Emin olun benim karşılaştıklarım sizinkilerden daha büyüktür.
- 1 - ÖĞRENME ALANI CEBİR BÖLÜM KARMAŞIK SAYILAR ALT ÖĞRENME ALANLARI 1) Karmaşık Sayılar Karmaşık Sayıların Kutupsal Biçimi KARMAŞIK SAYILAR Kazanım 1 : Gerçek sayılar kümesini genişletme gereğini örneklerle
EEM 202 DENEY 8 RC DEVRELERİ-I SABİT BİR FREKANSTA RC DEVRELERİ
Ad&oyad: DEELEİ- ABİT Bİ FEKANTA DEELEİ 8. Amaçlar abit Frekanslı seri devrelerinde empedans, akım ve güç bağıntıları abit Frekanslı paralel devrelerinde admitans, akım ve güç bağıntıları. 8.4 Devre Elemanları
HAFTA 11: ÖRNEKLEME TEOREMİ SAMPLING THEOREM. İçindekiler
HAFA 11: ÖRNEKLEME EOREMİ SAMPLING HEOREM İçindekiler 6.1 Bant sınırlı sürekli zaman sinyallerinin örneklenmesi... 2 6.2 Düzgün (uniform), periyodik örnekleme... 3 6.3 Bant sınırlı sürekli bir zaman sinyaline
KATI CİSMİN DÜZLEMSEL KİNETİĞİ (Kinetik Enerji)
KATI CİSMİN DÜZLEMSEL KİNETİĞİ (Kinetik Enerji) Partikülün kinetiği bahsinde, hız ve yer değiştirme içeren problemlerin iş ve enerji prensibini kullanarak kolayca çözülebildiği söylenmişti. Ayrıca, kuvvet
DENEY 3: DFT-Discrete Fourier Transform. 2 cos Ω d. 2 sin Ω d FOURIER SERİSİ
DENEY 3: DFT-Discrete Fourier Transform FOURIER SERİSİ Herhangi bir periyodik işaret sonsuz sayıda sinüzoidalin ağırlıklı toplamı olarak ifade edilebilir: 2 cosω sinω 1 Burada Ώ 0 birinci (temel) harmonik
Devre Teorisi Ders Notu Dr. Nurettin ACIR ve Dr. Engin Cemal MENGÜÇ
BÖLÜM III RLC DEVRELERİN DOĞAL VE BASAMAK CEVABI RLC devreler; bir önceki bölümde gördüğümüz RC ve RL devrelerden farklı olarak indüktör ve kapasitör elemanlarını birlikte bulundururlar. RLC devrelerini
BÖLÜM V SİNÜZOİDAL KARARLI DURUM GÜÇ HESAPLARI
BÖÜM V SİNÜZOİDA KARARI DURUM GÜÇ HESAPARI Bir önceki bölümde, sinüzoidal kaynakla beslenen elektrik devrelerindeki kararlı durum voltajlarını ve akımlarını hesapladık. Bu bölümde ise amacımız, bir kararlı
ZAMAN VE FREKANS DOMENLERİNDE ÖRNEKLEME
Bölüm 6 ZAMAN VE FREKANS DOMENLERİNDE ÖRNEKLEME VE ÖRTÜŞME 12 Bölüm 6. Zaman ve Frekans Domenlerinde Örnekleme ve Örtüşme 6.1 GİRİŞ Bu bölümün amacı, verilen bir işaretin zaman veya frekans domenlerinden
MAT355 Kompleks Fonksiyonlar Teorisi I Hafta 2. yapılırsa bu durumda θ ya z nin esas argümenti denir ve Argz ile gösterilir. argz = Argz + 2nπ, n Z
MAT355 Kompleks Fonksiyonlar Teorisi I Hafta 1.. Kutupsal Formda Gösterim z x + iy vektörünün pozitif reel eksenle yaptığı açıya θ diyelim. cos θ x, sin θ y ve buradan tan θ y θ arctan y olup θ ya z z
Bölüm 11 ALTERNATİF AKIM (AC) Copyright 2008 Pearson Education Inc., publishing as Pearson Addison-Wesley
Bölüm 11 ALTERNATİF AKIM (AC) Hedef Öğretiler Fazör tanımı ve alternatif akım. Voltaj, akım, ve faz açısı. Direnç ve Reaktans. Empedans ve L-R-C devresi. AC devrelerinde güç. AC devrelerinde direnç. AC
ADIYAMAN ÜNĠVERSĠTESĠ MÜHENDĠSLĠK FAKÜLTESĠ ELEKTRĠK-ELEKTRONĠK MÜHENDĠSLĠĞĠ BÖLÜMÜ DEVRE ANALĠZĠ LABORATUVARI-II DENEY RAPORU
ADIYAMAN ÜNĠVERSĠTESĠ MÜHENDĠSLĠK FAKÜLTESĠ ELEKTRĠK-ELEKTRONĠK MÜHENDĠSLĠĞĠ BÖLÜMÜ DEVRE ANALĠZĠ LABORATUVARI-II DENEY RAPORU DENEY NO : DENEYĠN ADI : DENEY TARĠHĠ : DENEYĠ YAPANLAR : RAPORU HAZIRLAYANIN
Bant Sınırlı TBGG Kanallarda Sayısal İletim
Bant Sınırlı TBGG Kanallarda Sayısal İletim Bu bölümde, bant sınırlı doğrusal süzgeç olarak modellenen bir kanal üzerinde sayısal iletimi inceleyeceğiz. Bant sınırlı kanallar pratikte çok kez karşımıza
KİNETİK ENERJİ, İŞ-İŞ ve ENERJİ PRENSİBİ
KİNETİK ENERJİ, İŞ-İŞ ve ENERJİ PRENSİBİ Amaçlar 1. Kuvvet ve kuvvet çiftlerinin yaptığı işlerin tanımlanması, 2. Rijit cisme iş ve enerji prensiplerinin uygulanması. UYGULAMALAR Beton mikserinin iki motoru
Mustafa Sezer PEHLİVAN. Yüksek İhtisas Üniversitesi Beslenme ve Diyetetik Bölümü
* Yüksek İhtisas Üniversitesi Beslenme ve Diyetetik Bölümü SAYILAR Doğal Sayılar, Tam Sayılar, Rasyonel Sayılar, N={0,1,2,3,,n, } Z={,-3,-2,-1,0,1,2,3, } Q={p/q: p,q Z ve q 0} İrrasyonel Sayılar, I= {p/q
Manyetik Alanlar. Benzer bir durum hareketli yükler içinde geçerli olup bu yüklerin etrafını elektrik alana ek olarak bir manyetik alan sarmaktadır.
Manyetik Alanlar Manyetik Alanlar Duran ya da hareket eden yüklü parçacığın etrafını bir elektrik alanın sardığı biliyoruz. Hatta elektrik alan konusunda şu sonuç oraya konulmuştur. Durgun bir deneme yükü
Chapter 1 İçindekiler
Chapter 1 İçindekiler Kendinizi Test Edin iii 10 Birinci Mertebeden Diferansiel Denklemler 565 10.1 Arılabilir Denklemler 566 10. Lineer Denklemler 571 10.3 Matematiksel Modeller 576 10.4 Çözümü Olmaan
Gerilme Dönüşümü. Bölüm Hedefleri
Gerilme Dönüşümü Bölüm Hedefleri Bu bölümde, belirli bir koordinat sisteminde tanımlı gerilme bileşenlerinin, farklı eğimlere sahip koordinat sistemlerine nasıl dönüştürüleceği üzerinde durulacaktır. Gerekli
DENEY 7 DALGALI GERİLİM ÖLÇÜMLERİ - OSİLOSKOP
DENEY 7 DALGALI GERİLİM ÖLÇÜMLERİ - OSİLOSKOP Amaç: Bu deneyin amacı, öğrencilerin alternatif akım ve gerilim hakkında bilgi edinmesini sağlamaktır. Deney sonunda öğrencilerin, periyot, frekans, genlik,
ALTERNATİF AKIMIN DENKLEMİ
1 ALTERNATİF AKIMIN DENKLEMİ ALTERNATİF AKIM Lineer ve Açısal Hız Lineer ve Açısal Hız Lineer hız v, lineer(doğrusal) yer değişiminin(s) bu sürede geçen zamana oranı olarak tanımlanır. Lineer hızın birimi
Uçlarındaki gerilim U volt ve içinden t saniye süresince Q coulomb luk elektrik yükü geçen bir alıcıda görülen iş:
Etrafımızda oluşan değişmeleri iş, bu işi oluşturan yetenekleri de enerji olarak tanımlarız. Örneğin bir elektrik motorunun dönmesi ile bir iş yapılır ve bu işi yaparken de motor bir enerji kullanır. Mekanikte
Şekil 1: Direnç-bobin seri devresi. gerilim düşümü ile akımdan 90 o ileri fazlı olan bobin uçlarındaki U L gerilim düşümüdür.
1 TEME DEVEEİN KAMAŞIK SAYIAA ÇÖÜMÜ 1. Direnç Bbin Seri Devresi: (- Seri Devresi Direnç ve bbinin seri bağlı lduğu Şekil 1 deki devreyi alalım. Burada devre gerilimi birbirine dik lan iki bileşene ayrılabilir.
KARADENİZ TEKNİK ÜNİVERSİTESİ Mühendislik Fakültesi Elektrik-Elektronik Mühendisliği Bölümü ELK 2008 DEVRELER II LABORATUARI
DİRENÇ-ENDÜKTANS VE DİRENÇ KAPASİTANS FİLTRE DEVRELERİ HAZIRLIK ÇALIŞMALARI 1. Alçak geçiren filtre devrelerinin çalışmasını anlatınız. 2. Yüksek geçiren filtre devrelerinin çalışmasını anlatınız. 3. R-L
ADIYAMAN ÜNĠVERSĠTESĠ MÜHENDĠSLĠK FAKÜLTESĠ ELEKTRĠK-ELEKTRONĠK MÜHENDĠSLĠĞĠ BÖLÜMÜ DEVRE ANALĠZĠ LABORATUVARI-II DENEY RAPORU
ADIYAMAN ÜNĠVERSĠTESĠ MÜHENDĠSLĠK FAKÜLTESĠ ELEKTRĠK-ELEKTRONĠK MÜHENDĠSLĠĞĠ BÖLÜMÜ DEVRE ANALĠZĠ LABORATUVARI-II DENEY RAPORU DENEY NO : DENEYĠN ADI : DENEY TARĠHĠ : DENEYĠ YAPANLAR : RAPORU HAZIRLAYANIN
ADIYAMAN ÜNĠVERSĠTESĠ MÜHENDĠSLĠK FAKÜLTESĠ ELEKTRĠK-ELEKTRONĠK MÜHENDĠSLĠĞĠ BÖLÜMÜ DEVRE ANALĠZĠ LABORATUVARI-II DENEY RAPORU
ADIYAMAN ÜNĠVERSĠTESĠ MÜHENDĠSLĠK FAKÜLTESĠ ELEKTRĠK-ELEKTRONĠK MÜHENDĠSLĠĞĠ BÖLÜMÜ DEVRE ANALĠZĠ LABORATUVARI-II DENEY RAPORU DENEY NO : DENEYĠN ADI : DENEY TARĠHĠ : DENEYĠ YAPANLAR : RAPORU HAZIRLAYANIN
Ödev 1. Ödev1: 600N luk kuvveti u ve v eksenlerinde bileşenlerine ayırınız. 600 N
Ödev 1 Ödev1: 600N luk kuvveti u ve v eksenlerinde bileşenlerine ayırınız. 600 N 1 600 N 600 N 600 N u sin120 600 N sin 30 u 1039N v sin 30 600 N sin 30 v 600N 2 Ödev 2 Ödev2: 2 kuvvetinin şiddetini, yönünü
BİRİM ŞEKİLDEĞİŞTİRME DÖNÜŞÜMÜ
BİRİM ŞEKİLDEĞİŞTİRME DÖNÜŞÜMÜ DÜZLEM-BİRİM ŞEKİLDEĞİŞTİRME 3D durumda, bir noktadaki birim şekil değiştirme durumu 3 normal birim şekildeğiştirme bileşeni,, z, ve 3 kesme birim şekildeğiştirme bileşeninden,
DENEY 3: DTMF İŞARETLERİN ÜRETİLMESİ VE ALGILANMASI
DENEY 3: DTMF İŞARETLERİN ÜRETİLMESİ VE ALGILANMASI AMAÇ: DTMF işaretlerin yapısının, üretim ve algılanmasının incelenmesi. MALZEMELER TP5088 ya da KS58015 M8870-01 ya da M8870-02 (diğer eşdeğer entegreler
MUKAVEMET I ÇÖZÜMLÜ ÖRNEKLER
MUKAEMET I ÇÖZÜMÜ ÖRNEKER ders notu Yard. Doç. Dr. Erdem DAMCI Şubat 15 Mukavemet I - Çözümlü Örnekler / 7 Örnek 1. Üzerinde yalnızca yayılı yük bulunan ve açıklığı olan bir basit kirişe ait eğilme momenti
DENEY FÖYÜ 7: Seri ve Paralel Rezonans Devreleri
DENEY FÖYÜ 7: Seri ve Paralel Rezonans Devreleri Deneyin Amacı: Seri ve paralel rezonans devrelerini incelemek, devrelerin karakteristik parametrelerini hesaplamak ve ölçmek, rezonans eğrilerini çizmek.
ELEKTRİK-ELEKTRONİK MÜHENDİSLİĞİ BÖLÜMÜ İLETİŞİM LABORATUARI SAYISAL FİLTRELER
SAYISAL FİLTRELER Deney Amacı Sayısal filtre tasarımının ve kullanılmasının öğrenilmesi. Kapsam Ayrık zamanlı bir sistem transfer fonksiyonunun elde edilmesi. Filtren frekans tepkes elde edilmesi. Direct
18.701 Cebir 1. MIT Açık Ders Malzemeleri http://ocw.mit.edu
MIT Açık Ders Malzemeleri http://ocw.mit.edu 18.701 Cebir 1 2007 Güz Bu malzemeden alıntı yapmak veya Kullanım Şartları hakkında bilgi almak için http://ocw.mit.edu/terms ve http://tuba.acikders.org.tr
5. Sunum: Kalıcı Durum Güç Analizi. Kaynak: Temel Mühendislik Devre Analizi, J. David IRWIN-R. Mark NELMS, Nobel Akademik Yayıncılık
5. Sunum: Kalıcı Durum Güç Analizi Kaynak: Temel Mühendislik Devre Analizi, J. David IRWIN-R. Mark NELMS, Nobel Akademik Yayıncılık 1 Giriş Bu bölümde AC devrelerde güç hesabı ele alınacakqr. Ayrıca güç
Noktasal Cismin Dengesi
Noktasal Cismin Dengesi Bu bölümde; Kuvvetleri bieşenlerine ayırma ve kartezyen vektör şeklinde ifade etme yöntemleri noktasal cismin dengesini içeren problemleri çözmede kullanılacaktır. Bölüm 3 DOÇ.DR.
HAFTA 8: FOURIER SERİLERİ ÖZELLİKLERİ. İçindekiler
HAFA 8: FOURIER SERİLERİ ÖZELLİKLERİ İçindekiler 4.4. Fourier serisinin özellikleri... 2 4.4.1 Doğrusallık özelliği (Linearity property)... 2 4.4.2 Zamanda tersine çevirme özelliği (ime Reversal Property)...
AKDENİZ ÜNİVERSİTESİ. Anten Parametrelerinin Temelleri. Samet YALÇIN
AKDENİZ ÜNİVERSİTESİ Anten Parametrelerinin Temelleri Samet YALÇIN Anten Parametrelerinin Temelleri GİRİŞ: Bir antenin parametrelerini tanımlayabilmek için anten parametreleri gereklidir. Anten performansından
Fizik 101: Ders 23 Gündem
Fizik 101: Ders 3 Gündem Basit Harmonik Hereket Yatay yay ve kütle Sinus ve cosinus lerin anlamı Düşey yay ve kütle Enerji yaklaşımı Basit sarkaç Çubuk sarkaç Basit Harmonik Hareket (BHH) Ucunda bir kütle
ELK-301 ELEKTRİK MAKİNALARI-1
ELK-301 ELEKTRİK MAKİNALARI-1 KAYNAKLAR 1. Prof. Dr. Güngör BAL, Elektrik Makinaları I, Seçkin Yayınevi, Ankara 2016 2. Stephen J. Chapman, Elektrik Makinalarının Temelleri, Çağlayan Kitabevi, 2007, Çeviren:
Sistem Dinamiği. Bölüm 9- Frekans Domeninde Sistem Analizi. Doç.Dr. Erhan AKDOĞAN
Sistem Dinamiği Bölüm 9- Frekans Domeninde Sistem Analizi Sunumlarda kullanılan semboller: El notlarına bkz. Yorum Bolum No.Alt Başlık No.Denklem Sıra No Denklem numarası Şekil No Şekil numarası Dikkat
Mühendislik Fakültesi Elektrik-Elektronik Mühendisliği Bölümü
HAZIRLIK ÇALIŞMALARI İŞLEMSEL YÜKSELTEÇLER VE UYGULAMALARI 1. 741 İşlemsel yükselteçlerin özellikleri ve yapısı hakkında bilgi veriniz. 2. İşlemsel yükselteçlerle gerçekleştirilen eviren yükselteç, türev
DERS: MATEMATİK I MAT101(04)
DERS: MATEMATİK I MAT0(0) ÜNİTE: FONKSİYONLAR KONU:. TRİGONOMETRİK FONKSİYONLAR Öncelikle açı ölçü birimlerine göz atalım: Bilindiği gibi bir tam açının ölçüsü 0 derecedir. Diğer bir açı ölçü birimi de
Trigonometrik Fonksiyonlar
Trigonometrik Fonksiyonlar Yazar Prof.Dr. Vakıf CAFEROV ÜNİTE 6 Amaçlar Bu üniteyi çalıştıktan sonra; açı kavramını hatırlayacak, açıların derece ölçümünü radyan ölçümüne ve tersine çevirebilecek, trigonometrik
Doç. Dr. Sabri KAYA Erciyes Üni. Müh. Fak. Elektrik-Elektronik Müh. Bölümü. Ders içeriği
ANTENLER Doç. Dr. Sabri KAYA Erciyes Üni. Müh. Fak. Elektrik-Elektronik Müh. Bölümü Ders içeriği BÖLÜM 1: Antenler BÖLÜM 2: Antenlerin Temel Parametreleri BÖLÜM 3: Lineer Tel Antenler BÖLÜM 4: Halka Antenler
Aralıklar, Eşitsizlikler, Mutlak Değer
ARALIKLAR Gerçel sayıların, aralık olarak adlandırılan bazı kümeleri kalkülüste sık sık kullanılır ve geometrik olarak doğru parçalarına karşılık gelir. Örneğin, a < b ise, a dan b ye açık aralık, a ile
Sayısal Filtre Tasarımı
Sayısal Filtre Tasarımı Sayısal Filtreler Filtreler ayrık zamanlı sistemlerdir. Filtreler işaretin belirli frekanslarını güçlendirmek veya zayıflatmak, belirli frekanslarını tamamen bastırmak veya belirli
EVK Enerji Verimliliği, Kalitesi Sempozyumu ve Sergisi Haziran 2015, Sakarya
6. Enerji Verimliliği, Kalitesi Sempozyumu ve Sergisi 04-06 Haziran 2015, Sakarya KÜÇÜK RÜZGAR TÜRBİNLERİ İÇİN ŞEBEKE BAĞLANTILI 3-FAZLI 3-SEVİYELİ T-TİPİ DÖNÜŞTÜRÜCÜ DENETİMİ İbrahim Günesen [email protected]
AC DEVRELERDE BOBİNLER
AC DEVRELERDE BOBİNLER 4.1 Amaçlar Sabit Frekanslı AC Devrelerde Bobin Bobinin voltaj ve akımının ölçülmesi Voltaj ve akım arasındaki faz farkının bulunması Gücün hesaplanması Voltaj, akım ve güç eğrilerinin
KARADENİZ TEKNİK ÜNİVERSİTESİ Mühendislik Fakültesi Elektrik-Elektronik Mühendisliği Bölümü ELK222 TEMEL ELEKTRİK LABORATUARI-II
ALTERNATİF AKIM KÖPRÜLERİ 1. Hazırlık Soruları Deneye gelmeden önce aşağıdaki soruları cevaplayınız ve deney öncesinde rapor halinde sununuz. Omik, kapasitif ve endüktif yük ne demektir? Açıklayınız. Omik
EET-202 DEVRE ANALİZİ-II DENEY FÖYÜ OSİLOSKOP İLE PERİYOT, FREKANS VE GERİLİM ÖLÇME
OSİLOSKOP İLE PERİYOT, FREKANS VE GERİLİM ÖLÇME Deney No:1 Amaç: Osiloskop kullanarak AC gerilimin genlik periyot ve frekans değerlerinin ölçmesi Gerekli Ekipmanlar: AC Güç Kaynağı, Osiloskop, 2 tane 1k
fonksiyonu için in aralığındaki bütün değerleri için sürekli olsun. in bu aralıktaki olsun. Fonksiyonda meydana gelen artma miktarı
10.1 Türev Kavramı fonksiyonu için in aralığındaki bütün değerleri için sürekli olsun. in bu aralıktaki bir değerine kadar bir artma verildiğinde varılan x = x 0 + noktasında fonksiyonun değeri olsun.
14. SİNÜSOİDAL AKIMDA DİRENÇ, KAPASİTE, İNDÜKTANS VE ORTAK İNDÜKTANSIN ÖLÇÜLMESİ
14. SİNÜSOİDAL AKIMDA DİRENÇ, KAPASİTE, İNDÜKTANS VE ORTAK İNDÜKTANSIN ÖLÇÜLMESİ Sinüsoidal Akımda Direncin Ölçülmesi Sinüsoidal akımda, direnç üzerindeki gerilim ve akım dalga şekilleri ve fazörleri aşağıdaki
